1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
26 #include "workarounds.h"
27 #include "ef10_regs.h"
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly
= EFX_PIOBUF_SIZE_DEF
;
34 #endif /* EFX_USE_PIO */
36 static inline u8
*efx_tx_get_copy_buffer(struct efx_tx_queue
*tx_queue
,
37 struct efx_tx_buffer
*buffer
)
39 unsigned int index
= efx_tx_queue_get_insert_index(tx_queue
);
40 struct efx_buffer
*page_buf
=
41 &tx_queue
->cb_page
[index
>> (PAGE_SHIFT
- EFX_TX_CB_ORDER
)];
43 ((index
<< EFX_TX_CB_ORDER
) + NET_IP_ALIGN
) & (PAGE_SIZE
- 1);
45 if (unlikely(!page_buf
->addr
) &&
46 efx_nic_alloc_buffer(tx_queue
->efx
, page_buf
, PAGE_SIZE
,
49 buffer
->dma_addr
= page_buf
->dma_addr
+ offset
;
50 buffer
->unmap_len
= 0;
51 return (u8
*)page_buf
->addr
+ offset
;
54 u8
*efx_tx_get_copy_buffer_limited(struct efx_tx_queue
*tx_queue
,
55 struct efx_tx_buffer
*buffer
, size_t len
)
57 if (len
> EFX_TX_CB_SIZE
)
59 return efx_tx_get_copy_buffer(tx_queue
, buffer
);
62 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
63 struct efx_tx_buffer
*buffer
,
64 unsigned int *pkts_compl
,
65 unsigned int *bytes_compl
)
67 if (buffer
->unmap_len
) {
68 struct device
*dma_dev
= &tx_queue
->efx
->pci_dev
->dev
;
69 dma_addr_t unmap_addr
= buffer
->dma_addr
- buffer
->dma_offset
;
70 if (buffer
->flags
& EFX_TX_BUF_MAP_SINGLE
)
71 dma_unmap_single(dma_dev
, unmap_addr
, buffer
->unmap_len
,
74 dma_unmap_page(dma_dev
, unmap_addr
, buffer
->unmap_len
,
76 buffer
->unmap_len
= 0;
79 if (buffer
->flags
& EFX_TX_BUF_SKB
) {
81 (*bytes_compl
) += buffer
->skb
->len
;
82 dev_consume_skb_any((struct sk_buff
*)buffer
->skb
);
83 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
84 "TX queue %d transmission id %x complete\n",
85 tx_queue
->queue
, tx_queue
->read_count
);
92 unsigned int efx_tx_max_skb_descs(struct efx_nic
*efx
)
94 /* Header and payload descriptor for each output segment, plus
95 * one for every input fragment boundary within a segment
97 unsigned int max_descs
= EFX_TSO_MAX_SEGS
* 2 + MAX_SKB_FRAGS
;
99 /* Possibly one more per segment for option descriptors */
100 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
)
101 max_descs
+= EFX_TSO_MAX_SEGS
;
103 /* Possibly more for PCIe page boundaries within input fragments */
104 if (PAGE_SIZE
> EFX_PAGE_SIZE
)
105 max_descs
+= max_t(unsigned int, MAX_SKB_FRAGS
,
106 DIV_ROUND_UP(GSO_MAX_SIZE
, EFX_PAGE_SIZE
));
111 static void efx_tx_maybe_stop_queue(struct efx_tx_queue
*txq1
)
113 /* We need to consider both queues that the net core sees as one */
114 struct efx_tx_queue
*txq2
= efx_tx_queue_partner(txq1
);
115 struct efx_nic
*efx
= txq1
->efx
;
116 unsigned int fill_level
;
118 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
119 txq2
->insert_count
- txq2
->old_read_count
);
120 if (likely(fill_level
< efx
->txq_stop_thresh
))
123 /* We used the stale old_read_count above, which gives us a
124 * pessimistic estimate of the fill level (which may even
125 * validly be >= efx->txq_entries). Now try again using
126 * read_count (more likely to be a cache miss).
128 * If we read read_count and then conditionally stop the
129 * queue, it is possible for the completion path to race with
130 * us and complete all outstanding descriptors in the middle,
131 * after which there will be no more completions to wake it.
132 * Therefore we stop the queue first, then read read_count
133 * (with a memory barrier to ensure the ordering), then
134 * restart the queue if the fill level turns out to be low
137 netif_tx_stop_queue(txq1
->core_txq
);
139 txq1
->old_read_count
= ACCESS_ONCE(txq1
->read_count
);
140 txq2
->old_read_count
= ACCESS_ONCE(txq2
->read_count
);
142 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
143 txq2
->insert_count
- txq2
->old_read_count
);
144 EFX_WARN_ON_ONCE_PARANOID(fill_level
>= efx
->txq_entries
);
145 if (likely(fill_level
< efx
->txq_stop_thresh
)) {
147 if (likely(!efx
->loopback_selftest
))
148 netif_tx_start_queue(txq1
->core_txq
);
152 static int efx_enqueue_skb_copy(struct efx_tx_queue
*tx_queue
,
155 unsigned int copy_len
= skb
->len
;
156 struct efx_tx_buffer
*buffer
;
160 EFX_WARN_ON_ONCE_PARANOID(copy_len
> EFX_TX_CB_SIZE
);
162 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
164 copy_buffer
= efx_tx_get_copy_buffer(tx_queue
, buffer
);
165 if (unlikely(!copy_buffer
))
168 rc
= skb_copy_bits(skb
, 0, copy_buffer
, copy_len
);
169 EFX_WARN_ON_PARANOID(rc
);
170 buffer
->len
= copy_len
;
173 buffer
->flags
= EFX_TX_BUF_SKB
;
175 ++tx_queue
->insert_count
;
181 struct efx_short_copy_buffer
{
183 u8 buf
[L1_CACHE_BYTES
];
186 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
187 * Advances piobuf pointer. Leaves additional data in the copy buffer.
189 static void efx_memcpy_toio_aligned(struct efx_nic
*efx
, u8 __iomem
**piobuf
,
191 struct efx_short_copy_buffer
*copy_buf
)
193 int block_len
= len
& ~(sizeof(copy_buf
->buf
) - 1);
195 __iowrite64_copy(*piobuf
, data
, block_len
>> 3);
196 *piobuf
+= block_len
;
201 BUG_ON(copy_buf
->used
);
202 BUG_ON(len
> sizeof(copy_buf
->buf
));
203 memcpy(copy_buf
->buf
, data
, len
);
204 copy_buf
->used
= len
;
208 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
209 * Advances piobuf pointer. Leaves additional data in the copy buffer.
211 static void efx_memcpy_toio_aligned_cb(struct efx_nic
*efx
, u8 __iomem
**piobuf
,
213 struct efx_short_copy_buffer
*copy_buf
)
215 if (copy_buf
->used
) {
216 /* if the copy buffer is partially full, fill it up and write */
218 min_t(int, sizeof(copy_buf
->buf
) - copy_buf
->used
, len
);
220 memcpy(copy_buf
->buf
+ copy_buf
->used
, data
, copy_to_buf
);
221 copy_buf
->used
+= copy_to_buf
;
223 /* if we didn't fill it up then we're done for now */
224 if (copy_buf
->used
< sizeof(copy_buf
->buf
))
227 __iowrite64_copy(*piobuf
, copy_buf
->buf
,
228 sizeof(copy_buf
->buf
) >> 3);
229 *piobuf
+= sizeof(copy_buf
->buf
);
235 efx_memcpy_toio_aligned(efx
, piobuf
, data
, len
, copy_buf
);
238 static void efx_flush_copy_buffer(struct efx_nic
*efx
, u8 __iomem
*piobuf
,
239 struct efx_short_copy_buffer
*copy_buf
)
241 /* if there's anything in it, write the whole buffer, including junk */
243 __iowrite64_copy(piobuf
, copy_buf
->buf
,
244 sizeof(copy_buf
->buf
) >> 3);
247 /* Traverse skb structure and copy fragments in to PIO buffer.
248 * Advances piobuf pointer.
250 static void efx_skb_copy_bits_to_pio(struct efx_nic
*efx
, struct sk_buff
*skb
,
252 struct efx_short_copy_buffer
*copy_buf
)
256 efx_memcpy_toio_aligned(efx
, piobuf
, skb
->data
, skb_headlen(skb
),
259 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; ++i
) {
260 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
263 vaddr
= kmap_atomic(skb_frag_page(f
));
265 efx_memcpy_toio_aligned_cb(efx
, piobuf
, vaddr
+ f
->page_offset
,
266 skb_frag_size(f
), copy_buf
);
267 kunmap_atomic(vaddr
);
270 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb
)->frag_list
);
273 static int efx_enqueue_skb_pio(struct efx_tx_queue
*tx_queue
,
276 struct efx_tx_buffer
*buffer
=
277 efx_tx_queue_get_insert_buffer(tx_queue
);
278 u8 __iomem
*piobuf
= tx_queue
->piobuf
;
280 /* Copy to PIO buffer. Ensure the writes are padded to the end
281 * of a cache line, as this is required for write-combining to be
282 * effective on at least x86.
285 if (skb_shinfo(skb
)->nr_frags
) {
286 /* The size of the copy buffer will ensure all writes
287 * are the size of a cache line.
289 struct efx_short_copy_buffer copy_buf
;
293 efx_skb_copy_bits_to_pio(tx_queue
->efx
, skb
,
295 efx_flush_copy_buffer(tx_queue
->efx
, piobuf
, ©_buf
);
297 /* Pad the write to the size of a cache line.
298 * We can do this because we know the skb_shared_info struct is
299 * after the source, and the destination buffer is big enough.
301 BUILD_BUG_ON(L1_CACHE_BYTES
>
302 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)));
303 __iowrite64_copy(tx_queue
->piobuf
, skb
->data
,
304 ALIGN(skb
->len
, L1_CACHE_BYTES
) >> 3);
308 buffer
->flags
= EFX_TX_BUF_SKB
| EFX_TX_BUF_OPTION
;
310 EFX_POPULATE_QWORD_5(buffer
->option
,
311 ESF_DZ_TX_DESC_IS_OPT
, 1,
312 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_PIO
,
313 ESF_DZ_TX_PIO_CONT
, 0,
314 ESF_DZ_TX_PIO_BYTE_CNT
, skb
->len
,
315 ESF_DZ_TX_PIO_BUF_ADDR
,
316 tx_queue
->piobuf_offset
);
317 ++tx_queue
->insert_count
;
320 #endif /* EFX_USE_PIO */
322 static struct efx_tx_buffer
*efx_tx_map_chunk(struct efx_tx_queue
*tx_queue
,
326 const struct efx_nic_type
*nic_type
= tx_queue
->efx
->type
;
327 struct efx_tx_buffer
*buffer
;
328 unsigned int dma_len
;
330 /* Map the fragment taking account of NIC-dependent DMA limits. */
332 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
333 dma_len
= nic_type
->tx_limit_len(tx_queue
, dma_addr
, len
);
335 buffer
->len
= dma_len
;
336 buffer
->dma_addr
= dma_addr
;
337 buffer
->flags
= EFX_TX_BUF_CONT
;
340 ++tx_queue
->insert_count
;
346 /* Map all data from an SKB for DMA and create descriptors on the queue.
348 static int efx_tx_map_data(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
,
349 unsigned int segment_count
)
351 struct efx_nic
*efx
= tx_queue
->efx
;
352 struct device
*dma_dev
= &efx
->pci_dev
->dev
;
353 unsigned int frag_index
, nr_frags
;
354 dma_addr_t dma_addr
, unmap_addr
;
355 unsigned short dma_flags
;
356 size_t len
, unmap_len
;
358 nr_frags
= skb_shinfo(skb
)->nr_frags
;
361 /* Map header data. */
362 len
= skb_headlen(skb
);
363 dma_addr
= dma_map_single(dma_dev
, skb
->data
, len
, DMA_TO_DEVICE
);
364 dma_flags
= EFX_TX_BUF_MAP_SINGLE
;
366 unmap_addr
= dma_addr
;
368 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
372 /* For TSO we need to put the header in to a separate
373 * descriptor. Map this separately if necessary.
375 size_t header_len
= skb_transport_header(skb
) - skb
->data
+
376 (tcp_hdr(skb
)->doff
<< 2u);
378 if (header_len
!= len
) {
379 tx_queue
->tso_long_headers
++;
380 efx_tx_map_chunk(tx_queue
, dma_addr
, header_len
);
382 dma_addr
+= header_len
;
386 /* Add descriptors for each fragment. */
388 struct efx_tx_buffer
*buffer
;
389 skb_frag_t
*fragment
;
391 buffer
= efx_tx_map_chunk(tx_queue
, dma_addr
, len
);
393 /* The final descriptor for a fragment is responsible for
394 * unmapping the whole fragment.
396 buffer
->flags
= EFX_TX_BUF_CONT
| dma_flags
;
397 buffer
->unmap_len
= unmap_len
;
398 buffer
->dma_offset
= buffer
->dma_addr
- unmap_addr
;
400 if (frag_index
>= nr_frags
) {
401 /* Store SKB details with the final buffer for
405 buffer
->flags
= EFX_TX_BUF_SKB
| dma_flags
;
409 /* Move on to the next fragment. */
410 fragment
= &skb_shinfo(skb
)->frags
[frag_index
++];
411 len
= skb_frag_size(fragment
);
412 dma_addr
= skb_frag_dma_map(dma_dev
, fragment
,
413 0, len
, DMA_TO_DEVICE
);
416 unmap_addr
= dma_addr
;
418 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
423 /* Remove buffers put into a tx_queue. None of the buffers must have
426 static void efx_enqueue_unwind(struct efx_tx_queue
*tx_queue
)
428 struct efx_tx_buffer
*buffer
;
430 /* Work backwards until we hit the original insert pointer value */
431 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
432 --tx_queue
->insert_count
;
433 buffer
= __efx_tx_queue_get_insert_buffer(tx_queue
);
434 efx_dequeue_buffer(tx_queue
, buffer
, NULL
, NULL
);
439 * Fallback to software TSO.
441 * This is used if we are unable to send a GSO packet through hardware TSO.
442 * This should only ever happen due to per-queue restrictions - unsupported
443 * packets should first be filtered by the feature flags.
445 * Returns 0 on success, error code otherwise.
447 static int efx_tx_tso_fallback(struct efx_tx_queue
*tx_queue
,
450 struct sk_buff
*segments
, *next
;
452 segments
= skb_gso_segment(skb
, 0);
453 if (IS_ERR(segments
))
454 return PTR_ERR(segments
);
456 dev_kfree_skb_any(skb
);
464 skb
->xmit_more
= true;
465 efx_enqueue_skb(tx_queue
, skb
);
473 * Add a socket buffer to a TX queue
475 * This maps all fragments of a socket buffer for DMA and adds them to
476 * the TX queue. The queue's insert pointer will be incremented by
477 * the number of fragments in the socket buffer.
479 * If any DMA mapping fails, any mapped fragments will be unmapped,
480 * the queue's insert pointer will be restored to its original value.
482 * This function is split out from efx_hard_start_xmit to allow the
483 * loopback test to direct packets via specific TX queues.
485 * Returns NETDEV_TX_OK.
486 * You must hold netif_tx_lock() to call this function.
488 netdev_tx_t
efx_enqueue_skb(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
490 bool data_mapped
= false;
491 unsigned int segments
;
492 unsigned int skb_len
;
496 segments
= skb_is_gso(skb
) ? skb_shinfo(skb
)->gso_segs
: 0;
498 segments
= 0; /* Don't use TSO for a single segment. */
500 /* Handle TSO first - it's *possible* (although unlikely) that we might
501 * be passed a packet to segment that's smaller than the copybreak/PIO
505 EFX_WARN_ON_ONCE_PARANOID(!tx_queue
->handle_tso
);
506 rc
= tx_queue
->handle_tso(tx_queue
, skb
, &data_mapped
);
508 rc
= efx_tx_tso_fallback(tx_queue
, skb
);
509 tx_queue
->tso_fallbacks
++;
516 } else if (skb_len
<= efx_piobuf_size
&& !skb
->xmit_more
&&
517 efx_nic_may_tx_pio(tx_queue
)) {
518 /* Use PIO for short packets with an empty queue. */
519 if (efx_enqueue_skb_pio(tx_queue
, skb
))
521 tx_queue
->pio_packets
++;
524 } else if (skb
->data_len
&& skb_len
<= EFX_TX_CB_SIZE
) {
525 /* Pad short packets or coalesce short fragmented packets. */
526 if (efx_enqueue_skb_copy(tx_queue
, skb
))
528 tx_queue
->cb_packets
++;
532 /* Map for DMA and create descriptors if we haven't done so already. */
533 if (!data_mapped
&& (efx_tx_map_data(tx_queue
, skb
, segments
)))
537 netdev_tx_sent_queue(tx_queue
->core_txq
, skb_len
);
539 /* Pass off to hardware */
540 if (!skb
->xmit_more
|| netif_xmit_stopped(tx_queue
->core_txq
)) {
541 struct efx_tx_queue
*txq2
= efx_tx_queue_partner(tx_queue
);
543 /* There could be packets left on the partner queue if those
544 * SKBs had skb->xmit_more set. If we do not push those they
545 * could be left for a long time and cause a netdev watchdog.
547 if (txq2
->xmit_more_available
)
548 efx_nic_push_buffers(txq2
);
550 efx_nic_push_buffers(tx_queue
);
552 tx_queue
->xmit_more_available
= skb
->xmit_more
;
556 tx_queue
->tso_bursts
++;
557 tx_queue
->tso_packets
+= segments
;
558 tx_queue
->tx_packets
+= segments
;
560 tx_queue
->tx_packets
++;
563 efx_tx_maybe_stop_queue(tx_queue
);
569 efx_enqueue_unwind(tx_queue
);
570 dev_kfree_skb_any(skb
);
574 /* Remove packets from the TX queue
576 * This removes packets from the TX queue, up to and including the
579 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
581 unsigned int *pkts_compl
,
582 unsigned int *bytes_compl
)
584 struct efx_nic
*efx
= tx_queue
->efx
;
585 unsigned int stop_index
, read_ptr
;
587 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
588 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
590 while (read_ptr
!= stop_index
) {
591 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
593 if (!(buffer
->flags
& EFX_TX_BUF_OPTION
) &&
594 unlikely(buffer
->len
== 0)) {
595 netif_err(efx
, tx_err
, efx
->net_dev
,
596 "TX queue %d spurious TX completion id %x\n",
597 tx_queue
->queue
, read_ptr
);
598 efx_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
602 efx_dequeue_buffer(tx_queue
, buffer
, pkts_compl
, bytes_compl
);
604 ++tx_queue
->read_count
;
605 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
609 /* Initiate a packet transmission. We use one channel per CPU
610 * (sharing when we have more CPUs than channels). On Falcon, the TX
611 * completion events will be directed back to the CPU that transmitted
612 * the packet, which should be cache-efficient.
614 * Context: non-blocking.
615 * Note that returning anything other than NETDEV_TX_OK will cause the
616 * OS to free the skb.
618 netdev_tx_t
efx_hard_start_xmit(struct sk_buff
*skb
,
619 struct net_device
*net_dev
)
621 struct efx_nic
*efx
= netdev_priv(net_dev
);
622 struct efx_tx_queue
*tx_queue
;
623 unsigned index
, type
;
625 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev
));
627 /* PTP "event" packet */
628 if (unlikely(efx_xmit_with_hwtstamp(skb
)) &&
629 unlikely(efx_ptp_is_ptp_tx(efx
, skb
))) {
630 return efx_ptp_tx(efx
, skb
);
633 index
= skb_get_queue_mapping(skb
);
634 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
635 if (index
>= efx
->n_tx_channels
) {
636 index
-= efx
->n_tx_channels
;
637 type
|= EFX_TXQ_TYPE_HIGHPRI
;
639 tx_queue
= efx_get_tx_queue(efx
, index
, type
);
641 return efx_enqueue_skb(tx_queue
, skb
);
644 void efx_init_tx_queue_core_txq(struct efx_tx_queue
*tx_queue
)
646 struct efx_nic
*efx
= tx_queue
->efx
;
648 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
650 netdev_get_tx_queue(efx
->net_dev
,
651 tx_queue
->queue
/ EFX_TXQ_TYPES
+
652 ((tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
653 efx
->n_tx_channels
: 0));
656 int efx_setup_tc(struct net_device
*net_dev
, u32 handle
, __be16 proto
,
657 struct tc_to_netdev
*ntc
)
659 struct efx_nic
*efx
= netdev_priv(net_dev
);
660 struct efx_channel
*channel
;
661 struct efx_tx_queue
*tx_queue
;
665 if (ntc
->type
!= TC_SETUP_MQPRIO
)
670 if (num_tc
> EFX_MAX_TX_TC
)
673 if (num_tc
== net_dev
->num_tc
)
676 for (tc
= 0; tc
< num_tc
; tc
++) {
677 net_dev
->tc_to_txq
[tc
].offset
= tc
* efx
->n_tx_channels
;
678 net_dev
->tc_to_txq
[tc
].count
= efx
->n_tx_channels
;
681 if (num_tc
> net_dev
->num_tc
) {
682 /* Initialise high-priority queues as necessary */
683 efx_for_each_channel(channel
, efx
) {
684 efx_for_each_possible_channel_tx_queue(tx_queue
,
686 if (!(tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
))
688 if (!tx_queue
->buffer
) {
689 rc
= efx_probe_tx_queue(tx_queue
);
693 if (!tx_queue
->initialised
)
694 efx_init_tx_queue(tx_queue
);
695 efx_init_tx_queue_core_txq(tx_queue
);
699 /* Reduce number of classes before number of queues */
700 net_dev
->num_tc
= num_tc
;
703 rc
= netif_set_real_num_tx_queues(net_dev
,
704 max_t(int, num_tc
, 1) *
709 /* Do not destroy high-priority queues when they become
710 * unused. We would have to flush them first, and it is
711 * fairly difficult to flush a subset of TX queues. Leave
712 * it to efx_fini_channels().
715 net_dev
->num_tc
= num_tc
;
719 void efx_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
722 struct efx_nic
*efx
= tx_queue
->efx
;
723 struct efx_tx_queue
*txq2
;
724 unsigned int pkts_compl
= 0, bytes_compl
= 0;
726 EFX_WARN_ON_ONCE_PARANOID(index
> tx_queue
->ptr_mask
);
728 efx_dequeue_buffers(tx_queue
, index
, &pkts_compl
, &bytes_compl
);
729 tx_queue
->pkts_compl
+= pkts_compl
;
730 tx_queue
->bytes_compl
+= bytes_compl
;
733 ++tx_queue
->merge_events
;
735 /* See if we need to restart the netif queue. This memory
736 * barrier ensures that we write read_count (inside
737 * efx_dequeue_buffers()) before reading the queue status.
740 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
741 likely(efx
->port_enabled
) &&
742 likely(netif_device_present(efx
->net_dev
))) {
743 txq2
= efx_tx_queue_partner(tx_queue
);
744 fill_level
= max(tx_queue
->insert_count
- tx_queue
->read_count
,
745 txq2
->insert_count
- txq2
->read_count
);
746 if (fill_level
<= efx
->txq_wake_thresh
)
747 netif_tx_wake_queue(tx_queue
->core_txq
);
750 /* Check whether the hardware queue is now empty */
751 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
752 tx_queue
->old_write_count
= ACCESS_ONCE(tx_queue
->write_count
);
753 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
755 tx_queue
->empty_read_count
=
756 tx_queue
->read_count
| EFX_EMPTY_COUNT_VALID
;
761 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue
*tx_queue
)
763 return DIV_ROUND_UP(tx_queue
->ptr_mask
+ 1, PAGE_SIZE
>> EFX_TX_CB_ORDER
);
766 int efx_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
768 struct efx_nic
*efx
= tx_queue
->efx
;
769 unsigned int entries
;
772 /* Create the smallest power-of-two aligned ring */
773 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EFX_MIN_DMAQ_SIZE
);
774 EFX_WARN_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
775 tx_queue
->ptr_mask
= entries
- 1;
777 netif_dbg(efx
, probe
, efx
->net_dev
,
778 "creating TX queue %d size %#x mask %#x\n",
779 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
781 /* Allocate software ring */
782 tx_queue
->buffer
= kcalloc(entries
, sizeof(*tx_queue
->buffer
),
784 if (!tx_queue
->buffer
)
787 tx_queue
->cb_page
= kcalloc(efx_tx_cb_page_count(tx_queue
),
788 sizeof(tx_queue
->cb_page
[0]), GFP_KERNEL
);
789 if (!tx_queue
->cb_page
) {
794 /* Allocate hardware ring */
795 rc
= efx_nic_probe_tx(tx_queue
);
802 kfree(tx_queue
->cb_page
);
803 tx_queue
->cb_page
= NULL
;
805 kfree(tx_queue
->buffer
);
806 tx_queue
->buffer
= NULL
;
810 void efx_init_tx_queue(struct efx_tx_queue
*tx_queue
)
812 struct efx_nic
*efx
= tx_queue
->efx
;
814 netif_dbg(efx
, drv
, efx
->net_dev
,
815 "initialising TX queue %d\n", tx_queue
->queue
);
817 tx_queue
->insert_count
= 0;
818 tx_queue
->write_count
= 0;
819 tx_queue
->packet_write_count
= 0;
820 tx_queue
->old_write_count
= 0;
821 tx_queue
->read_count
= 0;
822 tx_queue
->old_read_count
= 0;
823 tx_queue
->empty_read_count
= 0 | EFX_EMPTY_COUNT_VALID
;
824 tx_queue
->xmit_more_available
= false;
826 /* Set up default function pointers. These may get replaced by
827 * efx_nic_init_tx() based off NIC/queue capabilities.
829 tx_queue
->handle_tso
= efx_enqueue_skb_tso
;
831 /* Set up TX descriptor ring */
832 efx_nic_init_tx(tx_queue
);
834 tx_queue
->initialised
= true;
837 void efx_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
839 struct efx_tx_buffer
*buffer
;
841 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
842 "shutting down TX queue %d\n", tx_queue
->queue
);
844 if (!tx_queue
->buffer
)
847 /* Free any buffers left in the ring */
848 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
849 unsigned int pkts_compl
= 0, bytes_compl
= 0;
850 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
851 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
853 ++tx_queue
->read_count
;
855 tx_queue
->xmit_more_available
= false;
856 netdev_tx_reset_queue(tx_queue
->core_txq
);
859 void efx_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
863 if (!tx_queue
->buffer
)
866 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
867 "destroying TX queue %d\n", tx_queue
->queue
);
868 efx_nic_remove_tx(tx_queue
);
870 if (tx_queue
->cb_page
) {
871 for (i
= 0; i
< efx_tx_cb_page_count(tx_queue
); i
++)
872 efx_nic_free_buffer(tx_queue
->efx
,
873 &tx_queue
->cb_page
[i
]);
874 kfree(tx_queue
->cb_page
);
875 tx_queue
->cb_page
= NULL
;
878 kfree(tx_queue
->buffer
);
879 tx_queue
->buffer
= NULL
;