x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / tx.c
blobff88d60aa6d5650d04f46938eaf6abc63c4ff568
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "tx.h"
26 #include "workarounds.h"
27 #include "ef10_regs.h"
29 #ifdef EFX_USE_PIO
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
34 #endif /* EFX_USE_PIO */
36 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
37 struct efx_tx_buffer *buffer)
39 unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
40 struct efx_buffer *page_buf =
41 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
42 unsigned int offset =
43 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
45 if (unlikely(!page_buf->addr) &&
46 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
47 GFP_ATOMIC))
48 return NULL;
49 buffer->dma_addr = page_buf->dma_addr + offset;
50 buffer->unmap_len = 0;
51 return (u8 *)page_buf->addr + offset;
54 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
55 struct efx_tx_buffer *buffer, size_t len)
57 if (len > EFX_TX_CB_SIZE)
58 return NULL;
59 return efx_tx_get_copy_buffer(tx_queue, buffer);
62 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63 struct efx_tx_buffer *buffer,
64 unsigned int *pkts_compl,
65 unsigned int *bytes_compl)
67 if (buffer->unmap_len) {
68 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
69 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
70 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
71 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
72 DMA_TO_DEVICE);
73 else
74 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
75 DMA_TO_DEVICE);
76 buffer->unmap_len = 0;
79 if (buffer->flags & EFX_TX_BUF_SKB) {
80 (*pkts_compl)++;
81 (*bytes_compl) += buffer->skb->len;
82 dev_consume_skb_any((struct sk_buff *)buffer->skb);
83 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
84 "TX queue %d transmission id %x complete\n",
85 tx_queue->queue, tx_queue->read_count);
88 buffer->len = 0;
89 buffer->flags = 0;
92 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
94 /* Header and payload descriptor for each output segment, plus
95 * one for every input fragment boundary within a segment
97 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
99 /* Possibly one more per segment for option descriptors */
100 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
101 max_descs += EFX_TSO_MAX_SEGS;
103 /* Possibly more for PCIe page boundaries within input fragments */
104 if (PAGE_SIZE > EFX_PAGE_SIZE)
105 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
106 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
108 return max_descs;
111 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
113 /* We need to consider both queues that the net core sees as one */
114 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
115 struct efx_nic *efx = txq1->efx;
116 unsigned int fill_level;
118 fill_level = max(txq1->insert_count - txq1->old_read_count,
119 txq2->insert_count - txq2->old_read_count);
120 if (likely(fill_level < efx->txq_stop_thresh))
121 return;
123 /* We used the stale old_read_count above, which gives us a
124 * pessimistic estimate of the fill level (which may even
125 * validly be >= efx->txq_entries). Now try again using
126 * read_count (more likely to be a cache miss).
128 * If we read read_count and then conditionally stop the
129 * queue, it is possible for the completion path to race with
130 * us and complete all outstanding descriptors in the middle,
131 * after which there will be no more completions to wake it.
132 * Therefore we stop the queue first, then read read_count
133 * (with a memory barrier to ensure the ordering), then
134 * restart the queue if the fill level turns out to be low
135 * enough.
137 netif_tx_stop_queue(txq1->core_txq);
138 smp_mb();
139 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
140 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
142 fill_level = max(txq1->insert_count - txq1->old_read_count,
143 txq2->insert_count - txq2->old_read_count);
144 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
145 if (likely(fill_level < efx->txq_stop_thresh)) {
146 smp_mb();
147 if (likely(!efx->loopback_selftest))
148 netif_tx_start_queue(txq1->core_txq);
152 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
153 struct sk_buff *skb)
155 unsigned int copy_len = skb->len;
156 struct efx_tx_buffer *buffer;
157 u8 *copy_buffer;
158 int rc;
160 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
162 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
164 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
165 if (unlikely(!copy_buffer))
166 return -ENOMEM;
168 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
169 EFX_WARN_ON_PARANOID(rc);
170 buffer->len = copy_len;
172 buffer->skb = skb;
173 buffer->flags = EFX_TX_BUF_SKB;
175 ++tx_queue->insert_count;
176 return rc;
179 #ifdef EFX_USE_PIO
181 struct efx_short_copy_buffer {
182 int used;
183 u8 buf[L1_CACHE_BYTES];
186 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
187 * Advances piobuf pointer. Leaves additional data in the copy buffer.
189 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
190 u8 *data, int len,
191 struct efx_short_copy_buffer *copy_buf)
193 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
195 __iowrite64_copy(*piobuf, data, block_len >> 3);
196 *piobuf += block_len;
197 len -= block_len;
199 if (len) {
200 data += block_len;
201 BUG_ON(copy_buf->used);
202 BUG_ON(len > sizeof(copy_buf->buf));
203 memcpy(copy_buf->buf, data, len);
204 copy_buf->used = len;
208 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
209 * Advances piobuf pointer. Leaves additional data in the copy buffer.
211 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
212 u8 *data, int len,
213 struct efx_short_copy_buffer *copy_buf)
215 if (copy_buf->used) {
216 /* if the copy buffer is partially full, fill it up and write */
217 int copy_to_buf =
218 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
220 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
221 copy_buf->used += copy_to_buf;
223 /* if we didn't fill it up then we're done for now */
224 if (copy_buf->used < sizeof(copy_buf->buf))
225 return;
227 __iowrite64_copy(*piobuf, copy_buf->buf,
228 sizeof(copy_buf->buf) >> 3);
229 *piobuf += sizeof(copy_buf->buf);
230 data += copy_to_buf;
231 len -= copy_to_buf;
232 copy_buf->used = 0;
235 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
238 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
239 struct efx_short_copy_buffer *copy_buf)
241 /* if there's anything in it, write the whole buffer, including junk */
242 if (copy_buf->used)
243 __iowrite64_copy(piobuf, copy_buf->buf,
244 sizeof(copy_buf->buf) >> 3);
247 /* Traverse skb structure and copy fragments in to PIO buffer.
248 * Advances piobuf pointer.
250 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
251 u8 __iomem **piobuf,
252 struct efx_short_copy_buffer *copy_buf)
254 int i;
256 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
257 copy_buf);
259 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
260 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
261 u8 *vaddr;
263 vaddr = kmap_atomic(skb_frag_page(f));
265 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
266 skb_frag_size(f), copy_buf);
267 kunmap_atomic(vaddr);
270 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
273 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
274 struct sk_buff *skb)
276 struct efx_tx_buffer *buffer =
277 efx_tx_queue_get_insert_buffer(tx_queue);
278 u8 __iomem *piobuf = tx_queue->piobuf;
280 /* Copy to PIO buffer. Ensure the writes are padded to the end
281 * of a cache line, as this is required for write-combining to be
282 * effective on at least x86.
285 if (skb_shinfo(skb)->nr_frags) {
286 /* The size of the copy buffer will ensure all writes
287 * are the size of a cache line.
289 struct efx_short_copy_buffer copy_buf;
291 copy_buf.used = 0;
293 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
294 &piobuf, &copy_buf);
295 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
296 } else {
297 /* Pad the write to the size of a cache line.
298 * We can do this because we know the skb_shared_info struct is
299 * after the source, and the destination buffer is big enough.
301 BUILD_BUG_ON(L1_CACHE_BYTES >
302 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
303 __iowrite64_copy(tx_queue->piobuf, skb->data,
304 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
307 buffer->skb = skb;
308 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
310 EFX_POPULATE_QWORD_5(buffer->option,
311 ESF_DZ_TX_DESC_IS_OPT, 1,
312 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
313 ESF_DZ_TX_PIO_CONT, 0,
314 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
315 ESF_DZ_TX_PIO_BUF_ADDR,
316 tx_queue->piobuf_offset);
317 ++tx_queue->insert_count;
318 return 0;
320 #endif /* EFX_USE_PIO */
322 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
323 dma_addr_t dma_addr,
324 size_t len)
326 const struct efx_nic_type *nic_type = tx_queue->efx->type;
327 struct efx_tx_buffer *buffer;
328 unsigned int dma_len;
330 /* Map the fragment taking account of NIC-dependent DMA limits. */
331 do {
332 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
333 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
335 buffer->len = dma_len;
336 buffer->dma_addr = dma_addr;
337 buffer->flags = EFX_TX_BUF_CONT;
338 len -= dma_len;
339 dma_addr += dma_len;
340 ++tx_queue->insert_count;
341 } while (len);
343 return buffer;
346 /* Map all data from an SKB for DMA and create descriptors on the queue.
348 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
349 unsigned int segment_count)
351 struct efx_nic *efx = tx_queue->efx;
352 struct device *dma_dev = &efx->pci_dev->dev;
353 unsigned int frag_index, nr_frags;
354 dma_addr_t dma_addr, unmap_addr;
355 unsigned short dma_flags;
356 size_t len, unmap_len;
358 nr_frags = skb_shinfo(skb)->nr_frags;
359 frag_index = 0;
361 /* Map header data. */
362 len = skb_headlen(skb);
363 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
364 dma_flags = EFX_TX_BUF_MAP_SINGLE;
365 unmap_len = len;
366 unmap_addr = dma_addr;
368 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
369 return -EIO;
371 if (segment_count) {
372 /* For TSO we need to put the header in to a separate
373 * descriptor. Map this separately if necessary.
375 size_t header_len = skb_transport_header(skb) - skb->data +
376 (tcp_hdr(skb)->doff << 2u);
378 if (header_len != len) {
379 tx_queue->tso_long_headers++;
380 efx_tx_map_chunk(tx_queue, dma_addr, header_len);
381 len -= header_len;
382 dma_addr += header_len;
386 /* Add descriptors for each fragment. */
387 do {
388 struct efx_tx_buffer *buffer;
389 skb_frag_t *fragment;
391 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
393 /* The final descriptor for a fragment is responsible for
394 * unmapping the whole fragment.
396 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
397 buffer->unmap_len = unmap_len;
398 buffer->dma_offset = buffer->dma_addr - unmap_addr;
400 if (frag_index >= nr_frags) {
401 /* Store SKB details with the final buffer for
402 * the completion.
404 buffer->skb = skb;
405 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
406 return 0;
409 /* Move on to the next fragment. */
410 fragment = &skb_shinfo(skb)->frags[frag_index++];
411 len = skb_frag_size(fragment);
412 dma_addr = skb_frag_dma_map(dma_dev, fragment,
413 0, len, DMA_TO_DEVICE);
414 dma_flags = 0;
415 unmap_len = len;
416 unmap_addr = dma_addr;
418 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
419 return -EIO;
420 } while (1);
423 /* Remove buffers put into a tx_queue. None of the buffers must have
424 * an skb attached.
426 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
428 struct efx_tx_buffer *buffer;
430 /* Work backwards until we hit the original insert pointer value */
431 while (tx_queue->insert_count != tx_queue->write_count) {
432 --tx_queue->insert_count;
433 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
434 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
439 * Fallback to software TSO.
441 * This is used if we are unable to send a GSO packet through hardware TSO.
442 * This should only ever happen due to per-queue restrictions - unsupported
443 * packets should first be filtered by the feature flags.
445 * Returns 0 on success, error code otherwise.
447 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
448 struct sk_buff *skb)
450 struct sk_buff *segments, *next;
452 segments = skb_gso_segment(skb, 0);
453 if (IS_ERR(segments))
454 return PTR_ERR(segments);
456 dev_kfree_skb_any(skb);
457 skb = segments;
459 while (skb) {
460 next = skb->next;
461 skb->next = NULL;
463 if (next)
464 skb->xmit_more = true;
465 efx_enqueue_skb(tx_queue, skb);
466 skb = next;
469 return 0;
473 * Add a socket buffer to a TX queue
475 * This maps all fragments of a socket buffer for DMA and adds them to
476 * the TX queue. The queue's insert pointer will be incremented by
477 * the number of fragments in the socket buffer.
479 * If any DMA mapping fails, any mapped fragments will be unmapped,
480 * the queue's insert pointer will be restored to its original value.
482 * This function is split out from efx_hard_start_xmit to allow the
483 * loopback test to direct packets via specific TX queues.
485 * Returns NETDEV_TX_OK.
486 * You must hold netif_tx_lock() to call this function.
488 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
490 bool data_mapped = false;
491 unsigned int segments;
492 unsigned int skb_len;
493 int rc;
495 skb_len = skb->len;
496 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
497 if (segments == 1)
498 segments = 0; /* Don't use TSO for a single segment. */
500 /* Handle TSO first - it's *possible* (although unlikely) that we might
501 * be passed a packet to segment that's smaller than the copybreak/PIO
502 * size limit.
504 if (segments) {
505 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
506 rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
507 if (rc == -EINVAL) {
508 rc = efx_tx_tso_fallback(tx_queue, skb);
509 tx_queue->tso_fallbacks++;
510 if (rc == 0)
511 return 0;
513 if (rc)
514 goto err;
515 #ifdef EFX_USE_PIO
516 } else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
517 efx_nic_may_tx_pio(tx_queue)) {
518 /* Use PIO for short packets with an empty queue. */
519 if (efx_enqueue_skb_pio(tx_queue, skb))
520 goto err;
521 tx_queue->pio_packets++;
522 data_mapped = true;
523 #endif
524 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
525 /* Pad short packets or coalesce short fragmented packets. */
526 if (efx_enqueue_skb_copy(tx_queue, skb))
527 goto err;
528 tx_queue->cb_packets++;
529 data_mapped = true;
532 /* Map for DMA and create descriptors if we haven't done so already. */
533 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
534 goto err;
536 /* Update BQL */
537 netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
539 /* Pass off to hardware */
540 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
541 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
543 /* There could be packets left on the partner queue if those
544 * SKBs had skb->xmit_more set. If we do not push those they
545 * could be left for a long time and cause a netdev watchdog.
547 if (txq2->xmit_more_available)
548 efx_nic_push_buffers(txq2);
550 efx_nic_push_buffers(tx_queue);
551 } else {
552 tx_queue->xmit_more_available = skb->xmit_more;
555 if (segments) {
556 tx_queue->tso_bursts++;
557 tx_queue->tso_packets += segments;
558 tx_queue->tx_packets += segments;
559 } else {
560 tx_queue->tx_packets++;
563 efx_tx_maybe_stop_queue(tx_queue);
565 return NETDEV_TX_OK;
568 err:
569 efx_enqueue_unwind(tx_queue);
570 dev_kfree_skb_any(skb);
571 return NETDEV_TX_OK;
574 /* Remove packets from the TX queue
576 * This removes packets from the TX queue, up to and including the
577 * specified index.
579 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
580 unsigned int index,
581 unsigned int *pkts_compl,
582 unsigned int *bytes_compl)
584 struct efx_nic *efx = tx_queue->efx;
585 unsigned int stop_index, read_ptr;
587 stop_index = (index + 1) & tx_queue->ptr_mask;
588 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
590 while (read_ptr != stop_index) {
591 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
593 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
594 unlikely(buffer->len == 0)) {
595 netif_err(efx, tx_err, efx->net_dev,
596 "TX queue %d spurious TX completion id %x\n",
597 tx_queue->queue, read_ptr);
598 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
599 return;
602 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
604 ++tx_queue->read_count;
605 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
609 /* Initiate a packet transmission. We use one channel per CPU
610 * (sharing when we have more CPUs than channels). On Falcon, the TX
611 * completion events will be directed back to the CPU that transmitted
612 * the packet, which should be cache-efficient.
614 * Context: non-blocking.
615 * Note that returning anything other than NETDEV_TX_OK will cause the
616 * OS to free the skb.
618 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
619 struct net_device *net_dev)
621 struct efx_nic *efx = netdev_priv(net_dev);
622 struct efx_tx_queue *tx_queue;
623 unsigned index, type;
625 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
627 /* PTP "event" packet */
628 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
629 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
630 return efx_ptp_tx(efx, skb);
633 index = skb_get_queue_mapping(skb);
634 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
635 if (index >= efx->n_tx_channels) {
636 index -= efx->n_tx_channels;
637 type |= EFX_TXQ_TYPE_HIGHPRI;
639 tx_queue = efx_get_tx_queue(efx, index, type);
641 return efx_enqueue_skb(tx_queue, skb);
644 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
646 struct efx_nic *efx = tx_queue->efx;
648 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
649 tx_queue->core_txq =
650 netdev_get_tx_queue(efx->net_dev,
651 tx_queue->queue / EFX_TXQ_TYPES +
652 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
653 efx->n_tx_channels : 0));
656 int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
657 struct tc_to_netdev *ntc)
659 struct efx_nic *efx = netdev_priv(net_dev);
660 struct efx_channel *channel;
661 struct efx_tx_queue *tx_queue;
662 unsigned tc, num_tc;
663 int rc;
665 if (ntc->type != TC_SETUP_MQPRIO)
666 return -EINVAL;
668 num_tc = ntc->tc;
670 if (num_tc > EFX_MAX_TX_TC)
671 return -EINVAL;
673 if (num_tc == net_dev->num_tc)
674 return 0;
676 for (tc = 0; tc < num_tc; tc++) {
677 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
678 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
681 if (num_tc > net_dev->num_tc) {
682 /* Initialise high-priority queues as necessary */
683 efx_for_each_channel(channel, efx) {
684 efx_for_each_possible_channel_tx_queue(tx_queue,
685 channel) {
686 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
687 continue;
688 if (!tx_queue->buffer) {
689 rc = efx_probe_tx_queue(tx_queue);
690 if (rc)
691 return rc;
693 if (!tx_queue->initialised)
694 efx_init_tx_queue(tx_queue);
695 efx_init_tx_queue_core_txq(tx_queue);
698 } else {
699 /* Reduce number of classes before number of queues */
700 net_dev->num_tc = num_tc;
703 rc = netif_set_real_num_tx_queues(net_dev,
704 max_t(int, num_tc, 1) *
705 efx->n_tx_channels);
706 if (rc)
707 return rc;
709 /* Do not destroy high-priority queues when they become
710 * unused. We would have to flush them first, and it is
711 * fairly difficult to flush a subset of TX queues. Leave
712 * it to efx_fini_channels().
715 net_dev->num_tc = num_tc;
716 return 0;
719 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
721 unsigned fill_level;
722 struct efx_nic *efx = tx_queue->efx;
723 struct efx_tx_queue *txq2;
724 unsigned int pkts_compl = 0, bytes_compl = 0;
726 EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
728 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
729 tx_queue->pkts_compl += pkts_compl;
730 tx_queue->bytes_compl += bytes_compl;
732 if (pkts_compl > 1)
733 ++tx_queue->merge_events;
735 /* See if we need to restart the netif queue. This memory
736 * barrier ensures that we write read_count (inside
737 * efx_dequeue_buffers()) before reading the queue status.
739 smp_mb();
740 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
741 likely(efx->port_enabled) &&
742 likely(netif_device_present(efx->net_dev))) {
743 txq2 = efx_tx_queue_partner(tx_queue);
744 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
745 txq2->insert_count - txq2->read_count);
746 if (fill_level <= efx->txq_wake_thresh)
747 netif_tx_wake_queue(tx_queue->core_txq);
750 /* Check whether the hardware queue is now empty */
751 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
752 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
753 if (tx_queue->read_count == tx_queue->old_write_count) {
754 smp_mb();
755 tx_queue->empty_read_count =
756 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
761 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
763 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
766 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
768 struct efx_nic *efx = tx_queue->efx;
769 unsigned int entries;
770 int rc;
772 /* Create the smallest power-of-two aligned ring */
773 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
774 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
775 tx_queue->ptr_mask = entries - 1;
777 netif_dbg(efx, probe, efx->net_dev,
778 "creating TX queue %d size %#x mask %#x\n",
779 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
781 /* Allocate software ring */
782 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
783 GFP_KERNEL);
784 if (!tx_queue->buffer)
785 return -ENOMEM;
787 tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
788 sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
789 if (!tx_queue->cb_page) {
790 rc = -ENOMEM;
791 goto fail1;
794 /* Allocate hardware ring */
795 rc = efx_nic_probe_tx(tx_queue);
796 if (rc)
797 goto fail2;
799 return 0;
801 fail2:
802 kfree(tx_queue->cb_page);
803 tx_queue->cb_page = NULL;
804 fail1:
805 kfree(tx_queue->buffer);
806 tx_queue->buffer = NULL;
807 return rc;
810 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
812 struct efx_nic *efx = tx_queue->efx;
814 netif_dbg(efx, drv, efx->net_dev,
815 "initialising TX queue %d\n", tx_queue->queue);
817 tx_queue->insert_count = 0;
818 tx_queue->write_count = 0;
819 tx_queue->packet_write_count = 0;
820 tx_queue->old_write_count = 0;
821 tx_queue->read_count = 0;
822 tx_queue->old_read_count = 0;
823 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
824 tx_queue->xmit_more_available = false;
826 /* Set up default function pointers. These may get replaced by
827 * efx_nic_init_tx() based off NIC/queue capabilities.
829 tx_queue->handle_tso = efx_enqueue_skb_tso;
831 /* Set up TX descriptor ring */
832 efx_nic_init_tx(tx_queue);
834 tx_queue->initialised = true;
837 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
839 struct efx_tx_buffer *buffer;
841 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
842 "shutting down TX queue %d\n", tx_queue->queue);
844 if (!tx_queue->buffer)
845 return;
847 /* Free any buffers left in the ring */
848 while (tx_queue->read_count != tx_queue->write_count) {
849 unsigned int pkts_compl = 0, bytes_compl = 0;
850 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
851 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
853 ++tx_queue->read_count;
855 tx_queue->xmit_more_available = false;
856 netdev_tx_reset_queue(tx_queue->core_txq);
859 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
861 int i;
863 if (!tx_queue->buffer)
864 return;
866 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
867 "destroying TX queue %d\n", tx_queue->queue);
868 efx_nic_remove_tx(tx_queue);
870 if (tx_queue->cb_page) {
871 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
872 efx_nic_free_buffer(tx_queue->efx,
873 &tx_queue->cb_page[i]);
874 kfree(tx_queue->cb_page);
875 tx_queue->cb_page = NULL;
878 kfree(tx_queue->buffer);
879 tx_queue->buffer = NULL;