2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/netdevice.h> /* struct device, and other headers */
27 #include <linux/etherdevice.h> /* eth_type_trans */
28 #include <linux/skbuff.h>
29 #include <linux/ioctl.h>
30 #include <linux/cdev.h>
31 #include <linux/hugetlb.h>
32 #include <linux/in6.h>
33 #include <linux/timer.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
37 #include <linux/ctype.h>
39 #include <linux/ipv6.h>
40 #include <linux/tcp.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/ptp_clock_kernel.h>
43 #include <linux/tick.h>
45 #include <asm/checksum.h>
46 #include <asm/homecache.h>
47 #include <gxio/mpipe.h>
50 /* Default transmit lockup timeout period, in jiffies. */
51 #define TILE_NET_TIMEOUT (5 * HZ)
53 /* The maximum number of distinct channels (idesc.channel is 5 bits). */
54 #define TILE_NET_CHANNELS 32
56 /* Maximum number of idescs to handle per "poll". */
57 #define TILE_NET_BATCH 128
59 /* Maximum number of packets to handle per "poll". */
60 #define TILE_NET_WEIGHT 64
62 /* Maximum Jumbo Packet MTU */
63 #define TILE_JUMBO_MAX_MTU 9000
65 /* Number of entries in each iqueue. */
66 #define IQUEUE_ENTRIES 512
68 /* Number of entries in each equeue. */
69 #define EQUEUE_ENTRIES 2048
71 /* Total header bytes per equeue slot. Must be big enough for 2 bytes
72 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
73 * 60 bytes of actual TCP header. We round up to align to cache lines.
75 #define HEADER_BYTES 128
77 /* Maximum completions per cpu per device (must be a power of two).
78 * ISSUE: What is the right number here? If this is too small, then
79 * egress might block waiting for free space in a completions array.
80 * ISSUE: At the least, allocate these only for initialized echannels.
82 #define TILE_NET_MAX_COMPS 64
84 #define MAX_FRAGS (MAX_SKB_FRAGS + 1)
86 /* The "kinds" of buffer stacks (small/large/jumbo). */
89 /* Size of completions data to allocate.
90 * ISSUE: Probably more than needed since we don't use all the channels.
92 #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
94 /* Size of NotifRing data to allocate. */
95 #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
97 /* Timeout to wake the per-device TX timer after we stop the queue.
98 * We don't want the timeout too short (adds overhead, and might end
99 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
100 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
102 #define TX_TIMER_DELAY_USEC 30
104 /* Timeout to wake the per-cpu egress timer to free completions. */
105 #define EGRESS_TIMER_DELAY_USEC 1000
107 MODULE_AUTHOR("Tilera Corporation");
108 MODULE_LICENSE("GPL");
110 /* A "packet fragment" (a chunk of memory). */
116 /* A single completion. */
117 struct tile_net_comp
{
118 /* The "complete_count" when the completion will be complete. */
120 /* The buffer to be freed when the completion is complete. */
124 /* The completions for a given cpu and echannel. */
125 struct tile_net_comps
{
126 /* The completions. */
127 struct tile_net_comp comp_queue
[TILE_NET_MAX_COMPS
];
128 /* The number of completions used. */
129 unsigned long comp_next
;
130 /* The number of completions freed. */
131 unsigned long comp_last
;
134 /* The transmit wake timer for a given cpu and echannel. */
135 struct tile_net_tx_wake
{
137 struct hrtimer timer
;
138 struct net_device
*dev
;
141 /* Info for a specific cpu. */
142 struct tile_net_info
{
145 /* A timer for handling egress completions. */
146 struct hrtimer egress_timer
;
147 /* True if "egress_timer" is scheduled. */
148 bool egress_timer_scheduled
;
151 gxio_mpipe_iqueue_t iqueue
;
152 /* The NAPI struct. */
153 struct napi_struct napi
;
154 /* Number of buffers (by kind) which must still be provided. */
155 unsigned int num_needed_buffers
[MAX_KINDS
];
158 /* True if iqueue is valid. */
163 /* Comps for each egress channel. */
164 struct tile_net_comps
*comps_for_echannel
[TILE_NET_CHANNELS
];
165 /* Transmit wake timer for each egress channel. */
166 struct tile_net_tx_wake tx_wake
[TILE_NET_CHANNELS
];
167 } mpipe
[NR_MPIPE_MAX
];
170 /* Info for egress on a particular egress channel. */
171 struct tile_net_egress
{
173 gxio_mpipe_equeue_t
*equeue
;
174 /* The headers for TSO. */
175 unsigned char *headers
;
178 /* Info for a specific device. */
179 struct tile_net_priv
{
180 /* Our network device. */
181 struct net_device
*dev
;
182 /* The primary link. */
183 gxio_mpipe_link_t link
;
184 /* The primary channel, if open, else -1. */
186 /* The "loopify" egress link, if needed. */
187 gxio_mpipe_link_t loopify_link
;
188 /* The "loopify" egress channel, if open, else -1. */
190 /* The egress channel (channel or loopify_channel). */
192 /* mPIPE instance, 0 or 1. */
194 /* The timestamp config. */
195 struct hwtstamp_config stamp_cfg
;
198 static struct mpipe_data
{
199 /* The ingress irq. */
202 /* The "context" for all devices. */
203 gxio_mpipe_context_t context
;
205 /* Egress info, indexed by "priv->echannel"
206 * (lazily created as needed).
208 struct tile_net_egress
209 egress_for_echannel
[TILE_NET_CHANNELS
];
211 /* Devices currently associated with each channel.
212 * NOTE: The array entry can become NULL after ifconfig down, but
213 * we do not free the underlying net_device structures, so it is
214 * safe to use a pointer after reading it from this array.
217 *tile_net_devs_for_channel
[TILE_NET_CHANNELS
];
219 /* The actual memory allocated for the buffer stacks. */
220 void *buffer_stack_vas
[MAX_KINDS
];
222 /* The amount of memory allocated for each buffer stack. */
223 size_t buffer_stack_bytes
[MAX_KINDS
];
225 /* The first buffer stack index
226 * (small = +0, large = +1, jumbo = +2).
228 int first_buffer_stack
;
234 /* PTP-specific data. */
235 struct ptp_clock
*ptp_clock
;
236 struct ptp_clock_info caps
;
238 /* Lock for ptp accessors. */
239 struct mutex ptp_lock
;
241 } mpipe_data
[NR_MPIPE_MAX
] = {
242 [0 ... (NR_MPIPE_MAX
- 1)] {
244 .first_buffer_stack
= -1,
250 /* A mutex for "tile_net_devs_for_channel". */
251 static DEFINE_MUTEX(tile_net_devs_for_channel_mutex
);
253 /* The per-cpu info. */
254 static DEFINE_PER_CPU(struct tile_net_info
, per_cpu_info
);
257 /* The buffer size enums for each buffer stack.
258 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
259 * We avoid the "10384" size because it can induce "false chaining"
260 * on "cut-through" jumbo packets.
262 static gxio_mpipe_buffer_size_enum_t buffer_size_enums
[MAX_KINDS
] = {
263 GXIO_MPIPE_BUFFER_SIZE_128
,
264 GXIO_MPIPE_BUFFER_SIZE_1664
,
265 GXIO_MPIPE_BUFFER_SIZE_16384
268 /* Text value of tile_net.cpus if passed as a module parameter. */
269 static char *network_cpus_string
;
271 /* The actual cpus in "network_cpus". */
272 static struct cpumask network_cpus_map
;
274 /* If "tile_net.loopify=LINK" was specified, this is "LINK". */
275 static char *loopify_link_name
;
277 /* If "tile_net.custom" was specified, this is true. */
278 static bool custom_flag
;
280 /* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
281 static uint jumbo_num
;
283 /* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
284 static inline int mpipe_instance(struct net_device
*dev
)
286 struct tile_net_priv
*priv
= netdev_priv(dev
);
287 return priv
->instance
;
290 /* The "tile_net.cpus" argument specifies the cpus that are dedicated
291 * to handle ingress packets.
293 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
294 * m, n, x, y are integer numbers that represent the cpus that can be
295 * neither a dedicated cpu nor a dataplane cpu.
297 static bool network_cpus_init(void)
301 if (network_cpus_string
== NULL
)
304 rc
= cpulist_parse_crop(network_cpus_string
, &network_cpus_map
);
306 pr_warn("tile_net.cpus=%s: malformed cpu list\n",
307 network_cpus_string
);
311 /* Remove dedicated cpus. */
312 cpumask_and(&network_cpus_map
, &network_cpus_map
, cpu_possible_mask
);
314 if (cpumask_empty(&network_cpus_map
)) {
315 pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
316 network_cpus_string
);
320 pr_info("Linux network CPUs: %*pbl\n",
321 cpumask_pr_args(&network_cpus_map
));
325 module_param_named(cpus
, network_cpus_string
, charp
, 0444);
326 MODULE_PARM_DESC(cpus
, "cpulist of cores that handle network interrupts");
328 /* The "tile_net.loopify=LINK" argument causes the named device to
329 * actually use "loop0" for ingress, and "loop1" for egress. This
330 * allows an app to sit between the actual link and linux, passing
331 * (some) packets along to linux, and forwarding (some) packets sent
334 module_param_named(loopify
, loopify_link_name
, charp
, 0444);
335 MODULE_PARM_DESC(loopify
, "name the device to use loop0/1 for ingress/egress");
337 /* The "tile_net.custom" argument causes us to ignore the "conventional"
338 * classifier metadata, in particular, the "l2_offset".
340 module_param_named(custom
, custom_flag
, bool, 0444);
341 MODULE_PARM_DESC(custom
, "indicates a (heavily) customized classifier");
343 /* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
344 * and to allocate the given number of "jumbo" buffers.
346 module_param_named(jumbo
, jumbo_num
, uint
, 0444);
347 MODULE_PARM_DESC(jumbo
, "the number of buffers to support jumbo packets");
349 /* Atomically update a statistics field.
350 * Note that on TILE-Gx, this operation is fire-and-forget on the
351 * issuing core (single-cycle dispatch) and takes only a few cycles
352 * longer than a regular store when the request reaches the home cache.
353 * No expensive bus management overhead is required.
355 static void tile_net_stats_add(unsigned long value
, unsigned long *field
)
357 BUILD_BUG_ON(sizeof(atomic_long_t
) != sizeof(unsigned long));
358 atomic_long_add(value
, (atomic_long_t
*)field
);
361 /* Allocate and push a buffer. */
362 static bool tile_net_provide_buffer(int instance
, int kind
)
364 struct mpipe_data
*md
= &mpipe_data
[instance
];
365 gxio_mpipe_buffer_size_enum_t bse
= buffer_size_enums
[kind
];
366 size_t bs
= gxio_mpipe_buffer_size_enum_to_buffer_size(bse
);
367 const unsigned long buffer_alignment
= 128;
371 len
= sizeof(struct sk_buff
**) + buffer_alignment
+ bs
;
372 skb
= dev_alloc_skb(len
);
376 /* Make room for a back-pointer to 'skb' and guarantee alignment. */
377 skb_reserve(skb
, sizeof(struct sk_buff
**));
378 skb_reserve(skb
, -(long)skb
->data
& (buffer_alignment
- 1));
380 /* Save a back-pointer to 'skb'. */
381 *(struct sk_buff
**)(skb
->data
- sizeof(struct sk_buff
**)) = skb
;
383 /* Make sure "skb" and the back-pointer have been flushed. */
386 gxio_mpipe_push_buffer(&md
->context
, md
->first_buffer_stack
+ kind
,
387 (void *)va_to_tile_io_addr(skb
->data
));
392 /* Convert a raw mpipe buffer to its matching skb pointer. */
393 static struct sk_buff
*mpipe_buf_to_skb(void *va
)
395 /* Acquire the associated "skb". */
396 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
397 struct sk_buff
*skb
= *skb_ptr
;
400 if (skb
->data
!= va
) {
401 /* Panic here since there's a reasonable chance
402 * that corrupt buffers means generic memory
403 * corruption, with unpredictable system effects.
405 panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
412 static void tile_net_pop_all_buffers(int instance
, int stack
)
414 struct mpipe_data
*md
= &mpipe_data
[instance
];
417 tile_io_addr_t addr
=
418 (tile_io_addr_t
)gxio_mpipe_pop_buffer(&md
->context
,
422 dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr
)));
426 /* Provide linux buffers to mPIPE. */
427 static void tile_net_provide_needed_buffers(void)
429 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
431 for (instance
= 0; instance
< NR_MPIPE_MAX
&&
432 info
->mpipe
[instance
].has_iqueue
; instance
++) {
433 for (kind
= 0; kind
< MAX_KINDS
; kind
++) {
434 while (info
->mpipe
[instance
].num_needed_buffers
[kind
]
436 if (!tile_net_provide_buffer(instance
, kind
)) {
437 pr_notice("Tile %d still needs"
442 info
->mpipe
[instance
].
443 num_needed_buffers
[kind
]--;
449 /* Get RX timestamp, and store it in the skb. */
450 static void tile_rx_timestamp(struct tile_net_priv
*priv
, struct sk_buff
*skb
,
451 gxio_mpipe_idesc_t
*idesc
)
453 if (unlikely(priv
->stamp_cfg
.rx_filter
!= HWTSTAMP_FILTER_NONE
)) {
454 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
455 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
456 shhwtstamps
->hwtstamp
= ktime_set(idesc
->time_stamp_sec
,
457 idesc
->time_stamp_ns
);
461 /* Get TX timestamp, and store it in the skb. */
462 static void tile_tx_timestamp(struct sk_buff
*skb
, int instance
)
464 struct skb_shared_info
*shtx
= skb_shinfo(skb
);
465 if (unlikely((shtx
->tx_flags
& SKBTX_HW_TSTAMP
) != 0)) {
466 struct mpipe_data
*md
= &mpipe_data
[instance
];
467 struct skb_shared_hwtstamps shhwtstamps
;
468 struct timespec64 ts
;
470 shtx
->tx_flags
|= SKBTX_IN_PROGRESS
;
471 gxio_mpipe_get_timestamp(&md
->context
, &ts
);
472 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
473 shhwtstamps
.hwtstamp
= ktime_set(ts
.tv_sec
, ts
.tv_nsec
);
474 skb_tstamp_tx(skb
, &shhwtstamps
);
478 /* Use ioctl() to enable or disable TX or RX timestamping. */
479 static int tile_hwtstamp_set(struct net_device
*dev
, struct ifreq
*rq
)
481 struct hwtstamp_config config
;
482 struct tile_net_priv
*priv
= netdev_priv(dev
);
484 if (copy_from_user(&config
, rq
->ifr_data
, sizeof(config
)))
487 if (config
.flags
) /* reserved for future extensions */
490 switch (config
.tx_type
) {
491 case HWTSTAMP_TX_OFF
:
498 switch (config
.rx_filter
) {
499 case HWTSTAMP_FILTER_NONE
:
501 case HWTSTAMP_FILTER_ALL
:
502 case HWTSTAMP_FILTER_SOME
:
503 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
504 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
505 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
506 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
507 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
508 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
509 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
510 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
511 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
512 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
513 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
514 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
515 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
521 if (copy_to_user(rq
->ifr_data
, &config
, sizeof(config
)))
524 priv
->stamp_cfg
= config
;
528 static int tile_hwtstamp_get(struct net_device
*dev
, struct ifreq
*rq
)
530 struct tile_net_priv
*priv
= netdev_priv(dev
);
532 if (copy_to_user(rq
->ifr_data
, &priv
->stamp_cfg
,
533 sizeof(priv
->stamp_cfg
)))
539 static inline bool filter_packet(struct net_device
*dev
, void *buf
)
541 /* Filter packets received before we're up. */
542 if (dev
== NULL
|| !(dev
->flags
& IFF_UP
))
545 /* Filter out packets that aren't for us. */
546 if (!(dev
->flags
& IFF_PROMISC
) &&
547 !is_multicast_ether_addr(buf
) &&
548 !ether_addr_equal(dev
->dev_addr
, buf
))
554 static void tile_net_receive_skb(struct net_device
*dev
, struct sk_buff
*skb
,
555 gxio_mpipe_idesc_t
*idesc
, unsigned long len
)
557 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
558 struct tile_net_priv
*priv
= netdev_priv(dev
);
559 int instance
= priv
->instance
;
561 /* Encode the actual packet length. */
564 skb
->protocol
= eth_type_trans(skb
, dev
);
566 /* Acknowledge "good" hardware checksums. */
567 if (idesc
->cs
&& idesc
->csum_seed_val
== 0xFFFF)
568 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
570 /* Get RX timestamp from idesc. */
571 tile_rx_timestamp(priv
, skb
, idesc
);
573 napi_gro_receive(&info
->mpipe
[instance
].napi
, skb
);
576 tile_net_stats_add(1, &dev
->stats
.rx_packets
);
577 tile_net_stats_add(len
, &dev
->stats
.rx_bytes
);
579 /* Need a new buffer. */
580 if (idesc
->size
== buffer_size_enums
[0])
581 info
->mpipe
[instance
].num_needed_buffers
[0]++;
582 else if (idesc
->size
== buffer_size_enums
[1])
583 info
->mpipe
[instance
].num_needed_buffers
[1]++;
585 info
->mpipe
[instance
].num_needed_buffers
[2]++;
588 /* Handle a packet. Return true if "processed", false if "filtered". */
589 static bool tile_net_handle_packet(int instance
, gxio_mpipe_idesc_t
*idesc
)
591 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
592 struct mpipe_data
*md
= &mpipe_data
[instance
];
593 struct net_device
*dev
= md
->tile_net_devs_for_channel
[idesc
->channel
];
600 /* Drop packets for which no buffer was available (which can
601 * happen under heavy load), or for which the me/tr/ce flags
602 * are set (which can happen for jumbo cut-through packets,
603 * or with a customized classifier).
605 if (idesc
->be
|| idesc
->me
|| idesc
->tr
|| idesc
->ce
) {
607 tile_net_stats_add(1, &dev
->stats
.rx_errors
);
611 /* Get the "l2_offset", if allowed. */
612 l2_offset
= custom_flag
? 0 : gxio_mpipe_idesc_get_l2_offset(idesc
);
614 /* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
615 va
= tile_io_addr_to_va((unsigned long)idesc
->va
);
617 /* Get the actual packet start/length. */
618 buf
= va
+ l2_offset
;
619 len
= idesc
->l2_size
- l2_offset
;
621 /* Point "va" at the raw buffer. */
624 filter
= filter_packet(dev
, buf
);
627 tile_net_stats_add(1, &dev
->stats
.rx_dropped
);
629 gxio_mpipe_iqueue_drop(&info
->mpipe
[instance
].iqueue
, idesc
);
631 struct sk_buff
*skb
= mpipe_buf_to_skb(va
);
633 /* Skip headroom, and any custom header. */
634 skb_reserve(skb
, NET_IP_ALIGN
+ l2_offset
);
636 tile_net_receive_skb(dev
, skb
, idesc
, len
);
639 gxio_mpipe_iqueue_consume(&info
->mpipe
[instance
].iqueue
, idesc
);
643 /* Handle some packets for the current CPU.
645 * This function handles up to TILE_NET_BATCH idescs per call.
647 * ISSUE: Since we do not provide new buffers until this function is
648 * complete, we must initially provide enough buffers for each network
649 * cpu to fill its iqueue and also its batched idescs.
651 * ISSUE: The "rotting packet" race condition occurs if a packet
652 * arrives after the queue appears to be empty, and before the
653 * hypervisor interrupt is re-enabled.
655 static int tile_net_poll(struct napi_struct
*napi
, int budget
)
657 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
658 unsigned int work
= 0;
659 gxio_mpipe_idesc_t
*idesc
;
661 struct mpipe_data
*md
;
662 struct info_mpipe
*info_mpipe
=
663 container_of(napi
, struct info_mpipe
, napi
);
668 instance
= info_mpipe
->instance
;
669 while ((n
= gxio_mpipe_iqueue_try_peek(
672 for (i
= 0; i
< n
; i
++) {
673 if (i
== TILE_NET_BATCH
)
675 if (tile_net_handle_packet(instance
,
677 if (++work
>= budget
)
683 /* There are no packets left. */
684 napi_complete_done(&info_mpipe
->napi
, work
);
686 md
= &mpipe_data
[instance
];
687 /* Re-enable hypervisor interrupts. */
688 gxio_mpipe_enable_notif_ring_interrupt(
689 &md
->context
, info
->mpipe
[instance
].iqueue
.ring
);
691 /* HACK: Avoid the "rotting packet" problem. */
692 if (gxio_mpipe_iqueue_try_peek(&info_mpipe
->iqueue
, &idesc
) > 0)
693 napi_schedule(&info_mpipe
->napi
);
695 /* ISSUE: Handle completions? */
698 tile_net_provide_needed_buffers();
703 /* Handle an ingress interrupt from an instance on the current cpu. */
704 static irqreturn_t
tile_net_handle_ingress_irq(int irq
, void *id
)
706 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
707 napi_schedule(&info
->mpipe
[(uint64_t)id
].napi
);
711 /* Free some completions. This must be called with interrupts blocked. */
712 static int tile_net_free_comps(gxio_mpipe_equeue_t
*equeue
,
713 struct tile_net_comps
*comps
,
714 int limit
, bool force_update
)
717 while (comps
->comp_last
< comps
->comp_next
) {
718 unsigned int cid
= comps
->comp_last
% TILE_NET_MAX_COMPS
;
719 struct tile_net_comp
*comp
= &comps
->comp_queue
[cid
];
720 if (!gxio_mpipe_equeue_is_complete(equeue
, comp
->when
,
721 force_update
|| n
== 0))
723 dev_kfree_skb_irq(comp
->skb
);
731 /* Add a completion. This must be called with interrupts blocked.
732 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
734 static void add_comp(gxio_mpipe_equeue_t
*equeue
,
735 struct tile_net_comps
*comps
,
736 uint64_t when
, struct sk_buff
*skb
)
738 int cid
= comps
->comp_next
% TILE_NET_MAX_COMPS
;
739 comps
->comp_queue
[cid
].when
= when
;
740 comps
->comp_queue
[cid
].skb
= skb
;
744 static void tile_net_schedule_tx_wake_timer(struct net_device
*dev
,
747 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, tx_queue_idx
);
748 struct tile_net_priv
*priv
= netdev_priv(dev
);
749 int instance
= priv
->instance
;
750 struct tile_net_tx_wake
*tx_wake
=
751 &info
->mpipe
[instance
].tx_wake
[priv
->echannel
];
753 hrtimer_start(&tx_wake
->timer
,
754 TX_TIMER_DELAY_USEC
* 1000UL,
755 HRTIMER_MODE_REL_PINNED
);
758 static enum hrtimer_restart
tile_net_handle_tx_wake_timer(struct hrtimer
*t
)
760 struct tile_net_tx_wake
*tx_wake
=
761 container_of(t
, struct tile_net_tx_wake
, timer
);
762 netif_wake_subqueue(tx_wake
->dev
, tx_wake
->tx_queue_idx
);
763 return HRTIMER_NORESTART
;
766 /* Make sure the egress timer is scheduled. */
767 static void tile_net_schedule_egress_timer(void)
769 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
771 if (!info
->egress_timer_scheduled
) {
772 hrtimer_start(&info
->egress_timer
,
773 EGRESS_TIMER_DELAY_USEC
* 1000UL,
774 HRTIMER_MODE_REL_PINNED
);
775 info
->egress_timer_scheduled
= true;
779 /* The "function" for "info->egress_timer".
781 * This timer will reschedule itself as long as there are any pending
782 * completions expected for this tile.
784 static enum hrtimer_restart
tile_net_handle_egress_timer(struct hrtimer
*t
)
786 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
787 unsigned long irqflags
;
788 bool pending
= false;
791 local_irq_save(irqflags
);
793 /* The timer is no longer scheduled. */
794 info
->egress_timer_scheduled
= false;
796 /* Free all possible comps for this tile. */
797 for (instance
= 0; instance
< NR_MPIPE_MAX
&&
798 info
->mpipe
[instance
].has_iqueue
; instance
++) {
799 for (i
= 0; i
< TILE_NET_CHANNELS
; i
++) {
800 struct tile_net_egress
*egress
=
801 &mpipe_data
[instance
].egress_for_echannel
[i
];
802 struct tile_net_comps
*comps
=
803 info
->mpipe
[instance
].comps_for_echannel
[i
];
804 if (!egress
|| comps
->comp_last
>= comps
->comp_next
)
806 tile_net_free_comps(egress
->equeue
, comps
, -1, true);
808 (comps
->comp_last
< comps
->comp_next
);
812 /* Reschedule timer if needed. */
814 tile_net_schedule_egress_timer();
816 local_irq_restore(irqflags
);
818 return HRTIMER_NORESTART
;
821 /* PTP clock operations. */
823 static int ptp_mpipe_adjfreq(struct ptp_clock_info
*ptp
, s32 ppb
)
826 struct mpipe_data
*md
= container_of(ptp
, struct mpipe_data
, caps
);
827 mutex_lock(&md
->ptp_lock
);
828 if (gxio_mpipe_adjust_timestamp_freq(&md
->context
, ppb
))
830 mutex_unlock(&md
->ptp_lock
);
834 static int ptp_mpipe_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
837 struct mpipe_data
*md
= container_of(ptp
, struct mpipe_data
, caps
);
838 mutex_lock(&md
->ptp_lock
);
839 if (gxio_mpipe_adjust_timestamp(&md
->context
, delta
))
841 mutex_unlock(&md
->ptp_lock
);
845 static int ptp_mpipe_gettime(struct ptp_clock_info
*ptp
,
846 struct timespec64
*ts
)
849 struct mpipe_data
*md
= container_of(ptp
, struct mpipe_data
, caps
);
850 mutex_lock(&md
->ptp_lock
);
851 if (gxio_mpipe_get_timestamp(&md
->context
, ts
))
853 mutex_unlock(&md
->ptp_lock
);
857 static int ptp_mpipe_settime(struct ptp_clock_info
*ptp
,
858 const struct timespec64
*ts
)
861 struct mpipe_data
*md
= container_of(ptp
, struct mpipe_data
, caps
);
862 mutex_lock(&md
->ptp_lock
);
863 if (gxio_mpipe_set_timestamp(&md
->context
, ts
))
865 mutex_unlock(&md
->ptp_lock
);
869 static int ptp_mpipe_enable(struct ptp_clock_info
*ptp
,
870 struct ptp_clock_request
*request
, int on
)
875 static struct ptp_clock_info ptp_mpipe_caps
= {
876 .owner
= THIS_MODULE
,
877 .name
= "mPIPE clock",
878 .max_adj
= 999999999,
882 .adjfreq
= ptp_mpipe_adjfreq
,
883 .adjtime
= ptp_mpipe_adjtime
,
884 .gettime64
= ptp_mpipe_gettime
,
885 .settime64
= ptp_mpipe_settime
,
886 .enable
= ptp_mpipe_enable
,
889 /* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
890 static void register_ptp_clock(struct net_device
*dev
, struct mpipe_data
*md
)
892 struct timespec64 ts
;
895 gxio_mpipe_set_timestamp(&md
->context
, &ts
);
897 mutex_init(&md
->ptp_lock
);
898 md
->caps
= ptp_mpipe_caps
;
899 md
->ptp_clock
= ptp_clock_register(&md
->caps
, NULL
);
900 if (IS_ERR(md
->ptp_clock
))
901 netdev_err(dev
, "ptp_clock_register failed %ld\n",
902 PTR_ERR(md
->ptp_clock
));
905 /* Initialize PTP fields in a new device. */
906 static void init_ptp_dev(struct tile_net_priv
*priv
)
908 priv
->stamp_cfg
.rx_filter
= HWTSTAMP_FILTER_NONE
;
909 priv
->stamp_cfg
.tx_type
= HWTSTAMP_TX_OFF
;
912 /* Helper functions for "tile_net_update()". */
913 static void enable_ingress_irq(void *irq
)
915 enable_percpu_irq((long)irq
, 0);
918 static void disable_ingress_irq(void *irq
)
920 disable_percpu_irq((long)irq
);
923 /* Helper function for tile_net_open() and tile_net_stop().
924 * Always called under tile_net_devs_for_channel_mutex.
926 static int tile_net_update(struct net_device
*dev
)
928 static gxio_mpipe_rules_t rules
; /* too big to fit on the stack */
929 bool saw_channel
= false;
930 int instance
= mpipe_instance(dev
);
931 struct mpipe_data
*md
= &mpipe_data
[instance
];
937 gxio_mpipe_rules_init(&rules
, &md
->context
);
939 for (channel
= 0; channel
< TILE_NET_CHANNELS
; channel
++) {
940 if (md
->tile_net_devs_for_channel
[channel
] == NULL
)
944 gxio_mpipe_rules_begin(&rules
, md
->first_bucket
,
945 md
->num_buckets
, NULL
);
946 gxio_mpipe_rules_set_headroom(&rules
, NET_IP_ALIGN
);
948 gxio_mpipe_rules_add_channel(&rules
, channel
);
951 /* NOTE: This can fail if there is no classifier.
952 * ISSUE: Can anything else cause it to fail?
954 rc
= gxio_mpipe_rules_commit(&rules
);
956 netdev_warn(dev
, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
961 /* Update all cpus, sequentially (to protect "netif_napi_add()").
962 * We use on_each_cpu to handle the IPI mask or unmask.
965 on_each_cpu(disable_ingress_irq
,
966 (void *)(long)(md
->ingress_irq
), 1);
967 for_each_online_cpu(cpu
) {
968 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
970 if (!info
->mpipe
[instance
].has_iqueue
)
973 if (!info
->mpipe
[instance
].napi_added
) {
974 netif_napi_add(dev
, &info
->mpipe
[instance
].napi
,
975 tile_net_poll
, TILE_NET_WEIGHT
);
976 info
->mpipe
[instance
].napi_added
= true;
978 if (!info
->mpipe
[instance
].napi_enabled
) {
979 napi_enable(&info
->mpipe
[instance
].napi
);
980 info
->mpipe
[instance
].napi_enabled
= true;
983 if (info
->mpipe
[instance
].napi_enabled
) {
984 napi_disable(&info
->mpipe
[instance
].napi
);
985 info
->mpipe
[instance
].napi_enabled
= false;
987 /* FIXME: Drain the iqueue. */
991 on_each_cpu(enable_ingress_irq
,
992 (void *)(long)(md
->ingress_irq
), 1);
994 /* HACK: Allow packets to flow in the simulator. */
996 sim_enable_mpipe_links(instance
, -1);
1001 /* Initialize a buffer stack. */
1002 static int create_buffer_stack(struct net_device
*dev
,
1003 int kind
, size_t num_buffers
)
1005 pte_t hash_pte
= pte_set_home((pte_t
) { 0 }, PAGE_HOME_HASH
);
1006 int instance
= mpipe_instance(dev
);
1007 struct mpipe_data
*md
= &mpipe_data
[instance
];
1008 size_t needed
= gxio_mpipe_calc_buffer_stack_bytes(num_buffers
);
1009 int stack_idx
= md
->first_buffer_stack
+ kind
;
1013 /* Round up to 64KB and then use alloc_pages() so we get the
1014 * required 64KB alignment.
1016 md
->buffer_stack_bytes
[kind
] =
1017 ALIGN(needed
, 64 * 1024);
1019 va
= alloc_pages_exact(md
->buffer_stack_bytes
[kind
], GFP_KERNEL
);
1022 "Could not alloc %zd bytes for buffer stack %d\n",
1023 md
->buffer_stack_bytes
[kind
], kind
);
1027 /* Initialize the buffer stack. */
1028 rc
= gxio_mpipe_init_buffer_stack(&md
->context
, stack_idx
,
1029 buffer_size_enums
[kind
], va
,
1030 md
->buffer_stack_bytes
[kind
], 0);
1032 netdev_err(dev
, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1034 free_pages_exact(va
, md
->buffer_stack_bytes
[kind
]);
1038 md
->buffer_stack_vas
[kind
] = va
;
1040 rc
= gxio_mpipe_register_client_memory(&md
->context
, stack_idx
,
1044 "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1049 /* Provide initial buffers. */
1050 for (i
= 0; i
< num_buffers
; i
++) {
1051 if (!tile_net_provide_buffer(instance
, kind
)) {
1052 netdev_err(dev
, "Cannot allocate initial sk_bufs!\n");
1060 /* Allocate and initialize mpipe buffer stacks, and register them in
1061 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1062 * This routine supports tile_net_init_mpipe(), below.
1064 static int init_buffer_stacks(struct net_device
*dev
,
1065 int network_cpus_count
)
1067 int num_kinds
= MAX_KINDS
- (jumbo_num
== 0);
1070 int instance
= mpipe_instance(dev
);
1071 struct mpipe_data
*md
= &mpipe_data
[instance
];
1073 /* Allocate the buffer stacks. */
1074 rc
= gxio_mpipe_alloc_buffer_stacks(&md
->context
, num_kinds
, 0, 0);
1077 "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1081 md
->first_buffer_stack
= rc
;
1083 /* Enough small/large buffers to (normally) avoid buffer errors. */
1085 network_cpus_count
* (IQUEUE_ENTRIES
+ TILE_NET_BATCH
);
1087 /* Allocate the small memory stack. */
1089 rc
= create_buffer_stack(dev
, 0, num_buffers
);
1091 /* Allocate the large buffer stack. */
1093 rc
= create_buffer_stack(dev
, 1, num_buffers
);
1095 /* Allocate the jumbo buffer stack if needed. */
1096 if (rc
>= 0 && jumbo_num
!= 0)
1097 rc
= create_buffer_stack(dev
, 2, jumbo_num
);
1102 /* Allocate per-cpu resources (memory for completions and idescs).
1103 * This routine supports tile_net_init_mpipe(), below.
1105 static int alloc_percpu_mpipe_resources(struct net_device
*dev
,
1108 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
1110 int instance
= mpipe_instance(dev
);
1111 struct mpipe_data
*md
= &mpipe_data
[instance
];
1115 /* Allocate the "comps". */
1116 order
= get_order(COMPS_SIZE
);
1117 page
= homecache_alloc_pages(GFP_KERNEL
, order
, cpu
);
1119 netdev_err(dev
, "Failed to alloc %zd bytes comps memory\n",
1123 addr
= pfn_to_kaddr(page_to_pfn(page
));
1124 memset(addr
, 0, COMPS_SIZE
);
1125 for (i
= 0; i
< TILE_NET_CHANNELS
; i
++)
1126 info
->mpipe
[instance
].comps_for_echannel
[i
] =
1127 addr
+ i
* sizeof(struct tile_net_comps
);
1129 /* If this is a network cpu, create an iqueue. */
1130 if (cpumask_test_cpu(cpu
, &network_cpus_map
)) {
1131 order
= get_order(NOTIF_RING_SIZE
);
1132 page
= homecache_alloc_pages(GFP_KERNEL
, order
, cpu
);
1135 "Failed to alloc %zd bytes iqueue memory\n",
1139 addr
= pfn_to_kaddr(page_to_pfn(page
));
1140 rc
= gxio_mpipe_iqueue_init(&info
->mpipe
[instance
].iqueue
,
1141 &md
->context
, ring
++, addr
,
1142 NOTIF_RING_SIZE
, 0);
1145 "gxio_mpipe_iqueue_init failed: %d\n", rc
);
1148 info
->mpipe
[instance
].has_iqueue
= true;
1154 /* Initialize NotifGroup and buckets.
1155 * This routine supports tile_net_init_mpipe(), below.
1157 static int init_notif_group_and_buckets(struct net_device
*dev
,
1158 int ring
, int network_cpus_count
)
1161 int instance
= mpipe_instance(dev
);
1162 struct mpipe_data
*md
= &mpipe_data
[instance
];
1164 /* Allocate one NotifGroup. */
1165 rc
= gxio_mpipe_alloc_notif_groups(&md
->context
, 1, 0, 0);
1167 netdev_err(dev
, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1173 /* Initialize global num_buckets value. */
1174 if (network_cpus_count
> 4)
1175 md
->num_buckets
= 256;
1176 else if (network_cpus_count
> 1)
1177 md
->num_buckets
= 16;
1179 /* Allocate some buckets, and set global first_bucket value. */
1180 rc
= gxio_mpipe_alloc_buckets(&md
->context
, md
->num_buckets
, 0, 0);
1182 netdev_err(dev
, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1186 md
->first_bucket
= rc
;
1188 /* Init group and buckets. */
1189 rc
= gxio_mpipe_init_notif_group_and_buckets(
1190 &md
->context
, group
, ring
, network_cpus_count
,
1191 md
->first_bucket
, md
->num_buckets
,
1192 GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY
);
1194 netdev_err(dev
, "gxio_mpipe_init_notif_group_and_buckets: "
1195 "mpipe[%d] %d\n", instance
, rc
);
1202 /* Create an irq and register it, then activate the irq and request
1203 * interrupts on all cores. Note that "ingress_irq" being initialized
1204 * is how we know not to call tile_net_init_mpipe() again.
1205 * This routine supports tile_net_init_mpipe(), below.
1207 static int tile_net_setup_interrupts(struct net_device
*dev
)
1210 int instance
= mpipe_instance(dev
);
1211 struct mpipe_data
*md
= &mpipe_data
[instance
];
1213 irq
= md
->ingress_irq
;
1215 irq
= irq_alloc_hwirq(-1);
1218 "create_irq failed: mpipe[%d] %d\n",
1222 tile_irq_activate(irq
, TILE_IRQ_PERCPU
);
1224 rc
= request_irq(irq
, tile_net_handle_ingress_irq
,
1225 0, "tile_net", (void *)((uint64_t)instance
));
1228 netdev_err(dev
, "request_irq failed: mpipe[%d] %d\n",
1230 irq_free_hwirq(irq
);
1233 md
->ingress_irq
= irq
;
1236 for_each_online_cpu(cpu
) {
1237 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
1238 if (info
->mpipe
[instance
].has_iqueue
) {
1239 gxio_mpipe_request_notif_ring_interrupt(&md
->context
,
1240 cpu_x(cpu
), cpu_y(cpu
), KERNEL_PL
, irq
,
1241 info
->mpipe
[instance
].iqueue
.ring
);
1248 /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
1249 static void tile_net_init_mpipe_fail(int instance
)
1252 struct mpipe_data
*md
= &mpipe_data
[instance
];
1254 /* Do cleanups that require the mpipe context first. */
1255 for (kind
= 0; kind
< MAX_KINDS
; kind
++) {
1256 if (md
->buffer_stack_vas
[kind
] != NULL
) {
1257 tile_net_pop_all_buffers(instance
,
1258 md
->first_buffer_stack
+
1263 /* Destroy mpipe context so the hardware no longer owns any memory. */
1264 gxio_mpipe_destroy(&md
->context
);
1266 for_each_online_cpu(cpu
) {
1267 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
1270 info
->mpipe
[instance
].comps_for_echannel
[0]),
1271 get_order(COMPS_SIZE
));
1272 info
->mpipe
[instance
].comps_for_echannel
[0] = NULL
;
1273 free_pages((unsigned long)(info
->mpipe
[instance
].iqueue
.idescs
),
1274 get_order(NOTIF_RING_SIZE
));
1275 info
->mpipe
[instance
].iqueue
.idescs
= NULL
;
1278 for (kind
= 0; kind
< MAX_KINDS
; kind
++) {
1279 if (md
->buffer_stack_vas
[kind
] != NULL
) {
1280 free_pages_exact(md
->buffer_stack_vas
[kind
],
1281 md
->buffer_stack_bytes
[kind
]);
1282 md
->buffer_stack_vas
[kind
] = NULL
;
1286 md
->first_buffer_stack
= -1;
1287 md
->first_bucket
= -1;
1290 /* The first time any tilegx network device is opened, we initialize
1291 * the global mpipe state. If this step fails, we fail to open the
1292 * device, but if it succeeds, we never need to do it again, and since
1293 * tile_net can't be unloaded, we never undo it.
1295 * Note that some resources in this path (buffer stack indices,
1296 * bindings from init_buffer_stack, etc.) are hypervisor resources
1297 * that are freed implicitly by gxio_mpipe_destroy().
1299 static int tile_net_init_mpipe(struct net_device
*dev
)
1303 int first_ring
, ring
;
1304 int instance
= mpipe_instance(dev
);
1305 struct mpipe_data
*md
= &mpipe_data
[instance
];
1306 int network_cpus_count
= cpumask_weight(&network_cpus_map
);
1308 if (!hash_default
) {
1309 netdev_err(dev
, "Networking requires hash_default!\n");
1313 rc
= gxio_mpipe_init(&md
->context
, instance
);
1315 netdev_err(dev
, "gxio_mpipe_init: mpipe[%d] %d\n",
1320 /* Set up the buffer stacks. */
1321 rc
= init_buffer_stacks(dev
, network_cpus_count
);
1325 /* Allocate one NotifRing for each network cpu. */
1326 rc
= gxio_mpipe_alloc_notif_rings(&md
->context
,
1327 network_cpus_count
, 0, 0);
1329 netdev_err(dev
, "gxio_mpipe_alloc_notif_rings failed %d\n",
1334 /* Init NotifRings per-cpu. */
1337 for_each_online_cpu(cpu
) {
1338 rc
= alloc_percpu_mpipe_resources(dev
, cpu
, ring
);
1344 /* Initialize NotifGroup and buckets. */
1345 rc
= init_notif_group_and_buckets(dev
, first_ring
, network_cpus_count
);
1349 /* Create and enable interrupts. */
1350 rc
= tile_net_setup_interrupts(dev
);
1354 /* Register PTP clock and set mPIPE timestamp, if configured. */
1355 register_ptp_clock(dev
, md
);
1360 tile_net_init_mpipe_fail(instance
);
1364 /* Create persistent egress info for a given egress channel.
1365 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1366 * ISSUE: Defer header allocation until TSO is actually needed?
1368 static int tile_net_init_egress(struct net_device
*dev
, int echannel
)
1370 static int ering
= -1;
1371 struct page
*headers_page
, *edescs_page
, *equeue_page
;
1372 gxio_mpipe_edesc_t
*edescs
;
1373 gxio_mpipe_equeue_t
*equeue
;
1374 unsigned char *headers
;
1375 int headers_order
, edescs_order
, equeue_order
;
1378 int instance
= mpipe_instance(dev
);
1379 struct mpipe_data
*md
= &mpipe_data
[instance
];
1381 /* Only initialize once. */
1382 if (md
->egress_for_echannel
[echannel
].equeue
!= NULL
)
1385 /* Allocate memory for the "headers". */
1386 headers_order
= get_order(EQUEUE_ENTRIES
* HEADER_BYTES
);
1387 headers_page
= alloc_pages(GFP_KERNEL
, headers_order
);
1388 if (headers_page
== NULL
) {
1390 "Could not alloc %zd bytes for TSO headers.\n",
1391 PAGE_SIZE
<< headers_order
);
1394 headers
= pfn_to_kaddr(page_to_pfn(headers_page
));
1396 /* Allocate memory for the "edescs". */
1397 edescs_size
= EQUEUE_ENTRIES
* sizeof(*edescs
);
1398 edescs_order
= get_order(edescs_size
);
1399 edescs_page
= alloc_pages(GFP_KERNEL
, edescs_order
);
1400 if (edescs_page
== NULL
) {
1402 "Could not alloc %zd bytes for eDMA ring.\n",
1406 edescs
= pfn_to_kaddr(page_to_pfn(edescs_page
));
1408 /* Allocate memory for the "equeue". */
1409 equeue_order
= get_order(sizeof(*equeue
));
1410 equeue_page
= alloc_pages(GFP_KERNEL
, equeue_order
);
1411 if (equeue_page
== NULL
) {
1413 "Could not alloc %zd bytes for equeue info.\n",
1414 PAGE_SIZE
<< equeue_order
);
1417 equeue
= pfn_to_kaddr(page_to_pfn(equeue_page
));
1419 /* Allocate an edma ring (using a one entry "free list"). */
1421 rc
= gxio_mpipe_alloc_edma_rings(&md
->context
, 1, 0, 0);
1423 netdev_warn(dev
, "gxio_mpipe_alloc_edma_rings: "
1424 "mpipe[%d] %d\n", instance
, rc
);
1430 /* Initialize the equeue. */
1431 rc
= gxio_mpipe_equeue_init(equeue
, &md
->context
, ering
, echannel
,
1432 edescs
, edescs_size
, 0);
1434 netdev_err(dev
, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1439 /* Don't reuse the ering later. */
1442 if (jumbo_num
!= 0) {
1443 /* Make sure "jumbo" packets can be egressed safely. */
1444 if (gxio_mpipe_equeue_set_snf_size(equeue
, 10368) < 0) {
1445 /* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1446 netdev_warn(dev
, "Jumbo packets may not be egressed"
1447 " properly on channel %d\n", echannel
);
1452 md
->egress_for_echannel
[echannel
].equeue
= equeue
;
1453 md
->egress_for_echannel
[echannel
].headers
= headers
;
1457 __free_pages(equeue_page
, equeue_order
);
1460 __free_pages(edescs_page
, edescs_order
);
1463 __free_pages(headers_page
, headers_order
);
1469 /* Return channel number for a newly-opened link. */
1470 static int tile_net_link_open(struct net_device
*dev
, gxio_mpipe_link_t
*link
,
1471 const char *link_name
)
1473 int instance
= mpipe_instance(dev
);
1474 struct mpipe_data
*md
= &mpipe_data
[instance
];
1475 int rc
= gxio_mpipe_link_open(link
, &md
->context
, link_name
, 0);
1477 netdev_err(dev
, "Failed to open '%s', mpipe[%d], %d\n",
1478 link_name
, instance
, rc
);
1481 if (jumbo_num
!= 0) {
1482 u32 attr
= GXIO_MPIPE_LINK_RECEIVE_JUMBO
;
1483 rc
= gxio_mpipe_link_set_attr(link
, attr
, 1);
1486 "Cannot receive jumbo packets on '%s'\n",
1488 gxio_mpipe_link_close(link
);
1492 rc
= gxio_mpipe_link_channel(link
);
1493 if (rc
< 0 || rc
>= TILE_NET_CHANNELS
) {
1494 netdev_err(dev
, "gxio_mpipe_link_channel bad value: %d\n", rc
);
1495 gxio_mpipe_link_close(link
);
1501 /* Help the kernel activate the given network interface. */
1502 static int tile_net_open(struct net_device
*dev
)
1504 struct tile_net_priv
*priv
= netdev_priv(dev
);
1505 int cpu
, rc
, instance
;
1507 mutex_lock(&tile_net_devs_for_channel_mutex
);
1509 /* Get the instance info. */
1510 rc
= gxio_mpipe_link_instance(dev
->name
);
1511 if (rc
< 0 || rc
>= NR_MPIPE_MAX
) {
1512 mutex_unlock(&tile_net_devs_for_channel_mutex
);
1516 priv
->instance
= rc
;
1518 if (!mpipe_data
[rc
].context
.mmio_fast_base
) {
1519 /* Do one-time initialization per instance the first time
1520 * any device is opened.
1522 rc
= tile_net_init_mpipe(dev
);
1527 /* Determine if this is the "loopify" device. */
1528 if (unlikely((loopify_link_name
!= NULL
) &&
1529 !strcmp(dev
->name
, loopify_link_name
))) {
1530 rc
= tile_net_link_open(dev
, &priv
->link
, "loop0");
1534 rc
= tile_net_link_open(dev
, &priv
->loopify_link
, "loop1");
1537 priv
->loopify_channel
= rc
;
1538 priv
->echannel
= rc
;
1540 rc
= tile_net_link_open(dev
, &priv
->link
, dev
->name
);
1544 priv
->echannel
= rc
;
1547 /* Initialize egress info (if needed). Once ever, per echannel. */
1548 rc
= tile_net_init_egress(dev
, priv
->echannel
);
1552 mpipe_data
[instance
].tile_net_devs_for_channel
[priv
->channel
] = dev
;
1554 rc
= tile_net_update(dev
);
1558 mutex_unlock(&tile_net_devs_for_channel_mutex
);
1560 /* Initialize the transmit wake timer for this device for each cpu. */
1561 for_each_online_cpu(cpu
) {
1562 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
1563 struct tile_net_tx_wake
*tx_wake
=
1564 &info
->mpipe
[instance
].tx_wake
[priv
->echannel
];
1566 hrtimer_init(&tx_wake
->timer
, CLOCK_MONOTONIC
,
1568 tx_wake
->tx_queue_idx
= cpu
;
1569 tx_wake
->timer
.function
= tile_net_handle_tx_wake_timer
;
1573 for_each_online_cpu(cpu
)
1574 netif_start_subqueue(dev
, cpu
);
1575 netif_carrier_on(dev
);
1579 if (priv
->loopify_channel
>= 0) {
1580 if (gxio_mpipe_link_close(&priv
->loopify_link
) != 0)
1581 netdev_warn(dev
, "Failed to close loopify link!\n");
1582 priv
->loopify_channel
= -1;
1584 if (priv
->channel
>= 0) {
1585 if (gxio_mpipe_link_close(&priv
->link
) != 0)
1586 netdev_warn(dev
, "Failed to close link!\n");
1589 priv
->echannel
= -1;
1590 mpipe_data
[instance
].tile_net_devs_for_channel
[priv
->channel
] = NULL
;
1591 mutex_unlock(&tile_net_devs_for_channel_mutex
);
1593 /* Don't return raw gxio error codes to generic Linux. */
1594 return (rc
> -512) ? rc
: -EIO
;
1597 /* Help the kernel deactivate the given network interface. */
1598 static int tile_net_stop(struct net_device
*dev
)
1600 struct tile_net_priv
*priv
= netdev_priv(dev
);
1602 int instance
= priv
->instance
;
1603 struct mpipe_data
*md
= &mpipe_data
[instance
];
1605 for_each_online_cpu(cpu
) {
1606 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
1607 struct tile_net_tx_wake
*tx_wake
=
1608 &info
->mpipe
[instance
].tx_wake
[priv
->echannel
];
1610 hrtimer_cancel(&tx_wake
->timer
);
1611 netif_stop_subqueue(dev
, cpu
);
1614 mutex_lock(&tile_net_devs_for_channel_mutex
);
1615 md
->tile_net_devs_for_channel
[priv
->channel
] = NULL
;
1616 (void)tile_net_update(dev
);
1617 if (priv
->loopify_channel
>= 0) {
1618 if (gxio_mpipe_link_close(&priv
->loopify_link
) != 0)
1619 netdev_warn(dev
, "Failed to close loopify link!\n");
1620 priv
->loopify_channel
= -1;
1622 if (priv
->channel
>= 0) {
1623 if (gxio_mpipe_link_close(&priv
->link
) != 0)
1624 netdev_warn(dev
, "Failed to close link!\n");
1627 priv
->echannel
= -1;
1628 mutex_unlock(&tile_net_devs_for_channel_mutex
);
1633 /* Determine the VA for a fragment. */
1634 static inline void *tile_net_frag_buf(skb_frag_t
*f
)
1636 unsigned long pfn
= page_to_pfn(skb_frag_page(f
));
1637 return pfn_to_kaddr(pfn
) + f
->page_offset
;
1640 /* Acquire a completion entry and an egress slot, or if we can't,
1641 * stop the queue and schedule the tx_wake timer.
1643 static s64
tile_net_equeue_try_reserve(struct net_device
*dev
,
1645 struct tile_net_comps
*comps
,
1646 gxio_mpipe_equeue_t
*equeue
,
1649 /* Try to acquire a completion entry. */
1650 if (comps
->comp_next
- comps
->comp_last
< TILE_NET_MAX_COMPS
- 1 ||
1651 tile_net_free_comps(equeue
, comps
, 32, false) != 0) {
1653 /* Try to acquire an egress slot. */
1654 s64 slot
= gxio_mpipe_equeue_try_reserve(equeue
, num_edescs
);
1658 /* Freeing some completions gives the equeue time to drain. */
1659 tile_net_free_comps(equeue
, comps
, TILE_NET_MAX_COMPS
, false);
1661 slot
= gxio_mpipe_equeue_try_reserve(equeue
, num_edescs
);
1666 /* Still nothing; give up and stop the queue for a short while. */
1667 netif_stop_subqueue(dev
, tx_queue_idx
);
1668 tile_net_schedule_tx_wake_timer(dev
, tx_queue_idx
);
1672 /* Determine how many edesc's are needed for TSO.
1674 * Sometimes, if "sendfile()" requires copying, we will be called with
1675 * "data" containing the header and payload, with "frags" being empty.
1676 * Sometimes, for example when using NFS over TCP, a single segment can
1677 * span 3 fragments. This requires special care.
1679 static int tso_count_edescs(struct sk_buff
*skb
)
1681 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1682 unsigned int sh_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1683 unsigned int data_len
= skb
->len
- sh_len
;
1684 unsigned int p_len
= sh
->gso_size
;
1685 long f_id
= -1; /* id of the current fragment */
1686 long f_size
= skb_headlen(skb
) - sh_len
; /* current fragment size */
1687 long f_used
= 0; /* bytes used from the current fragment */
1688 long n
; /* size of the current piece of payload */
1692 for (segment
= 0; segment
< sh
->gso_segs
; segment
++) {
1694 unsigned int p_used
= 0;
1696 /* One edesc for header and for each piece of the payload. */
1697 for (num_edescs
++; p_used
< p_len
; num_edescs
++) {
1699 /* Advance as needed. */
1700 while (f_used
>= f_size
) {
1702 f_size
= skb_frag_size(&sh
->frags
[f_id
]);
1706 /* Use bytes from the current fragment. */
1708 if (n
> f_size
- f_used
)
1709 n
= f_size
- f_used
;
1714 /* The last segment may be less than gso_size. */
1716 if (data_len
< p_len
)
1723 /* Prepare modified copies of the skbuff headers. */
1724 static void tso_headers_prepare(struct sk_buff
*skb
, unsigned char *headers
,
1727 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1729 struct ipv6hdr
*ih6
;
1731 unsigned int sh_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1732 unsigned int data_len
= skb
->len
- sh_len
;
1733 unsigned char *data
= skb
->data
;
1734 unsigned int ih_off
, th_off
, p_len
;
1735 unsigned int isum_seed
, tsum_seed
, seq
;
1736 unsigned int uninitialized_var(id
);
1738 long f_id
= -1; /* id of the current fragment */
1739 long f_size
= skb_headlen(skb
) - sh_len
; /* current fragment size */
1740 long f_used
= 0; /* bytes used from the current fragment */
1741 long n
; /* size of the current piece of payload */
1744 /* Locate original headers and compute various lengths. */
1745 is_ipv6
= skb_is_gso_v6(skb
);
1747 ih6
= ipv6_hdr(skb
);
1748 ih_off
= skb_network_offset(skb
);
1751 ih_off
= skb_network_offset(skb
);
1752 isum_seed
= ((0xFFFF - ih
->check
) +
1753 (0xFFFF - ih
->tot_len
) +
1759 th_off
= skb_transport_offset(skb
);
1760 p_len
= sh
->gso_size
;
1762 tsum_seed
= th
->check
+ (0xFFFF ^ htons(skb
->len
));
1763 seq
= ntohl(th
->seq
);
1765 /* Prepare all the headers. */
1766 for (segment
= 0; segment
< sh
->gso_segs
; segment
++) {
1768 unsigned int p_used
= 0;
1770 /* Copy to the header memory for this segment. */
1771 buf
= headers
+ (slot
% EQUEUE_ENTRIES
) * HEADER_BYTES
+
1773 memcpy(buf
, data
, sh_len
);
1775 /* Update copied ip header. */
1777 ih6
= (struct ipv6hdr
*)(buf
+ ih_off
);
1778 ih6
->payload_len
= htons(sh_len
+ p_len
- ih_off
-
1781 ih
= (struct iphdr
*)(buf
+ ih_off
);
1782 ih
->tot_len
= htons(sh_len
+ p_len
- ih_off
);
1783 ih
->id
= htons(id
++);
1784 ih
->check
= csum_long(isum_seed
+ ih
->tot_len
+
1788 /* Update copied tcp header. */
1789 th
= (struct tcphdr
*)(buf
+ th_off
);
1790 th
->seq
= htonl(seq
);
1791 th
->check
= csum_long(tsum_seed
+ htons(sh_len
+ p_len
));
1792 if (segment
!= sh
->gso_segs
- 1) {
1797 /* Skip past the header. */
1800 /* Skip past the payload. */
1801 while (p_used
< p_len
) {
1803 /* Advance as needed. */
1804 while (f_used
>= f_size
) {
1806 f_size
= skb_frag_size(&sh
->frags
[f_id
]);
1810 /* Use bytes from the current fragment. */
1812 if (n
> f_size
- f_used
)
1813 n
= f_size
- f_used
;
1822 /* The last segment may be less than gso_size. */
1824 if (data_len
< p_len
)
1828 /* Flush the headers so they are ready for hardware DMA. */
1832 /* Pass all the data to mpipe for egress. */
1833 static void tso_egress(struct net_device
*dev
, gxio_mpipe_equeue_t
*equeue
,
1834 struct sk_buff
*skb
, unsigned char *headers
, s64 slot
)
1836 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1837 int instance
= mpipe_instance(dev
);
1838 struct mpipe_data
*md
= &mpipe_data
[instance
];
1839 unsigned int sh_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1840 unsigned int data_len
= skb
->len
- sh_len
;
1841 unsigned int p_len
= sh
->gso_size
;
1842 gxio_mpipe_edesc_t edesc_head
= { { 0 } };
1843 gxio_mpipe_edesc_t edesc_body
= { { 0 } };
1844 long f_id
= -1; /* id of the current fragment */
1845 long f_size
= skb_headlen(skb
) - sh_len
; /* current fragment size */
1846 long f_used
= 0; /* bytes used from the current fragment */
1847 void *f_data
= skb
->data
+ sh_len
;
1848 long n
; /* size of the current piece of payload */
1849 unsigned long tx_packets
= 0, tx_bytes
= 0;
1850 unsigned int csum_start
;
1853 /* Prepare to egress the headers: set up header edesc. */
1854 csum_start
= skb_checksum_start_offset(skb
);
1855 edesc_head
.csum
= 1;
1856 edesc_head
.csum_start
= csum_start
;
1857 edesc_head
.csum_dest
= csum_start
+ skb
->csum_offset
;
1858 edesc_head
.xfer_size
= sh_len
;
1860 /* This is only used to specify the TLB. */
1861 edesc_head
.stack_idx
= md
->first_buffer_stack
;
1862 edesc_body
.stack_idx
= md
->first_buffer_stack
;
1864 /* Egress all the edescs. */
1865 for (segment
= 0; segment
< sh
->gso_segs
; segment
++) {
1867 unsigned int p_used
= 0;
1869 /* Egress the header. */
1870 buf
= headers
+ (slot
% EQUEUE_ENTRIES
) * HEADER_BYTES
+
1872 edesc_head
.va
= va_to_tile_io_addr(buf
);
1873 gxio_mpipe_equeue_put_at(equeue
, edesc_head
, slot
);
1876 /* Egress the payload. */
1877 while (p_used
< p_len
) {
1880 /* Advance as needed. */
1881 while (f_used
>= f_size
) {
1883 f_size
= skb_frag_size(&sh
->frags
[f_id
]);
1884 f_data
= tile_net_frag_buf(&sh
->frags
[f_id
]);
1888 va
= f_data
+ f_used
;
1890 /* Use bytes from the current fragment. */
1892 if (n
> f_size
- f_used
)
1893 n
= f_size
- f_used
;
1897 /* Egress a piece of the payload. */
1898 edesc_body
.va
= va_to_tile_io_addr(va
);
1899 edesc_body
.xfer_size
= n
;
1900 edesc_body
.bound
= !(p_used
< p_len
);
1901 gxio_mpipe_equeue_put_at(equeue
, edesc_body
, slot
);
1906 tx_bytes
+= sh_len
+ p_len
;
1908 /* The last segment may be less than gso_size. */
1910 if (data_len
< p_len
)
1915 tile_net_stats_add(tx_packets
, &dev
->stats
.tx_packets
);
1916 tile_net_stats_add(tx_bytes
, &dev
->stats
.tx_bytes
);
1919 /* Do "TSO" handling for egress.
1921 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1922 * otherwise the stack uses scatter-gather to implement GSO in software.
1923 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1924 * performance down to around 7.5 Gbps on the 10G interfaces, although
1925 * also dropping cpu utilization way down, to under 8%. But
1926 * implementing "TSO" in the driver brings performance back up to line
1927 * rate, while dropping cpu usage even further, to less than 4%. In
1928 * practice, profiling of GSO shows that skb_segment() is what causes
1929 * the performance overheads; we benefit in the driver from using
1930 * preallocated memory to duplicate the TCP/IP headers.
1932 static int tile_net_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
)
1934 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
1935 struct tile_net_priv
*priv
= netdev_priv(dev
);
1936 int channel
= priv
->echannel
;
1937 int instance
= priv
->instance
;
1938 struct mpipe_data
*md
= &mpipe_data
[instance
];
1939 struct tile_net_egress
*egress
= &md
->egress_for_echannel
[channel
];
1940 struct tile_net_comps
*comps
=
1941 info
->mpipe
[instance
].comps_for_echannel
[channel
];
1942 gxio_mpipe_equeue_t
*equeue
= egress
->equeue
;
1943 unsigned long irqflags
;
1947 /* Determine how many mpipe edesc's are needed. */
1948 num_edescs
= tso_count_edescs(skb
);
1950 local_irq_save(irqflags
);
1952 /* Try to acquire a completion entry and an egress slot. */
1953 slot
= tile_net_equeue_try_reserve(dev
, skb
->queue_mapping
, comps
,
1954 equeue
, num_edescs
);
1956 local_irq_restore(irqflags
);
1957 return NETDEV_TX_BUSY
;
1960 /* Set up copies of header data properly. */
1961 tso_headers_prepare(skb
, egress
->headers
, slot
);
1963 /* Actually pass the data to the network hardware. */
1964 tso_egress(dev
, equeue
, skb
, egress
->headers
, slot
);
1966 /* Add a completion record. */
1967 add_comp(equeue
, comps
, slot
+ num_edescs
- 1, skb
);
1969 local_irq_restore(irqflags
);
1971 /* Make sure the egress timer is scheduled. */
1972 tile_net_schedule_egress_timer();
1974 return NETDEV_TX_OK
;
1977 /* Analyze the body and frags for a transmit request. */
1978 static unsigned int tile_net_tx_frags(struct frag
*frags
,
1979 struct sk_buff
*skb
,
1980 void *b_data
, unsigned int b_len
)
1982 unsigned int i
, n
= 0;
1984 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1987 frags
[n
].buf
= b_data
;
1988 frags
[n
++].length
= b_len
;
1991 for (i
= 0; i
< sh
->nr_frags
; i
++) {
1992 skb_frag_t
*f
= &sh
->frags
[i
];
1993 frags
[n
].buf
= tile_net_frag_buf(f
);
1994 frags
[n
++].length
= skb_frag_size(f
);
2000 /* Help the kernel transmit a packet. */
2001 static int tile_net_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2003 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
2004 struct tile_net_priv
*priv
= netdev_priv(dev
);
2005 int instance
= priv
->instance
;
2006 struct mpipe_data
*md
= &mpipe_data
[instance
];
2007 struct tile_net_egress
*egress
=
2008 &md
->egress_for_echannel
[priv
->echannel
];
2009 gxio_mpipe_equeue_t
*equeue
= egress
->equeue
;
2010 struct tile_net_comps
*comps
=
2011 info
->mpipe
[instance
].comps_for_echannel
[priv
->echannel
];
2012 unsigned int len
= skb
->len
;
2013 unsigned char *data
= skb
->data
;
2014 unsigned int num_edescs
;
2015 struct frag frags
[MAX_FRAGS
];
2016 gxio_mpipe_edesc_t edescs
[MAX_FRAGS
];
2017 unsigned long irqflags
;
2018 gxio_mpipe_edesc_t edesc
= { { 0 } };
2022 if (skb_is_gso(skb
))
2023 return tile_net_tx_tso(skb
, dev
);
2025 num_edescs
= tile_net_tx_frags(frags
, skb
, data
, skb_headlen(skb
));
2027 /* This is only used to specify the TLB. */
2028 edesc
.stack_idx
= md
->first_buffer_stack
;
2030 /* Prepare the edescs. */
2031 for (i
= 0; i
< num_edescs
; i
++) {
2032 edesc
.xfer_size
= frags
[i
].length
;
2033 edesc
.va
= va_to_tile_io_addr(frags
[i
].buf
);
2037 /* Mark the final edesc. */
2038 edescs
[num_edescs
- 1].bound
= 1;
2040 /* Add checksum info to the initial edesc, if needed. */
2041 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2042 unsigned int csum_start
= skb_checksum_start_offset(skb
);
2044 edescs
[0].csum_start
= csum_start
;
2045 edescs
[0].csum_dest
= csum_start
+ skb
->csum_offset
;
2048 local_irq_save(irqflags
);
2050 /* Try to acquire a completion entry and an egress slot. */
2051 slot
= tile_net_equeue_try_reserve(dev
, skb
->queue_mapping
, comps
,
2052 equeue
, num_edescs
);
2054 local_irq_restore(irqflags
);
2055 return NETDEV_TX_BUSY
;
2058 for (i
= 0; i
< num_edescs
; i
++)
2059 gxio_mpipe_equeue_put_at(equeue
, edescs
[i
], slot
++);
2061 /* Store TX timestamp if needed. */
2062 tile_tx_timestamp(skb
, instance
);
2064 /* Add a completion record. */
2065 add_comp(equeue
, comps
, slot
- 1, skb
);
2067 /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2068 tile_net_stats_add(1, &dev
->stats
.tx_packets
);
2069 tile_net_stats_add(max_t(unsigned int, len
, ETH_ZLEN
),
2070 &dev
->stats
.tx_bytes
);
2072 local_irq_restore(irqflags
);
2074 /* Make sure the egress timer is scheduled. */
2075 tile_net_schedule_egress_timer();
2077 return NETDEV_TX_OK
;
2080 /* Return subqueue id on this core (one per core). */
2081 static u16
tile_net_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
2082 void *accel_priv
, select_queue_fallback_t fallback
)
2084 return smp_processor_id();
2087 /* Deal with a transmit timeout. */
2088 static void tile_net_tx_timeout(struct net_device
*dev
)
2092 for_each_online_cpu(cpu
)
2093 netif_wake_subqueue(dev
, cpu
);
2096 /* Ioctl commands. */
2097 static int tile_net_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2099 if (cmd
== SIOCSHWTSTAMP
)
2100 return tile_hwtstamp_set(dev
, rq
);
2101 if (cmd
== SIOCGHWTSTAMP
)
2102 return tile_hwtstamp_get(dev
, rq
);
2107 /* Change the Ethernet address of the NIC.
2109 * The hypervisor driver does not support changing MAC address. However,
2110 * the hardware does not do anything with the MAC address, so the address
2111 * which gets used on outgoing packets, and which is accepted on incoming
2112 * packets, is completely up to us.
2114 * Returns 0 on success, negative on failure.
2116 static int tile_net_set_mac_address(struct net_device
*dev
, void *p
)
2118 struct sockaddr
*addr
= p
;
2120 if (!is_valid_ether_addr(addr
->sa_data
))
2122 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
2126 #ifdef CONFIG_NET_POLL_CONTROLLER
2127 /* Polling 'interrupt' - used by things like netconsole to send skbs
2128 * without having to re-enable interrupts. It's not called while
2129 * the interrupt routine is executing.
2131 static void tile_net_netpoll(struct net_device
*dev
)
2133 int instance
= mpipe_instance(dev
);
2134 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
2135 struct mpipe_data
*md
= &mpipe_data
[instance
];
2137 disable_percpu_irq(md
->ingress_irq
);
2138 napi_schedule(&info
->mpipe
[instance
].napi
);
2139 enable_percpu_irq(md
->ingress_irq
, 0);
2143 static const struct net_device_ops tile_net_ops
= {
2144 .ndo_open
= tile_net_open
,
2145 .ndo_stop
= tile_net_stop
,
2146 .ndo_start_xmit
= tile_net_tx
,
2147 .ndo_select_queue
= tile_net_select_queue
,
2148 .ndo_do_ioctl
= tile_net_ioctl
,
2149 .ndo_tx_timeout
= tile_net_tx_timeout
,
2150 .ndo_set_mac_address
= tile_net_set_mac_address
,
2151 #ifdef CONFIG_NET_POLL_CONTROLLER
2152 .ndo_poll_controller
= tile_net_netpoll
,
2156 /* The setup function.
2158 * This uses ether_setup() to assign various fields in dev, including
2159 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2161 static void tile_net_setup(struct net_device
*dev
)
2163 netdev_features_t features
= 0;
2166 dev
->netdev_ops
= &tile_net_ops
;
2167 dev
->watchdog_timeo
= TILE_NET_TIMEOUT
;
2169 /* MTU range: 68 - 1500 or 9000 */
2170 dev
->mtu
= ETH_DATA_LEN
;
2171 dev
->min_mtu
= ETH_MIN_MTU
;
2172 dev
->max_mtu
= jumbo_num
? TILE_JUMBO_MAX_MTU
: ETH_DATA_LEN
;
2174 features
|= NETIF_F_HW_CSUM
;
2175 features
|= NETIF_F_SG
;
2176 features
|= NETIF_F_TSO
;
2177 features
|= NETIF_F_TSO6
;
2179 dev
->hw_features
|= features
;
2180 dev
->vlan_features
|= features
;
2181 dev
->features
|= features
;
2184 /* Allocate the device structure, register the device, and obtain the
2185 * MAC address from the hypervisor.
2187 static void tile_net_dev_init(const char *name
, const uint8_t *mac
)
2190 struct net_device
*dev
;
2191 struct tile_net_priv
*priv
;
2193 /* HACK: Ignore "loop" links. */
2194 if (strncmp(name
, "loop", 4) == 0)
2197 /* Allocate the device structure. Normally, "name" is a
2198 * template, instantiated by register_netdev(), but not for us.
2200 dev
= alloc_netdev_mqs(sizeof(*priv
), name
, NET_NAME_UNKNOWN
,
2201 tile_net_setup
, NR_CPUS
, 1);
2203 pr_err("alloc_netdev_mqs(%s) failed\n", name
);
2207 /* Initialize "priv". */
2208 priv
= netdev_priv(dev
);
2211 priv
->loopify_channel
= -1;
2212 priv
->echannel
= -1;
2215 /* Get the MAC address and set it in the device struct; this must
2216 * be done before the device is opened. If the MAC is all zeroes,
2217 * we use a random address, since we're probably on the simulator.
2219 if (!is_zero_ether_addr(mac
))
2220 ether_addr_copy(dev
->dev_addr
, mac
);
2222 eth_hw_addr_random(dev
);
2224 /* Register the network device. */
2225 ret
= register_netdev(dev
);
2227 netdev_err(dev
, "register_netdev failed %d\n", ret
);
2233 /* Per-cpu module initialization. */
2234 static void tile_net_init_module_percpu(void *unused
)
2236 struct tile_net_info
*info
= this_cpu_ptr(&per_cpu_info
);
2237 int my_cpu
= smp_processor_id();
2240 for (instance
= 0; instance
< NR_MPIPE_MAX
; instance
++) {
2241 info
->mpipe
[instance
].has_iqueue
= false;
2242 info
->mpipe
[instance
].instance
= instance
;
2244 info
->my_cpu
= my_cpu
;
2246 /* Initialize the egress timer. */
2247 hrtimer_init(&info
->egress_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
2248 info
->egress_timer
.function
= tile_net_handle_egress_timer
;
2251 /* Module initialization. */
2252 static int __init
tile_net_init_module(void)
2255 char name
[GXIO_MPIPE_LINK_NAME_LEN
];
2258 pr_info("Tilera Network Driver\n");
2260 BUILD_BUG_ON(NR_MPIPE_MAX
!= 2);
2262 mutex_init(&tile_net_devs_for_channel_mutex
);
2264 /* Initialize each CPU. */
2265 on_each_cpu(tile_net_init_module_percpu
, NULL
, 1);
2267 /* Find out what devices we have, and initialize them. */
2268 for (i
= 0; gxio_mpipe_link_enumerate_mac(i
, name
, mac
) >= 0; i
++)
2269 tile_net_dev_init(name
, mac
);
2271 if (!network_cpus_init())
2272 cpumask_and(&network_cpus_map
, housekeeping_cpumask(),
2278 module_init(tile_net_init_module
);