x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / scsi / isci / request.c
blob47f66e9497451e290112852fa5a3f6503b4f33eb
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 #include <scsi/scsi_cmnd.h>
57 #include "isci.h"
58 #include "task.h"
59 #include "request.h"
60 #include "scu_completion_codes.h"
61 #include "scu_event_codes.h"
62 #include "sas.h"
64 #undef C
65 #define C(a) (#a)
66 const char *req_state_name(enum sci_base_request_states state)
68 static const char * const strings[] = REQUEST_STATES;
70 return strings[state];
72 #undef C
74 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
87 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
90 u32 offset;
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->tc_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->tc_dma + offset;
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
105 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
113 static void sci_request_build_sgl(struct isci_request *ireq)
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
147 prev_sg = scu_sg;
148 sg_idx++;
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
158 ireq->zero_scatter_daddr = dma_addr;
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
171 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
176 cmd_iu = &ireq->ssp.cmd;
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = task->ssp_task.task_prio;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
191 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
197 task_iu = &ireq->ssp.tmf;
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 * @sci_req:
213 * @task_context:
216 static void scu_ssp_reqeust_construct_task_context(
217 struct isci_request *ireq,
218 struct scu_task_context *task_context)
220 dma_addr_t dma_addr;
221 struct isci_remote_device *idev;
222 struct isci_port *iport;
224 idev = ireq->target_device;
225 iport = idev->owning_port;
227 /* Fill in the TC with the its required data */
228 task_context->abort = 0;
229 task_context->priority = 0;
230 task_context->initiator_request = 1;
231 task_context->connection_rate = idev->connection_rate;
232 task_context->protocol_engine_index = ISCI_PEG;
233 task_context->logical_port_index = iport->physical_port_index;
234 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
235 task_context->valid = SCU_TASK_CONTEXT_VALID;
236 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
238 task_context->remote_node_index = idev->rnc.remote_node_index;
239 task_context->command_code = 0;
241 task_context->link_layer_control = 0;
242 task_context->do_not_dma_ssp_good_response = 1;
243 task_context->strict_ordering = 0;
244 task_context->control_frame = 0;
245 task_context->timeout_enable = 0;
246 task_context->block_guard_enable = 0;
248 task_context->address_modifier = 0;
250 /* task_context->type.ssp.tag = ireq->io_tag; */
251 task_context->task_phase = 0x01;
253 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
254 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
255 (iport->physical_port_index <<
256 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
257 ISCI_TAG_TCI(ireq->io_tag));
260 * Copy the physical address for the command buffer to the
261 * SCU Task Context
263 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
265 task_context->command_iu_upper = upper_32_bits(dma_addr);
266 task_context->command_iu_lower = lower_32_bits(dma_addr);
269 * Copy the physical address for the response buffer to the
270 * SCU Task Context
272 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
274 task_context->response_iu_upper = upper_32_bits(dma_addr);
275 task_context->response_iu_lower = lower_32_bits(dma_addr);
278 static u8 scu_bg_blk_size(struct scsi_device *sdp)
280 switch (sdp->sector_size) {
281 case 512:
282 return 0;
283 case 1024:
284 return 1;
285 case 4096:
286 return 3;
287 default:
288 return 0xff;
292 static u32 scu_dif_bytes(u32 len, u32 sector_size)
294 return (len >> ilog2(sector_size)) * 8;
297 static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
299 struct scu_task_context *tc = ireq->tc;
300 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
301 u8 blk_sz = scu_bg_blk_size(scmd->device);
303 tc->block_guard_enable = 1;
304 tc->blk_prot_en = 1;
305 tc->blk_sz = blk_sz;
306 /* DIF write insert */
307 tc->blk_prot_func = 0x2;
309 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
310 scmd->device->sector_size);
312 /* always init to 0, used by hw */
313 tc->interm_crc_val = 0;
315 tc->init_crc_seed = 0;
316 tc->app_tag_verify = 0;
317 tc->app_tag_gen = 0;
318 tc->ref_tag_seed_verify = 0;
320 /* always init to same as bg_blk_sz */
321 tc->UD_bytes_immed_val = scmd->device->sector_size;
323 tc->reserved_DC_0 = 0;
325 /* always init to 8 */
326 tc->DIF_bytes_immed_val = 8;
328 tc->reserved_DC_1 = 0;
329 tc->bgc_blk_sz = scmd->device->sector_size;
330 tc->reserved_E0_0 = 0;
331 tc->app_tag_gen_mask = 0;
333 /** setup block guard control **/
334 tc->bgctl = 0;
336 /* DIF write insert */
337 tc->bgctl_f.op = 0x2;
339 tc->app_tag_verify_mask = 0;
341 /* must init to 0 for hw */
342 tc->blk_guard_err = 0;
344 tc->reserved_E8_0 = 0;
346 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
347 tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
348 else if (type & SCSI_PROT_DIF_TYPE3)
349 tc->ref_tag_seed_gen = 0;
352 static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
354 struct scu_task_context *tc = ireq->tc;
355 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
356 u8 blk_sz = scu_bg_blk_size(scmd->device);
358 tc->block_guard_enable = 1;
359 tc->blk_prot_en = 1;
360 tc->blk_sz = blk_sz;
361 /* DIF read strip */
362 tc->blk_prot_func = 0x1;
364 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
365 scmd->device->sector_size);
367 /* always init to 0, used by hw */
368 tc->interm_crc_val = 0;
370 tc->init_crc_seed = 0;
371 tc->app_tag_verify = 0;
372 tc->app_tag_gen = 0;
374 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
375 tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
376 else if (type & SCSI_PROT_DIF_TYPE3)
377 tc->ref_tag_seed_verify = 0;
379 /* always init to same as bg_blk_sz */
380 tc->UD_bytes_immed_val = scmd->device->sector_size;
382 tc->reserved_DC_0 = 0;
384 /* always init to 8 */
385 tc->DIF_bytes_immed_val = 8;
387 tc->reserved_DC_1 = 0;
388 tc->bgc_blk_sz = scmd->device->sector_size;
389 tc->reserved_E0_0 = 0;
390 tc->app_tag_gen_mask = 0;
392 /** setup block guard control **/
393 tc->bgctl = 0;
395 /* DIF read strip */
396 tc->bgctl_f.crc_verify = 1;
397 tc->bgctl_f.op = 0x1;
398 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
399 tc->bgctl_f.ref_tag_chk = 1;
400 tc->bgctl_f.app_f_detect = 1;
401 } else if (type & SCSI_PROT_DIF_TYPE3)
402 tc->bgctl_f.app_ref_f_detect = 1;
404 tc->app_tag_verify_mask = 0;
406 /* must init to 0 for hw */
407 tc->blk_guard_err = 0;
409 tc->reserved_E8_0 = 0;
410 tc->ref_tag_seed_gen = 0;
414 * This method is will fill in the SCU Task Context for a SSP IO request.
415 * @sci_req:
418 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
419 enum dma_data_direction dir,
420 u32 len)
422 struct scu_task_context *task_context = ireq->tc;
423 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
424 struct scsi_cmnd *scmd = sas_task->uldd_task;
425 u8 prot_type = scsi_get_prot_type(scmd);
426 u8 prot_op = scsi_get_prot_op(scmd);
428 scu_ssp_reqeust_construct_task_context(ireq, task_context);
430 task_context->ssp_command_iu_length =
431 sizeof(struct ssp_cmd_iu) / sizeof(u32);
432 task_context->type.ssp.frame_type = SSP_COMMAND;
434 switch (dir) {
435 case DMA_FROM_DEVICE:
436 case DMA_NONE:
437 default:
438 task_context->task_type = SCU_TASK_TYPE_IOREAD;
439 break;
440 case DMA_TO_DEVICE:
441 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
442 break;
445 task_context->transfer_length_bytes = len;
447 if (task_context->transfer_length_bytes > 0)
448 sci_request_build_sgl(ireq);
450 if (prot_type != SCSI_PROT_DIF_TYPE0) {
451 if (prot_op == SCSI_PROT_READ_STRIP)
452 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
453 else if (prot_op == SCSI_PROT_WRITE_INSERT)
454 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
459 * This method will fill in the SCU Task Context for a SSP Task request. The
460 * following important settings are utilized: -# priority ==
461 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
462 * ahead of other task destined for the same Remote Node. -# task_type ==
463 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
464 * (i.e. non-raw frame) is being utilized to perform task management. -#
465 * control_frame == 1. This ensures that the proper endianess is set so
466 * that the bytes are transmitted in the right order for a task frame.
467 * @sci_req: This parameter specifies the task request object being
468 * constructed.
471 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
473 struct scu_task_context *task_context = ireq->tc;
475 scu_ssp_reqeust_construct_task_context(ireq, task_context);
477 task_context->control_frame = 1;
478 task_context->priority = SCU_TASK_PRIORITY_HIGH;
479 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
480 task_context->transfer_length_bytes = 0;
481 task_context->type.ssp.frame_type = SSP_TASK;
482 task_context->ssp_command_iu_length =
483 sizeof(struct ssp_task_iu) / sizeof(u32);
487 * This method is will fill in the SCU Task Context for any type of SATA
488 * request. This is called from the various SATA constructors.
489 * @sci_req: The general IO request object which is to be used in
490 * constructing the SCU task context.
491 * @task_context: The buffer pointer for the SCU task context which is being
492 * constructed.
494 * The general io request construction is complete. The buffer assignment for
495 * the command buffer is complete. none Revisit task context construction to
496 * determine what is common for SSP/SMP/STP task context structures.
498 static void scu_sata_reqeust_construct_task_context(
499 struct isci_request *ireq,
500 struct scu_task_context *task_context)
502 dma_addr_t dma_addr;
503 struct isci_remote_device *idev;
504 struct isci_port *iport;
506 idev = ireq->target_device;
507 iport = idev->owning_port;
509 /* Fill in the TC with the its required data */
510 task_context->abort = 0;
511 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
512 task_context->initiator_request = 1;
513 task_context->connection_rate = idev->connection_rate;
514 task_context->protocol_engine_index = ISCI_PEG;
515 task_context->logical_port_index = iport->physical_port_index;
516 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
517 task_context->valid = SCU_TASK_CONTEXT_VALID;
518 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
520 task_context->remote_node_index = idev->rnc.remote_node_index;
521 task_context->command_code = 0;
523 task_context->link_layer_control = 0;
524 task_context->do_not_dma_ssp_good_response = 1;
525 task_context->strict_ordering = 0;
526 task_context->control_frame = 0;
527 task_context->timeout_enable = 0;
528 task_context->block_guard_enable = 0;
530 task_context->address_modifier = 0;
531 task_context->task_phase = 0x01;
533 task_context->ssp_command_iu_length =
534 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
536 /* Set the first word of the H2D REG FIS */
537 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
539 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
540 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
541 (iport->physical_port_index <<
542 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
543 ISCI_TAG_TCI(ireq->io_tag));
545 * Copy the physical address for the command buffer to the SCU Task
546 * Context. We must offset the command buffer by 4 bytes because the
547 * first 4 bytes are transfered in the body of the TC.
549 dma_addr = sci_io_request_get_dma_addr(ireq,
550 ((char *) &ireq->stp.cmd) +
551 sizeof(u32));
553 task_context->command_iu_upper = upper_32_bits(dma_addr);
554 task_context->command_iu_lower = lower_32_bits(dma_addr);
556 /* SATA Requests do not have a response buffer */
557 task_context->response_iu_upper = 0;
558 task_context->response_iu_lower = 0;
561 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
563 struct scu_task_context *task_context = ireq->tc;
565 scu_sata_reqeust_construct_task_context(ireq, task_context);
567 task_context->control_frame = 0;
568 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
569 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
570 task_context->type.stp.fis_type = FIS_REGH2D;
571 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
574 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
575 bool copy_rx_frame)
577 struct isci_stp_request *stp_req = &ireq->stp.req;
579 scu_stp_raw_request_construct_task_context(ireq);
581 stp_req->status = 0;
582 stp_req->sgl.offset = 0;
583 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
585 if (copy_rx_frame) {
586 sci_request_build_sgl(ireq);
587 stp_req->sgl.index = 0;
588 } else {
589 /* The user does not want the data copied to the SGL buffer location */
590 stp_req->sgl.index = -1;
593 return SCI_SUCCESS;
598 * @sci_req: This parameter specifies the request to be constructed as an
599 * optimized request.
600 * @optimized_task_type: This parameter specifies whether the request is to be
601 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
602 * value of 1 indicates NCQ.
604 * This method will perform request construction common to all types of STP
605 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
606 * returns an indication as to whether the construction was successful.
608 static void sci_stp_optimized_request_construct(struct isci_request *ireq,
609 u8 optimized_task_type,
610 u32 len,
611 enum dma_data_direction dir)
613 struct scu_task_context *task_context = ireq->tc;
615 /* Build the STP task context structure */
616 scu_sata_reqeust_construct_task_context(ireq, task_context);
618 /* Copy over the SGL elements */
619 sci_request_build_sgl(ireq);
621 /* Copy over the number of bytes to be transfered */
622 task_context->transfer_length_bytes = len;
624 if (dir == DMA_TO_DEVICE) {
626 * The difference between the DMA IN and DMA OUT request task type
627 * values are consistent with the difference between FPDMA READ
628 * and FPDMA WRITE values. Add the supplied task type parameter
629 * to this difference to set the task type properly for this
630 * DATA OUT (WRITE) case. */
631 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
632 - SCU_TASK_TYPE_DMA_IN);
633 } else {
635 * For the DATA IN (READ) case, simply save the supplied
636 * optimized task type. */
637 task_context->task_type = optimized_task_type;
641 static void sci_atapi_construct(struct isci_request *ireq)
643 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
644 struct sas_task *task;
646 /* To simplify the implementation we take advantage of the
647 * silicon's partial acceleration of atapi protocol (dma data
648 * transfers), so we promote all commands to dma protocol. This
649 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
651 h2d_fis->features |= ATAPI_PKT_DMA;
653 scu_stp_raw_request_construct_task_context(ireq);
655 task = isci_request_access_task(ireq);
656 if (task->data_dir == DMA_NONE)
657 task->total_xfer_len = 0;
659 /* clear the response so we can detect arrivial of an
660 * unsolicited h2d fis
662 ireq->stp.rsp.fis_type = 0;
665 static enum sci_status
666 sci_io_request_construct_sata(struct isci_request *ireq,
667 u32 len,
668 enum dma_data_direction dir,
669 bool copy)
671 enum sci_status status = SCI_SUCCESS;
672 struct sas_task *task = isci_request_access_task(ireq);
673 struct domain_device *dev = ireq->target_device->domain_dev;
675 /* check for management protocols */
676 if (test_bit(IREQ_TMF, &ireq->flags)) {
677 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
679 dev_err(&ireq->owning_controller->pdev->dev,
680 "%s: Request 0x%p received un-handled SAT "
681 "management protocol 0x%x.\n",
682 __func__, ireq, tmf->tmf_code);
684 return SCI_FAILURE;
687 if (!sas_protocol_ata(task->task_proto)) {
688 dev_err(&ireq->owning_controller->pdev->dev,
689 "%s: Non-ATA protocol in SATA path: 0x%x\n",
690 __func__,
691 task->task_proto);
692 return SCI_FAILURE;
696 /* ATAPI */
697 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
698 task->ata_task.fis.command == ATA_CMD_PACKET) {
699 sci_atapi_construct(ireq);
700 return SCI_SUCCESS;
703 /* non data */
704 if (task->data_dir == DMA_NONE) {
705 scu_stp_raw_request_construct_task_context(ireq);
706 return SCI_SUCCESS;
709 /* NCQ */
710 if (task->ata_task.use_ncq) {
711 sci_stp_optimized_request_construct(ireq,
712 SCU_TASK_TYPE_FPDMAQ_READ,
713 len, dir);
714 return SCI_SUCCESS;
717 /* DMA */
718 if (task->ata_task.dma_xfer) {
719 sci_stp_optimized_request_construct(ireq,
720 SCU_TASK_TYPE_DMA_IN,
721 len, dir);
722 return SCI_SUCCESS;
723 } else /* PIO */
724 return sci_stp_pio_request_construct(ireq, copy);
726 return status;
729 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
731 struct sas_task *task = isci_request_access_task(ireq);
733 ireq->protocol = SAS_PROTOCOL_SSP;
735 scu_ssp_io_request_construct_task_context(ireq,
736 task->data_dir,
737 task->total_xfer_len);
739 sci_io_request_build_ssp_command_iu(ireq);
741 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
743 return SCI_SUCCESS;
746 enum sci_status sci_task_request_construct_ssp(
747 struct isci_request *ireq)
749 /* Construct the SSP Task SCU Task Context */
750 scu_ssp_task_request_construct_task_context(ireq);
752 /* Fill in the SSP Task IU */
753 sci_task_request_build_ssp_task_iu(ireq);
755 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
757 return SCI_SUCCESS;
760 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
762 enum sci_status status;
763 bool copy = false;
764 struct sas_task *task = isci_request_access_task(ireq);
766 ireq->protocol = SAS_PROTOCOL_STP;
768 copy = (task->data_dir == DMA_NONE) ? false : true;
770 status = sci_io_request_construct_sata(ireq,
771 task->total_xfer_len,
772 task->data_dir,
773 copy);
775 if (status == SCI_SUCCESS)
776 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
778 return status;
782 * sci_req_tx_bytes - bytes transferred when reply underruns request
783 * @ireq: request that was terminated early
785 #define SCU_TASK_CONTEXT_SRAM 0x200000
786 static u32 sci_req_tx_bytes(struct isci_request *ireq)
788 struct isci_host *ihost = ireq->owning_controller;
789 u32 ret_val = 0;
791 if (readl(&ihost->smu_registers->address_modifier) == 0) {
792 void __iomem *scu_reg_base = ihost->scu_registers;
794 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
795 * BAR1 is the scu_registers
796 * 0x20002C = 0x200000 + 0x2c
797 * = start of task context SRAM + offset of (type.ssp.data_offset)
798 * TCi is the io_tag of struct sci_request
800 ret_val = readl(scu_reg_base +
801 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
802 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
805 return ret_val;
808 enum sci_status sci_request_start(struct isci_request *ireq)
810 enum sci_base_request_states state;
811 struct scu_task_context *tc = ireq->tc;
812 struct isci_host *ihost = ireq->owning_controller;
814 state = ireq->sm.current_state_id;
815 if (state != SCI_REQ_CONSTRUCTED) {
816 dev_warn(&ihost->pdev->dev,
817 "%s: SCIC IO Request requested to start while in wrong "
818 "state %d\n", __func__, state);
819 return SCI_FAILURE_INVALID_STATE;
822 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
824 switch (tc->protocol_type) {
825 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
826 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
827 /* SSP/SMP Frame */
828 tc->type.ssp.tag = ireq->io_tag;
829 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
830 break;
832 case SCU_TASK_CONTEXT_PROTOCOL_STP:
833 /* STP/SATA Frame
834 * tc->type.stp.ncq_tag = ireq->ncq_tag;
836 break;
838 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
839 /* / @todo When do we set no protocol type? */
840 break;
842 default:
843 /* This should never happen since we build the IO
844 * requests */
845 break;
848 /* Add to the post_context the io tag value */
849 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
851 /* Everything is good go ahead and change state */
852 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
854 return SCI_SUCCESS;
857 enum sci_status
858 sci_io_request_terminate(struct isci_request *ireq)
860 enum sci_base_request_states state;
862 state = ireq->sm.current_state_id;
864 switch (state) {
865 case SCI_REQ_CONSTRUCTED:
866 /* Set to make sure no HW terminate posting is done: */
867 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
868 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
869 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
870 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
871 return SCI_SUCCESS;
872 case SCI_REQ_STARTED:
873 case SCI_REQ_TASK_WAIT_TC_COMP:
874 case SCI_REQ_SMP_WAIT_RESP:
875 case SCI_REQ_SMP_WAIT_TC_COMP:
876 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
877 case SCI_REQ_STP_UDMA_WAIT_D2H:
878 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
879 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
880 case SCI_REQ_STP_PIO_WAIT_H2D:
881 case SCI_REQ_STP_PIO_WAIT_FRAME:
882 case SCI_REQ_STP_PIO_DATA_IN:
883 case SCI_REQ_STP_PIO_DATA_OUT:
884 case SCI_REQ_ATAPI_WAIT_H2D:
885 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
886 case SCI_REQ_ATAPI_WAIT_D2H:
887 case SCI_REQ_ATAPI_WAIT_TC_COMP:
888 /* Fall through and change state to ABORTING... */
889 case SCI_REQ_TASK_WAIT_TC_RESP:
890 /* The task frame was already confirmed to have been
891 * sent by the SCU HW. Since the state machine is
892 * now only waiting for the task response itself,
893 * abort the request and complete it immediately
894 * and don't wait for the task response.
896 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
897 /* Fall through and handle like ABORTING... */
898 case SCI_REQ_ABORTING:
899 if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
900 set_bit(IREQ_PENDING_ABORT, &ireq->flags);
901 else
902 clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
903 /* If the request is only waiting on the remote device
904 * suspension, return SUCCESS so the caller will wait too.
906 return SCI_SUCCESS;
907 case SCI_REQ_COMPLETED:
908 default:
909 dev_warn(&ireq->owning_controller->pdev->dev,
910 "%s: SCIC IO Request requested to abort while in wrong "
911 "state %d\n", __func__, ireq->sm.current_state_id);
912 break;
915 return SCI_FAILURE_INVALID_STATE;
918 enum sci_status sci_request_complete(struct isci_request *ireq)
920 enum sci_base_request_states state;
921 struct isci_host *ihost = ireq->owning_controller;
923 state = ireq->sm.current_state_id;
924 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
925 "isci: request completion from wrong state (%s)\n",
926 req_state_name(state)))
927 return SCI_FAILURE_INVALID_STATE;
929 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
930 sci_controller_release_frame(ihost,
931 ireq->saved_rx_frame_index);
933 /* XXX can we just stop the machine and remove the 'final' state? */
934 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
935 return SCI_SUCCESS;
938 enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
939 u32 event_code)
941 enum sci_base_request_states state;
942 struct isci_host *ihost = ireq->owning_controller;
944 state = ireq->sm.current_state_id;
946 if (state != SCI_REQ_STP_PIO_DATA_IN) {
947 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
948 __func__, event_code, req_state_name(state));
950 return SCI_FAILURE_INVALID_STATE;
953 switch (scu_get_event_specifier(event_code)) {
954 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
955 /* We are waiting for data and the SCU has R_ERR the data frame.
956 * Go back to waiting for the D2H Register FIS
958 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
959 return SCI_SUCCESS;
960 default:
961 dev_err(&ihost->pdev->dev,
962 "%s: pio request unexpected event %#x\n",
963 __func__, event_code);
965 /* TODO Should we fail the PIO request when we get an
966 * unexpected event?
968 return SCI_FAILURE;
973 * This function copies response data for requests returning response data
974 * instead of sense data.
975 * @sci_req: This parameter specifies the request object for which to copy
976 * the response data.
978 static void sci_io_request_copy_response(struct isci_request *ireq)
980 void *resp_buf;
981 u32 len;
982 struct ssp_response_iu *ssp_response;
983 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
985 ssp_response = &ireq->ssp.rsp;
987 resp_buf = &isci_tmf->resp.resp_iu;
989 len = min_t(u32,
990 SSP_RESP_IU_MAX_SIZE,
991 be32_to_cpu(ssp_response->response_data_len));
993 memcpy(resp_buf, ssp_response->resp_data, len);
996 static enum sci_status
997 request_started_state_tc_event(struct isci_request *ireq,
998 u32 completion_code)
1000 struct ssp_response_iu *resp_iu;
1001 u8 datapres;
1003 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
1004 * to determine SDMA status
1006 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1007 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1008 ireq->scu_status = SCU_TASK_DONE_GOOD;
1009 ireq->sci_status = SCI_SUCCESS;
1010 break;
1011 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1012 /* There are times when the SCU hardware will return an early
1013 * response because the io request specified more data than is
1014 * returned by the target device (mode pages, inquiry data,
1015 * etc.). We must check the response stats to see if this is
1016 * truly a failed request or a good request that just got
1017 * completed early.
1019 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1020 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1022 sci_swab32_cpy(&ireq->ssp.rsp,
1023 &ireq->ssp.rsp,
1024 word_cnt);
1026 if (resp->status == 0) {
1027 ireq->scu_status = SCU_TASK_DONE_GOOD;
1028 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1029 } else {
1030 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1031 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1033 break;
1035 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1036 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1038 sci_swab32_cpy(&ireq->ssp.rsp,
1039 &ireq->ssp.rsp,
1040 word_cnt);
1042 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1043 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1044 break;
1047 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1048 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1049 * guaranteed to be received before this completion status is
1050 * posted?
1052 resp_iu = &ireq->ssp.rsp;
1053 datapres = resp_iu->datapres;
1055 if (datapres == 1 || datapres == 2) {
1056 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1057 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1058 } else {
1059 ireq->scu_status = SCU_TASK_DONE_GOOD;
1060 ireq->sci_status = SCI_SUCCESS;
1062 break;
1063 /* only stp device gets suspended. */
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1070 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1071 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1072 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1073 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1074 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1075 if (ireq->protocol == SAS_PROTOCOL_STP) {
1076 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1077 SCU_COMPLETION_TL_STATUS_SHIFT;
1078 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1079 } else {
1080 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1081 SCU_COMPLETION_TL_STATUS_SHIFT;
1082 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1084 break;
1086 /* both stp/ssp device gets suspended */
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1092 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1093 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1094 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1095 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1096 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1097 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1098 SCU_COMPLETION_TL_STATUS_SHIFT;
1099 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1100 break;
1102 /* neither ssp nor stp gets suspended. */
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1114 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1115 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1116 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1117 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1118 default:
1119 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1120 SCU_COMPLETION_TL_STATUS_SHIFT;
1121 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1122 break;
1126 * TODO: This is probably wrong for ACK/NAK timeout conditions
1129 /* In all cases we will treat this as the completion of the IO req. */
1130 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1131 return SCI_SUCCESS;
1134 static enum sci_status
1135 request_aborting_state_tc_event(struct isci_request *ireq,
1136 u32 completion_code)
1138 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1139 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1140 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1141 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1142 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1143 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1144 break;
1146 default:
1147 /* Unless we get some strange error wait for the task abort to complete
1148 * TODO: Should there be a state change for this completion?
1150 break;
1153 return SCI_SUCCESS;
1156 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1157 u32 completion_code)
1159 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1160 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1161 ireq->scu_status = SCU_TASK_DONE_GOOD;
1162 ireq->sci_status = SCI_SUCCESS;
1163 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1164 break;
1165 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1166 /* Currently, the decision is to simply allow the task request
1167 * to timeout if the task IU wasn't received successfully.
1168 * There is a potential for receiving multiple task responses if
1169 * we decide to send the task IU again.
1171 dev_warn(&ireq->owning_controller->pdev->dev,
1172 "%s: TaskRequest:0x%p CompletionCode:%x - "
1173 "ACK/NAK timeout\n", __func__, ireq,
1174 completion_code);
1176 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1177 break;
1178 default:
1180 * All other completion status cause the IO to be complete.
1181 * If a NAK was received, then it is up to the user to retry
1182 * the request.
1184 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1185 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1186 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1187 break;
1190 return SCI_SUCCESS;
1193 static enum sci_status
1194 smp_request_await_response_tc_event(struct isci_request *ireq,
1195 u32 completion_code)
1197 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1198 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1199 /* In the AWAIT RESPONSE state, any TC completion is
1200 * unexpected. but if the TC has success status, we
1201 * complete the IO anyway.
1203 ireq->scu_status = SCU_TASK_DONE_GOOD;
1204 ireq->sci_status = SCI_SUCCESS;
1205 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1206 break;
1207 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1208 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1209 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1210 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1211 /* These status has been seen in a specific LSI
1212 * expander, which sometimes is not able to send smp
1213 * response within 2 ms. This causes our hardware break
1214 * the connection and set TC completion with one of
1215 * these SMP_XXX_XX_ERR status. For these type of error,
1216 * we ask ihost user to retry the request.
1218 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1219 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1220 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1221 break;
1222 default:
1223 /* All other completion status cause the IO to be complete. If a NAK
1224 * was received, then it is up to the user to retry the request
1226 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1227 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1228 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1229 break;
1232 return SCI_SUCCESS;
1235 static enum sci_status
1236 smp_request_await_tc_event(struct isci_request *ireq,
1237 u32 completion_code)
1239 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1240 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1241 ireq->scu_status = SCU_TASK_DONE_GOOD;
1242 ireq->sci_status = SCI_SUCCESS;
1243 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1244 break;
1245 default:
1246 /* All other completion status cause the IO to be
1247 * complete. If a NAK was received, then it is up to
1248 * the user to retry the request.
1250 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1251 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1252 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1253 break;
1256 return SCI_SUCCESS;
1259 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1261 struct scu_sgl_element *sgl;
1262 struct scu_sgl_element_pair *sgl_pair;
1263 struct isci_request *ireq = to_ireq(stp_req);
1264 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1266 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1267 if (!sgl_pair)
1268 sgl = NULL;
1269 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1270 if (sgl_pair->B.address_lower == 0 &&
1271 sgl_pair->B.address_upper == 0) {
1272 sgl = NULL;
1273 } else {
1274 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1275 sgl = &sgl_pair->B;
1277 } else {
1278 if (sgl_pair->next_pair_lower == 0 &&
1279 sgl_pair->next_pair_upper == 0) {
1280 sgl = NULL;
1281 } else {
1282 pio_sgl->index++;
1283 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1284 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1285 sgl = &sgl_pair->A;
1289 return sgl;
1292 static enum sci_status
1293 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1294 u32 completion_code)
1296 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1297 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1298 ireq->scu_status = SCU_TASK_DONE_GOOD;
1299 ireq->sci_status = SCI_SUCCESS;
1300 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1301 break;
1303 default:
1304 /* All other completion status cause the IO to be
1305 * complete. If a NAK was received, then it is up to
1306 * the user to retry the request.
1308 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1309 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1310 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1311 break;
1314 return SCI_SUCCESS;
1317 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1319 /* transmit DATA_FIS from (current sgl + offset) for input
1320 * parameter length. current sgl and offset is alreay stored in the IO request
1322 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1323 struct isci_request *ireq,
1324 u32 length)
1326 struct isci_stp_request *stp_req = &ireq->stp.req;
1327 struct scu_task_context *task_context = ireq->tc;
1328 struct scu_sgl_element_pair *sgl_pair;
1329 struct scu_sgl_element *current_sgl;
1331 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1332 * for the data from current_sgl+offset for the input length
1334 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1335 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1336 current_sgl = &sgl_pair->A;
1337 else
1338 current_sgl = &sgl_pair->B;
1340 /* update the TC */
1341 task_context->command_iu_upper = current_sgl->address_upper;
1342 task_context->command_iu_lower = current_sgl->address_lower;
1343 task_context->transfer_length_bytes = length;
1344 task_context->type.stp.fis_type = FIS_DATA;
1346 /* send the new TC out. */
1347 return sci_controller_continue_io(ireq);
1350 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1352 struct isci_stp_request *stp_req = &ireq->stp.req;
1353 struct scu_sgl_element_pair *sgl_pair;
1354 enum sci_status status = SCI_SUCCESS;
1355 struct scu_sgl_element *sgl;
1356 u32 offset;
1357 u32 len = 0;
1359 offset = stp_req->sgl.offset;
1360 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1361 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1362 return SCI_FAILURE;
1364 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1365 sgl = &sgl_pair->A;
1366 len = sgl_pair->A.length - offset;
1367 } else {
1368 sgl = &sgl_pair->B;
1369 len = sgl_pair->B.length - offset;
1372 if (stp_req->pio_len == 0)
1373 return SCI_SUCCESS;
1375 if (stp_req->pio_len >= len) {
1376 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1377 if (status != SCI_SUCCESS)
1378 return status;
1379 stp_req->pio_len -= len;
1381 /* update the current sgl, offset and save for future */
1382 sgl = pio_sgl_next(stp_req);
1383 offset = 0;
1384 } else if (stp_req->pio_len < len) {
1385 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1387 /* Sgl offset will be adjusted and saved for future */
1388 offset += stp_req->pio_len;
1389 sgl->address_lower += stp_req->pio_len;
1390 stp_req->pio_len = 0;
1393 stp_req->sgl.offset = offset;
1395 return status;
1400 * @stp_request: The request that is used for the SGL processing.
1401 * @data_buffer: The buffer of data to be copied.
1402 * @length: The length of the data transfer.
1404 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1405 * specified data region. enum sci_status
1407 static enum sci_status
1408 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1409 u8 *data_buf, u32 len)
1411 struct isci_request *ireq;
1412 u8 *src_addr;
1413 int copy_len;
1414 struct sas_task *task;
1415 struct scatterlist *sg;
1416 void *kaddr;
1417 int total_len = len;
1419 ireq = to_ireq(stp_req);
1420 task = isci_request_access_task(ireq);
1421 src_addr = data_buf;
1423 if (task->num_scatter > 0) {
1424 sg = task->scatter;
1426 while (total_len > 0) {
1427 struct page *page = sg_page(sg);
1429 copy_len = min_t(int, total_len, sg_dma_len(sg));
1430 kaddr = kmap_atomic(page);
1431 memcpy(kaddr + sg->offset, src_addr, copy_len);
1432 kunmap_atomic(kaddr);
1433 total_len -= copy_len;
1434 src_addr += copy_len;
1435 sg = sg_next(sg);
1437 } else {
1438 BUG_ON(task->total_xfer_len < total_len);
1439 memcpy(task->scatter, src_addr, total_len);
1442 return SCI_SUCCESS;
1447 * @sci_req: The PIO DATA IN request that is to receive the data.
1448 * @data_buffer: The buffer to copy from.
1450 * Copy the data buffer to the io request data region. enum sci_status
1452 static enum sci_status sci_stp_request_pio_data_in_copy_data(
1453 struct isci_stp_request *stp_req,
1454 u8 *data_buffer)
1456 enum sci_status status;
1459 * If there is less than 1K remaining in the transfer request
1460 * copy just the data for the transfer */
1461 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1462 status = sci_stp_request_pio_data_in_copy_data_buffer(
1463 stp_req, data_buffer, stp_req->pio_len);
1465 if (status == SCI_SUCCESS)
1466 stp_req->pio_len = 0;
1467 } else {
1468 /* We are transfering the whole frame so copy */
1469 status = sci_stp_request_pio_data_in_copy_data_buffer(
1470 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1472 if (status == SCI_SUCCESS)
1473 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1476 return status;
1479 static enum sci_status
1480 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1481 u32 completion_code)
1483 enum sci_status status = SCI_SUCCESS;
1485 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1486 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1487 ireq->scu_status = SCU_TASK_DONE_GOOD;
1488 ireq->sci_status = SCI_SUCCESS;
1489 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1490 break;
1492 default:
1493 /* All other completion status cause the IO to be
1494 * complete. If a NAK was received, then it is up to
1495 * the user to retry the request.
1497 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1498 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1499 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1500 break;
1503 return status;
1506 static enum sci_status
1507 pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1508 u32 completion_code)
1510 enum sci_status status = SCI_SUCCESS;
1511 bool all_frames_transferred = false;
1512 struct isci_stp_request *stp_req = &ireq->stp.req;
1514 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1515 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1516 /* Transmit data */
1517 if (stp_req->pio_len != 0) {
1518 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1519 if (status == SCI_SUCCESS) {
1520 if (stp_req->pio_len == 0)
1521 all_frames_transferred = true;
1523 } else if (stp_req->pio_len == 0) {
1525 * this will happen if the all data is written at the
1526 * first time after the pio setup fis is received
1528 all_frames_transferred = true;
1531 /* all data transferred. */
1532 if (all_frames_transferred) {
1534 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1535 * and wait for PIO_SETUP fis / or D2H REg fis. */
1536 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1538 break;
1540 default:
1542 * All other completion status cause the IO to be complete.
1543 * If a NAK was received, then it is up to the user to retry
1544 * the request.
1546 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1547 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1548 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1549 break;
1552 return status;
1555 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1556 u32 frame_index)
1558 struct isci_host *ihost = ireq->owning_controller;
1559 struct dev_to_host_fis *frame_header;
1560 enum sci_status status;
1561 u32 *frame_buffer;
1563 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564 frame_index,
1565 (void **)&frame_header);
1567 if ((status == SCI_SUCCESS) &&
1568 (frame_header->fis_type == FIS_REGD2H)) {
1569 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1570 frame_index,
1571 (void **)&frame_buffer);
1573 sci_controller_copy_sata_response(&ireq->stp.rsp,
1574 frame_header,
1575 frame_buffer);
1578 sci_controller_release_frame(ihost, frame_index);
1580 return status;
1583 static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1584 u32 frame_index)
1586 struct isci_host *ihost = ireq->owning_controller;
1587 enum sci_status status;
1588 struct dev_to_host_fis *frame_header;
1589 u32 *frame_buffer;
1591 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1592 frame_index,
1593 (void **)&frame_header);
1595 if (status != SCI_SUCCESS)
1596 return status;
1598 if (frame_header->fis_type != FIS_REGD2H) {
1599 dev_err(&ireq->isci_host->pdev->dev,
1600 "%s ERROR: invalid fis type 0x%X\n",
1601 __func__, frame_header->fis_type);
1602 return SCI_FAILURE;
1605 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1606 frame_index,
1607 (void **)&frame_buffer);
1609 sci_controller_copy_sata_response(&ireq->stp.rsp,
1610 (u32 *)frame_header,
1611 frame_buffer);
1613 /* Frame has been decoded return it to the controller */
1614 sci_controller_release_frame(ihost, frame_index);
1616 return status;
1619 static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1620 u32 frame_index)
1622 struct sas_task *task = isci_request_access_task(ireq);
1623 enum sci_status status;
1625 status = process_unsolicited_fis(ireq, frame_index);
1627 if (status == SCI_SUCCESS) {
1628 if (ireq->stp.rsp.status & ATA_ERR)
1629 status = SCI_IO_FAILURE_RESPONSE_VALID;
1630 } else {
1631 status = SCI_IO_FAILURE_RESPONSE_VALID;
1634 if (status != SCI_SUCCESS) {
1635 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1636 ireq->sci_status = status;
1637 } else {
1638 ireq->scu_status = SCU_TASK_DONE_GOOD;
1639 ireq->sci_status = SCI_SUCCESS;
1642 /* the d2h ufi is the end of non-data commands */
1643 if (task->data_dir == DMA_NONE)
1644 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1646 return status;
1649 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1651 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1652 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1653 struct scu_task_context *task_context = ireq->tc;
1655 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1656 * type. The TC for previous Packet fis was already there, we only need to
1657 * change the H2D fis content.
1659 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1660 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1661 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1662 task_context->type.stp.fis_type = FIS_DATA;
1663 task_context->transfer_length_bytes = dev->cdb_len;
1666 static void scu_atapi_construct_task_context(struct isci_request *ireq)
1668 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1669 struct sas_task *task = isci_request_access_task(ireq);
1670 struct scu_task_context *task_context = ireq->tc;
1671 int cdb_len = dev->cdb_len;
1673 /* reference: SSTL 1.13.4.2
1674 * task_type, sata_direction
1676 if (task->data_dir == DMA_TO_DEVICE) {
1677 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1678 task_context->sata_direction = 0;
1679 } else {
1680 /* todo: for NO_DATA command, we need to send out raw frame. */
1681 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1682 task_context->sata_direction = 1;
1685 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1686 task_context->type.stp.fis_type = FIS_DATA;
1688 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1689 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1690 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1692 /* task phase is set to TX_CMD */
1693 task_context->task_phase = 0x1;
1695 /* retry counter */
1696 task_context->stp_retry_count = 0;
1698 /* data transfer size. */
1699 task_context->transfer_length_bytes = task->total_xfer_len;
1701 /* setup sgl */
1702 sci_request_build_sgl(ireq);
1705 enum sci_status
1706 sci_io_request_frame_handler(struct isci_request *ireq,
1707 u32 frame_index)
1709 struct isci_host *ihost = ireq->owning_controller;
1710 struct isci_stp_request *stp_req = &ireq->stp.req;
1711 enum sci_base_request_states state;
1712 enum sci_status status;
1713 ssize_t word_cnt;
1715 state = ireq->sm.current_state_id;
1716 switch (state) {
1717 case SCI_REQ_STARTED: {
1718 struct ssp_frame_hdr ssp_hdr;
1719 void *frame_header;
1721 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1722 frame_index,
1723 &frame_header);
1725 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1726 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1728 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1729 struct ssp_response_iu *resp_iu;
1730 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1732 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1733 frame_index,
1734 (void **)&resp_iu);
1736 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1738 resp_iu = &ireq->ssp.rsp;
1740 if (resp_iu->datapres == 0x01 ||
1741 resp_iu->datapres == 0x02) {
1742 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1743 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1744 } else {
1745 ireq->scu_status = SCU_TASK_DONE_GOOD;
1746 ireq->sci_status = SCI_SUCCESS;
1748 } else {
1749 /* not a response frame, why did it get forwarded? */
1750 dev_err(&ihost->pdev->dev,
1751 "%s: SCIC IO Request 0x%p received unexpected "
1752 "frame %d type 0x%02x\n", __func__, ireq,
1753 frame_index, ssp_hdr.frame_type);
1757 * In any case we are done with this frame buffer return it to
1758 * the controller
1760 sci_controller_release_frame(ihost, frame_index);
1762 return SCI_SUCCESS;
1765 case SCI_REQ_TASK_WAIT_TC_RESP:
1766 sci_io_request_copy_response(ireq);
1767 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1768 sci_controller_release_frame(ihost, frame_index);
1769 return SCI_SUCCESS;
1771 case SCI_REQ_SMP_WAIT_RESP: {
1772 struct sas_task *task = isci_request_access_task(ireq);
1773 struct scatterlist *sg = &task->smp_task.smp_resp;
1774 void *frame_header, *kaddr;
1775 u8 *rsp;
1777 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1778 frame_index,
1779 &frame_header);
1780 kaddr = kmap_atomic(sg_page(sg));
1781 rsp = kaddr + sg->offset;
1782 sci_swab32_cpy(rsp, frame_header, 1);
1784 if (rsp[0] == SMP_RESPONSE) {
1785 void *smp_resp;
1787 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1788 frame_index,
1789 &smp_resp);
1791 word_cnt = (sg->length/4)-1;
1792 if (word_cnt > 0)
1793 word_cnt = min_t(unsigned int, word_cnt,
1794 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1795 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1797 ireq->scu_status = SCU_TASK_DONE_GOOD;
1798 ireq->sci_status = SCI_SUCCESS;
1799 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1800 } else {
1802 * This was not a response frame why did it get
1803 * forwarded?
1805 dev_err(&ihost->pdev->dev,
1806 "%s: SCIC SMP Request 0x%p received unexpected "
1807 "frame %d type 0x%02x\n",
1808 __func__,
1809 ireq,
1810 frame_index,
1811 rsp[0]);
1813 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1814 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1815 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1817 kunmap_atomic(kaddr);
1819 sci_controller_release_frame(ihost, frame_index);
1821 return SCI_SUCCESS;
1824 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1825 return sci_stp_request_udma_general_frame_handler(ireq,
1826 frame_index);
1828 case SCI_REQ_STP_UDMA_WAIT_D2H:
1829 /* Use the general frame handler to copy the resposne data */
1830 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1832 if (status != SCI_SUCCESS)
1833 return status;
1835 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1836 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1837 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1838 return SCI_SUCCESS;
1840 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1841 struct dev_to_host_fis *frame_header;
1842 u32 *frame_buffer;
1844 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1845 frame_index,
1846 (void **)&frame_header);
1848 if (status != SCI_SUCCESS) {
1849 dev_err(&ihost->pdev->dev,
1850 "%s: SCIC IO Request 0x%p could not get frame "
1851 "header for frame index %d, status %x\n",
1852 __func__,
1853 stp_req,
1854 frame_index,
1855 status);
1857 return status;
1860 switch (frame_header->fis_type) {
1861 case FIS_REGD2H:
1862 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1863 frame_index,
1864 (void **)&frame_buffer);
1866 sci_controller_copy_sata_response(&ireq->stp.rsp,
1867 frame_header,
1868 frame_buffer);
1870 /* The command has completed with error */
1871 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1872 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1873 break;
1875 default:
1876 dev_warn(&ihost->pdev->dev,
1877 "%s: IO Request:0x%p Frame Id:%d protocol "
1878 "violation occurred\n", __func__, stp_req,
1879 frame_index);
1881 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1882 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1883 break;
1886 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1888 /* Frame has been decoded return it to the controller */
1889 sci_controller_release_frame(ihost, frame_index);
1891 return status;
1894 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1895 struct sas_task *task = isci_request_access_task(ireq);
1896 struct dev_to_host_fis *frame_header;
1897 u32 *frame_buffer;
1899 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1900 frame_index,
1901 (void **)&frame_header);
1903 if (status != SCI_SUCCESS) {
1904 dev_err(&ihost->pdev->dev,
1905 "%s: SCIC IO Request 0x%p could not get frame "
1906 "header for frame index %d, status %x\n",
1907 __func__, stp_req, frame_index, status);
1908 return status;
1911 switch (frame_header->fis_type) {
1912 case FIS_PIO_SETUP:
1913 /* Get from the frame buffer the PIO Setup Data */
1914 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1915 frame_index,
1916 (void **)&frame_buffer);
1918 /* Get the data from the PIO Setup The SCU Hardware
1919 * returns first word in the frame_header and the rest
1920 * of the data is in the frame buffer so we need to
1921 * back up one dword
1924 /* transfer_count: first 16bits in the 4th dword */
1925 stp_req->pio_len = frame_buffer[3] & 0xffff;
1927 /* status: 4th byte in the 3rd dword */
1928 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1930 sci_controller_copy_sata_response(&ireq->stp.rsp,
1931 frame_header,
1932 frame_buffer);
1934 ireq->stp.rsp.status = stp_req->status;
1936 /* The next state is dependent on whether the
1937 * request was PIO Data-in or Data out
1939 if (task->data_dir == DMA_FROM_DEVICE) {
1940 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1941 } else if (task->data_dir == DMA_TO_DEVICE) {
1942 /* Transmit data */
1943 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1944 if (status != SCI_SUCCESS)
1945 break;
1946 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1948 break;
1950 case FIS_SETDEVBITS:
1951 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1952 break;
1954 case FIS_REGD2H:
1955 if (frame_header->status & ATA_BUSY) {
1957 * Now why is the drive sending a D2H Register
1958 * FIS when it is still busy? Do nothing since
1959 * we are still in the right state.
1961 dev_dbg(&ihost->pdev->dev,
1962 "%s: SCIC PIO Request 0x%p received "
1963 "D2H Register FIS with BSY status "
1964 "0x%x\n",
1965 __func__,
1966 stp_req,
1967 frame_header->status);
1968 break;
1971 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1972 frame_index,
1973 (void **)&frame_buffer);
1975 sci_controller_copy_sata_response(&ireq->stp.rsp,
1976 frame_header,
1977 frame_buffer);
1979 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1980 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1981 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1982 break;
1984 default:
1985 /* FIXME: what do we do here? */
1986 break;
1989 /* Frame is decoded return it to the controller */
1990 sci_controller_release_frame(ihost, frame_index);
1992 return status;
1995 case SCI_REQ_STP_PIO_DATA_IN: {
1996 struct dev_to_host_fis *frame_header;
1997 struct sata_fis_data *frame_buffer;
1999 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
2000 frame_index,
2001 (void **)&frame_header);
2003 if (status != SCI_SUCCESS) {
2004 dev_err(&ihost->pdev->dev,
2005 "%s: SCIC IO Request 0x%p could not get frame "
2006 "header for frame index %d, status %x\n",
2007 __func__,
2008 stp_req,
2009 frame_index,
2010 status);
2011 return status;
2014 if (frame_header->fis_type != FIS_DATA) {
2015 dev_err(&ihost->pdev->dev,
2016 "%s: SCIC PIO Request 0x%p received frame %d "
2017 "with fis type 0x%02x when expecting a data "
2018 "fis.\n",
2019 __func__,
2020 stp_req,
2021 frame_index,
2022 frame_header->fis_type);
2024 ireq->scu_status = SCU_TASK_DONE_GOOD;
2025 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2026 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2028 /* Frame is decoded return it to the controller */
2029 sci_controller_release_frame(ihost, frame_index);
2030 return status;
2033 if (stp_req->sgl.index < 0) {
2034 ireq->saved_rx_frame_index = frame_index;
2035 stp_req->pio_len = 0;
2036 } else {
2037 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2038 frame_index,
2039 (void **)&frame_buffer);
2041 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2042 (u8 *)frame_buffer);
2044 /* Frame is decoded return it to the controller */
2045 sci_controller_release_frame(ihost, frame_index);
2048 /* Check for the end of the transfer, are there more
2049 * bytes remaining for this data transfer
2051 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2052 return status;
2054 if ((stp_req->status & ATA_BUSY) == 0) {
2055 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2056 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2057 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2058 } else {
2059 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2061 return status;
2064 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2065 struct sas_task *task = isci_request_access_task(ireq);
2067 sci_controller_release_frame(ihost, frame_index);
2068 ireq->target_device->working_request = ireq;
2069 if (task->data_dir == DMA_NONE) {
2070 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2071 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2072 } else {
2073 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2074 scu_atapi_construct_task_context(ireq);
2077 sci_controller_continue_io(ireq);
2078 return SCI_SUCCESS;
2080 case SCI_REQ_ATAPI_WAIT_D2H:
2081 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2082 case SCI_REQ_ABORTING:
2084 * TODO: Is it even possible to get an unsolicited frame in the
2085 * aborting state?
2087 sci_controller_release_frame(ihost, frame_index);
2088 return SCI_SUCCESS;
2090 default:
2091 dev_warn(&ihost->pdev->dev,
2092 "%s: SCIC IO Request given unexpected frame %x while "
2093 "in state %d\n",
2094 __func__,
2095 frame_index,
2096 state);
2098 sci_controller_release_frame(ihost, frame_index);
2099 return SCI_FAILURE_INVALID_STATE;
2103 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2104 u32 completion_code)
2106 enum sci_status status = SCI_SUCCESS;
2108 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2110 ireq->scu_status = SCU_TASK_DONE_GOOD;
2111 ireq->sci_status = SCI_SUCCESS;
2112 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2113 break;
2114 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2115 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2116 /* We must check ther response buffer to see if the D2H
2117 * Register FIS was received before we got the TC
2118 * completion.
2120 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2121 sci_remote_device_suspend(ireq->target_device,
2122 SCI_SW_SUSPEND_NORMAL);
2124 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2125 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2126 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2127 } else {
2128 /* If we have an error completion status for the
2129 * TC then we can expect a D2H register FIS from
2130 * the device so we must change state to wait
2131 * for it
2133 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2135 break;
2137 /* TODO Check to see if any of these completion status need to
2138 * wait for the device to host register fis.
2140 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2141 * - this comes only for B0
2143 default:
2144 /* All other completion status cause the IO to be complete. */
2145 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2146 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2147 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2148 break;
2151 return status;
2154 static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2155 enum sci_base_request_states next)
2157 enum sci_status status = SCI_SUCCESS;
2159 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2160 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2161 ireq->scu_status = SCU_TASK_DONE_GOOD;
2162 ireq->sci_status = SCI_SUCCESS;
2163 sci_change_state(&ireq->sm, next);
2164 break;
2165 default:
2166 /* All other completion status cause the IO to be complete.
2167 * If a NAK was received, then it is up to the user to retry
2168 * the request.
2170 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2171 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2173 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2174 break;
2177 return status;
2180 static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2181 u32 completion_code)
2183 struct isci_remote_device *idev = ireq->target_device;
2184 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2185 enum sci_status status = SCI_SUCCESS;
2187 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2188 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2189 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2190 break;
2192 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2193 u16 len = sci_req_tx_bytes(ireq);
2195 /* likely non-error data underrrun, workaround missing
2196 * d2h frame from the controller
2198 if (d2h->fis_type != FIS_REGD2H) {
2199 d2h->fis_type = FIS_REGD2H;
2200 d2h->flags = (1 << 6);
2201 d2h->status = 0x50;
2202 d2h->error = 0;
2203 d2h->lbal = 0;
2204 d2h->byte_count_low = len & 0xff;
2205 d2h->byte_count_high = len >> 8;
2206 d2h->device = 0xa0;
2207 d2h->lbal_exp = 0;
2208 d2h->lbam_exp = 0;
2209 d2h->lbah_exp = 0;
2210 d2h->_r_a = 0;
2211 d2h->sector_count = 0x3;
2212 d2h->sector_count_exp = 0;
2213 d2h->_r_b = 0;
2214 d2h->_r_c = 0;
2215 d2h->_r_d = 0;
2218 ireq->scu_status = SCU_TASK_DONE_GOOD;
2219 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2220 status = ireq->sci_status;
2222 /* the hw will have suspended the rnc, so complete the
2223 * request upon pending resume
2225 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2226 break;
2228 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2229 /* In this case, there is no UF coming after.
2230 * compelte the IO now.
2232 ireq->scu_status = SCU_TASK_DONE_GOOD;
2233 ireq->sci_status = SCI_SUCCESS;
2234 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2235 break;
2237 default:
2238 if (d2h->fis_type == FIS_REGD2H) {
2239 /* UF received change the device state to ATAPI_ERROR */
2240 status = ireq->sci_status;
2241 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2242 } else {
2243 /* If receiving any non-success TC status, no UF
2244 * received yet, then an UF for the status fis
2245 * is coming after (XXX: suspect this is
2246 * actually a protocol error or a bug like the
2247 * DONE_UNEXP_FIS case)
2249 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2250 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2252 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2254 break;
2257 return status;
2260 static int sci_request_smp_completion_status_is_tx_suspend(
2261 unsigned int completion_status)
2263 switch (completion_status) {
2264 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2265 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2266 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2267 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2268 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2269 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2270 return 1;
2272 return 0;
2275 static int sci_request_smp_completion_status_is_tx_rx_suspend(
2276 unsigned int completion_status)
2278 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2281 static int sci_request_ssp_completion_status_is_tx_suspend(
2282 unsigned int completion_status)
2284 switch (completion_status) {
2285 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2286 case SCU_TASK_DONE_LF_ERR:
2287 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2288 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2289 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2290 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2291 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2292 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2293 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2294 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2295 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2296 return 1;
2298 return 0;
2301 static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2302 unsigned int completion_status)
2304 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2307 static int sci_request_stpsata_completion_status_is_tx_suspend(
2308 unsigned int completion_status)
2310 switch (completion_status) {
2311 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2312 case SCU_TASK_DONE_LL_R_ERR:
2313 case SCU_TASK_DONE_LL_PERR:
2314 case SCU_TASK_DONE_REG_ERR:
2315 case SCU_TASK_DONE_SDB_ERR:
2316 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2317 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2318 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2319 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2320 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2321 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2322 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2323 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2324 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2325 return 1;
2327 return 0;
2331 static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2332 unsigned int completion_status)
2334 switch (completion_status) {
2335 case SCU_TASK_DONE_LF_ERR:
2336 case SCU_TASK_DONE_LL_SY_TERM:
2337 case SCU_TASK_DONE_LL_LF_TERM:
2338 case SCU_TASK_DONE_BREAK_RCVD:
2339 case SCU_TASK_DONE_INV_FIS_LEN:
2340 case SCU_TASK_DONE_UNEXP_FIS:
2341 case SCU_TASK_DONE_UNEXP_SDBFIS:
2342 case SCU_TASK_DONE_MAX_PLD_ERR:
2343 return 1;
2345 return 0;
2348 static void sci_request_handle_suspending_completions(
2349 struct isci_request *ireq,
2350 u32 completion_code)
2352 int is_tx = 0;
2353 int is_tx_rx = 0;
2355 switch (ireq->protocol) {
2356 case SAS_PROTOCOL_SMP:
2357 is_tx = sci_request_smp_completion_status_is_tx_suspend(
2358 completion_code);
2359 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2360 completion_code);
2361 break;
2362 case SAS_PROTOCOL_SSP:
2363 is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2364 completion_code);
2365 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2366 completion_code);
2367 break;
2368 case SAS_PROTOCOL_STP:
2369 is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2370 completion_code);
2371 is_tx_rx =
2372 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2373 completion_code);
2374 break;
2375 default:
2376 dev_warn(&ireq->isci_host->pdev->dev,
2377 "%s: request %p has no valid protocol\n",
2378 __func__, ireq);
2379 break;
2381 if (is_tx || is_tx_rx) {
2382 BUG_ON(is_tx && is_tx_rx);
2384 sci_remote_node_context_suspend(
2385 &ireq->target_device->rnc,
2386 SCI_HW_SUSPEND,
2387 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2388 : SCU_EVENT_TL_RNC_SUSPEND_TX);
2392 enum sci_status
2393 sci_io_request_tc_completion(struct isci_request *ireq,
2394 u32 completion_code)
2396 enum sci_base_request_states state;
2397 struct isci_host *ihost = ireq->owning_controller;
2399 state = ireq->sm.current_state_id;
2401 /* Decode those completions that signal upcoming suspension events. */
2402 sci_request_handle_suspending_completions(
2403 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2405 switch (state) {
2406 case SCI_REQ_STARTED:
2407 return request_started_state_tc_event(ireq, completion_code);
2409 case SCI_REQ_TASK_WAIT_TC_COMP:
2410 return ssp_task_request_await_tc_event(ireq,
2411 completion_code);
2413 case SCI_REQ_SMP_WAIT_RESP:
2414 return smp_request_await_response_tc_event(ireq,
2415 completion_code);
2417 case SCI_REQ_SMP_WAIT_TC_COMP:
2418 return smp_request_await_tc_event(ireq, completion_code);
2420 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2421 return stp_request_udma_await_tc_event(ireq,
2422 completion_code);
2424 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2425 return stp_request_non_data_await_h2d_tc_event(ireq,
2426 completion_code);
2428 case SCI_REQ_STP_PIO_WAIT_H2D:
2429 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2430 completion_code);
2432 case SCI_REQ_STP_PIO_DATA_OUT:
2433 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2435 case SCI_REQ_ABORTING:
2436 return request_aborting_state_tc_event(ireq,
2437 completion_code);
2439 case SCI_REQ_ATAPI_WAIT_H2D:
2440 return atapi_raw_completion(ireq, completion_code,
2441 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2443 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2444 return atapi_raw_completion(ireq, completion_code,
2445 SCI_REQ_ATAPI_WAIT_D2H);
2447 case SCI_REQ_ATAPI_WAIT_D2H:
2448 return atapi_data_tc_completion_handler(ireq, completion_code);
2450 default:
2451 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2452 __func__, completion_code, req_state_name(state));
2453 return SCI_FAILURE_INVALID_STATE;
2458 * isci_request_process_response_iu() - This function sets the status and
2459 * response iu, in the task struct, from the request object for the upper
2460 * layer driver.
2461 * @sas_task: This parameter is the task struct from the upper layer driver.
2462 * @resp_iu: This parameter points to the response iu of the completed request.
2463 * @dev: This parameter specifies the linux device struct.
2465 * none.
2467 static void isci_request_process_response_iu(
2468 struct sas_task *task,
2469 struct ssp_response_iu *resp_iu,
2470 struct device *dev)
2472 dev_dbg(dev,
2473 "%s: resp_iu = %p "
2474 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2475 "resp_iu->response_data_len = %x, "
2476 "resp_iu->sense_data_len = %x\nresponse data: ",
2477 __func__,
2478 resp_iu,
2479 resp_iu->status,
2480 resp_iu->datapres,
2481 resp_iu->response_data_len,
2482 resp_iu->sense_data_len);
2484 task->task_status.stat = resp_iu->status;
2486 /* libsas updates the task status fields based on the response iu. */
2487 sas_ssp_task_response(dev, task, resp_iu);
2491 * isci_request_set_open_reject_status() - This function prepares the I/O
2492 * completion for OPEN_REJECT conditions.
2493 * @request: This parameter is the completed isci_request object.
2494 * @response_ptr: This parameter specifies the service response for the I/O.
2495 * @status_ptr: This parameter specifies the exec status for the I/O.
2496 * @open_rej_reason: This parameter specifies the encoded reason for the
2497 * abandon-class reject.
2499 * none.
2501 static void isci_request_set_open_reject_status(
2502 struct isci_request *request,
2503 struct sas_task *task,
2504 enum service_response *response_ptr,
2505 enum exec_status *status_ptr,
2506 enum sas_open_rej_reason open_rej_reason)
2508 /* Task in the target is done. */
2509 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2510 *response_ptr = SAS_TASK_UNDELIVERED;
2511 *status_ptr = SAS_OPEN_REJECT;
2512 task->task_status.open_rej_reason = open_rej_reason;
2516 * isci_request_handle_controller_specific_errors() - This function decodes
2517 * controller-specific I/O completion error conditions.
2518 * @request: This parameter is the completed isci_request object.
2519 * @response_ptr: This parameter specifies the service response for the I/O.
2520 * @status_ptr: This parameter specifies the exec status for the I/O.
2522 * none.
2524 static void isci_request_handle_controller_specific_errors(
2525 struct isci_remote_device *idev,
2526 struct isci_request *request,
2527 struct sas_task *task,
2528 enum service_response *response_ptr,
2529 enum exec_status *status_ptr)
2531 unsigned int cstatus;
2533 cstatus = request->scu_status;
2535 dev_dbg(&request->isci_host->pdev->dev,
2536 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2537 "- controller status = 0x%x\n",
2538 __func__, request, cstatus);
2540 /* Decode the controller-specific errors; most
2541 * important is to recognize those conditions in which
2542 * the target may still have a task outstanding that
2543 * must be aborted.
2545 * Note that there are SCU completion codes being
2546 * named in the decode below for which SCIC has already
2547 * done work to handle them in a way other than as
2548 * a controller-specific completion code; these are left
2549 * in the decode below for completeness sake.
2551 switch (cstatus) {
2552 case SCU_TASK_DONE_DMASETUP_DIRERR:
2553 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2554 case SCU_TASK_DONE_XFERCNT_ERR:
2555 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2556 if (task->task_proto == SAS_PROTOCOL_SMP) {
2557 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2558 *response_ptr = SAS_TASK_COMPLETE;
2560 /* See if the device has been/is being stopped. Note
2561 * that we ignore the quiesce state, since we are
2562 * concerned about the actual device state.
2564 if (!idev)
2565 *status_ptr = SAS_DEVICE_UNKNOWN;
2566 else
2567 *status_ptr = SAS_ABORTED_TASK;
2569 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2570 } else {
2571 /* Task in the target is not done. */
2572 *response_ptr = SAS_TASK_UNDELIVERED;
2574 if (!idev)
2575 *status_ptr = SAS_DEVICE_UNKNOWN;
2576 else
2577 *status_ptr = SAM_STAT_TASK_ABORTED;
2579 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2582 break;
2584 case SCU_TASK_DONE_CRC_ERR:
2585 case SCU_TASK_DONE_NAK_CMD_ERR:
2586 case SCU_TASK_DONE_EXCESS_DATA:
2587 case SCU_TASK_DONE_UNEXP_FIS:
2588 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2589 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2590 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2591 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2592 /* These are conditions in which the target
2593 * has completed the task, so that no cleanup
2594 * is necessary.
2596 *response_ptr = SAS_TASK_COMPLETE;
2598 /* See if the device has been/is being stopped. Note
2599 * that we ignore the quiesce state, since we are
2600 * concerned about the actual device state.
2602 if (!idev)
2603 *status_ptr = SAS_DEVICE_UNKNOWN;
2604 else
2605 *status_ptr = SAS_ABORTED_TASK;
2607 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2608 break;
2611 /* Note that the only open reject completion codes seen here will be
2612 * abandon-class codes; all others are automatically retried in the SCU.
2614 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2616 isci_request_set_open_reject_status(
2617 request, task, response_ptr, status_ptr,
2618 SAS_OREJ_WRONG_DEST);
2619 break;
2621 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2623 /* Note - the return of AB0 will change when
2624 * libsas implements detection of zone violations.
2626 isci_request_set_open_reject_status(
2627 request, task, response_ptr, status_ptr,
2628 SAS_OREJ_RESV_AB0);
2629 break;
2631 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2633 isci_request_set_open_reject_status(
2634 request, task, response_ptr, status_ptr,
2635 SAS_OREJ_RESV_AB1);
2636 break;
2638 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2640 isci_request_set_open_reject_status(
2641 request, task, response_ptr, status_ptr,
2642 SAS_OREJ_RESV_AB2);
2643 break;
2645 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2647 isci_request_set_open_reject_status(
2648 request, task, response_ptr, status_ptr,
2649 SAS_OREJ_RESV_AB3);
2650 break;
2652 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2654 isci_request_set_open_reject_status(
2655 request, task, response_ptr, status_ptr,
2656 SAS_OREJ_BAD_DEST);
2657 break;
2659 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2661 isci_request_set_open_reject_status(
2662 request, task, response_ptr, status_ptr,
2663 SAS_OREJ_STP_NORES);
2664 break;
2666 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2668 isci_request_set_open_reject_status(
2669 request, task, response_ptr, status_ptr,
2670 SAS_OREJ_EPROTO);
2671 break;
2673 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2675 isci_request_set_open_reject_status(
2676 request, task, response_ptr, status_ptr,
2677 SAS_OREJ_CONN_RATE);
2678 break;
2680 case SCU_TASK_DONE_LL_R_ERR:
2681 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2682 case SCU_TASK_DONE_LL_PERR:
2683 case SCU_TASK_DONE_LL_SY_TERM:
2684 /* Also SCU_TASK_DONE_NAK_ERR:*/
2685 case SCU_TASK_DONE_LL_LF_TERM:
2686 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2687 case SCU_TASK_DONE_LL_ABORT_ERR:
2688 case SCU_TASK_DONE_SEQ_INV_TYPE:
2689 /* Also SCU_TASK_DONE_UNEXP_XR: */
2690 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2691 case SCU_TASK_DONE_INV_FIS_LEN:
2692 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2693 case SCU_TASK_DONE_SDMA_ERR:
2694 case SCU_TASK_DONE_OFFSET_ERR:
2695 case SCU_TASK_DONE_MAX_PLD_ERR:
2696 case SCU_TASK_DONE_LF_ERR:
2697 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2698 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2699 case SCU_TASK_DONE_UNEXP_DATA:
2700 case SCU_TASK_DONE_UNEXP_SDBFIS:
2701 case SCU_TASK_DONE_REG_ERR:
2702 case SCU_TASK_DONE_SDB_ERR:
2703 case SCU_TASK_DONE_TASK_ABORT:
2704 default:
2705 /* Task in the target is not done. */
2706 *response_ptr = SAS_TASK_UNDELIVERED;
2707 *status_ptr = SAM_STAT_TASK_ABORTED;
2709 if (task->task_proto == SAS_PROTOCOL_SMP)
2710 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2711 else
2712 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2713 break;
2717 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2719 struct task_status_struct *ts = &task->task_status;
2720 struct ata_task_resp *resp = (void *)&ts->buf[0];
2722 resp->frame_len = sizeof(*fis);
2723 memcpy(resp->ending_fis, fis, sizeof(*fis));
2724 ts->buf_valid_size = sizeof(*resp);
2726 /* If an error is flagged let libata decode the fis */
2727 if (ac_err_mask(fis->status))
2728 ts->stat = SAS_PROTO_RESPONSE;
2729 else
2730 ts->stat = SAM_STAT_GOOD;
2732 ts->resp = SAS_TASK_COMPLETE;
2735 static void isci_request_io_request_complete(struct isci_host *ihost,
2736 struct isci_request *request,
2737 enum sci_io_status completion_status)
2739 struct sas_task *task = isci_request_access_task(request);
2740 struct ssp_response_iu *resp_iu;
2741 unsigned long task_flags;
2742 struct isci_remote_device *idev = request->target_device;
2743 enum service_response response = SAS_TASK_UNDELIVERED;
2744 enum exec_status status = SAS_ABORTED_TASK;
2746 dev_dbg(&ihost->pdev->dev,
2747 "%s: request = %p, task = %p, "
2748 "task->data_dir = %d completion_status = 0x%x\n",
2749 __func__, request, task, task->data_dir, completion_status);
2751 /* The request is done from an SCU HW perspective. */
2753 /* This is an active request being completed from the core. */
2754 switch (completion_status) {
2756 case SCI_IO_FAILURE_RESPONSE_VALID:
2757 dev_dbg(&ihost->pdev->dev,
2758 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2759 __func__, request, task);
2761 if (sas_protocol_ata(task->task_proto)) {
2762 isci_process_stp_response(task, &request->stp.rsp);
2763 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2765 /* crack the iu response buffer. */
2766 resp_iu = &request->ssp.rsp;
2767 isci_request_process_response_iu(task, resp_iu,
2768 &ihost->pdev->dev);
2770 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2772 dev_err(&ihost->pdev->dev,
2773 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2774 "SAS_PROTOCOL_SMP protocol\n",
2775 __func__);
2777 } else
2778 dev_err(&ihost->pdev->dev,
2779 "%s: unknown protocol\n", __func__);
2781 /* use the task status set in the task struct by the
2782 * isci_request_process_response_iu call.
2784 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2785 response = task->task_status.resp;
2786 status = task->task_status.stat;
2787 break;
2789 case SCI_IO_SUCCESS:
2790 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2792 response = SAS_TASK_COMPLETE;
2793 status = SAM_STAT_GOOD;
2794 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2796 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2798 /* This was an SSP / STP / SATA transfer.
2799 * There is a possibility that less data than
2800 * the maximum was transferred.
2802 u32 transferred_length = sci_req_tx_bytes(request);
2804 task->task_status.residual
2805 = task->total_xfer_len - transferred_length;
2807 /* If there were residual bytes, call this an
2808 * underrun.
2810 if (task->task_status.residual != 0)
2811 status = SAS_DATA_UNDERRUN;
2813 dev_dbg(&ihost->pdev->dev,
2814 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2815 __func__, status);
2817 } else
2818 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2819 __func__);
2820 break;
2822 case SCI_IO_FAILURE_TERMINATED:
2824 dev_dbg(&ihost->pdev->dev,
2825 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2826 __func__, request, task);
2828 /* The request was terminated explicitly. */
2829 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2830 response = SAS_TASK_UNDELIVERED;
2832 /* See if the device has been/is being stopped. Note
2833 * that we ignore the quiesce state, since we are
2834 * concerned about the actual device state.
2836 if (!idev)
2837 status = SAS_DEVICE_UNKNOWN;
2838 else
2839 status = SAS_ABORTED_TASK;
2840 break;
2842 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2844 isci_request_handle_controller_specific_errors(idev, request,
2845 task, &response,
2846 &status);
2847 break;
2849 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2850 /* This is a special case, in that the I/O completion
2851 * is telling us that the device needs a reset.
2852 * In order for the device reset condition to be
2853 * noticed, the I/O has to be handled in the error
2854 * handler. Set the reset flag and cause the
2855 * SCSI error thread to be scheduled.
2857 spin_lock_irqsave(&task->task_state_lock, task_flags);
2858 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2859 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2861 /* Fail the I/O. */
2862 response = SAS_TASK_UNDELIVERED;
2863 status = SAM_STAT_TASK_ABORTED;
2865 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2866 break;
2868 case SCI_FAILURE_RETRY_REQUIRED:
2870 /* Fail the I/O so it can be retried. */
2871 response = SAS_TASK_UNDELIVERED;
2872 if (!idev)
2873 status = SAS_DEVICE_UNKNOWN;
2874 else
2875 status = SAS_ABORTED_TASK;
2877 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2878 break;
2881 default:
2882 /* Catch any otherwise unhandled error codes here. */
2883 dev_dbg(&ihost->pdev->dev,
2884 "%s: invalid completion code: 0x%x - "
2885 "isci_request = %p\n",
2886 __func__, completion_status, request);
2888 response = SAS_TASK_UNDELIVERED;
2890 /* See if the device has been/is being stopped. Note
2891 * that we ignore the quiesce state, since we are
2892 * concerned about the actual device state.
2894 if (!idev)
2895 status = SAS_DEVICE_UNKNOWN;
2896 else
2897 status = SAS_ABORTED_TASK;
2899 if (SAS_PROTOCOL_SMP == task->task_proto)
2900 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2901 else
2902 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2903 break;
2906 switch (task->task_proto) {
2907 case SAS_PROTOCOL_SSP:
2908 if (task->data_dir == DMA_NONE)
2909 break;
2910 if (task->num_scatter == 0)
2911 /* 0 indicates a single dma address */
2912 dma_unmap_single(&ihost->pdev->dev,
2913 request->zero_scatter_daddr,
2914 task->total_xfer_len, task->data_dir);
2915 else /* unmap the sgl dma addresses */
2916 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2917 request->num_sg_entries, task->data_dir);
2918 break;
2919 case SAS_PROTOCOL_SMP: {
2920 struct scatterlist *sg = &task->smp_task.smp_req;
2921 struct smp_req *smp_req;
2922 void *kaddr;
2924 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2926 /* need to swab it back in case the command buffer is re-used */
2927 kaddr = kmap_atomic(sg_page(sg));
2928 smp_req = kaddr + sg->offset;
2929 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2930 kunmap_atomic(kaddr);
2931 break;
2933 default:
2934 break;
2937 spin_lock_irqsave(&task->task_state_lock, task_flags);
2939 task->task_status.resp = response;
2940 task->task_status.stat = status;
2942 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2943 /* Normal notification (task_done) */
2944 task->task_state_flags |= SAS_TASK_STATE_DONE;
2945 task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2946 SAS_TASK_STATE_PENDING);
2948 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2950 /* complete the io request to the core. */
2951 sci_controller_complete_io(ihost, request->target_device, request);
2953 /* set terminated handle so it cannot be completed or
2954 * terminated again, and to cause any calls into abort
2955 * task to recognize the already completed case.
2957 set_bit(IREQ_TERMINATED, &request->flags);
2959 ireq_done(ihost, request, task);
2962 static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2964 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2965 struct domain_device *dev = ireq->target_device->domain_dev;
2966 enum sci_base_request_states state;
2967 struct sas_task *task;
2969 /* XXX as hch said always creating an internal sas_task for tmf
2970 * requests would simplify the driver
2972 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2974 /* all unaccelerated request types (non ssp or ncq) handled with
2975 * substates
2977 if (!task && dev->dev_type == SAS_END_DEVICE) {
2978 state = SCI_REQ_TASK_WAIT_TC_COMP;
2979 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2980 state = SCI_REQ_SMP_WAIT_RESP;
2981 } else if (task && sas_protocol_ata(task->task_proto) &&
2982 !task->ata_task.use_ncq) {
2983 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2984 task->ata_task.fis.command == ATA_CMD_PACKET) {
2985 state = SCI_REQ_ATAPI_WAIT_H2D;
2986 } else if (task->data_dir == DMA_NONE) {
2987 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2988 } else if (task->ata_task.dma_xfer) {
2989 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2990 } else /* PIO */ {
2991 state = SCI_REQ_STP_PIO_WAIT_H2D;
2993 } else {
2994 /* SSP or NCQ are fully accelerated, no substates */
2995 return;
2997 sci_change_state(sm, state);
3000 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
3002 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3003 struct isci_host *ihost = ireq->owning_controller;
3005 /* Tell the SCI_USER that the IO request is complete */
3006 if (!test_bit(IREQ_TMF, &ireq->flags))
3007 isci_request_io_request_complete(ihost, ireq,
3008 ireq->sci_status);
3009 else
3010 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3013 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3015 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3017 /* Setting the abort bit in the Task Context is required by the silicon. */
3018 ireq->tc->abort = 1;
3021 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3023 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3025 ireq->target_device->working_request = ireq;
3028 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3030 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3032 ireq->target_device->working_request = ireq;
3035 static const struct sci_base_state sci_request_state_table[] = {
3036 [SCI_REQ_INIT] = { },
3037 [SCI_REQ_CONSTRUCTED] = { },
3038 [SCI_REQ_STARTED] = {
3039 .enter_state = sci_request_started_state_enter,
3041 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3042 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3044 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3045 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3046 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3048 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3049 [SCI_REQ_STP_PIO_DATA_IN] = { },
3050 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3051 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3052 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3053 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3054 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3055 [SCI_REQ_SMP_WAIT_RESP] = { },
3056 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3057 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3058 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3059 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3060 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3061 [SCI_REQ_COMPLETED] = {
3062 .enter_state = sci_request_completed_state_enter,
3064 [SCI_REQ_ABORTING] = {
3065 .enter_state = sci_request_aborting_state_enter,
3067 [SCI_REQ_FINAL] = { },
3070 static void
3071 sci_general_request_construct(struct isci_host *ihost,
3072 struct isci_remote_device *idev,
3073 struct isci_request *ireq)
3075 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3077 ireq->target_device = idev;
3078 ireq->protocol = SAS_PROTOCOL_NONE;
3079 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3081 ireq->sci_status = SCI_SUCCESS;
3082 ireq->scu_status = 0;
3083 ireq->post_context = 0xFFFFFFFF;
3086 static enum sci_status
3087 sci_io_request_construct(struct isci_host *ihost,
3088 struct isci_remote_device *idev,
3089 struct isci_request *ireq)
3091 struct domain_device *dev = idev->domain_dev;
3092 enum sci_status status = SCI_SUCCESS;
3094 /* Build the common part of the request */
3095 sci_general_request_construct(ihost, idev, ireq);
3097 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3098 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3100 if (dev->dev_type == SAS_END_DEVICE)
3101 /* pass */;
3102 else if (dev_is_sata(dev))
3103 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3104 else if (dev_is_expander(dev))
3105 /* pass */;
3106 else
3107 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3109 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3111 return status;
3114 enum sci_status sci_task_request_construct(struct isci_host *ihost,
3115 struct isci_remote_device *idev,
3116 u16 io_tag, struct isci_request *ireq)
3118 struct domain_device *dev = idev->domain_dev;
3119 enum sci_status status = SCI_SUCCESS;
3121 /* Build the common part of the request */
3122 sci_general_request_construct(ihost, idev, ireq);
3124 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3125 set_bit(IREQ_TMF, &ireq->flags);
3126 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3128 /* Set the protocol indicator. */
3129 if (dev_is_sata(dev))
3130 ireq->protocol = SAS_PROTOCOL_STP;
3131 else
3132 ireq->protocol = SAS_PROTOCOL_SSP;
3133 } else
3134 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3136 return status;
3139 static enum sci_status isci_request_ssp_request_construct(
3140 struct isci_request *request)
3142 enum sci_status status;
3144 dev_dbg(&request->isci_host->pdev->dev,
3145 "%s: request = %p\n",
3146 __func__,
3147 request);
3148 status = sci_io_request_construct_basic_ssp(request);
3149 return status;
3152 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3154 struct sas_task *task = isci_request_access_task(ireq);
3155 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3156 struct ata_queued_cmd *qc = task->uldd_task;
3157 enum sci_status status;
3159 dev_dbg(&ireq->isci_host->pdev->dev,
3160 "%s: ireq = %p\n",
3161 __func__,
3162 ireq);
3164 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3165 if (!task->ata_task.device_control_reg_update)
3166 fis->flags |= 0x80;
3167 fis->flags &= 0xF0;
3169 status = sci_io_request_construct_basic_sata(ireq);
3171 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3172 qc->tf.command == ATA_CMD_FPDMA_READ ||
3173 qc->tf.command == ATA_CMD_FPDMA_RECV ||
3174 qc->tf.command == ATA_CMD_FPDMA_SEND ||
3175 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3176 fis->sector_count = qc->tag << 3;
3177 ireq->tc->type.stp.ncq_tag = qc->tag;
3180 return status;
3183 static enum sci_status
3184 sci_io_request_construct_smp(struct device *dev,
3185 struct isci_request *ireq,
3186 struct sas_task *task)
3188 struct scatterlist *sg = &task->smp_task.smp_req;
3189 struct isci_remote_device *idev;
3190 struct scu_task_context *task_context;
3191 struct isci_port *iport;
3192 struct smp_req *smp_req;
3193 void *kaddr;
3194 u8 req_len;
3195 u32 cmd;
3197 kaddr = kmap_atomic(sg_page(sg));
3198 smp_req = kaddr + sg->offset;
3200 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3201 * functions under SAS 2.0, a zero request length really indicates
3202 * a non-zero default length.
3204 if (smp_req->req_len == 0) {
3205 switch (smp_req->func) {
3206 case SMP_DISCOVER:
3207 case SMP_REPORT_PHY_ERR_LOG:
3208 case SMP_REPORT_PHY_SATA:
3209 case SMP_REPORT_ROUTE_INFO:
3210 smp_req->req_len = 2;
3211 break;
3212 case SMP_CONF_ROUTE_INFO:
3213 case SMP_PHY_CONTROL:
3214 case SMP_PHY_TEST_FUNCTION:
3215 smp_req->req_len = 9;
3216 break;
3217 /* Default - zero is a valid default for 2.0. */
3220 req_len = smp_req->req_len;
3221 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3222 cmd = *(u32 *) smp_req;
3223 kunmap_atomic(kaddr);
3225 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3226 return SCI_FAILURE;
3228 ireq->protocol = SAS_PROTOCOL_SMP;
3230 /* byte swap the smp request. */
3232 task_context = ireq->tc;
3234 idev = ireq->target_device;
3235 iport = idev->owning_port;
3238 * Fill in the TC with the its required data
3239 * 00h
3241 task_context->priority = 0;
3242 task_context->initiator_request = 1;
3243 task_context->connection_rate = idev->connection_rate;
3244 task_context->protocol_engine_index = ISCI_PEG;
3245 task_context->logical_port_index = iport->physical_port_index;
3246 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3247 task_context->abort = 0;
3248 task_context->valid = SCU_TASK_CONTEXT_VALID;
3249 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3251 /* 04h */
3252 task_context->remote_node_index = idev->rnc.remote_node_index;
3253 task_context->command_code = 0;
3254 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3256 /* 08h */
3257 task_context->link_layer_control = 0;
3258 task_context->do_not_dma_ssp_good_response = 1;
3259 task_context->strict_ordering = 0;
3260 task_context->control_frame = 1;
3261 task_context->timeout_enable = 0;
3262 task_context->block_guard_enable = 0;
3264 /* 0ch */
3265 task_context->address_modifier = 0;
3267 /* 10h */
3268 task_context->ssp_command_iu_length = req_len;
3270 /* 14h */
3271 task_context->transfer_length_bytes = 0;
3274 * 18h ~ 30h, protocol specific
3275 * since commandIU has been build by framework at this point, we just
3276 * copy the frist DWord from command IU to this location. */
3277 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3280 * 40h
3281 * "For SMP you could program it to zero. We would prefer that way
3282 * so that done code will be consistent." - Venki
3284 task_context->task_phase = 0;
3286 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3287 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3288 (iport->physical_port_index <<
3289 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3290 ISCI_TAG_TCI(ireq->io_tag));
3292 * Copy the physical address for the command buffer to the SCU Task
3293 * Context command buffer should not contain command header.
3295 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3296 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3298 /* SMP response comes as UF, so no need to set response IU address. */
3299 task_context->response_iu_upper = 0;
3300 task_context->response_iu_lower = 0;
3302 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3304 return SCI_SUCCESS;
3308 * isci_smp_request_build() - This function builds the smp request.
3309 * @ireq: This parameter points to the isci_request allocated in the
3310 * request construct function.
3312 * SCI_SUCCESS on successfull completion, or specific failure code.
3314 static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3316 struct sas_task *task = isci_request_access_task(ireq);
3317 struct device *dev = &ireq->isci_host->pdev->dev;
3318 enum sci_status status = SCI_FAILURE;
3320 status = sci_io_request_construct_smp(dev, ireq, task);
3321 if (status != SCI_SUCCESS)
3322 dev_dbg(&ireq->isci_host->pdev->dev,
3323 "%s: failed with status = %d\n",
3324 __func__,
3325 status);
3327 return status;
3331 * isci_io_request_build() - This function builds the io request object.
3332 * @ihost: This parameter specifies the ISCI host object
3333 * @request: This parameter points to the isci_request object allocated in the
3334 * request construct function.
3335 * @sci_device: This parameter is the handle for the sci core's remote device
3336 * object that is the destination for this request.
3338 * SCI_SUCCESS on successfull completion, or specific failure code.
3340 static enum sci_status isci_io_request_build(struct isci_host *ihost,
3341 struct isci_request *request,
3342 struct isci_remote_device *idev)
3344 enum sci_status status = SCI_SUCCESS;
3345 struct sas_task *task = isci_request_access_task(request);
3347 dev_dbg(&ihost->pdev->dev,
3348 "%s: idev = 0x%p; request = %p, "
3349 "num_scatter = %d\n",
3350 __func__,
3351 idev,
3352 request,
3353 task->num_scatter);
3355 /* map the sgl addresses, if present.
3356 * libata does the mapping for sata devices
3357 * before we get the request.
3359 if (task->num_scatter &&
3360 !sas_protocol_ata(task->task_proto) &&
3361 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3363 request->num_sg_entries = dma_map_sg(
3364 &ihost->pdev->dev,
3365 task->scatter,
3366 task->num_scatter,
3367 task->data_dir
3370 if (request->num_sg_entries == 0)
3371 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3374 status = sci_io_request_construct(ihost, idev, request);
3376 if (status != SCI_SUCCESS) {
3377 dev_dbg(&ihost->pdev->dev,
3378 "%s: failed request construct\n",
3379 __func__);
3380 return SCI_FAILURE;
3383 switch (task->task_proto) {
3384 case SAS_PROTOCOL_SMP:
3385 status = isci_smp_request_build(request);
3386 break;
3387 case SAS_PROTOCOL_SSP:
3388 status = isci_request_ssp_request_construct(request);
3389 break;
3390 case SAS_PROTOCOL_SATA:
3391 case SAS_PROTOCOL_STP:
3392 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3393 status = isci_request_stp_request_construct(request);
3394 break;
3395 default:
3396 dev_dbg(&ihost->pdev->dev,
3397 "%s: unknown protocol\n", __func__);
3398 return SCI_FAILURE;
3401 return SCI_SUCCESS;
3404 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3406 struct isci_request *ireq;
3408 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3409 ireq->io_tag = tag;
3410 ireq->io_request_completion = NULL;
3411 ireq->flags = 0;
3412 ireq->num_sg_entries = 0;
3414 return ireq;
3417 static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3418 struct sas_task *task,
3419 u16 tag)
3421 struct isci_request *ireq;
3423 ireq = isci_request_from_tag(ihost, tag);
3424 ireq->ttype_ptr.io_task_ptr = task;
3425 clear_bit(IREQ_TMF, &ireq->flags);
3426 task->lldd_task = ireq;
3428 return ireq;
3431 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3432 struct isci_tmf *isci_tmf,
3433 u16 tag)
3435 struct isci_request *ireq;
3437 ireq = isci_request_from_tag(ihost, tag);
3438 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3439 set_bit(IREQ_TMF, &ireq->flags);
3441 return ireq;
3444 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3445 struct sas_task *task, u16 tag)
3447 enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3448 struct isci_request *ireq;
3449 unsigned long flags;
3450 int ret = 0;
3452 /* do common allocation and init of request object. */
3453 ireq = isci_io_request_from_tag(ihost, task, tag);
3455 status = isci_io_request_build(ihost, ireq, idev);
3456 if (status != SCI_SUCCESS) {
3457 dev_dbg(&ihost->pdev->dev,
3458 "%s: request_construct failed - status = 0x%x\n",
3459 __func__,
3460 status);
3461 return status;
3464 spin_lock_irqsave(&ihost->scic_lock, flags);
3466 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3468 if (isci_task_is_ncq_recovery(task)) {
3470 /* The device is in an NCQ recovery state. Issue the
3471 * request on the task side. Note that it will
3472 * complete on the I/O request side because the
3473 * request was built that way (ie.
3474 * ireq->is_task_management_request is false).
3476 status = sci_controller_start_task(ihost,
3477 idev,
3478 ireq);
3479 } else {
3480 status = SCI_FAILURE;
3482 } else {
3483 /* send the request, let the core assign the IO TAG. */
3484 status = sci_controller_start_io(ihost, idev,
3485 ireq);
3488 if (status != SCI_SUCCESS &&
3489 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3490 dev_dbg(&ihost->pdev->dev,
3491 "%s: failed request start (0x%x)\n",
3492 __func__, status);
3493 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3494 return status;
3496 /* Either I/O started OK, or the core has signaled that
3497 * the device needs a target reset.
3499 if (status != SCI_SUCCESS) {
3500 /* The request did not really start in the
3501 * hardware, so clear the request handle
3502 * here so no terminations will be done.
3504 set_bit(IREQ_TERMINATED, &ireq->flags);
3506 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3508 if (status ==
3509 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3510 /* Signal libsas that we need the SCSI error
3511 * handler thread to work on this I/O and that
3512 * we want a device reset.
3514 spin_lock_irqsave(&task->task_state_lock, flags);
3515 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3516 spin_unlock_irqrestore(&task->task_state_lock, flags);
3518 /* Cause this task to be scheduled in the SCSI error
3519 * handler thread.
3521 sas_task_abort(task);
3523 /* Change the status, since we are holding
3524 * the I/O until it is managed by the SCSI
3525 * error handler.
3527 status = SCI_SUCCESS;
3530 return ret;