x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / net / irda / toim3232-sir.c
blobb977d6d33e74cf72755100b09d308f24d5f6f319
1 /*********************************************************************
3 * Filename: toim3232-sir.c
4 * Version: 1.0
5 * Description: Implementation of dongles based on the Vishay/Temic
6 * TOIM3232 SIR Endec chipset. Currently only the
7 * IRWave IR320ST-2 is tested, although it should work
8 * with any TOIM3232 or TOIM4232 chipset based RS232
9 * dongle with minimal modification.
10 * Based heavily on the Tekram driver (tekram.c),
11 * with thanks to Dag Brattli and Martin Diehl.
12 * Status: Experimental.
13 * Author: David Basden <davidb-irda@rcpt.to>
14 * Created at: Thu Feb 09 23:47:32 2006
16 * Copyright (c) 2006 David Basden.
17 * Copyright (c) 1998-1999 Dag Brattli,
18 * Copyright (c) 2002 Martin Diehl,
19 * All Rights Reserved.
21 * This program is free software; you can redistribute it and/or
22 * modify it under the terms of the GNU General Public License as
23 * published by the Free Software Foundation; either version 2 of
24 * the License, or (at your option) any later version.
26 * Neither Dag Brattli nor University of Tromsø admit liability nor
27 * provide warranty for any of this software. This material is
28 * provided "AS-IS" and at no charge.
30 ********************************************************************/
33 * This driver has currently only been tested on the IRWave IR320ST-2
35 * PROTOCOL:
37 * The protocol for talking to the TOIM3232 is quite easy, and is
38 * designed to interface with RS232 with only level convertors. The
39 * BR/~D line on the chip is brought high to signal 'command mode',
40 * where a command byte is sent to select the baudrate of the RS232
41 * interface and the pulse length of the IRDA output. When BR/~D
42 * is brought low, the dongle then changes to the selected baudrate,
43 * and the RS232 interface is used for data until BR/~D is brought
44 * high again. The initial speed for the TOIMx323 after RESET is
45 * 9600 baud. The baudrate for command-mode is the last selected
46 * baud-rate, or 9600 after a RESET.
48 * The dongle I have (below) adds some extra hardware on the front end,
49 * but this is mostly directed towards pariasitic power from the RS232
50 * line rather than changing very much about how to communicate with
51 * the TOIM3232.
53 * The protocol to talk to the TOIM4232 chipset seems to be almost
54 * identical to the TOIM3232 (and the 4232 datasheet is more detailed)
55 * so this code will probably work on that as well, although I haven't
56 * tested it on that hardware.
58 * Target dongle variations that might be common:
60 * DTR and RTS function:
61 * The data sheet for the 4232 has a sample implementation that hooks the
62 * DTR and RTS lines to the RESET and BaudRate/~Data lines of the
63 * chip (through line-converters). Given both DTR and RTS would have to
64 * be held low in normal operation, and the TOIMx232 requires +5V to
65 * signal ground, most dongle designers would almost certainly choose
66 * an implementation that kept at least one of DTR or RTS high in
67 * normal operation to provide power to the dongle, but will likely
68 * vary between designs.
70 * User specified command bits:
71 * There are two user-controllable output lines from the TOIMx232 that
72 * can be set low or high by setting the appropriate bits in the
73 * high-nibble of the command byte (when setting speed and pulse length).
74 * These might be used to switch on and off added hardware or extra
75 * dongle features.
78 * Target hardware: IRWave IR320ST-2
80 * The IRWave IR320ST-2 is a simple dongle based on the Vishay/Temic
81 * TOIM3232 SIR Endec and the Vishay/Temic TFDS4500 SIR IRDA transceiver.
82 * It uses a hex inverter and some discrete components to buffer and
83 * line convert the RS232 down to 5V.
85 * The dongle is powered through a voltage regulator, fed by a large
86 * capacitor. To switch the dongle on, DTR is brought high to charge
87 * the capacitor and drive the voltage regulator. DTR isn't associated
88 * with any control lines on the TOIM3232. Parisitic power is also taken
89 * from the RTS, TD and RD lines when brought high, but through resistors.
90 * When DTR is low, the circuit might lose power even with RTS high.
92 * RTS is inverted and attached to the BR/~D input pin. When RTS
93 * is high, BR/~D is low, and the TOIM3232 is in the normal 'data' mode.
94 * RTS is brought low, BR/~D is high, and the TOIM3232 is in 'command
95 * mode'.
97 * For some unknown reason, the RESET line isn't actually connected
98 * to anything. This means to reset the dongle to get it to a known
99 * state (9600 baud) you must drop DTR and RTS low, wait for the power
100 * capacitor to discharge, and then bring DTR (and RTS for data mode)
101 * high again, and wait for the capacitor to charge, the power supply
102 * to stabilise, and the oscillator clock to stabilise.
104 * Fortunately, if the current baudrate is known, the chipset can
105 * easily change speed by entering command mode without having to
106 * reset the dongle first.
108 * Major Components:
110 * - Vishay/Temic TOIM3232 SIR Endec to change RS232 pulse timings
111 * to IRDA pulse timings
112 * - 3.6864MHz crystal to drive TOIM3232 clock oscillator
113 * - DM74lS04M Inverting Hex line buffer for RS232 input buffering
114 * and level conversion
115 * - PJ2951AC 150mA voltage regulator
116 * - Vishay/Temic TFDS4500 SIR IRDA front-end transceiver
120 #include <linux/module.h>
121 #include <linux/delay.h>
122 #include <linux/init.h>
123 #include <linux/sched.h>
125 #include <net/irda/irda.h>
127 #include "sir-dev.h"
129 static int toim3232delay = 150; /* default is 150 ms */
130 module_param(toim3232delay, int, 0);
131 MODULE_PARM_DESC(toim3232delay, "toim3232 dongle write complete delay");
133 static int toim3232_open(struct sir_dev *);
134 static int toim3232_close(struct sir_dev *);
135 static int toim3232_change_speed(struct sir_dev *, unsigned);
136 static int toim3232_reset(struct sir_dev *);
138 #define TOIM3232_115200 0x00
139 #define TOIM3232_57600 0x01
140 #define TOIM3232_38400 0x02
141 #define TOIM3232_19200 0x03
142 #define TOIM3232_9600 0x06
143 #define TOIM3232_2400 0x0A
145 #define TOIM3232_PW 0x10 /* Pulse select bit */
147 static struct dongle_driver toim3232 = {
148 .owner = THIS_MODULE,
149 .driver_name = "Vishay TOIM3232",
150 .type = IRDA_TOIM3232_DONGLE,
151 .open = toim3232_open,
152 .close = toim3232_close,
153 .reset = toim3232_reset,
154 .set_speed = toim3232_change_speed,
157 static int __init toim3232_sir_init(void)
159 if (toim3232delay < 1 || toim3232delay > 500)
160 toim3232delay = 200;
161 pr_debug("%s - using %d ms delay\n",
162 toim3232.driver_name, toim3232delay);
163 return irda_register_dongle(&toim3232);
166 static void __exit toim3232_sir_cleanup(void)
168 irda_unregister_dongle(&toim3232);
171 static int toim3232_open(struct sir_dev *dev)
173 struct qos_info *qos = &dev->qos;
175 /* Pull the lines high to start with.
177 * For the IR320ST-2, we need to charge the main supply capacitor to
178 * switch the device on. We keep DTR high throughout to do this.
179 * When RTS, TD and RD are high, they will also trickle-charge the
180 * cap. RTS is high for data transmission, and low for baud rate select.
181 * -- DGB
183 sirdev_set_dtr_rts(dev, TRUE, TRUE);
185 /* The TOI3232 supports many speeds between 1200bps and 115000bps.
186 * We really only care about those supported by the IRDA spec, but
187 * 38400 seems to be implemented in many places */
188 qos->baud_rate.bits &= IR_2400|IR_9600|IR_19200|IR_38400|IR_57600|IR_115200;
190 /* From the tekram driver. Not sure what a reasonable value is -- DGB */
191 qos->min_turn_time.bits = 0x01; /* Needs at least 10 ms */
192 irda_qos_bits_to_value(qos);
194 /* irda thread waits 50 msec for power settling */
196 return 0;
199 static int toim3232_close(struct sir_dev *dev)
201 /* Power off dongle */
202 sirdev_set_dtr_rts(dev, FALSE, FALSE);
204 return 0;
208 * Function toim3232change_speed (dev, state, speed)
210 * Set the speed for the TOIM3232 based dongle. Warning, this
211 * function must be called with a process context!
213 * Algorithm
214 * 1. keep DTR high but clear RTS to bring into baud programming mode
215 * 2. wait at least 7us to enter programming mode
216 * 3. send control word to set baud rate and timing
217 * 4. wait at least 1us
218 * 5. bring RTS high to enter DATA mode (RS232 is passed through to transceiver)
219 * 6. should take effect immediately (although probably worth waiting)
222 #define TOIM3232_STATE_WAIT_SPEED (SIRDEV_STATE_DONGLE_SPEED + 1)
224 static int toim3232_change_speed(struct sir_dev *dev, unsigned speed)
226 unsigned state = dev->fsm.substate;
227 unsigned delay = 0;
228 u8 byte;
229 static int ret = 0;
231 switch(state) {
232 case SIRDEV_STATE_DONGLE_SPEED:
234 /* Figure out what we are going to send as a control byte */
235 switch (speed) {
236 case 2400:
237 byte = TOIM3232_PW|TOIM3232_2400;
238 break;
239 default:
240 speed = 9600;
241 ret = -EINVAL;
242 /* fall thru */
243 case 9600:
244 byte = TOIM3232_PW|TOIM3232_9600;
245 break;
246 case 19200:
247 byte = TOIM3232_PW|TOIM3232_19200;
248 break;
249 case 38400:
250 byte = TOIM3232_PW|TOIM3232_38400;
251 break;
252 case 57600:
253 byte = TOIM3232_PW|TOIM3232_57600;
254 break;
255 case 115200:
256 byte = TOIM3232_115200;
257 break;
260 /* Set DTR, Clear RTS: Go into baud programming mode */
261 sirdev_set_dtr_rts(dev, TRUE, FALSE);
263 /* Wait at least 7us */
264 udelay(14);
266 /* Write control byte */
267 sirdev_raw_write(dev, &byte, 1);
269 dev->speed = speed;
271 state = TOIM3232_STATE_WAIT_SPEED;
272 delay = toim3232delay;
273 break;
275 case TOIM3232_STATE_WAIT_SPEED:
276 /* Have transmitted control byte * Wait for 'at least 1us' */
277 udelay(14);
279 /* Set DTR, Set RTS: Go into normal data mode */
280 sirdev_set_dtr_rts(dev, TRUE, TRUE);
282 /* Wait (TODO: check this is needed) */
283 udelay(50);
284 break;
286 default:
287 printk(KERN_ERR "%s - undefined state %d\n", __func__, state);
288 ret = -EINVAL;
289 break;
292 dev->fsm.substate = state;
293 return (delay > 0) ? delay : ret;
297 * Function toim3232reset (driver)
299 * This function resets the toim3232 dongle. Warning, this function
300 * must be called with a process context!!
302 * What we should do is:
303 * 0. Pull RESET high
304 * 1. Wait for at least 7us
305 * 2. Pull RESET low
306 * 3. Wait for at least 7us
307 * 4. Pull BR/~D high
308 * 5. Wait for at least 7us
309 * 6. Send control byte to set baud rate
310 * 7. Wait at least 1us after stop bit
311 * 8. Pull BR/~D low
312 * 9. Should then be in data mode
314 * Because the IR320ST-2 doesn't have the RESET line connected for some reason,
315 * we'll have to do something else.
317 * The default speed after a RESET is 9600, so lets try just bringing it up in
318 * data mode after switching it off, waiting for the supply capacitor to
319 * discharge, and then switch it back on. This isn't actually pulling RESET
320 * high, but it seems to have the same effect.
322 * This behaviour will probably work on dongles that have the RESET line connected,
323 * but if not, add a flag for the IR320ST-2, and implment the above-listed proper
324 * behaviour.
326 * RTS is inverted and then fed to BR/~D, so to put it in programming mode, we
327 * need to have pull RTS low
330 static int toim3232_reset(struct sir_dev *dev)
332 /* Switch off both DTR and RTS to switch off dongle */
333 sirdev_set_dtr_rts(dev, FALSE, FALSE);
335 /* Should sleep a while. This might be evil doing it this way.*/
336 set_current_state(TASK_UNINTERRUPTIBLE);
337 schedule_timeout(msecs_to_jiffies(50));
339 /* Set DTR, Set RTS (data mode) */
340 sirdev_set_dtr_rts(dev, TRUE, TRUE);
342 /* Wait at least 10 ms for power to stabilize again */
343 set_current_state(TASK_UNINTERRUPTIBLE);
344 schedule_timeout(msecs_to_jiffies(10));
346 /* Speed should now be 9600 */
347 dev->speed = 9600;
349 return 0;
352 MODULE_AUTHOR("David Basden <davidb-linux@rcpt.to>");
353 MODULE_DESCRIPTION("Vishay/Temic TOIM3232 based dongle driver");
354 MODULE_LICENSE("GPL");
355 MODULE_ALIAS("irda-dongle-12"); /* IRDA_TOIM3232_DONGLE */
357 module_init(toim3232_sir_init);
358 module_exit(toim3232_sir_cleanup);