2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
71 #include "xhci-trace.h"
75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 dma_addr_t
xhci_trb_virt_to_dma(struct xhci_segment
*seg
,
81 unsigned long segment_offset
;
83 if (!seg
|| !trb
|| trb
< seg
->trbs
)
86 segment_offset
= trb
- seg
->trbs
;
87 if (segment_offset
>= TRBS_PER_SEGMENT
)
89 return seg
->dma
+ (segment_offset
* sizeof(*trb
));
92 static bool trb_is_noop(union xhci_trb
*trb
)
94 return TRB_TYPE_NOOP_LE32(trb
->generic
.field
[3]);
97 static bool trb_is_link(union xhci_trb
*trb
)
99 return TRB_TYPE_LINK_LE32(trb
->link
.control
);
102 static bool last_trb_on_seg(struct xhci_segment
*seg
, union xhci_trb
*trb
)
104 return trb
== &seg
->trbs
[TRBS_PER_SEGMENT
- 1];
107 static bool last_trb_on_ring(struct xhci_ring
*ring
,
108 struct xhci_segment
*seg
, union xhci_trb
*trb
)
110 return last_trb_on_seg(seg
, trb
) && (seg
->next
== ring
->first_seg
);
113 static bool link_trb_toggles_cycle(union xhci_trb
*trb
)
115 return le32_to_cpu(trb
->link
.control
) & LINK_TOGGLE
;
118 static bool last_td_in_urb(struct xhci_td
*td
)
120 struct urb_priv
*urb_priv
= td
->urb
->hcpriv
;
122 return urb_priv
->num_tds_done
== urb_priv
->num_tds
;
125 static void inc_td_cnt(struct urb
*urb
)
127 struct urb_priv
*urb_priv
= urb
->hcpriv
;
129 urb_priv
->num_tds_done
++;
132 static void trb_to_noop(union xhci_trb
*trb
, u32 noop_type
)
134 if (trb_is_link(trb
)) {
135 /* unchain chained link TRBs */
136 trb
->link
.control
&= cpu_to_le32(~TRB_CHAIN
);
138 trb
->generic
.field
[0] = 0;
139 trb
->generic
.field
[1] = 0;
140 trb
->generic
.field
[2] = 0;
141 /* Preserve only the cycle bit of this TRB */
142 trb
->generic
.field
[3] &= cpu_to_le32(TRB_CYCLE
);
143 trb
->generic
.field
[3] |= cpu_to_le32(TRB_TYPE(noop_type
));
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148 * TRB is in a new segment. This does not skip over link TRBs, and it does not
149 * effect the ring dequeue or enqueue pointers.
151 static void next_trb(struct xhci_hcd
*xhci
,
152 struct xhci_ring
*ring
,
153 struct xhci_segment
**seg
,
154 union xhci_trb
**trb
)
156 if (trb_is_link(*trb
)) {
158 *trb
= ((*seg
)->trbs
);
165 * See Cycle bit rules. SW is the consumer for the event ring only.
166 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
168 static void inc_deq(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
172 /* event ring doesn't have link trbs, check for last trb */
173 if (ring
->type
== TYPE_EVENT
) {
174 if (!last_trb_on_seg(ring
->deq_seg
, ring
->dequeue
)) {
178 if (last_trb_on_ring(ring
, ring
->deq_seg
, ring
->dequeue
))
179 ring
->cycle_state
^= 1;
180 ring
->deq_seg
= ring
->deq_seg
->next
;
181 ring
->dequeue
= ring
->deq_seg
->trbs
;
185 /* All other rings have link trbs */
186 if (!trb_is_link(ring
->dequeue
)) {
188 ring
->num_trbs_free
++;
190 while (trb_is_link(ring
->dequeue
)) {
191 ring
->deq_seg
= ring
->deq_seg
->next
;
192 ring
->dequeue
= ring
->deq_seg
->trbs
;
198 * See Cycle bit rules. SW is the consumer for the event ring only.
199 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
202 * chain bit is set), then set the chain bit in all the following link TRBs.
203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
204 * have their chain bit cleared (so that each Link TRB is a separate TD).
206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
207 * set, but other sections talk about dealing with the chain bit set. This was
208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
209 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
211 * @more_trbs_coming: Will you enqueue more TRBs before calling
212 * prepare_transfer()?
214 static void inc_enq(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
215 bool more_trbs_coming
)
218 union xhci_trb
*next
;
220 chain
= le32_to_cpu(ring
->enqueue
->generic
.field
[3]) & TRB_CHAIN
;
221 /* If this is not event ring, there is one less usable TRB */
222 if (!trb_is_link(ring
->enqueue
))
223 ring
->num_trbs_free
--;
224 next
= ++(ring
->enqueue
);
227 /* Update the dequeue pointer further if that was a link TRB */
228 while (trb_is_link(next
)) {
231 * If the caller doesn't plan on enqueueing more TDs before
232 * ringing the doorbell, then we don't want to give the link TRB
233 * to the hardware just yet. We'll give the link TRB back in
234 * prepare_ring() just before we enqueue the TD at the top of
237 if (!chain
&& !more_trbs_coming
)
240 /* If we're not dealing with 0.95 hardware or isoc rings on
241 * AMD 0.96 host, carry over the chain bit of the previous TRB
242 * (which may mean the chain bit is cleared).
244 if (!(ring
->type
== TYPE_ISOC
&&
245 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)) &&
246 !xhci_link_trb_quirk(xhci
)) {
247 next
->link
.control
&= cpu_to_le32(~TRB_CHAIN
);
248 next
->link
.control
|= cpu_to_le32(chain
);
250 /* Give this link TRB to the hardware */
252 next
->link
.control
^= cpu_to_le32(TRB_CYCLE
);
254 /* Toggle the cycle bit after the last ring segment. */
255 if (link_trb_toggles_cycle(next
))
256 ring
->cycle_state
^= 1;
258 ring
->enq_seg
= ring
->enq_seg
->next
;
259 ring
->enqueue
= ring
->enq_seg
->trbs
;
260 next
= ring
->enqueue
;
265 * Check to see if there's room to enqueue num_trbs on the ring and make sure
266 * enqueue pointer will not advance into dequeue segment. See rules above.
268 static inline int room_on_ring(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
269 unsigned int num_trbs
)
271 int num_trbs_in_deq_seg
;
273 if (ring
->num_trbs_free
< num_trbs
)
276 if (ring
->type
!= TYPE_COMMAND
&& ring
->type
!= TYPE_EVENT
) {
277 num_trbs_in_deq_seg
= ring
->dequeue
- ring
->deq_seg
->trbs
;
278 if (ring
->num_trbs_free
< num_trbs
+ num_trbs_in_deq_seg
)
285 /* Ring the host controller doorbell after placing a command on the ring */
286 void xhci_ring_cmd_db(struct xhci_hcd
*xhci
)
288 if (!(xhci
->cmd_ring_state
& CMD_RING_STATE_RUNNING
))
291 xhci_dbg(xhci
, "// Ding dong!\n");
292 writel(DB_VALUE_HOST
, &xhci
->dba
->doorbell
[0]);
293 /* Flush PCI posted writes */
294 readl(&xhci
->dba
->doorbell
[0]);
297 static bool xhci_mod_cmd_timer(struct xhci_hcd
*xhci
, unsigned long delay
)
299 return mod_delayed_work(system_wq
, &xhci
->cmd_timer
, delay
);
302 static struct xhci_command
*xhci_next_queued_cmd(struct xhci_hcd
*xhci
)
304 return list_first_entry_or_null(&xhci
->cmd_list
, struct xhci_command
,
309 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
310 * If there are other commands waiting then restart the ring and kick the timer.
311 * This must be called with command ring stopped and xhci->lock held.
313 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd
*xhci
,
314 struct xhci_command
*cur_cmd
)
316 struct xhci_command
*i_cmd
;
318 /* Turn all aborted commands in list to no-ops, then restart */
319 list_for_each_entry(i_cmd
, &xhci
->cmd_list
, cmd_list
) {
321 if (i_cmd
->status
!= COMP_COMMAND_ABORTED
)
324 i_cmd
->status
= COMP_COMMAND_RING_STOPPED
;
326 xhci_dbg(xhci
, "Turn aborted command %p to no-op\n",
329 trb_to_noop(i_cmd
->command_trb
, TRB_CMD_NOOP
);
332 * caller waiting for completion is called when command
333 * completion event is received for these no-op commands
337 xhci
->cmd_ring_state
= CMD_RING_STATE_RUNNING
;
339 /* ring command ring doorbell to restart the command ring */
340 if ((xhci
->cmd_ring
->dequeue
!= xhci
->cmd_ring
->enqueue
) &&
341 !(xhci
->xhc_state
& XHCI_STATE_DYING
)) {
342 xhci
->current_cmd
= cur_cmd
;
343 xhci_mod_cmd_timer(xhci
, XHCI_CMD_DEFAULT_TIMEOUT
);
344 xhci_ring_cmd_db(xhci
);
348 /* Must be called with xhci->lock held, releases and aquires lock back */
349 static int xhci_abort_cmd_ring(struct xhci_hcd
*xhci
, unsigned long flags
)
354 xhci_dbg(xhci
, "Abort command ring\n");
356 reinit_completion(&xhci
->cmd_ring_stop_completion
);
358 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
359 xhci_write_64(xhci
, temp_64
| CMD_RING_ABORT
,
360 &xhci
->op_regs
->cmd_ring
);
362 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
363 * time the completion od all xHCI commands, including
364 * the Command Abort operation. If software doesn't see
365 * CRR negated in a timely manner (e.g. longer than 5
366 * seconds), then it should assume that the there are
367 * larger problems with the xHC and assert HCRST.
369 ret
= xhci_handshake(&xhci
->op_regs
->cmd_ring
,
370 CMD_RING_RUNNING
, 0, 5 * 1000 * 1000);
373 "Stop command ring failed, maybe the host is dead\n");
374 xhci
->xhc_state
|= XHCI_STATE_DYING
;
379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
381 * but the completion event in never sent. Wait 2 secs (arbitrary
382 * number) to handle those cases after negation of CMD_RING_RUNNING.
384 spin_unlock_irqrestore(&xhci
->lock
, flags
);
385 ret
= wait_for_completion_timeout(&xhci
->cmd_ring_stop_completion
,
386 msecs_to_jiffies(2000));
387 spin_lock_irqsave(&xhci
->lock
, flags
);
389 xhci_dbg(xhci
, "No stop event for abort, ring start fail?\n");
390 xhci_cleanup_command_queue(xhci
);
392 xhci_handle_stopped_cmd_ring(xhci
, xhci_next_queued_cmd(xhci
));
397 void xhci_ring_ep_doorbell(struct xhci_hcd
*xhci
,
398 unsigned int slot_id
,
399 unsigned int ep_index
,
400 unsigned int stream_id
)
402 __le32 __iomem
*db_addr
= &xhci
->dba
->doorbell
[slot_id
];
403 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
404 unsigned int ep_state
= ep
->ep_state
;
406 /* Don't ring the doorbell for this endpoint if there are pending
407 * cancellations because we don't want to interrupt processing.
408 * We don't want to restart any stream rings if there's a set dequeue
409 * pointer command pending because the device can choose to start any
410 * stream once the endpoint is on the HW schedule.
412 if ((ep_state
& EP_STOP_CMD_PENDING
) || (ep_state
& SET_DEQ_PENDING
) ||
413 (ep_state
& EP_HALTED
))
415 writel(DB_VALUE(ep_index
, stream_id
), db_addr
);
416 /* The CPU has better things to do at this point than wait for a
417 * write-posting flush. It'll get there soon enough.
421 /* Ring the doorbell for any rings with pending URBs */
422 static void ring_doorbell_for_active_rings(struct xhci_hcd
*xhci
,
423 unsigned int slot_id
,
424 unsigned int ep_index
)
426 unsigned int stream_id
;
427 struct xhci_virt_ep
*ep
;
429 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
431 /* A ring has pending URBs if its TD list is not empty */
432 if (!(ep
->ep_state
& EP_HAS_STREAMS
)) {
433 if (ep
->ring
&& !(list_empty(&ep
->ring
->td_list
)))
434 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
, 0);
438 for (stream_id
= 1; stream_id
< ep
->stream_info
->num_streams
;
440 struct xhci_stream_info
*stream_info
= ep
->stream_info
;
441 if (!list_empty(&stream_info
->stream_rings
[stream_id
]->td_list
))
442 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
,
447 /* Get the right ring for the given slot_id, ep_index and stream_id.
448 * If the endpoint supports streams, boundary check the URB's stream ID.
449 * If the endpoint doesn't support streams, return the singular endpoint ring.
451 struct xhci_ring
*xhci_triad_to_transfer_ring(struct xhci_hcd
*xhci
,
452 unsigned int slot_id
, unsigned int ep_index
,
453 unsigned int stream_id
)
455 struct xhci_virt_ep
*ep
;
457 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
458 /* Common case: no streams */
459 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
462 if (stream_id
== 0) {
464 "WARN: Slot ID %u, ep index %u has streams, "
465 "but URB has no stream ID.\n",
470 if (stream_id
< ep
->stream_info
->num_streams
)
471 return ep
->stream_info
->stream_rings
[stream_id
];
474 "WARN: Slot ID %u, ep index %u has "
475 "stream IDs 1 to %u allocated, "
476 "but stream ID %u is requested.\n",
478 ep
->stream_info
->num_streams
- 1,
484 * Move the xHC's endpoint ring dequeue pointer past cur_td.
485 * Record the new state of the xHC's endpoint ring dequeue segment,
486 * dequeue pointer, and new consumer cycle state in state.
487 * Update our internal representation of the ring's dequeue pointer.
489 * We do this in three jumps:
490 * - First we update our new ring state to be the same as when the xHC stopped.
491 * - Then we traverse the ring to find the segment that contains
492 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
493 * any link TRBs with the toggle cycle bit set.
494 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
495 * if we've moved it past a link TRB with the toggle cycle bit set.
497 * Some of the uses of xhci_generic_trb are grotty, but if they're done
498 * with correct __le32 accesses they should work fine. Only users of this are
501 void xhci_find_new_dequeue_state(struct xhci_hcd
*xhci
,
502 unsigned int slot_id
, unsigned int ep_index
,
503 unsigned int stream_id
, struct xhci_td
*cur_td
,
504 struct xhci_dequeue_state
*state
)
506 struct xhci_virt_device
*dev
= xhci
->devs
[slot_id
];
507 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
508 struct xhci_ring
*ep_ring
;
509 struct xhci_segment
*new_seg
;
510 union xhci_trb
*new_deq
;
513 bool cycle_found
= false;
514 bool td_last_trb_found
= false;
516 ep_ring
= xhci_triad_to_transfer_ring(xhci
, slot_id
,
517 ep_index
, stream_id
);
519 xhci_warn(xhci
, "WARN can't find new dequeue state "
520 "for invalid stream ID %u.\n",
525 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
526 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
527 "Finding endpoint context");
528 /* 4.6.9 the css flag is written to the stream context for streams */
529 if (ep
->ep_state
& EP_HAS_STREAMS
) {
530 struct xhci_stream_ctx
*ctx
=
531 &ep
->stream_info
->stream_ctx_array
[stream_id
];
532 hw_dequeue
= le64_to_cpu(ctx
->stream_ring
);
534 struct xhci_ep_ctx
*ep_ctx
535 = xhci_get_ep_ctx(xhci
, dev
->out_ctx
, ep_index
);
536 hw_dequeue
= le64_to_cpu(ep_ctx
->deq
);
539 new_seg
= ep_ring
->deq_seg
;
540 new_deq
= ep_ring
->dequeue
;
541 state
->new_cycle_state
= hw_dequeue
& 0x1;
544 * We want to find the pointer, segment and cycle state of the new trb
545 * (the one after current TD's last_trb). We know the cycle state at
546 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
550 if (!cycle_found
&& xhci_trb_virt_to_dma(new_seg
, new_deq
)
551 == (dma_addr_t
)(hw_dequeue
& ~0xf)) {
553 if (td_last_trb_found
)
556 if (new_deq
== cur_td
->last_trb
)
557 td_last_trb_found
= true;
559 if (cycle_found
&& trb_is_link(new_deq
) &&
560 link_trb_toggles_cycle(new_deq
))
561 state
->new_cycle_state
^= 0x1;
563 next_trb(xhci
, ep_ring
, &new_seg
, &new_deq
);
565 /* Search wrapped around, bail out */
566 if (new_deq
== ep
->ring
->dequeue
) {
567 xhci_err(xhci
, "Error: Failed finding new dequeue state\n");
568 state
->new_deq_seg
= NULL
;
569 state
->new_deq_ptr
= NULL
;
573 } while (!cycle_found
|| !td_last_trb_found
);
575 state
->new_deq_seg
= new_seg
;
576 state
->new_deq_ptr
= new_deq
;
578 /* Don't update the ring cycle state for the producer (us). */
579 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
580 "Cycle state = 0x%x", state
->new_cycle_state
);
582 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
583 "New dequeue segment = %p (virtual)",
585 addr
= xhci_trb_virt_to_dma(state
->new_deq_seg
, state
->new_deq_ptr
);
586 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
587 "New dequeue pointer = 0x%llx (DMA)",
588 (unsigned long long) addr
);
591 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
592 * (The last TRB actually points to the ring enqueue pointer, which is not part
593 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
595 static void td_to_noop(struct xhci_hcd
*xhci
, struct xhci_ring
*ep_ring
,
596 struct xhci_td
*td
, bool flip_cycle
)
598 struct xhci_segment
*seg
= td
->start_seg
;
599 union xhci_trb
*trb
= td
->first_trb
;
602 trb_to_noop(trb
, TRB_TR_NOOP
);
604 /* flip cycle if asked to */
605 if (flip_cycle
&& trb
!= td
->first_trb
&& trb
!= td
->last_trb
)
606 trb
->generic
.field
[3] ^= cpu_to_le32(TRB_CYCLE
);
608 if (trb
== td
->last_trb
)
611 next_trb(xhci
, ep_ring
, &seg
, &trb
);
615 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd
*xhci
,
616 struct xhci_virt_ep
*ep
)
618 ep
->ep_state
&= ~EP_STOP_CMD_PENDING
;
619 /* Can't del_timer_sync in interrupt */
620 del_timer(&ep
->stop_cmd_timer
);
624 * Must be called with xhci->lock held in interrupt context,
625 * releases and re-acquires xhci->lock
627 static void xhci_giveback_urb_in_irq(struct xhci_hcd
*xhci
,
628 struct xhci_td
*cur_td
, int status
)
630 struct urb
*urb
= cur_td
->urb
;
631 struct urb_priv
*urb_priv
= urb
->hcpriv
;
632 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
634 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
635 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
--;
636 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
== 0) {
637 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
638 usb_amd_quirk_pll_enable();
641 xhci_urb_free_priv(urb_priv
);
642 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
643 spin_unlock(&xhci
->lock
);
644 usb_hcd_giveback_urb(hcd
, urb
, status
);
645 trace_xhci_urb_giveback(urb
);
646 spin_lock(&xhci
->lock
);
649 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd
*xhci
,
650 struct xhci_ring
*ring
, struct xhci_td
*td
)
652 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
653 struct xhci_segment
*seg
= td
->bounce_seg
;
654 struct urb
*urb
= td
->urb
;
656 if (!ring
|| !seg
|| !urb
)
659 if (usb_urb_dir_out(urb
)) {
660 dma_unmap_single(dev
, seg
->bounce_dma
, ring
->bounce_buf_len
,
665 /* for in tranfers we need to copy the data from bounce to sg */
666 sg_pcopy_from_buffer(urb
->sg
, urb
->num_mapped_sgs
, seg
->bounce_buf
,
667 seg
->bounce_len
, seg
->bounce_offs
);
668 dma_unmap_single(dev
, seg
->bounce_dma
, ring
->bounce_buf_len
,
671 seg
->bounce_offs
= 0;
675 * When we get a command completion for a Stop Endpoint Command, we need to
676 * unlink any cancelled TDs from the ring. There are two ways to do that:
678 * 1. If the HW was in the middle of processing the TD that needs to be
679 * cancelled, then we must move the ring's dequeue pointer past the last TRB
680 * in the TD with a Set Dequeue Pointer Command.
681 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
682 * bit cleared) so that the HW will skip over them.
684 static void xhci_handle_cmd_stop_ep(struct xhci_hcd
*xhci
, int slot_id
,
685 union xhci_trb
*trb
, struct xhci_event_cmd
*event
)
687 unsigned int ep_index
;
688 struct xhci_ring
*ep_ring
;
689 struct xhci_virt_ep
*ep
;
690 struct xhci_td
*cur_td
= NULL
;
691 struct xhci_td
*last_unlinked_td
;
693 struct xhci_dequeue_state deq_state
;
695 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb
->generic
.field
[3])))) {
696 if (!xhci
->devs
[slot_id
])
697 xhci_warn(xhci
, "Stop endpoint command "
698 "completion for disabled slot %u\n",
703 memset(&deq_state
, 0, sizeof(deq_state
));
704 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
705 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
706 last_unlinked_td
= list_last_entry(&ep
->cancelled_td_list
,
707 struct xhci_td
, cancelled_td_list
);
709 if (list_empty(&ep
->cancelled_td_list
)) {
710 xhci_stop_watchdog_timer_in_irq(xhci
, ep
);
711 ep
->stopped_td
= NULL
;
712 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
716 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
717 * We have the xHCI lock, so nothing can modify this list until we drop
718 * it. We're also in the event handler, so we can't get re-interrupted
719 * if another Stop Endpoint command completes
721 list_for_each_entry(cur_td
, &ep
->cancelled_td_list
, cancelled_td_list
) {
722 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
723 "Removing canceled TD starting at 0x%llx (dma).",
724 (unsigned long long)xhci_trb_virt_to_dma(
725 cur_td
->start_seg
, cur_td
->first_trb
));
726 ep_ring
= xhci_urb_to_transfer_ring(xhci
, cur_td
->urb
);
728 /* This shouldn't happen unless a driver is mucking
729 * with the stream ID after submission. This will
730 * leave the TD on the hardware ring, and the hardware
731 * will try to execute it, and may access a buffer
732 * that has already been freed. In the best case, the
733 * hardware will execute it, and the event handler will
734 * ignore the completion event for that TD, since it was
735 * removed from the td_list for that endpoint. In
736 * short, don't muck with the stream ID after
739 xhci_warn(xhci
, "WARN Cancelled URB %p "
740 "has invalid stream ID %u.\n",
742 cur_td
->urb
->stream_id
);
743 goto remove_finished_td
;
746 * If we stopped on the TD we need to cancel, then we have to
747 * move the xHC endpoint ring dequeue pointer past this TD.
749 if (cur_td
== ep
->stopped_td
)
750 xhci_find_new_dequeue_state(xhci
, slot_id
, ep_index
,
751 cur_td
->urb
->stream_id
,
754 td_to_noop(xhci
, ep_ring
, cur_td
, false);
757 * The event handler won't see a completion for this TD anymore,
758 * so remove it from the endpoint ring's TD list. Keep it in
759 * the cancelled TD list for URB completion later.
761 list_del_init(&cur_td
->td_list
);
764 xhci_stop_watchdog_timer_in_irq(xhci
, ep
);
766 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
767 if (deq_state
.new_deq_ptr
&& deq_state
.new_deq_seg
) {
768 xhci_queue_new_dequeue_state(xhci
, slot_id
, ep_index
,
769 ep
->stopped_td
->urb
->stream_id
, &deq_state
);
770 xhci_ring_cmd_db(xhci
);
772 /* Otherwise ring the doorbell(s) to restart queued transfers */
773 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
776 ep
->stopped_td
= NULL
;
779 * Drop the lock and complete the URBs in the cancelled TD list.
780 * New TDs to be cancelled might be added to the end of the list before
781 * we can complete all the URBs for the TDs we already unlinked.
782 * So stop when we've completed the URB for the last TD we unlinked.
785 cur_td
= list_first_entry(&ep
->cancelled_td_list
,
786 struct xhci_td
, cancelled_td_list
);
787 list_del_init(&cur_td
->cancelled_td_list
);
789 /* Clean up the cancelled URB */
790 /* Doesn't matter what we pass for status, since the core will
791 * just overwrite it (because the URB has been unlinked).
793 ep_ring
= xhci_urb_to_transfer_ring(xhci
, cur_td
->urb
);
794 xhci_unmap_td_bounce_buffer(xhci
, ep_ring
, cur_td
);
795 inc_td_cnt(cur_td
->urb
);
796 if (last_td_in_urb(cur_td
))
797 xhci_giveback_urb_in_irq(xhci
, cur_td
, 0);
799 /* Stop processing the cancelled list if the watchdog timer is
802 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
804 } while (cur_td
!= last_unlinked_td
);
806 /* Return to the event handler with xhci->lock re-acquired */
809 static void xhci_kill_ring_urbs(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
811 struct xhci_td
*cur_td
;
814 list_for_each_entry_safe(cur_td
, tmp
, &ring
->td_list
, td_list
) {
815 list_del_init(&cur_td
->td_list
);
817 if (!list_empty(&cur_td
->cancelled_td_list
))
818 list_del_init(&cur_td
->cancelled_td_list
);
820 xhci_unmap_td_bounce_buffer(xhci
, ring
, cur_td
);
822 inc_td_cnt(cur_td
->urb
);
823 if (last_td_in_urb(cur_td
))
824 xhci_giveback_urb_in_irq(xhci
, cur_td
, -ESHUTDOWN
);
828 static void xhci_kill_endpoint_urbs(struct xhci_hcd
*xhci
,
829 int slot_id
, int ep_index
)
831 struct xhci_td
*cur_td
;
833 struct xhci_virt_ep
*ep
;
834 struct xhci_ring
*ring
;
836 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
837 if ((ep
->ep_state
& EP_HAS_STREAMS
) ||
838 (ep
->ep_state
& EP_GETTING_NO_STREAMS
)) {
841 for (stream_id
= 0; stream_id
< ep
->stream_info
->num_streams
;
843 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
844 "Killing URBs for slot ID %u, ep index %u, stream %u",
845 slot_id
, ep_index
, stream_id
+ 1);
846 xhci_kill_ring_urbs(xhci
,
847 ep
->stream_info
->stream_rings
[stream_id
]);
853 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
854 "Killing URBs for slot ID %u, ep index %u",
856 xhci_kill_ring_urbs(xhci
, ring
);
859 list_for_each_entry_safe(cur_td
, tmp
, &ep
->cancelled_td_list
,
861 list_del_init(&cur_td
->cancelled_td_list
);
862 inc_td_cnt(cur_td
->urb
);
864 if (last_td_in_urb(cur_td
))
865 xhci_giveback_urb_in_irq(xhci
, cur_td
, -ESHUTDOWN
);
869 /* Watchdog timer function for when a stop endpoint command fails to complete.
870 * In this case, we assume the host controller is broken or dying or dead. The
871 * host may still be completing some other events, so we have to be careful to
872 * let the event ring handler and the URB dequeueing/enqueueing functions know
873 * through xhci->state.
875 * The timer may also fire if the host takes a very long time to respond to the
876 * command, and the stop endpoint command completion handler cannot delete the
877 * timer before the timer function is called. Another endpoint cancellation may
878 * sneak in before the timer function can grab the lock, and that may queue
879 * another stop endpoint command and add the timer back. So we cannot use a
880 * simple flag to say whether there is a pending stop endpoint command for a
881 * particular endpoint.
883 * Instead we use a combination of that flag and checking if a new timer is
886 void xhci_stop_endpoint_command_watchdog(unsigned long arg
)
888 struct xhci_hcd
*xhci
;
889 struct xhci_virt_ep
*ep
;
893 ep
= (struct xhci_virt_ep
*) arg
;
896 spin_lock_irqsave(&xhci
->lock
, flags
);
898 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
899 if (!(ep
->ep_state
& EP_STOP_CMD_PENDING
) ||
900 timer_pending(&ep
->stop_cmd_timer
)) {
901 spin_unlock_irqrestore(&xhci
->lock
, flags
);
902 xhci_dbg(xhci
, "Stop EP timer raced with cmd completion, exit");
906 xhci_warn(xhci
, "xHCI host not responding to stop endpoint command.\n");
907 xhci_warn(xhci
, "Assuming host is dying, halting host.\n");
908 /* Oops, HC is dead or dying or at least not responding to the stop
912 xhci
->xhc_state
|= XHCI_STATE_DYING
;
913 ep
->ep_state
&= ~EP_STOP_CMD_PENDING
;
915 /* Disable interrupts from the host controller and start halting it */
917 spin_unlock_irqrestore(&xhci
->lock
, flags
);
919 ret
= xhci_halt(xhci
);
921 spin_lock_irqsave(&xhci
->lock
, flags
);
923 /* This is bad; the host is not responding to commands and it's
924 * not allowing itself to be halted. At least interrupts are
925 * disabled. If we call usb_hc_died(), it will attempt to
926 * disconnect all device drivers under this host. Those
927 * disconnect() methods will wait for all URBs to be unlinked,
928 * so we must complete them.
930 xhci_warn(xhci
, "Non-responsive xHCI host is not halting.\n");
931 xhci_warn(xhci
, "Completing active URBs anyway.\n");
932 /* We could turn all TDs on the rings to no-ops. This won't
933 * help if the host has cached part of the ring, and is slow if
934 * we want to preserve the cycle bit. Skip it and hope the host
935 * doesn't touch the memory.
938 for (i
= 0; i
< MAX_HC_SLOTS
; i
++) {
941 for (j
= 0; j
< 31; j
++)
942 xhci_kill_endpoint_urbs(xhci
, i
, j
);
944 spin_unlock_irqrestore(&xhci
->lock
, flags
);
945 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
946 "Calling usb_hc_died()");
947 usb_hc_died(xhci_to_hcd(xhci
));
948 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
949 "xHCI host controller is dead.");
953 static void update_ring_for_set_deq_completion(struct xhci_hcd
*xhci
,
954 struct xhci_virt_device
*dev
,
955 struct xhci_ring
*ep_ring
,
956 unsigned int ep_index
)
958 union xhci_trb
*dequeue_temp
;
959 int num_trbs_free_temp
;
962 num_trbs_free_temp
= ep_ring
->num_trbs_free
;
963 dequeue_temp
= ep_ring
->dequeue
;
965 /* If we get two back-to-back stalls, and the first stalled transfer
966 * ends just before a link TRB, the dequeue pointer will be left on
967 * the link TRB by the code in the while loop. So we have to update
968 * the dequeue pointer one segment further, or we'll jump off
969 * the segment into la-la-land.
971 if (trb_is_link(ep_ring
->dequeue
)) {
972 ep_ring
->deq_seg
= ep_ring
->deq_seg
->next
;
973 ep_ring
->dequeue
= ep_ring
->deq_seg
->trbs
;
976 while (ep_ring
->dequeue
!= dev
->eps
[ep_index
].queued_deq_ptr
) {
977 /* We have more usable TRBs */
978 ep_ring
->num_trbs_free
++;
980 if (trb_is_link(ep_ring
->dequeue
)) {
981 if (ep_ring
->dequeue
==
982 dev
->eps
[ep_index
].queued_deq_ptr
)
984 ep_ring
->deq_seg
= ep_ring
->deq_seg
->next
;
985 ep_ring
->dequeue
= ep_ring
->deq_seg
->trbs
;
987 if (ep_ring
->dequeue
== dequeue_temp
) {
994 xhci_dbg(xhci
, "Unable to find new dequeue pointer\n");
995 ep_ring
->num_trbs_free
= num_trbs_free_temp
;
1000 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1001 * we need to clear the set deq pending flag in the endpoint ring state, so that
1002 * the TD queueing code can ring the doorbell again. We also need to ring the
1003 * endpoint doorbell to restart the ring, but only if there aren't more
1004 * cancellations pending.
1006 static void xhci_handle_cmd_set_deq(struct xhci_hcd
*xhci
, int slot_id
,
1007 union xhci_trb
*trb
, u32 cmd_comp_code
)
1009 unsigned int ep_index
;
1010 unsigned int stream_id
;
1011 struct xhci_ring
*ep_ring
;
1012 struct xhci_virt_device
*dev
;
1013 struct xhci_virt_ep
*ep
;
1014 struct xhci_ep_ctx
*ep_ctx
;
1015 struct xhci_slot_ctx
*slot_ctx
;
1017 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
1018 stream_id
= TRB_TO_STREAM_ID(le32_to_cpu(trb
->generic
.field
[2]));
1019 dev
= xhci
->devs
[slot_id
];
1020 ep
= &dev
->eps
[ep_index
];
1022 ep_ring
= xhci_stream_id_to_ring(dev
, ep_index
, stream_id
);
1024 xhci_warn(xhci
, "WARN Set TR deq ptr command for freed stream ID %u\n",
1026 /* XXX: Harmless??? */
1030 ep_ctx
= xhci_get_ep_ctx(xhci
, dev
->out_ctx
, ep_index
);
1031 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->out_ctx
);
1033 if (cmd_comp_code
!= COMP_SUCCESS
) {
1034 unsigned int ep_state
;
1035 unsigned int slot_state
;
1037 switch (cmd_comp_code
) {
1038 case COMP_TRB_ERROR
:
1039 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1041 case COMP_CONTEXT_STATE_ERROR
:
1042 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1043 ep_state
= GET_EP_CTX_STATE(ep_ctx
);
1044 slot_state
= le32_to_cpu(slot_ctx
->dev_state
);
1045 slot_state
= GET_SLOT_STATE(slot_state
);
1046 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1047 "Slot state = %u, EP state = %u",
1048 slot_state
, ep_state
);
1050 case COMP_SLOT_NOT_ENABLED_ERROR
:
1051 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1055 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1059 /* OK what do we do now? The endpoint state is hosed, and we
1060 * should never get to this point if the synchronization between
1061 * queueing, and endpoint state are correct. This might happen
1062 * if the device gets disconnected after we've finished
1063 * cancelling URBs, which might not be an error...
1067 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1068 if (ep
->ep_state
& EP_HAS_STREAMS
) {
1069 struct xhci_stream_ctx
*ctx
=
1070 &ep
->stream_info
->stream_ctx_array
[stream_id
];
1071 deq
= le64_to_cpu(ctx
->stream_ring
) & SCTX_DEQ_MASK
;
1073 deq
= le64_to_cpu(ep_ctx
->deq
) & ~EP_CTX_CYCLE_MASK
;
1075 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1076 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq
);
1077 if (xhci_trb_virt_to_dma(ep
->queued_deq_seg
,
1078 ep
->queued_deq_ptr
) == deq
) {
1079 /* Update the ring's dequeue segment and dequeue pointer
1080 * to reflect the new position.
1082 update_ring_for_set_deq_completion(xhci
, dev
,
1085 xhci_warn(xhci
, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1086 xhci_warn(xhci
, "ep deq seg = %p, deq ptr = %p\n",
1087 ep
->queued_deq_seg
, ep
->queued_deq_ptr
);
1092 dev
->eps
[ep_index
].ep_state
&= ~SET_DEQ_PENDING
;
1093 dev
->eps
[ep_index
].queued_deq_seg
= NULL
;
1094 dev
->eps
[ep_index
].queued_deq_ptr
= NULL
;
1095 /* Restart any rings with pending URBs */
1096 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
1099 static void xhci_handle_cmd_reset_ep(struct xhci_hcd
*xhci
, int slot_id
,
1100 union xhci_trb
*trb
, u32 cmd_comp_code
)
1102 unsigned int ep_index
;
1104 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
1105 /* This command will only fail if the endpoint wasn't halted,
1106 * but we don't care.
1108 xhci_dbg_trace(xhci
, trace_xhci_dbg_reset_ep
,
1109 "Ignoring reset ep completion code of %u", cmd_comp_code
);
1111 /* HW with the reset endpoint quirk needs to have a configure endpoint
1112 * command complete before the endpoint can be used. Queue that here
1113 * because the HW can't handle two commands being queued in a row.
1115 if (xhci
->quirks
& XHCI_RESET_EP_QUIRK
) {
1116 struct xhci_command
*command
;
1117 command
= xhci_alloc_command(xhci
, false, false, GFP_ATOMIC
);
1119 xhci_warn(xhci
, "WARN Cannot submit cfg ep: ENOMEM\n");
1122 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1123 "Queueing configure endpoint command");
1124 xhci_queue_configure_endpoint(xhci
, command
,
1125 xhci
->devs
[slot_id
]->in_ctx
->dma
, slot_id
,
1127 xhci_ring_cmd_db(xhci
);
1129 /* Clear our internal halted state */
1130 xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&= ~EP_HALTED
;
1134 static void xhci_handle_cmd_enable_slot(struct xhci_hcd
*xhci
, int slot_id
,
1135 struct xhci_command
*command
, u32 cmd_comp_code
)
1137 if (cmd_comp_code
== COMP_SUCCESS
)
1138 command
->slot_id
= slot_id
;
1140 command
->slot_id
= 0;
1143 static void xhci_handle_cmd_disable_slot(struct xhci_hcd
*xhci
, int slot_id
)
1145 struct xhci_virt_device
*virt_dev
;
1147 virt_dev
= xhci
->devs
[slot_id
];
1150 if (xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)
1151 /* Delete default control endpoint resources */
1152 xhci_free_device_endpoint_resources(xhci
, virt_dev
, true);
1153 xhci_free_virt_device(xhci
, slot_id
);
1156 static void xhci_handle_cmd_config_ep(struct xhci_hcd
*xhci
, int slot_id
,
1157 struct xhci_event_cmd
*event
, u32 cmd_comp_code
)
1159 struct xhci_virt_device
*virt_dev
;
1160 struct xhci_input_control_ctx
*ctrl_ctx
;
1161 unsigned int ep_index
;
1162 unsigned int ep_state
;
1163 u32 add_flags
, drop_flags
;
1166 * Configure endpoint commands can come from the USB core
1167 * configuration or alt setting changes, or because the HW
1168 * needed an extra configure endpoint command after a reset
1169 * endpoint command or streams were being configured.
1170 * If the command was for a halted endpoint, the xHCI driver
1171 * is not waiting on the configure endpoint command.
1173 virt_dev
= xhci
->devs
[slot_id
];
1174 ctrl_ctx
= xhci_get_input_control_ctx(virt_dev
->in_ctx
);
1176 xhci_warn(xhci
, "Could not get input context, bad type.\n");
1180 add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1181 drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1182 /* Input ctx add_flags are the endpoint index plus one */
1183 ep_index
= xhci_last_valid_endpoint(add_flags
) - 1;
1185 /* A usb_set_interface() call directly after clearing a halted
1186 * condition may race on this quirky hardware. Not worth
1187 * worrying about, since this is prototype hardware. Not sure
1188 * if this will work for streams, but streams support was
1189 * untested on this prototype.
1191 if (xhci
->quirks
& XHCI_RESET_EP_QUIRK
&&
1192 ep_index
!= (unsigned int) -1 &&
1193 add_flags
- SLOT_FLAG
== drop_flags
) {
1194 ep_state
= virt_dev
->eps
[ep_index
].ep_state
;
1195 if (!(ep_state
& EP_HALTED
))
1197 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1198 "Completed config ep cmd - "
1199 "last ep index = %d, state = %d",
1200 ep_index
, ep_state
);
1201 /* Clear internal halted state and restart ring(s) */
1202 virt_dev
->eps
[ep_index
].ep_state
&= ~EP_HALTED
;
1203 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
1209 static void xhci_handle_cmd_reset_dev(struct xhci_hcd
*xhci
, int slot_id
,
1210 struct xhci_event_cmd
*event
)
1212 xhci_dbg(xhci
, "Completed reset device command.\n");
1213 if (!xhci
->devs
[slot_id
])
1214 xhci_warn(xhci
, "Reset device command completion "
1215 "for disabled slot %u\n", slot_id
);
1218 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd
*xhci
,
1219 struct xhci_event_cmd
*event
)
1221 if (!(xhci
->quirks
& XHCI_NEC_HOST
)) {
1222 xhci_warn(xhci
, "WARN NEC_GET_FW command on non-NEC host\n");
1225 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1226 "NEC firmware version %2x.%02x",
1227 NEC_FW_MAJOR(le32_to_cpu(event
->status
)),
1228 NEC_FW_MINOR(le32_to_cpu(event
->status
)));
1231 static void xhci_complete_del_and_free_cmd(struct xhci_command
*cmd
, u32 status
)
1233 list_del(&cmd
->cmd_list
);
1235 if (cmd
->completion
) {
1236 cmd
->status
= status
;
1237 complete(cmd
->completion
);
1243 void xhci_cleanup_command_queue(struct xhci_hcd
*xhci
)
1245 struct xhci_command
*cur_cmd
, *tmp_cmd
;
1246 list_for_each_entry_safe(cur_cmd
, tmp_cmd
, &xhci
->cmd_list
, cmd_list
)
1247 xhci_complete_del_and_free_cmd(cur_cmd
, COMP_COMMAND_ABORTED
);
1250 void xhci_handle_command_timeout(struct work_struct
*work
)
1252 struct xhci_hcd
*xhci
;
1254 unsigned long flags
;
1257 xhci
= container_of(to_delayed_work(work
), struct xhci_hcd
, cmd_timer
);
1259 spin_lock_irqsave(&xhci
->lock
, flags
);
1262 * If timeout work is pending, or current_cmd is NULL, it means we
1263 * raced with command completion. Command is handled so just return.
1265 if (!xhci
->current_cmd
|| delayed_work_pending(&xhci
->cmd_timer
)) {
1266 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1269 /* mark this command to be cancelled */
1270 xhci
->current_cmd
->status
= COMP_COMMAND_ABORTED
;
1272 /* Make sure command ring is running before aborting it */
1273 hw_ring_state
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
1274 if ((xhci
->cmd_ring_state
& CMD_RING_STATE_RUNNING
) &&
1275 (hw_ring_state
& CMD_RING_RUNNING
)) {
1276 /* Prevent new doorbell, and start command abort */
1277 xhci
->cmd_ring_state
= CMD_RING_STATE_ABORTED
;
1278 xhci_dbg(xhci
, "Command timeout\n");
1279 ret
= xhci_abort_cmd_ring(xhci
, flags
);
1280 if (unlikely(ret
== -ESHUTDOWN
)) {
1281 xhci_err(xhci
, "Abort command ring failed\n");
1282 xhci_cleanup_command_queue(xhci
);
1283 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1284 usb_hc_died(xhci_to_hcd(xhci
)->primary_hcd
);
1285 xhci_dbg(xhci
, "xHCI host controller is dead.\n");
1290 goto time_out_completed
;
1293 /* host removed. Bail out */
1294 if (xhci
->xhc_state
& XHCI_STATE_REMOVING
) {
1295 xhci_dbg(xhci
, "host removed, ring start fail?\n");
1296 xhci_cleanup_command_queue(xhci
);
1298 goto time_out_completed
;
1301 /* command timeout on stopped ring, ring can't be aborted */
1302 xhci_dbg(xhci
, "Command timeout on stopped ring\n");
1303 xhci_handle_stopped_cmd_ring(xhci
, xhci
->current_cmd
);
1306 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1310 static void handle_cmd_completion(struct xhci_hcd
*xhci
,
1311 struct xhci_event_cmd
*event
)
1313 int slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1315 dma_addr_t cmd_dequeue_dma
;
1317 union xhci_trb
*cmd_trb
;
1318 struct xhci_command
*cmd
;
1321 cmd_dma
= le64_to_cpu(event
->cmd_trb
);
1322 cmd_trb
= xhci
->cmd_ring
->dequeue
;
1324 trace_xhci_handle_command(xhci
->cmd_ring
, &cmd_trb
->generic
);
1326 cmd_dequeue_dma
= xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
1329 * Check whether the completion event is for our internal kept
1332 if (!cmd_dequeue_dma
|| cmd_dma
!= (u64
)cmd_dequeue_dma
) {
1334 "ERROR mismatched command completion event\n");
1338 cmd
= list_first_entry(&xhci
->cmd_list
, struct xhci_command
, cmd_list
);
1340 cancel_delayed_work(&xhci
->cmd_timer
);
1342 cmd_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->status
));
1344 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1345 if (cmd_comp_code
== COMP_COMMAND_RING_STOPPED
) {
1346 complete_all(&xhci
->cmd_ring_stop_completion
);
1350 if (cmd
->command_trb
!= xhci
->cmd_ring
->dequeue
) {
1352 "Command completion event does not match command\n");
1357 * Host aborted the command ring, check if the current command was
1358 * supposed to be aborted, otherwise continue normally.
1359 * The command ring is stopped now, but the xHC will issue a Command
1360 * Ring Stopped event which will cause us to restart it.
1362 if (cmd_comp_code
== COMP_COMMAND_ABORTED
) {
1363 xhci
->cmd_ring_state
= CMD_RING_STATE_STOPPED
;
1364 if (cmd
->status
== COMP_COMMAND_ABORTED
) {
1365 if (xhci
->current_cmd
== cmd
)
1366 xhci
->current_cmd
= NULL
;
1371 cmd_type
= TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb
->generic
.field
[3]));
1373 case TRB_ENABLE_SLOT
:
1374 xhci_handle_cmd_enable_slot(xhci
, slot_id
, cmd
, cmd_comp_code
);
1376 case TRB_DISABLE_SLOT
:
1377 xhci_handle_cmd_disable_slot(xhci
, slot_id
);
1380 if (!cmd
->completion
)
1381 xhci_handle_cmd_config_ep(xhci
, slot_id
, event
,
1384 case TRB_EVAL_CONTEXT
:
1389 WARN_ON(slot_id
!= TRB_TO_SLOT_ID(
1390 le32_to_cpu(cmd_trb
->generic
.field
[3])));
1391 xhci_handle_cmd_stop_ep(xhci
, slot_id
, cmd_trb
, event
);
1394 WARN_ON(slot_id
!= TRB_TO_SLOT_ID(
1395 le32_to_cpu(cmd_trb
->generic
.field
[3])));
1396 xhci_handle_cmd_set_deq(xhci
, slot_id
, cmd_trb
, cmd_comp_code
);
1399 /* Is this an aborted command turned to NO-OP? */
1400 if (cmd
->status
== COMP_COMMAND_RING_STOPPED
)
1401 cmd_comp_code
= COMP_COMMAND_RING_STOPPED
;
1404 WARN_ON(slot_id
!= TRB_TO_SLOT_ID(
1405 le32_to_cpu(cmd_trb
->generic
.field
[3])));
1406 xhci_handle_cmd_reset_ep(xhci
, slot_id
, cmd_trb
, cmd_comp_code
);
1409 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1410 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1412 slot_id
= TRB_TO_SLOT_ID(
1413 le32_to_cpu(cmd_trb
->generic
.field
[3]));
1414 xhci_handle_cmd_reset_dev(xhci
, slot_id
, event
);
1416 case TRB_NEC_GET_FW
:
1417 xhci_handle_cmd_nec_get_fw(xhci
, event
);
1420 /* Skip over unknown commands on the event ring */
1421 xhci_info(xhci
, "INFO unknown command type %d\n", cmd_type
);
1425 /* restart timer if this wasn't the last command */
1426 if (!list_is_singular(&xhci
->cmd_list
)) {
1427 xhci
->current_cmd
= list_first_entry(&cmd
->cmd_list
,
1428 struct xhci_command
, cmd_list
);
1429 xhci_mod_cmd_timer(xhci
, XHCI_CMD_DEFAULT_TIMEOUT
);
1430 } else if (xhci
->current_cmd
== cmd
) {
1431 xhci
->current_cmd
= NULL
;
1435 xhci_complete_del_and_free_cmd(cmd
, cmd_comp_code
);
1437 inc_deq(xhci
, xhci
->cmd_ring
);
1440 static void handle_vendor_event(struct xhci_hcd
*xhci
,
1441 union xhci_trb
*event
)
1445 trb_type
= TRB_FIELD_TO_TYPE(le32_to_cpu(event
->generic
.field
[3]));
1446 xhci_dbg(xhci
, "Vendor specific event TRB type = %u\n", trb_type
);
1447 if (trb_type
== TRB_NEC_CMD_COMP
&& (xhci
->quirks
& XHCI_NEC_HOST
))
1448 handle_cmd_completion(xhci
, &event
->event_cmd
);
1451 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1452 * port registers -- USB 3.0 and USB 2.0).
1454 * Returns a zero-based port number, which is suitable for indexing into each of
1455 * the split roothubs' port arrays and bus state arrays.
1456 * Add one to it in order to call xhci_find_slot_id_by_port.
1458 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd
*hcd
,
1459 struct xhci_hcd
*xhci
, u32 port_id
)
1462 unsigned int num_similar_speed_ports
= 0;
1464 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1465 * and usb2_ports are 0-based indexes. Count the number of similar
1466 * speed ports, up to 1 port before this port.
1468 for (i
= 0; i
< (port_id
- 1); i
++) {
1469 u8 port_speed
= xhci
->port_array
[i
];
1472 * Skip ports that don't have known speeds, or have duplicate
1473 * Extended Capabilities port speed entries.
1475 if (port_speed
== 0 || port_speed
== DUPLICATE_ENTRY
)
1479 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1480 * 1.1 ports are under the USB 2.0 hub. If the port speed
1481 * matches the device speed, it's a similar speed port.
1483 if ((port_speed
== 0x03) == (hcd
->speed
>= HCD_USB3
))
1484 num_similar_speed_ports
++;
1486 return num_similar_speed_ports
;
1489 static void handle_device_notification(struct xhci_hcd
*xhci
,
1490 union xhci_trb
*event
)
1493 struct usb_device
*udev
;
1495 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->generic
.field
[3]));
1496 if (!xhci
->devs
[slot_id
]) {
1497 xhci_warn(xhci
, "Device Notification event for "
1498 "unused slot %u\n", slot_id
);
1502 xhci_dbg(xhci
, "Device Wake Notification event for slot ID %u\n",
1504 udev
= xhci
->devs
[slot_id
]->udev
;
1505 if (udev
&& udev
->parent
)
1506 usb_wakeup_notification(udev
->parent
, udev
->portnum
);
1509 static void handle_port_status(struct xhci_hcd
*xhci
,
1510 union xhci_trb
*event
)
1512 struct usb_hcd
*hcd
;
1517 unsigned int faked_port_index
;
1519 struct xhci_bus_state
*bus_state
;
1520 __le32 __iomem
**port_array
;
1521 bool bogus_port_status
= false;
1523 /* Port status change events always have a successful completion code */
1524 if (GET_COMP_CODE(le32_to_cpu(event
->generic
.field
[2])) != COMP_SUCCESS
)
1526 "WARN: xHC returned failed port status event\n");
1528 port_id
= GET_PORT_ID(le32_to_cpu(event
->generic
.field
[0]));
1529 xhci_dbg(xhci
, "Port Status Change Event for port %d\n", port_id
);
1531 max_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1532 if ((port_id
<= 0) || (port_id
> max_ports
)) {
1533 xhci_warn(xhci
, "Invalid port id %d\n", port_id
);
1534 inc_deq(xhci
, xhci
->event_ring
);
1538 /* Figure out which usb_hcd this port is attached to:
1539 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1541 major_revision
= xhci
->port_array
[port_id
- 1];
1543 /* Find the right roothub. */
1544 hcd
= xhci_to_hcd(xhci
);
1545 if ((major_revision
== 0x03) != (hcd
->speed
>= HCD_USB3
))
1546 hcd
= xhci
->shared_hcd
;
1548 if (major_revision
== 0) {
1549 xhci_warn(xhci
, "Event for port %u not in "
1550 "Extended Capabilities, ignoring.\n",
1552 bogus_port_status
= true;
1555 if (major_revision
== DUPLICATE_ENTRY
) {
1556 xhci_warn(xhci
, "Event for port %u duplicated in"
1557 "Extended Capabilities, ignoring.\n",
1559 bogus_port_status
= true;
1564 * Hardware port IDs reported by a Port Status Change Event include USB
1565 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1566 * resume event, but we first need to translate the hardware port ID
1567 * into the index into the ports on the correct split roothub, and the
1568 * correct bus_state structure.
1570 bus_state
= &xhci
->bus_state
[hcd_index(hcd
)];
1571 if (hcd
->speed
>= HCD_USB3
)
1572 port_array
= xhci
->usb3_ports
;
1574 port_array
= xhci
->usb2_ports
;
1575 /* Find the faked port hub number */
1576 faked_port_index
= find_faked_portnum_from_hw_portnum(hcd
, xhci
,
1579 temp
= readl(port_array
[faked_port_index
]);
1580 if (hcd
->state
== HC_STATE_SUSPENDED
) {
1581 xhci_dbg(xhci
, "resume root hub\n");
1582 usb_hcd_resume_root_hub(hcd
);
1585 if (hcd
->speed
>= HCD_USB3
&& (temp
& PORT_PLS_MASK
) == XDEV_INACTIVE
)
1586 bus_state
->port_remote_wakeup
&= ~(1 << faked_port_index
);
1588 if ((temp
& PORT_PLC
) && (temp
& PORT_PLS_MASK
) == XDEV_RESUME
) {
1589 xhci_dbg(xhci
, "port resume event for port %d\n", port_id
);
1591 temp1
= readl(&xhci
->op_regs
->command
);
1592 if (!(temp1
& CMD_RUN
)) {
1593 xhci_warn(xhci
, "xHC is not running.\n");
1597 if (DEV_SUPERSPEED_ANY(temp
)) {
1598 xhci_dbg(xhci
, "remote wake SS port %d\n", port_id
);
1599 /* Set a flag to say the port signaled remote wakeup,
1600 * so we can tell the difference between the end of
1601 * device and host initiated resume.
1603 bus_state
->port_remote_wakeup
|= 1 << faked_port_index
;
1604 xhci_test_and_clear_bit(xhci
, port_array
,
1605 faked_port_index
, PORT_PLC
);
1606 xhci_set_link_state(xhci
, port_array
, faked_port_index
,
1608 /* Need to wait until the next link state change
1609 * indicates the device is actually in U0.
1611 bogus_port_status
= true;
1613 } else if (!test_bit(faked_port_index
,
1614 &bus_state
->resuming_ports
)) {
1615 xhci_dbg(xhci
, "resume HS port %d\n", port_id
);
1616 bus_state
->resume_done
[faked_port_index
] = jiffies
+
1617 msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1618 set_bit(faked_port_index
, &bus_state
->resuming_ports
);
1619 mod_timer(&hcd
->rh_timer
,
1620 bus_state
->resume_done
[faked_port_index
]);
1621 /* Do the rest in GetPortStatus */
1625 if ((temp
& PORT_PLC
) && (temp
& PORT_PLS_MASK
) == XDEV_U0
&&
1626 DEV_SUPERSPEED_ANY(temp
)) {
1627 xhci_dbg(xhci
, "resume SS port %d finished\n", port_id
);
1628 /* We've just brought the device into U0 through either the
1629 * Resume state after a device remote wakeup, or through the
1630 * U3Exit state after a host-initiated resume. If it's a device
1631 * initiated remote wake, don't pass up the link state change,
1632 * so the roothub behavior is consistent with external
1633 * USB 3.0 hub behavior.
1635 slot_id
= xhci_find_slot_id_by_port(hcd
, xhci
,
1636 faked_port_index
+ 1);
1637 if (slot_id
&& xhci
->devs
[slot_id
])
1638 xhci_ring_device(xhci
, slot_id
);
1639 if (bus_state
->port_remote_wakeup
& (1 << faked_port_index
)) {
1640 bus_state
->port_remote_wakeup
&=
1641 ~(1 << faked_port_index
);
1642 xhci_test_and_clear_bit(xhci
, port_array
,
1643 faked_port_index
, PORT_PLC
);
1644 usb_wakeup_notification(hcd
->self
.root_hub
,
1645 faked_port_index
+ 1);
1646 bogus_port_status
= true;
1652 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1653 * RExit to a disconnect state). If so, let the the driver know it's
1654 * out of the RExit state.
1656 if (!DEV_SUPERSPEED_ANY(temp
) &&
1657 test_and_clear_bit(faked_port_index
,
1658 &bus_state
->rexit_ports
)) {
1659 complete(&bus_state
->rexit_done
[faked_port_index
]);
1660 bogus_port_status
= true;
1664 if (hcd
->speed
< HCD_USB3
)
1665 xhci_test_and_clear_bit(xhci
, port_array
, faked_port_index
,
1669 /* Update event ring dequeue pointer before dropping the lock */
1670 inc_deq(xhci
, xhci
->event_ring
);
1672 /* Don't make the USB core poll the roothub if we got a bad port status
1673 * change event. Besides, at that point we can't tell which roothub
1674 * (USB 2.0 or USB 3.0) to kick.
1676 if (bogus_port_status
)
1680 * xHCI port-status-change events occur when the "or" of all the
1681 * status-change bits in the portsc register changes from 0 to 1.
1682 * New status changes won't cause an event if any other change
1683 * bits are still set. When an event occurs, switch over to
1684 * polling to avoid losing status changes.
1686 xhci_dbg(xhci
, "%s: starting port polling.\n", __func__
);
1687 set_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
1688 spin_unlock(&xhci
->lock
);
1689 /* Pass this up to the core */
1690 usb_hcd_poll_rh_status(hcd
);
1691 spin_lock(&xhci
->lock
);
1695 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1696 * at end_trb, which may be in another segment. If the suspect DMA address is a
1697 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1700 struct xhci_segment
*trb_in_td(struct xhci_hcd
*xhci
,
1701 struct xhci_segment
*start_seg
,
1702 union xhci_trb
*start_trb
,
1703 union xhci_trb
*end_trb
,
1704 dma_addr_t suspect_dma
,
1707 dma_addr_t start_dma
;
1708 dma_addr_t end_seg_dma
;
1709 dma_addr_t end_trb_dma
;
1710 struct xhci_segment
*cur_seg
;
1712 start_dma
= xhci_trb_virt_to_dma(start_seg
, start_trb
);
1713 cur_seg
= start_seg
;
1718 /* We may get an event for a Link TRB in the middle of a TD */
1719 end_seg_dma
= xhci_trb_virt_to_dma(cur_seg
,
1720 &cur_seg
->trbs
[TRBS_PER_SEGMENT
- 1]);
1721 /* If the end TRB isn't in this segment, this is set to 0 */
1722 end_trb_dma
= xhci_trb_virt_to_dma(cur_seg
, end_trb
);
1726 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1727 (unsigned long long)suspect_dma
,
1728 (unsigned long long)start_dma
,
1729 (unsigned long long)end_trb_dma
,
1730 (unsigned long long)cur_seg
->dma
,
1731 (unsigned long long)end_seg_dma
);
1733 if (end_trb_dma
> 0) {
1734 /* The end TRB is in this segment, so suspect should be here */
1735 if (start_dma
<= end_trb_dma
) {
1736 if (suspect_dma
>= start_dma
&& suspect_dma
<= end_trb_dma
)
1739 /* Case for one segment with
1740 * a TD wrapped around to the top
1742 if ((suspect_dma
>= start_dma
&&
1743 suspect_dma
<= end_seg_dma
) ||
1744 (suspect_dma
>= cur_seg
->dma
&&
1745 suspect_dma
<= end_trb_dma
))
1750 /* Might still be somewhere in this segment */
1751 if (suspect_dma
>= start_dma
&& suspect_dma
<= end_seg_dma
)
1754 cur_seg
= cur_seg
->next
;
1755 start_dma
= xhci_trb_virt_to_dma(cur_seg
, &cur_seg
->trbs
[0]);
1756 } while (cur_seg
!= start_seg
);
1761 static void xhci_cleanup_halted_endpoint(struct xhci_hcd
*xhci
,
1762 unsigned int slot_id
, unsigned int ep_index
,
1763 unsigned int stream_id
,
1764 struct xhci_td
*td
, union xhci_trb
*ep_trb
)
1766 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1767 struct xhci_command
*command
;
1768 command
= xhci_alloc_command(xhci
, false, false, GFP_ATOMIC
);
1772 ep
->ep_state
|= EP_HALTED
;
1773 ep
->stopped_stream
= stream_id
;
1775 xhci_queue_reset_ep(xhci
, command
, slot_id
, ep_index
);
1776 xhci_cleanup_stalled_ring(xhci
, ep_index
, td
);
1778 ep
->stopped_stream
= 0;
1780 xhci_ring_cmd_db(xhci
);
1783 /* Check if an error has halted the endpoint ring. The class driver will
1784 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1785 * However, a babble and other errors also halt the endpoint ring, and the class
1786 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1787 * Ring Dequeue Pointer command manually.
1789 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd
*xhci
,
1790 struct xhci_ep_ctx
*ep_ctx
,
1791 unsigned int trb_comp_code
)
1793 /* TRB completion codes that may require a manual halt cleanup */
1794 if (trb_comp_code
== COMP_USB_TRANSACTION_ERROR
||
1795 trb_comp_code
== COMP_BABBLE_DETECTED_ERROR
||
1796 trb_comp_code
== COMP_SPLIT_TRANSACTION_ERROR
)
1797 /* The 0.95 spec says a babbling control endpoint
1798 * is not halted. The 0.96 spec says it is. Some HW
1799 * claims to be 0.95 compliant, but it halts the control
1800 * endpoint anyway. Check if a babble halted the
1803 if (GET_EP_CTX_STATE(ep_ctx
) == EP_STATE_HALTED
)
1809 int xhci_is_vendor_info_code(struct xhci_hcd
*xhci
, unsigned int trb_comp_code
)
1811 if (trb_comp_code
>= 224 && trb_comp_code
<= 255) {
1812 /* Vendor defined "informational" completion code,
1813 * treat as not-an-error.
1815 xhci_dbg(xhci
, "Vendor defined info completion code %u\n",
1817 xhci_dbg(xhci
, "Treating code as success.\n");
1823 static int xhci_td_cleanup(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1824 struct xhci_ring
*ep_ring
, int *status
)
1826 struct urb_priv
*urb_priv
;
1827 struct urb
*urb
= NULL
;
1829 /* Clean up the endpoint's TD list */
1831 urb_priv
= urb
->hcpriv
;
1833 /* if a bounce buffer was used to align this td then unmap it */
1834 xhci_unmap_td_bounce_buffer(xhci
, ep_ring
, td
);
1836 /* Do one last check of the actual transfer length.
1837 * If the host controller said we transferred more data than the buffer
1838 * length, urb->actual_length will be a very big number (since it's
1839 * unsigned). Play it safe and say we didn't transfer anything.
1841 if (urb
->actual_length
> urb
->transfer_buffer_length
) {
1842 xhci_warn(xhci
, "URB req %u and actual %u transfer length mismatch\n",
1843 urb
->transfer_buffer_length
, urb
->actual_length
);
1844 urb
->actual_length
= 0;
1847 list_del_init(&td
->td_list
);
1848 /* Was this TD slated to be cancelled but completed anyway? */
1849 if (!list_empty(&td
->cancelled_td_list
))
1850 list_del_init(&td
->cancelled_td_list
);
1853 /* Giveback the urb when all the tds are completed */
1854 if (last_td_in_urb(td
)) {
1855 if ((urb
->actual_length
!= urb
->transfer_buffer_length
&&
1856 (urb
->transfer_flags
& URB_SHORT_NOT_OK
)) ||
1857 (*status
!= 0 && !usb_endpoint_xfer_isoc(&urb
->ep
->desc
)))
1858 xhci_dbg(xhci
, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1859 urb
, urb
->actual_length
,
1860 urb
->transfer_buffer_length
, *status
);
1862 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1863 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
1865 xhci_giveback_urb_in_irq(xhci
, td
, *status
);
1871 static int finish_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1872 union xhci_trb
*ep_trb
, struct xhci_transfer_event
*event
,
1873 struct xhci_virt_ep
*ep
, int *status
, bool skip
)
1875 struct xhci_virt_device
*xdev
;
1876 struct xhci_ep_ctx
*ep_ctx
;
1877 struct xhci_ring
*ep_ring
;
1878 unsigned int slot_id
;
1882 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1883 xdev
= xhci
->devs
[slot_id
];
1884 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1885 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1886 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1887 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1892 if (trb_comp_code
== COMP_STOPPED_LENGTH_INVALID
||
1893 trb_comp_code
== COMP_STOPPED
||
1894 trb_comp_code
== COMP_STOPPED_SHORT_PACKET
) {
1895 /* The Endpoint Stop Command completion will take care of any
1896 * stopped TDs. A stopped TD may be restarted, so don't update
1897 * the ring dequeue pointer or take this TD off any lists yet.
1899 ep
->stopped_td
= td
;
1902 if (trb_comp_code
== COMP_STALL_ERROR
||
1903 xhci_requires_manual_halt_cleanup(xhci
, ep_ctx
,
1905 /* Issue a reset endpoint command to clear the host side
1906 * halt, followed by a set dequeue command to move the
1907 * dequeue pointer past the TD.
1908 * The class driver clears the device side halt later.
1910 xhci_cleanup_halted_endpoint(xhci
, slot_id
, ep_index
,
1911 ep_ring
->stream_id
, td
, ep_trb
);
1913 /* Update ring dequeue pointer */
1914 while (ep_ring
->dequeue
!= td
->last_trb
)
1915 inc_deq(xhci
, ep_ring
);
1916 inc_deq(xhci
, ep_ring
);
1920 return xhci_td_cleanup(xhci
, td
, ep_ring
, status
);
1923 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1924 static int sum_trb_lengths(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
1925 union xhci_trb
*stop_trb
)
1928 union xhci_trb
*trb
= ring
->dequeue
;
1929 struct xhci_segment
*seg
= ring
->deq_seg
;
1931 for (sum
= 0; trb
!= stop_trb
; next_trb(xhci
, ring
, &seg
, &trb
)) {
1932 if (!trb_is_noop(trb
) && !trb_is_link(trb
))
1933 sum
+= TRB_LEN(le32_to_cpu(trb
->generic
.field
[2]));
1939 * Process control tds, update urb status and actual_length.
1941 static int process_ctrl_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1942 union xhci_trb
*ep_trb
, struct xhci_transfer_event
*event
,
1943 struct xhci_virt_ep
*ep
, int *status
)
1945 struct xhci_virt_device
*xdev
;
1946 struct xhci_ring
*ep_ring
;
1947 unsigned int slot_id
;
1949 struct xhci_ep_ctx
*ep_ctx
;
1951 u32 remaining
, requested
;
1954 trb_type
= TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb
->generic
.field
[3]));
1955 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1956 xdev
= xhci
->devs
[slot_id
];
1957 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1958 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1959 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1960 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1961 requested
= td
->urb
->transfer_buffer_length
;
1962 remaining
= EVENT_TRB_LEN(le32_to_cpu(event
->transfer_len
));
1964 switch (trb_comp_code
) {
1966 if (trb_type
!= TRB_STATUS
) {
1967 xhci_warn(xhci
, "WARN: Success on ctrl %s TRB without IOC set?\n",
1968 (trb_type
== TRB_DATA
) ? "data" : "setup");
1969 *status
= -ESHUTDOWN
;
1974 case COMP_SHORT_PACKET
:
1977 case COMP_STOPPED_SHORT_PACKET
:
1978 if (trb_type
== TRB_DATA
|| trb_type
== TRB_NORMAL
)
1979 td
->urb
->actual_length
= remaining
;
1981 xhci_warn(xhci
, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1986 td
->urb
->actual_length
= 0;
1990 td
->urb
->actual_length
= requested
- remaining
;
1993 td
->urb
->actual_length
= requested
;
1996 xhci_warn(xhci
, "WARN: unexpected TRB Type %d\n",
2000 case COMP_STOPPED_LENGTH_INVALID
:
2003 if (!xhci_requires_manual_halt_cleanup(xhci
,
2004 ep_ctx
, trb_comp_code
))
2006 xhci_dbg(xhci
, "TRB error %u, halted endpoint index = %u\n",
2007 trb_comp_code
, ep_index
);
2008 /* else fall through */
2009 case COMP_STALL_ERROR
:
2010 /* Did we transfer part of the data (middle) phase? */
2011 if (trb_type
== TRB_DATA
|| trb_type
== TRB_NORMAL
)
2012 td
->urb
->actual_length
= requested
- remaining
;
2013 else if (!td
->urb_length_set
)
2014 td
->urb
->actual_length
= 0;
2018 /* stopped at setup stage, no data transferred */
2019 if (trb_type
== TRB_SETUP
)
2023 * if on data stage then update the actual_length of the URB and flag it
2024 * as set, so it won't be overwritten in the event for the last TRB.
2026 if (trb_type
== TRB_DATA
||
2027 trb_type
== TRB_NORMAL
) {
2028 td
->urb_length_set
= true;
2029 td
->urb
->actual_length
= requested
- remaining
;
2030 xhci_dbg(xhci
, "Waiting for status stage event\n");
2034 /* at status stage */
2035 if (!td
->urb_length_set
)
2036 td
->urb
->actual_length
= requested
;
2039 return finish_td(xhci
, td
, ep_trb
, event
, ep
, status
, false);
2043 * Process isochronous tds, update urb packet status and actual_length.
2045 static int process_isoc_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
2046 union xhci_trb
*ep_trb
, struct xhci_transfer_event
*event
,
2047 struct xhci_virt_ep
*ep
, int *status
)
2049 struct xhci_ring
*ep_ring
;
2050 struct urb_priv
*urb_priv
;
2052 struct usb_iso_packet_descriptor
*frame
;
2054 bool sum_trbs_for_length
= false;
2055 u32 remaining
, requested
, ep_trb_len
;
2056 int short_framestatus
;
2058 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
2059 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
2060 urb_priv
= td
->urb
->hcpriv
;
2061 idx
= urb_priv
->num_tds_done
;
2062 frame
= &td
->urb
->iso_frame_desc
[idx
];
2063 requested
= frame
->length
;
2064 remaining
= EVENT_TRB_LEN(le32_to_cpu(event
->transfer_len
));
2065 ep_trb_len
= TRB_LEN(le32_to_cpu(ep_trb
->generic
.field
[2]));
2066 short_framestatus
= td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
?
2069 /* handle completion code */
2070 switch (trb_comp_code
) {
2073 frame
->status
= short_framestatus
;
2074 if (xhci
->quirks
& XHCI_TRUST_TX_LENGTH
)
2075 sum_trbs_for_length
= true;
2080 case COMP_SHORT_PACKET
:
2081 frame
->status
= short_framestatus
;
2082 sum_trbs_for_length
= true;
2084 case COMP_BANDWIDTH_OVERRUN_ERROR
:
2085 frame
->status
= -ECOMM
;
2087 case COMP_ISOCH_BUFFER_OVERRUN
:
2088 case COMP_BABBLE_DETECTED_ERROR
:
2089 frame
->status
= -EOVERFLOW
;
2091 case COMP_INCOMPATIBLE_DEVICE_ERROR
:
2092 case COMP_STALL_ERROR
:
2093 frame
->status
= -EPROTO
;
2095 case COMP_USB_TRANSACTION_ERROR
:
2096 frame
->status
= -EPROTO
;
2097 if (ep_trb
!= td
->last_trb
)
2101 sum_trbs_for_length
= true;
2103 case COMP_STOPPED_SHORT_PACKET
:
2104 /* field normally containing residue now contains tranferred */
2105 frame
->status
= short_framestatus
;
2106 requested
= remaining
;
2108 case COMP_STOPPED_LENGTH_INVALID
:
2113 sum_trbs_for_length
= true;
2118 if (sum_trbs_for_length
)
2119 frame
->actual_length
= sum_trb_lengths(xhci
, ep_ring
, ep_trb
) +
2120 ep_trb_len
- remaining
;
2122 frame
->actual_length
= requested
;
2124 td
->urb
->actual_length
+= frame
->actual_length
;
2126 return finish_td(xhci
, td
, ep_trb
, event
, ep
, status
, false);
2129 static int skip_isoc_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
2130 struct xhci_transfer_event
*event
,
2131 struct xhci_virt_ep
*ep
, int *status
)
2133 struct xhci_ring
*ep_ring
;
2134 struct urb_priv
*urb_priv
;
2135 struct usb_iso_packet_descriptor
*frame
;
2138 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
2139 urb_priv
= td
->urb
->hcpriv
;
2140 idx
= urb_priv
->num_tds_done
;
2141 frame
= &td
->urb
->iso_frame_desc
[idx
];
2143 /* The transfer is partly done. */
2144 frame
->status
= -EXDEV
;
2146 /* calc actual length */
2147 frame
->actual_length
= 0;
2149 /* Update ring dequeue pointer */
2150 while (ep_ring
->dequeue
!= td
->last_trb
)
2151 inc_deq(xhci
, ep_ring
);
2152 inc_deq(xhci
, ep_ring
);
2154 return finish_td(xhci
, td
, NULL
, event
, ep
, status
, true);
2158 * Process bulk and interrupt tds, update urb status and actual_length.
2160 static int process_bulk_intr_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
2161 union xhci_trb
*ep_trb
, struct xhci_transfer_event
*event
,
2162 struct xhci_virt_ep
*ep
, int *status
)
2164 struct xhci_ring
*ep_ring
;
2166 u32 remaining
, requested
, ep_trb_len
;
2168 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
2169 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
2170 remaining
= EVENT_TRB_LEN(le32_to_cpu(event
->transfer_len
));
2171 ep_trb_len
= TRB_LEN(le32_to_cpu(ep_trb
->generic
.field
[2]));
2172 requested
= td
->urb
->transfer_buffer_length
;
2174 switch (trb_comp_code
) {
2176 /* handle success with untransferred data as short packet */
2177 if (ep_trb
!= td
->last_trb
|| remaining
) {
2178 xhci_warn(xhci
, "WARN Successful completion on short TX\n");
2179 xhci_dbg(xhci
, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2180 td
->urb
->ep
->desc
.bEndpointAddress
,
2181 requested
, remaining
);
2185 case COMP_SHORT_PACKET
:
2186 xhci_dbg(xhci
, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2187 td
->urb
->ep
->desc
.bEndpointAddress
,
2188 requested
, remaining
);
2191 case COMP_STOPPED_SHORT_PACKET
:
2192 td
->urb
->actual_length
= remaining
;
2194 case COMP_STOPPED_LENGTH_INVALID
:
2195 /* stopped on ep trb with invalid length, exclude it */
2204 if (ep_trb
== td
->last_trb
)
2205 td
->urb
->actual_length
= requested
- remaining
;
2207 td
->urb
->actual_length
=
2208 sum_trb_lengths(xhci
, ep_ring
, ep_trb
) +
2209 ep_trb_len
- remaining
;
2211 if (remaining
> requested
) {
2212 xhci_warn(xhci
, "bad transfer trb length %d in event trb\n",
2214 td
->urb
->actual_length
= 0;
2216 return finish_td(xhci
, td
, ep_trb
, event
, ep
, status
, false);
2220 * If this function returns an error condition, it means it got a Transfer
2221 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2222 * At this point, the host controller is probably hosed and should be reset.
2224 static int handle_tx_event(struct xhci_hcd
*xhci
,
2225 struct xhci_transfer_event
*event
)
2227 struct xhci_virt_device
*xdev
;
2228 struct xhci_virt_ep
*ep
;
2229 struct xhci_ring
*ep_ring
;
2230 unsigned int slot_id
;
2232 struct xhci_td
*td
= NULL
;
2233 dma_addr_t ep_trb_dma
;
2234 struct xhci_segment
*ep_seg
;
2235 union xhci_trb
*ep_trb
;
2236 int status
= -EINPROGRESS
;
2237 struct xhci_ep_ctx
*ep_ctx
;
2238 struct list_head
*tmp
;
2241 bool handling_skipped_tds
= false;
2243 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
2244 xdev
= xhci
->devs
[slot_id
];
2246 xhci_err(xhci
, "ERROR Transfer event pointed to bad slot\n");
2247 xhci_err(xhci
, "@%016llx %08x %08x %08x %08x\n",
2248 (unsigned long long) xhci_trb_virt_to_dma(
2249 xhci
->event_ring
->deq_seg
,
2250 xhci
->event_ring
->dequeue
),
2251 lower_32_bits(le64_to_cpu(event
->buffer
)),
2252 upper_32_bits(le64_to_cpu(event
->buffer
)),
2253 le32_to_cpu(event
->transfer_len
),
2254 le32_to_cpu(event
->flags
));
2255 xhci_dbg(xhci
, "Event ring:\n");
2256 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
2260 /* Endpoint ID is 1 based, our index is zero based */
2261 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
2262 ep
= &xdev
->eps
[ep_index
];
2263 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
2264 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
2265 if (!ep_ring
|| GET_EP_CTX_STATE(ep_ctx
) == EP_STATE_DISABLED
) {
2266 xhci_err(xhci
, "ERROR Transfer event for disabled endpoint "
2267 "or incorrect stream ring\n");
2268 xhci_err(xhci
, "@%016llx %08x %08x %08x %08x\n",
2269 (unsigned long long) xhci_trb_virt_to_dma(
2270 xhci
->event_ring
->deq_seg
,
2271 xhci
->event_ring
->dequeue
),
2272 lower_32_bits(le64_to_cpu(event
->buffer
)),
2273 upper_32_bits(le64_to_cpu(event
->buffer
)),
2274 le32_to_cpu(event
->transfer_len
),
2275 le32_to_cpu(event
->flags
));
2276 xhci_dbg(xhci
, "Event ring:\n");
2277 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
2281 /* Count current td numbers if ep->skip is set */
2283 list_for_each(tmp
, &ep_ring
->td_list
)
2287 ep_trb_dma
= le64_to_cpu(event
->buffer
);
2288 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
2289 /* Look for common error cases */
2290 switch (trb_comp_code
) {
2291 /* Skip codes that require special handling depending on
2295 if (EVENT_TRB_LEN(le32_to_cpu(event
->transfer_len
)) == 0)
2297 if (xhci
->quirks
& XHCI_TRUST_TX_LENGTH
)
2298 trb_comp_code
= COMP_SHORT_PACKET
;
2300 xhci_warn_ratelimited(xhci
,
2301 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2302 case COMP_SHORT_PACKET
:
2305 xhci_dbg(xhci
, "Stopped on Transfer TRB\n");
2307 case COMP_STOPPED_LENGTH_INVALID
:
2308 xhci_dbg(xhci
, "Stopped on No-op or Link TRB\n");
2310 case COMP_STOPPED_SHORT_PACKET
:
2311 xhci_dbg(xhci
, "Stopped with short packet transfer detected\n");
2313 case COMP_STALL_ERROR
:
2314 xhci_dbg(xhci
, "Stalled endpoint\n");
2315 ep
->ep_state
|= EP_HALTED
;
2318 case COMP_TRB_ERROR
:
2319 xhci_warn(xhci
, "WARN: TRB error on endpoint\n");
2322 case COMP_SPLIT_TRANSACTION_ERROR
:
2323 case COMP_USB_TRANSACTION_ERROR
:
2324 xhci_dbg(xhci
, "Transfer error on endpoint\n");
2327 case COMP_BABBLE_DETECTED_ERROR
:
2328 xhci_dbg(xhci
, "Babble error on endpoint\n");
2329 status
= -EOVERFLOW
;
2331 case COMP_DATA_BUFFER_ERROR
:
2332 xhci_warn(xhci
, "WARN: HC couldn't access mem fast enough\n");
2335 case COMP_BANDWIDTH_OVERRUN_ERROR
:
2336 xhci_warn(xhci
, "WARN: bandwidth overrun event on endpoint\n");
2338 case COMP_ISOCH_BUFFER_OVERRUN
:
2339 xhci_warn(xhci
, "WARN: buffer overrun event on endpoint\n");
2341 case COMP_RING_UNDERRUN
:
2343 * When the Isoch ring is empty, the xHC will generate
2344 * a Ring Overrun Event for IN Isoch endpoint or Ring
2345 * Underrun Event for OUT Isoch endpoint.
2347 xhci_dbg(xhci
, "underrun event on endpoint\n");
2348 if (!list_empty(&ep_ring
->td_list
))
2349 xhci_dbg(xhci
, "Underrun Event for slot %d ep %d "
2350 "still with TDs queued?\n",
2351 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2354 case COMP_RING_OVERRUN
:
2355 xhci_dbg(xhci
, "overrun event on endpoint\n");
2356 if (!list_empty(&ep_ring
->td_list
))
2357 xhci_dbg(xhci
, "Overrun Event for slot %d ep %d "
2358 "still with TDs queued?\n",
2359 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2362 case COMP_INCOMPATIBLE_DEVICE_ERROR
:
2363 xhci_warn(xhci
, "WARN: detect an incompatible device");
2366 case COMP_MISSED_SERVICE_ERROR
:
2368 * When encounter missed service error, one or more isoc tds
2369 * may be missed by xHC.
2370 * Set skip flag of the ep_ring; Complete the missed tds as
2371 * short transfer when process the ep_ring next time.
2374 xhci_dbg(xhci
, "Miss service interval error, set skip flag\n");
2376 case COMP_NO_PING_RESPONSE_ERROR
:
2378 xhci_dbg(xhci
, "No Ping response error, Skip one Isoc TD\n");
2381 if (xhci_is_vendor_info_code(xhci
, trb_comp_code
)) {
2385 xhci_warn(xhci
, "ERROR Unknown event condition %u, HC probably busted\n",
2391 /* This TRB should be in the TD at the head of this ring's
2394 if (list_empty(&ep_ring
->td_list
)) {
2396 * A stopped endpoint may generate an extra completion
2397 * event if the device was suspended. Don't print
2400 if (!(trb_comp_code
== COMP_STOPPED
||
2401 trb_comp_code
== COMP_STOPPED_LENGTH_INVALID
)) {
2402 xhci_warn(xhci
, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2403 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2405 xhci_dbg(xhci
, "Event TRB with TRB type ID %u\n",
2406 (le32_to_cpu(event
->flags
) &
2407 TRB_TYPE_BITMASK
)>>10);
2408 xhci_print_trb_offsets(xhci
, (union xhci_trb
*) event
);
2412 xhci_dbg(xhci
, "td_list is empty while skip "
2413 "flag set. Clear skip flag.\n");
2418 /* We've skipped all the TDs on the ep ring when ep->skip set */
2419 if (ep
->skip
&& td_num
== 0) {
2421 xhci_dbg(xhci
, "All tds on the ep_ring skipped. "
2422 "Clear skip flag.\n");
2426 td
= list_first_entry(&ep_ring
->td_list
, struct xhci_td
,
2431 /* Is this a TRB in the currently executing TD? */
2432 ep_seg
= trb_in_td(xhci
, ep_ring
->deq_seg
, ep_ring
->dequeue
,
2433 td
->last_trb
, ep_trb_dma
, false);
2436 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2437 * is not in the current TD pointed by ep_ring->dequeue because
2438 * that the hardware dequeue pointer still at the previous TRB
2439 * of the current TD. The previous TRB maybe a Link TD or the
2440 * last TRB of the previous TD. The command completion handle
2441 * will take care the rest.
2443 if (!ep_seg
&& (trb_comp_code
== COMP_STOPPED
||
2444 trb_comp_code
== COMP_STOPPED_LENGTH_INVALID
)) {
2450 !usb_endpoint_xfer_isoc(&td
->urb
->ep
->desc
)) {
2451 /* Some host controllers give a spurious
2452 * successful event after a short transfer.
2455 if ((xhci
->quirks
& XHCI_SPURIOUS_SUCCESS
) &&
2456 ep_ring
->last_td_was_short
) {
2457 ep_ring
->last_td_was_short
= false;
2460 /* HC is busted, give up! */
2462 "ERROR Transfer event TRB DMA ptr not "
2463 "part of current TD ep_index %d "
2464 "comp_code %u\n", ep_index
,
2466 trb_in_td(xhci
, ep_ring
->deq_seg
,
2467 ep_ring
->dequeue
, td
->last_trb
,
2472 skip_isoc_td(xhci
, td
, event
, ep
, &status
);
2475 if (trb_comp_code
== COMP_SHORT_PACKET
)
2476 ep_ring
->last_td_was_short
= true;
2478 ep_ring
->last_td_was_short
= false;
2481 xhci_dbg(xhci
, "Found td. Clear skip flag.\n");
2485 ep_trb
= &ep_seg
->trbs
[(ep_trb_dma
- ep_seg
->dma
) /
2488 trace_xhci_handle_transfer(ep_ring
,
2489 (struct xhci_generic_trb
*) ep_trb
);
2492 * No-op TRB should not trigger interrupts.
2493 * If ep_trb is a no-op TRB, it means the
2494 * corresponding TD has been cancelled. Just ignore
2497 if (trb_is_noop(ep_trb
)) {
2498 xhci_dbg(xhci
, "ep_trb is a no-op TRB. Skip it\n");
2502 /* update the urb's actual_length and give back to the core */
2503 if (usb_endpoint_xfer_control(&td
->urb
->ep
->desc
))
2504 process_ctrl_td(xhci
, td
, ep_trb
, event
, ep
, &status
);
2505 else if (usb_endpoint_xfer_isoc(&td
->urb
->ep
->desc
))
2506 process_isoc_td(xhci
, td
, ep_trb
, event
, ep
, &status
);
2508 process_bulk_intr_td(xhci
, td
, ep_trb
, event
, ep
,
2511 handling_skipped_tds
= ep
->skip
&&
2512 trb_comp_code
!= COMP_MISSED_SERVICE_ERROR
&&
2513 trb_comp_code
!= COMP_NO_PING_RESPONSE_ERROR
;
2516 * Do not update event ring dequeue pointer if we're in a loop
2517 * processing missed tds.
2519 if (!handling_skipped_tds
)
2520 inc_deq(xhci
, xhci
->event_ring
);
2523 * If ep->skip is set, it means there are missed tds on the
2524 * endpoint ring need to take care of.
2525 * Process them as short transfer until reach the td pointed by
2528 } while (handling_skipped_tds
);
2534 * This function handles all OS-owned events on the event ring. It may drop
2535 * xhci->lock between event processing (e.g. to pass up port status changes).
2536 * Returns >0 for "possibly more events to process" (caller should call again),
2537 * otherwise 0 if done. In future, <0 returns should indicate error code.
2539 static int xhci_handle_event(struct xhci_hcd
*xhci
)
2541 union xhci_trb
*event
;
2542 int update_ptrs
= 1;
2545 /* Event ring hasn't been allocated yet. */
2546 if (!xhci
->event_ring
|| !xhci
->event_ring
->dequeue
) {
2547 xhci_err(xhci
, "ERROR event ring not ready\n");
2551 event
= xhci
->event_ring
->dequeue
;
2552 /* Does the HC or OS own the TRB? */
2553 if ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_CYCLE
) !=
2554 xhci
->event_ring
->cycle_state
)
2557 trace_xhci_handle_event(xhci
->event_ring
, &event
->generic
);
2560 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2561 * speculative reads of the event's flags/data below.
2564 /* FIXME: Handle more event types. */
2565 switch (le32_to_cpu(event
->event_cmd
.flags
) & TRB_TYPE_BITMASK
) {
2566 case TRB_TYPE(TRB_COMPLETION
):
2567 handle_cmd_completion(xhci
, &event
->event_cmd
);
2569 case TRB_TYPE(TRB_PORT_STATUS
):
2570 handle_port_status(xhci
, event
);
2573 case TRB_TYPE(TRB_TRANSFER
):
2574 ret
= handle_tx_event(xhci
, &event
->trans_event
);
2578 case TRB_TYPE(TRB_DEV_NOTE
):
2579 handle_device_notification(xhci
, event
);
2582 if ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_TYPE_BITMASK
) >=
2584 handle_vendor_event(xhci
, event
);
2586 xhci_warn(xhci
, "ERROR unknown event type %d\n",
2588 le32_to_cpu(event
->event_cmd
.flags
)));
2590 /* Any of the above functions may drop and re-acquire the lock, so check
2591 * to make sure a watchdog timer didn't mark the host as non-responsive.
2593 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
2594 xhci_dbg(xhci
, "xHCI host dying, returning from "
2595 "event handler.\n");
2600 /* Update SW event ring dequeue pointer */
2601 inc_deq(xhci
, xhci
->event_ring
);
2603 /* Are there more items on the event ring? Caller will call us again to
2610 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2611 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2612 * indicators of an event TRB error, but we check the status *first* to be safe.
2614 irqreturn_t
xhci_irq(struct usb_hcd
*hcd
)
2616 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
2617 union xhci_trb
*event_ring_deq
;
2618 irqreturn_t ret
= IRQ_NONE
;
2619 unsigned long flags
;
2624 spin_lock_irqsave(&xhci
->lock
, flags
);
2625 /* Check if the xHC generated the interrupt, or the irq is shared */
2626 status
= readl(&xhci
->op_regs
->status
);
2627 if (status
== 0xffffffff) {
2632 if (!(status
& STS_EINT
))
2635 if (status
& STS_FATAL
) {
2636 xhci_warn(xhci
, "WARNING: Host System Error\n");
2643 * Clear the op reg interrupt status first,
2644 * so we can receive interrupts from other MSI-X interrupters.
2645 * Write 1 to clear the interrupt status.
2648 writel(status
, &xhci
->op_regs
->status
);
2649 /* FIXME when MSI-X is supported and there are multiple vectors */
2650 /* Clear the MSI-X event interrupt status */
2654 /* Acknowledge the PCI interrupt */
2655 irq_pending
= readl(&xhci
->ir_set
->irq_pending
);
2656 irq_pending
|= IMAN_IP
;
2657 writel(irq_pending
, &xhci
->ir_set
->irq_pending
);
2660 if (xhci
->xhc_state
& XHCI_STATE_DYING
||
2661 xhci
->xhc_state
& XHCI_STATE_HALTED
) {
2662 xhci_dbg(xhci
, "xHCI dying, ignoring interrupt. "
2663 "Shouldn't IRQs be disabled?\n");
2664 /* Clear the event handler busy flag (RW1C);
2665 * the event ring should be empty.
2667 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2668 xhci_write_64(xhci
, temp_64
| ERST_EHB
,
2669 &xhci
->ir_set
->erst_dequeue
);
2674 event_ring_deq
= xhci
->event_ring
->dequeue
;
2675 /* FIXME this should be a delayed service routine
2676 * that clears the EHB.
2678 while (xhci_handle_event(xhci
) > 0) {}
2680 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2681 /* If necessary, update the HW's version of the event ring deq ptr. */
2682 if (event_ring_deq
!= xhci
->event_ring
->dequeue
) {
2683 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2684 xhci
->event_ring
->dequeue
);
2686 xhci_warn(xhci
, "WARN something wrong with SW event "
2687 "ring dequeue ptr.\n");
2688 /* Update HC event ring dequeue pointer */
2689 temp_64
&= ERST_PTR_MASK
;
2690 temp_64
|= ((u64
) deq
& (u64
) ~ERST_PTR_MASK
);
2693 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2694 temp_64
|= ERST_EHB
;
2695 xhci_write_64(xhci
, temp_64
, &xhci
->ir_set
->erst_dequeue
);
2699 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2704 irqreturn_t
xhci_msi_irq(int irq
, void *hcd
)
2706 return xhci_irq(hcd
);
2709 /**** Endpoint Ring Operations ****/
2712 * Generic function for queueing a TRB on a ring.
2713 * The caller must have checked to make sure there's room on the ring.
2715 * @more_trbs_coming: Will you enqueue more TRBs before calling
2716 * prepare_transfer()?
2718 static void queue_trb(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
2719 bool more_trbs_coming
,
2720 u32 field1
, u32 field2
, u32 field3
, u32 field4
)
2722 struct xhci_generic_trb
*trb
;
2724 trb
= &ring
->enqueue
->generic
;
2725 trb
->field
[0] = cpu_to_le32(field1
);
2726 trb
->field
[1] = cpu_to_le32(field2
);
2727 trb
->field
[2] = cpu_to_le32(field3
);
2728 trb
->field
[3] = cpu_to_le32(field4
);
2730 trace_xhci_queue_trb(ring
, trb
);
2732 inc_enq(xhci
, ring
, more_trbs_coming
);
2736 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2737 * FIXME allocate segments if the ring is full.
2739 static int prepare_ring(struct xhci_hcd
*xhci
, struct xhci_ring
*ep_ring
,
2740 u32 ep_state
, unsigned int num_trbs
, gfp_t mem_flags
)
2742 unsigned int num_trbs_needed
;
2744 /* Make sure the endpoint has been added to xHC schedule */
2746 case EP_STATE_DISABLED
:
2748 * USB core changed config/interfaces without notifying us,
2749 * or hardware is reporting the wrong state.
2751 xhci_warn(xhci
, "WARN urb submitted to disabled ep\n");
2753 case EP_STATE_ERROR
:
2754 xhci_warn(xhci
, "WARN waiting for error on ep to be cleared\n");
2755 /* FIXME event handling code for error needs to clear it */
2756 /* XXX not sure if this should be -ENOENT or not */
2758 case EP_STATE_HALTED
:
2759 xhci_dbg(xhci
, "WARN halted endpoint, queueing URB anyway.\n");
2760 case EP_STATE_STOPPED
:
2761 case EP_STATE_RUNNING
:
2764 xhci_err(xhci
, "ERROR unknown endpoint state for ep\n");
2766 * FIXME issue Configure Endpoint command to try to get the HC
2767 * back into a known state.
2773 if (room_on_ring(xhci
, ep_ring
, num_trbs
))
2776 if (ep_ring
== xhci
->cmd_ring
) {
2777 xhci_err(xhci
, "Do not support expand command ring\n");
2781 xhci_dbg_trace(xhci
, trace_xhci_dbg_ring_expansion
,
2782 "ERROR no room on ep ring, try ring expansion");
2783 num_trbs_needed
= num_trbs
- ep_ring
->num_trbs_free
;
2784 if (xhci_ring_expansion(xhci
, ep_ring
, num_trbs_needed
,
2786 xhci_err(xhci
, "Ring expansion failed\n");
2791 while (trb_is_link(ep_ring
->enqueue
)) {
2792 /* If we're not dealing with 0.95 hardware or isoc rings
2793 * on AMD 0.96 host, clear the chain bit.
2795 if (!xhci_link_trb_quirk(xhci
) &&
2796 !(ep_ring
->type
== TYPE_ISOC
&&
2797 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
2798 ep_ring
->enqueue
->link
.control
&=
2799 cpu_to_le32(~TRB_CHAIN
);
2801 ep_ring
->enqueue
->link
.control
|=
2802 cpu_to_le32(TRB_CHAIN
);
2805 ep_ring
->enqueue
->link
.control
^= cpu_to_le32(TRB_CYCLE
);
2807 /* Toggle the cycle bit after the last ring segment. */
2808 if (link_trb_toggles_cycle(ep_ring
->enqueue
))
2809 ep_ring
->cycle_state
^= 1;
2811 ep_ring
->enq_seg
= ep_ring
->enq_seg
->next
;
2812 ep_ring
->enqueue
= ep_ring
->enq_seg
->trbs
;
2817 static int prepare_transfer(struct xhci_hcd
*xhci
,
2818 struct xhci_virt_device
*xdev
,
2819 unsigned int ep_index
,
2820 unsigned int stream_id
,
2821 unsigned int num_trbs
,
2823 unsigned int td_index
,
2827 struct urb_priv
*urb_priv
;
2829 struct xhci_ring
*ep_ring
;
2830 struct xhci_ep_ctx
*ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
2832 ep_ring
= xhci_stream_id_to_ring(xdev
, ep_index
, stream_id
);
2834 xhci_dbg(xhci
, "Can't prepare ring for bad stream ID %u\n",
2839 ret
= prepare_ring(xhci
, ep_ring
, GET_EP_CTX_STATE(ep_ctx
),
2840 num_trbs
, mem_flags
);
2844 urb_priv
= urb
->hcpriv
;
2845 td
= &urb_priv
->td
[td_index
];
2847 INIT_LIST_HEAD(&td
->td_list
);
2848 INIT_LIST_HEAD(&td
->cancelled_td_list
);
2850 if (td_index
== 0) {
2851 ret
= usb_hcd_link_urb_to_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
2857 /* Add this TD to the tail of the endpoint ring's TD list */
2858 list_add_tail(&td
->td_list
, &ep_ring
->td_list
);
2859 td
->start_seg
= ep_ring
->enq_seg
;
2860 td
->first_trb
= ep_ring
->enqueue
;
2865 static unsigned int count_trbs(u64 addr
, u64 len
)
2867 unsigned int num_trbs
;
2869 num_trbs
= DIV_ROUND_UP(len
+ (addr
& (TRB_MAX_BUFF_SIZE
- 1)),
2877 static inline unsigned int count_trbs_needed(struct urb
*urb
)
2879 return count_trbs(urb
->transfer_dma
, urb
->transfer_buffer_length
);
2882 static unsigned int count_sg_trbs_needed(struct urb
*urb
)
2884 struct scatterlist
*sg
;
2885 unsigned int i
, len
, full_len
, num_trbs
= 0;
2887 full_len
= urb
->transfer_buffer_length
;
2889 for_each_sg(urb
->sg
, sg
, urb
->num_mapped_sgs
, i
) {
2890 len
= sg_dma_len(sg
);
2891 num_trbs
+= count_trbs(sg_dma_address(sg
), len
);
2892 len
= min_t(unsigned int, len
, full_len
);
2901 static unsigned int count_isoc_trbs_needed(struct urb
*urb
, int i
)
2905 addr
= (u64
) (urb
->transfer_dma
+ urb
->iso_frame_desc
[i
].offset
);
2906 len
= urb
->iso_frame_desc
[i
].length
;
2908 return count_trbs(addr
, len
);
2911 static void check_trb_math(struct urb
*urb
, int running_total
)
2913 if (unlikely(running_total
!= urb
->transfer_buffer_length
))
2914 dev_err(&urb
->dev
->dev
, "%s - ep %#x - Miscalculated tx length, "
2915 "queued %#x (%d), asked for %#x (%d)\n",
2917 urb
->ep
->desc
.bEndpointAddress
,
2918 running_total
, running_total
,
2919 urb
->transfer_buffer_length
,
2920 urb
->transfer_buffer_length
);
2923 static void giveback_first_trb(struct xhci_hcd
*xhci
, int slot_id
,
2924 unsigned int ep_index
, unsigned int stream_id
, int start_cycle
,
2925 struct xhci_generic_trb
*start_trb
)
2928 * Pass all the TRBs to the hardware at once and make sure this write
2933 start_trb
->field
[3] |= cpu_to_le32(start_cycle
);
2935 start_trb
->field
[3] &= cpu_to_le32(~TRB_CYCLE
);
2936 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
, stream_id
);
2939 static void check_interval(struct xhci_hcd
*xhci
, struct urb
*urb
,
2940 struct xhci_ep_ctx
*ep_ctx
)
2945 xhci_interval
= EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx
->ep_info
));
2946 ep_interval
= urb
->interval
;
2948 /* Convert to microframes */
2949 if (urb
->dev
->speed
== USB_SPEED_LOW
||
2950 urb
->dev
->speed
== USB_SPEED_FULL
)
2953 /* FIXME change this to a warning and a suggestion to use the new API
2954 * to set the polling interval (once the API is added).
2956 if (xhci_interval
!= ep_interval
) {
2957 dev_dbg_ratelimited(&urb
->dev
->dev
,
2958 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
2959 ep_interval
, ep_interval
== 1 ? "" : "s",
2960 xhci_interval
, xhci_interval
== 1 ? "" : "s");
2961 urb
->interval
= xhci_interval
;
2962 /* Convert back to frames for LS/FS devices */
2963 if (urb
->dev
->speed
== USB_SPEED_LOW
||
2964 urb
->dev
->speed
== USB_SPEED_FULL
)
2970 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2971 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2972 * (comprised of sg list entries) can take several service intervals to
2975 int xhci_queue_intr_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2976 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
2978 struct xhci_ep_ctx
*ep_ctx
;
2980 ep_ctx
= xhci_get_ep_ctx(xhci
, xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2981 check_interval(xhci
, urb
, ep_ctx
);
2983 return xhci_queue_bulk_tx(xhci
, mem_flags
, urb
, slot_id
, ep_index
);
2987 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
2988 * packets remaining in the TD (*not* including this TRB).
2990 * Total TD packet count = total_packet_count =
2991 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
2993 * Packets transferred up to and including this TRB = packets_transferred =
2994 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2996 * TD size = total_packet_count - packets_transferred
2998 * For xHCI 0.96 and older, TD size field should be the remaining bytes
2999 * including this TRB, right shifted by 10
3001 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3002 * This is taken care of in the TRB_TD_SIZE() macro
3004 * The last TRB in a TD must have the TD size set to zero.
3006 static u32
xhci_td_remainder(struct xhci_hcd
*xhci
, int transferred
,
3007 int trb_buff_len
, unsigned int td_total_len
,
3008 struct urb
*urb
, bool more_trbs_coming
)
3010 u32 maxp
, total_packet_count
;
3012 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3013 if (xhci
->hci_version
< 0x100 && !(xhci
->quirks
& XHCI_MTK_HOST
))
3014 return ((td_total_len
- transferred
) >> 10);
3016 /* One TRB with a zero-length data packet. */
3017 if (!more_trbs_coming
|| (transferred
== 0 && trb_buff_len
== 0) ||
3018 trb_buff_len
== td_total_len
)
3021 /* for MTK xHCI, TD size doesn't include this TRB */
3022 if (xhci
->quirks
& XHCI_MTK_HOST
)
3025 maxp
= usb_endpoint_maxp(&urb
->ep
->desc
);
3026 total_packet_count
= DIV_ROUND_UP(td_total_len
, maxp
);
3028 /* Queueing functions don't count the current TRB into transferred */
3029 return (total_packet_count
- ((transferred
+ trb_buff_len
) / maxp
));
3033 static int xhci_align_td(struct xhci_hcd
*xhci
, struct urb
*urb
, u32 enqd_len
,
3034 u32
*trb_buff_len
, struct xhci_segment
*seg
)
3036 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
3037 unsigned int unalign
;
3038 unsigned int max_pkt
;
3041 max_pkt
= usb_endpoint_maxp(&urb
->ep
->desc
);
3042 unalign
= (enqd_len
+ *trb_buff_len
) % max_pkt
;
3044 /* we got lucky, last normal TRB data on segment is packet aligned */
3048 xhci_dbg(xhci
, "Unaligned %d bytes, buff len %d\n",
3049 unalign
, *trb_buff_len
);
3051 /* is the last nornal TRB alignable by splitting it */
3052 if (*trb_buff_len
> unalign
) {
3053 *trb_buff_len
-= unalign
;
3054 xhci_dbg(xhci
, "split align, new buff len %d\n", *trb_buff_len
);
3059 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3060 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3061 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3063 new_buff_len
= max_pkt
- (enqd_len
% max_pkt
);
3065 if (new_buff_len
> (urb
->transfer_buffer_length
- enqd_len
))
3066 new_buff_len
= (urb
->transfer_buffer_length
- enqd_len
);
3068 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3069 if (usb_urb_dir_out(urb
)) {
3070 sg_pcopy_to_buffer(urb
->sg
, urb
->num_mapped_sgs
,
3071 seg
->bounce_buf
, new_buff_len
, enqd_len
);
3072 seg
->bounce_dma
= dma_map_single(dev
, seg
->bounce_buf
,
3073 max_pkt
, DMA_TO_DEVICE
);
3075 seg
->bounce_dma
= dma_map_single(dev
, seg
->bounce_buf
,
3076 max_pkt
, DMA_FROM_DEVICE
);
3079 if (dma_mapping_error(dev
, seg
->bounce_dma
)) {
3080 /* try without aligning. Some host controllers survive */
3081 xhci_warn(xhci
, "Failed mapping bounce buffer, not aligning\n");
3084 *trb_buff_len
= new_buff_len
;
3085 seg
->bounce_len
= new_buff_len
;
3086 seg
->bounce_offs
= enqd_len
;
3088 xhci_dbg(xhci
, "Bounce align, new buff len %d\n", *trb_buff_len
);
3093 /* This is very similar to what ehci-q.c qtd_fill() does */
3094 int xhci_queue_bulk_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3095 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3097 struct xhci_ring
*ring
;
3098 struct urb_priv
*urb_priv
;
3100 struct xhci_generic_trb
*start_trb
;
3101 struct scatterlist
*sg
= NULL
;
3102 bool more_trbs_coming
= true;
3103 bool need_zero_pkt
= false;
3104 bool first_trb
= true;
3105 unsigned int num_trbs
;
3106 unsigned int start_cycle
, num_sgs
= 0;
3107 unsigned int enqd_len
, block_len
, trb_buff_len
, full_len
;
3109 u32 field
, length_field
, remainder
;
3110 u64 addr
, send_addr
;
3112 ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
3116 full_len
= urb
->transfer_buffer_length
;
3117 /* If we have scatter/gather list, we use it. */
3119 num_sgs
= urb
->num_mapped_sgs
;
3121 addr
= (u64
) sg_dma_address(sg
);
3122 block_len
= sg_dma_len(sg
);
3123 num_trbs
= count_sg_trbs_needed(urb
);
3125 num_trbs
= count_trbs_needed(urb
);
3126 addr
= (u64
) urb
->transfer_dma
;
3127 block_len
= full_len
;
3129 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
3130 ep_index
, urb
->stream_id
,
3131 num_trbs
, urb
, 0, mem_flags
);
3132 if (unlikely(ret
< 0))
3135 urb_priv
= urb
->hcpriv
;
3137 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3138 if (urb
->transfer_flags
& URB_ZERO_PACKET
&& urb_priv
->num_tds
> 1)
3139 need_zero_pkt
= true;
3141 td
= &urb_priv
->td
[0];
3144 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3145 * until we've finished creating all the other TRBs. The ring's cycle
3146 * state may change as we enqueue the other TRBs, so save it too.
3148 start_trb
= &ring
->enqueue
->generic
;
3149 start_cycle
= ring
->cycle_state
;
3152 /* Queue the TRBs, even if they are zero-length */
3153 for (enqd_len
= 0; first_trb
|| enqd_len
< full_len
;
3154 enqd_len
+= trb_buff_len
) {
3155 field
= TRB_TYPE(TRB_NORMAL
);
3157 /* TRB buffer should not cross 64KB boundaries */
3158 trb_buff_len
= TRB_BUFF_LEN_UP_TO_BOUNDARY(addr
);
3159 trb_buff_len
= min_t(unsigned int, trb_buff_len
, block_len
);
3161 if (enqd_len
+ trb_buff_len
> full_len
)
3162 trb_buff_len
= full_len
- enqd_len
;
3164 /* Don't change the cycle bit of the first TRB until later */
3167 if (start_cycle
== 0)
3170 field
|= ring
->cycle_state
;
3172 /* Chain all the TRBs together; clear the chain bit in the last
3173 * TRB to indicate it's the last TRB in the chain.
3175 if (enqd_len
+ trb_buff_len
< full_len
) {
3177 if (trb_is_link(ring
->enqueue
+ 1)) {
3178 if (xhci_align_td(xhci
, urb
, enqd_len
,
3181 send_addr
= ring
->enq_seg
->bounce_dma
;
3182 /* assuming TD won't span 2 segs */
3183 td
->bounce_seg
= ring
->enq_seg
;
3187 if (enqd_len
+ trb_buff_len
>= full_len
) {
3188 field
&= ~TRB_CHAIN
;
3190 more_trbs_coming
= false;
3191 td
->last_trb
= ring
->enqueue
;
3194 /* Only set interrupt on short packet for IN endpoints */
3195 if (usb_urb_dir_in(urb
))
3198 /* Set the TRB length, TD size, and interrupter fields. */
3199 remainder
= xhci_td_remainder(xhci
, enqd_len
, trb_buff_len
,
3200 full_len
, urb
, more_trbs_coming
);
3202 length_field
= TRB_LEN(trb_buff_len
) |
3203 TRB_TD_SIZE(remainder
) |
3206 queue_trb(xhci
, ring
, more_trbs_coming
| need_zero_pkt
,
3207 lower_32_bits(send_addr
),
3208 upper_32_bits(send_addr
),
3212 addr
+= trb_buff_len
;
3213 sent_len
= trb_buff_len
;
3215 while (sg
&& sent_len
>= block_len
) {
3218 sent_len
-= block_len
;
3221 block_len
= sg_dma_len(sg
);
3222 addr
= (u64
) sg_dma_address(sg
);
3226 block_len
-= sent_len
;
3230 if (need_zero_pkt
) {
3231 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
3232 ep_index
, urb
->stream_id
,
3233 1, urb
, 1, mem_flags
);
3234 urb_priv
->td
[1].last_trb
= ring
->enqueue
;
3235 field
= TRB_TYPE(TRB_NORMAL
) | ring
->cycle_state
| TRB_IOC
;
3236 queue_trb(xhci
, ring
, 0, 0, 0, TRB_INTR_TARGET(0), field
);
3239 check_trb_math(urb
, enqd_len
);
3240 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
3241 start_cycle
, start_trb
);
3245 /* Caller must have locked xhci->lock */
3246 int xhci_queue_ctrl_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3247 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3249 struct xhci_ring
*ep_ring
;
3252 struct usb_ctrlrequest
*setup
;
3253 struct xhci_generic_trb
*start_trb
;
3256 struct urb_priv
*urb_priv
;
3259 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
3264 * Need to copy setup packet into setup TRB, so we can't use the setup
3267 if (!urb
->setup_packet
)
3270 /* 1 TRB for setup, 1 for status */
3273 * Don't need to check if we need additional event data and normal TRBs,
3274 * since data in control transfers will never get bigger than 16MB
3275 * XXX: can we get a buffer that crosses 64KB boundaries?
3277 if (urb
->transfer_buffer_length
> 0)
3279 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
3280 ep_index
, urb
->stream_id
,
3281 num_trbs
, urb
, 0, mem_flags
);
3285 urb_priv
= urb
->hcpriv
;
3286 td
= &urb_priv
->td
[0];
3289 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3290 * until we've finished creating all the other TRBs. The ring's cycle
3291 * state may change as we enqueue the other TRBs, so save it too.
3293 start_trb
= &ep_ring
->enqueue
->generic
;
3294 start_cycle
= ep_ring
->cycle_state
;
3296 /* Queue setup TRB - see section 6.4.1.2.1 */
3297 /* FIXME better way to translate setup_packet into two u32 fields? */
3298 setup
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
3300 field
|= TRB_IDT
| TRB_TYPE(TRB_SETUP
);
3301 if (start_cycle
== 0)
3304 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3305 if ((xhci
->hci_version
>= 0x100) || (xhci
->quirks
& XHCI_MTK_HOST
)) {
3306 if (urb
->transfer_buffer_length
> 0) {
3307 if (setup
->bRequestType
& USB_DIR_IN
)
3308 field
|= TRB_TX_TYPE(TRB_DATA_IN
);
3310 field
|= TRB_TX_TYPE(TRB_DATA_OUT
);
3314 queue_trb(xhci
, ep_ring
, true,
3315 setup
->bRequestType
| setup
->bRequest
<< 8 | le16_to_cpu(setup
->wValue
) << 16,
3316 le16_to_cpu(setup
->wIndex
) | le16_to_cpu(setup
->wLength
) << 16,
3317 TRB_LEN(8) | TRB_INTR_TARGET(0),
3318 /* Immediate data in pointer */
3321 /* If there's data, queue data TRBs */
3322 /* Only set interrupt on short packet for IN endpoints */
3323 if (usb_urb_dir_in(urb
))
3324 field
= TRB_ISP
| TRB_TYPE(TRB_DATA
);
3326 field
= TRB_TYPE(TRB_DATA
);
3328 if (urb
->transfer_buffer_length
> 0) {
3329 u32 length_field
, remainder
;
3331 remainder
= xhci_td_remainder(xhci
, 0,
3332 urb
->transfer_buffer_length
,
3333 urb
->transfer_buffer_length
,
3335 length_field
= TRB_LEN(urb
->transfer_buffer_length
) |
3336 TRB_TD_SIZE(remainder
) |
3338 if (setup
->bRequestType
& USB_DIR_IN
)
3339 field
|= TRB_DIR_IN
;
3340 queue_trb(xhci
, ep_ring
, true,
3341 lower_32_bits(urb
->transfer_dma
),
3342 upper_32_bits(urb
->transfer_dma
),
3344 field
| ep_ring
->cycle_state
);
3347 /* Save the DMA address of the last TRB in the TD */
3348 td
->last_trb
= ep_ring
->enqueue
;
3350 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3351 /* If the device sent data, the status stage is an OUT transfer */
3352 if (urb
->transfer_buffer_length
> 0 && setup
->bRequestType
& USB_DIR_IN
)
3356 queue_trb(xhci
, ep_ring
, false,
3360 /* Event on completion */
3361 field
| TRB_IOC
| TRB_TYPE(TRB_STATUS
) | ep_ring
->cycle_state
);
3363 giveback_first_trb(xhci
, slot_id
, ep_index
, 0,
3364 start_cycle
, start_trb
);
3369 * The transfer burst count field of the isochronous TRB defines the number of
3370 * bursts that are required to move all packets in this TD. Only SuperSpeed
3371 * devices can burst up to bMaxBurst number of packets per service interval.
3372 * This field is zero based, meaning a value of zero in the field means one
3373 * burst. Basically, for everything but SuperSpeed devices, this field will be
3374 * zero. Only xHCI 1.0 host controllers support this field.
3376 static unsigned int xhci_get_burst_count(struct xhci_hcd
*xhci
,
3377 struct urb
*urb
, unsigned int total_packet_count
)
3379 unsigned int max_burst
;
3381 if (xhci
->hci_version
< 0x100 || urb
->dev
->speed
< USB_SPEED_SUPER
)
3384 max_burst
= urb
->ep
->ss_ep_comp
.bMaxBurst
;
3385 return DIV_ROUND_UP(total_packet_count
, max_burst
+ 1) - 1;
3389 * Returns the number of packets in the last "burst" of packets. This field is
3390 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3391 * the last burst packet count is equal to the total number of packets in the
3392 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3393 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3394 * contain 1 to (bMaxBurst + 1) packets.
3396 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd
*xhci
,
3397 struct urb
*urb
, unsigned int total_packet_count
)
3399 unsigned int max_burst
;
3400 unsigned int residue
;
3402 if (xhci
->hci_version
< 0x100)
3405 if (urb
->dev
->speed
>= USB_SPEED_SUPER
) {
3406 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3407 max_burst
= urb
->ep
->ss_ep_comp
.bMaxBurst
;
3408 residue
= total_packet_count
% (max_burst
+ 1);
3409 /* If residue is zero, the last burst contains (max_burst + 1)
3410 * number of packets, but the TLBPC field is zero-based.
3416 if (total_packet_count
== 0)
3418 return total_packet_count
- 1;
3422 * Calculates Frame ID field of the isochronous TRB identifies the
3423 * target frame that the Interval associated with this Isochronous
3424 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3426 * Returns actual frame id on success, negative value on error.
3428 static int xhci_get_isoc_frame_id(struct xhci_hcd
*xhci
,
3429 struct urb
*urb
, int index
)
3431 int start_frame
, ist
, ret
= 0;
3432 int start_frame_id
, end_frame_id
, current_frame_id
;
3434 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3435 urb
->dev
->speed
== USB_SPEED_FULL
)
3436 start_frame
= urb
->start_frame
+ index
* urb
->interval
;
3438 start_frame
= (urb
->start_frame
+ index
* urb
->interval
) >> 3;
3440 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3442 * If bit [3] of IST is cleared to '0', software can add a TRB no
3443 * later than IST[2:0] Microframes before that TRB is scheduled to
3445 * If bit [3] of IST is set to '1', software can add a TRB no later
3446 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3448 ist
= HCS_IST(xhci
->hcs_params2
) & 0x7;
3449 if (HCS_IST(xhci
->hcs_params2
) & (1 << 3))
3452 /* Software shall not schedule an Isoch TD with a Frame ID value that
3453 * is less than the Start Frame ID or greater than the End Frame ID,
3456 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3457 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3459 * Both the End Frame ID and Start Frame ID values are calculated
3460 * in microframes. When software determines the valid Frame ID value;
3461 * The End Frame ID value should be rounded down to the nearest Frame
3462 * boundary, and the Start Frame ID value should be rounded up to the
3463 * nearest Frame boundary.
3465 current_frame_id
= readl(&xhci
->run_regs
->microframe_index
);
3466 start_frame_id
= roundup(current_frame_id
+ ist
+ 1, 8);
3467 end_frame_id
= rounddown(current_frame_id
+ 895 * 8, 8);
3469 start_frame
&= 0x7ff;
3470 start_frame_id
= (start_frame_id
>> 3) & 0x7ff;
3471 end_frame_id
= (end_frame_id
>> 3) & 0x7ff;
3473 xhci_dbg(xhci
, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3474 __func__
, index
, readl(&xhci
->run_regs
->microframe_index
),
3475 start_frame_id
, end_frame_id
, start_frame
);
3477 if (start_frame_id
< end_frame_id
) {
3478 if (start_frame
> end_frame_id
||
3479 start_frame
< start_frame_id
)
3481 } else if (start_frame_id
> end_frame_id
) {
3482 if ((start_frame
> end_frame_id
&&
3483 start_frame
< start_frame_id
))
3490 if (ret
== -EINVAL
|| start_frame
== start_frame_id
) {
3491 start_frame
= start_frame_id
+ 1;
3492 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3493 urb
->dev
->speed
== USB_SPEED_FULL
)
3494 urb
->start_frame
= start_frame
;
3496 urb
->start_frame
= start_frame
<< 3;
3502 xhci_warn(xhci
, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3503 start_frame
, current_frame_id
, index
,
3504 start_frame_id
, end_frame_id
);
3505 xhci_warn(xhci
, "Ignore frame ID field, use SIA bit instead\n");
3512 /* This is for isoc transfer */
3513 static int xhci_queue_isoc_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3514 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3516 struct xhci_ring
*ep_ring
;
3517 struct urb_priv
*urb_priv
;
3519 int num_tds
, trbs_per_td
;
3520 struct xhci_generic_trb
*start_trb
;
3523 u32 field
, length_field
;
3524 int running_total
, trb_buff_len
, td_len
, td_remain_len
, ret
;
3525 u64 start_addr
, addr
;
3527 bool more_trbs_coming
;
3528 struct xhci_virt_ep
*xep
;
3531 xep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
3532 ep_ring
= xhci
->devs
[slot_id
]->eps
[ep_index
].ring
;
3534 num_tds
= urb
->number_of_packets
;
3536 xhci_dbg(xhci
, "Isoc URB with zero packets?\n");
3539 start_addr
= (u64
) urb
->transfer_dma
;
3540 start_trb
= &ep_ring
->enqueue
->generic
;
3541 start_cycle
= ep_ring
->cycle_state
;
3543 urb_priv
= urb
->hcpriv
;
3544 /* Queue the TRBs for each TD, even if they are zero-length */
3545 for (i
= 0; i
< num_tds
; i
++) {
3546 unsigned int total_pkt_count
, max_pkt
;
3547 unsigned int burst_count
, last_burst_pkt_count
;
3552 addr
= start_addr
+ urb
->iso_frame_desc
[i
].offset
;
3553 td_len
= urb
->iso_frame_desc
[i
].length
;
3554 td_remain_len
= td_len
;
3555 max_pkt
= usb_endpoint_maxp(&urb
->ep
->desc
);
3556 total_pkt_count
= DIV_ROUND_UP(td_len
, max_pkt
);
3558 /* A zero-length transfer still involves at least one packet. */
3559 if (total_pkt_count
== 0)
3561 burst_count
= xhci_get_burst_count(xhci
, urb
, total_pkt_count
);
3562 last_burst_pkt_count
= xhci_get_last_burst_packet_count(xhci
,
3563 urb
, total_pkt_count
);
3565 trbs_per_td
= count_isoc_trbs_needed(urb
, i
);
3567 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
], ep_index
,
3568 urb
->stream_id
, trbs_per_td
, urb
, i
, mem_flags
);
3574 td
= &urb_priv
->td
[i
];
3576 /* use SIA as default, if frame id is used overwrite it */
3577 sia_frame_id
= TRB_SIA
;
3578 if (!(urb
->transfer_flags
& URB_ISO_ASAP
) &&
3579 HCC_CFC(xhci
->hcc_params
)) {
3580 frame_id
= xhci_get_isoc_frame_id(xhci
, urb
, i
);
3582 sia_frame_id
= TRB_FRAME_ID(frame_id
);
3585 * Set isoc specific data for the first TRB in a TD.
3586 * Prevent HW from getting the TRBs by keeping the cycle state
3587 * inverted in the first TDs isoc TRB.
3589 field
= TRB_TYPE(TRB_ISOC
) |
3590 TRB_TLBPC(last_burst_pkt_count
) |
3592 (i
? ep_ring
->cycle_state
: !start_cycle
);
3594 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3595 if (!xep
->use_extended_tbc
)
3596 field
|= TRB_TBC(burst_count
);
3598 /* fill the rest of the TRB fields, and remaining normal TRBs */
3599 for (j
= 0; j
< trbs_per_td
; j
++) {
3602 /* only first TRB is isoc, overwrite otherwise */
3604 field
= TRB_TYPE(TRB_NORMAL
) |
3605 ep_ring
->cycle_state
;
3607 /* Only set interrupt on short packet for IN EPs */
3608 if (usb_urb_dir_in(urb
))
3611 /* Set the chain bit for all except the last TRB */
3612 if (j
< trbs_per_td
- 1) {
3613 more_trbs_coming
= true;
3616 more_trbs_coming
= false;
3617 td
->last_trb
= ep_ring
->enqueue
;
3619 /* set BEI, except for the last TD */
3620 if (xhci
->hci_version
>= 0x100 &&
3621 !(xhci
->quirks
& XHCI_AVOID_BEI
) &&
3625 /* Calculate TRB length */
3626 trb_buff_len
= TRB_BUFF_LEN_UP_TO_BOUNDARY(addr
);
3627 if (trb_buff_len
> td_remain_len
)
3628 trb_buff_len
= td_remain_len
;
3630 /* Set the TRB length, TD size, & interrupter fields. */
3631 remainder
= xhci_td_remainder(xhci
, running_total
,
3632 trb_buff_len
, td_len
,
3633 urb
, more_trbs_coming
);
3635 length_field
= TRB_LEN(trb_buff_len
) |
3638 /* xhci 1.1 with ETE uses TD Size field for TBC */
3639 if (first_trb
&& xep
->use_extended_tbc
)
3640 length_field
|= TRB_TD_SIZE_TBC(burst_count
);
3642 length_field
|= TRB_TD_SIZE(remainder
);
3645 queue_trb(xhci
, ep_ring
, more_trbs_coming
,
3646 lower_32_bits(addr
),
3647 upper_32_bits(addr
),
3650 running_total
+= trb_buff_len
;
3652 addr
+= trb_buff_len
;
3653 td_remain_len
-= trb_buff_len
;
3656 /* Check TD length */
3657 if (running_total
!= td_len
) {
3658 xhci_err(xhci
, "ISOC TD length unmatch\n");
3664 /* store the next frame id */
3665 if (HCC_CFC(xhci
->hcc_params
))
3666 xep
->next_frame_id
= urb
->start_frame
+ num_tds
* urb
->interval
;
3668 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
== 0) {
3669 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
3670 usb_amd_quirk_pll_disable();
3672 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
++;
3674 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
3675 start_cycle
, start_trb
);
3678 /* Clean up a partially enqueued isoc transfer. */
3680 for (i
--; i
>= 0; i
--)
3681 list_del_init(&urb_priv
->td
[i
].td_list
);
3683 /* Use the first TD as a temporary variable to turn the TDs we've queued
3684 * into No-ops with a software-owned cycle bit. That way the hardware
3685 * won't accidentally start executing bogus TDs when we partially
3686 * overwrite them. td->first_trb and td->start_seg are already set.
3688 urb_priv
->td
[0].last_trb
= ep_ring
->enqueue
;
3689 /* Every TRB except the first & last will have its cycle bit flipped. */
3690 td_to_noop(xhci
, ep_ring
, &urb_priv
->td
[0], true);
3692 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3693 ep_ring
->enqueue
= urb_priv
->td
[0].first_trb
;
3694 ep_ring
->enq_seg
= urb_priv
->td
[0].start_seg
;
3695 ep_ring
->cycle_state
= start_cycle
;
3696 ep_ring
->num_trbs_free
= ep_ring
->num_trbs_free_temp
;
3697 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
3702 * Check transfer ring to guarantee there is enough room for the urb.
3703 * Update ISO URB start_frame and interval.
3704 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3705 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3706 * Contiguous Frame ID is not supported by HC.
3708 int xhci_queue_isoc_tx_prepare(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3709 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3711 struct xhci_virt_device
*xdev
;
3712 struct xhci_ring
*ep_ring
;
3713 struct xhci_ep_ctx
*ep_ctx
;
3715 int num_tds
, num_trbs
, i
;
3717 struct xhci_virt_ep
*xep
;
3720 xdev
= xhci
->devs
[slot_id
];
3721 xep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
3722 ep_ring
= xdev
->eps
[ep_index
].ring
;
3723 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
3726 num_tds
= urb
->number_of_packets
;
3727 for (i
= 0; i
< num_tds
; i
++)
3728 num_trbs
+= count_isoc_trbs_needed(urb
, i
);
3730 /* Check the ring to guarantee there is enough room for the whole urb.
3731 * Do not insert any td of the urb to the ring if the check failed.
3733 ret
= prepare_ring(xhci
, ep_ring
, GET_EP_CTX_STATE(ep_ctx
),
3734 num_trbs
, mem_flags
);
3739 * Check interval value. This should be done before we start to
3740 * calculate the start frame value.
3742 check_interval(xhci
, urb
, ep_ctx
);
3744 /* Calculate the start frame and put it in urb->start_frame. */
3745 if (HCC_CFC(xhci
->hcc_params
) && !list_empty(&ep_ring
->td_list
)) {
3746 if (GET_EP_CTX_STATE(ep_ctx
) == EP_STATE_RUNNING
) {
3747 urb
->start_frame
= xep
->next_frame_id
;
3748 goto skip_start_over
;
3752 start_frame
= readl(&xhci
->run_regs
->microframe_index
);
3753 start_frame
&= 0x3fff;
3755 * Round up to the next frame and consider the time before trb really
3756 * gets scheduled by hardare.
3758 ist
= HCS_IST(xhci
->hcs_params2
) & 0x7;
3759 if (HCS_IST(xhci
->hcs_params2
) & (1 << 3))
3761 start_frame
+= ist
+ XHCI_CFC_DELAY
;
3762 start_frame
= roundup(start_frame
, 8);
3765 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3766 * is greate than 8 microframes.
3768 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3769 urb
->dev
->speed
== USB_SPEED_FULL
) {
3770 start_frame
= roundup(start_frame
, urb
->interval
<< 3);
3771 urb
->start_frame
= start_frame
>> 3;
3773 start_frame
= roundup(start_frame
, urb
->interval
);
3774 urb
->start_frame
= start_frame
;
3778 ep_ring
->num_trbs_free_temp
= ep_ring
->num_trbs_free
;
3780 return xhci_queue_isoc_tx(xhci
, mem_flags
, urb
, slot_id
, ep_index
);
3783 /**** Command Ring Operations ****/
3785 /* Generic function for queueing a command TRB on the command ring.
3786 * Check to make sure there's room on the command ring for one command TRB.
3787 * Also check that there's room reserved for commands that must not fail.
3788 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3789 * then only check for the number of reserved spots.
3790 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3791 * because the command event handler may want to resubmit a failed command.
3793 static int queue_command(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3794 u32 field1
, u32 field2
,
3795 u32 field3
, u32 field4
, bool command_must_succeed
)
3797 int reserved_trbs
= xhci
->cmd_ring_reserved_trbs
;
3800 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
3801 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
3802 xhci_dbg(xhci
, "xHCI dying or halted, can't queue_command\n");
3806 if (!command_must_succeed
)
3809 ret
= prepare_ring(xhci
, xhci
->cmd_ring
, EP_STATE_RUNNING
,
3810 reserved_trbs
, GFP_ATOMIC
);
3812 xhci_err(xhci
, "ERR: No room for command on command ring\n");
3813 if (command_must_succeed
)
3814 xhci_err(xhci
, "ERR: Reserved TRB counting for "
3815 "unfailable commands failed.\n");
3819 cmd
->command_trb
= xhci
->cmd_ring
->enqueue
;
3821 /* if there are no other commands queued we start the timeout timer */
3822 if (list_empty(&xhci
->cmd_list
)) {
3823 xhci
->current_cmd
= cmd
;
3824 xhci_mod_cmd_timer(xhci
, XHCI_CMD_DEFAULT_TIMEOUT
);
3827 list_add_tail(&cmd
->cmd_list
, &xhci
->cmd_list
);
3829 queue_trb(xhci
, xhci
->cmd_ring
, false, field1
, field2
, field3
,
3830 field4
| xhci
->cmd_ring
->cycle_state
);
3834 /* Queue a slot enable or disable request on the command ring */
3835 int xhci_queue_slot_control(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3836 u32 trb_type
, u32 slot_id
)
3838 return queue_command(xhci
, cmd
, 0, 0, 0,
3839 TRB_TYPE(trb_type
) | SLOT_ID_FOR_TRB(slot_id
), false);
3842 /* Queue an address device command TRB */
3843 int xhci_queue_address_device(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3844 dma_addr_t in_ctx_ptr
, u32 slot_id
, enum xhci_setup_dev setup
)
3846 return queue_command(xhci
, cmd
, lower_32_bits(in_ctx_ptr
),
3847 upper_32_bits(in_ctx_ptr
), 0,
3848 TRB_TYPE(TRB_ADDR_DEV
) | SLOT_ID_FOR_TRB(slot_id
)
3849 | (setup
== SETUP_CONTEXT_ONLY
? TRB_BSR
: 0), false);
3852 int xhci_queue_vendor_command(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3853 u32 field1
, u32 field2
, u32 field3
, u32 field4
)
3855 return queue_command(xhci
, cmd
, field1
, field2
, field3
, field4
, false);
3858 /* Queue a reset device command TRB */
3859 int xhci_queue_reset_device(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3862 return queue_command(xhci
, cmd
, 0, 0, 0,
3863 TRB_TYPE(TRB_RESET_DEV
) | SLOT_ID_FOR_TRB(slot_id
),
3867 /* Queue a configure endpoint command TRB */
3868 int xhci_queue_configure_endpoint(struct xhci_hcd
*xhci
,
3869 struct xhci_command
*cmd
, dma_addr_t in_ctx_ptr
,
3870 u32 slot_id
, bool command_must_succeed
)
3872 return queue_command(xhci
, cmd
, lower_32_bits(in_ctx_ptr
),
3873 upper_32_bits(in_ctx_ptr
), 0,
3874 TRB_TYPE(TRB_CONFIG_EP
) | SLOT_ID_FOR_TRB(slot_id
),
3875 command_must_succeed
);
3878 /* Queue an evaluate context command TRB */
3879 int xhci_queue_evaluate_context(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3880 dma_addr_t in_ctx_ptr
, u32 slot_id
, bool command_must_succeed
)
3882 return queue_command(xhci
, cmd
, lower_32_bits(in_ctx_ptr
),
3883 upper_32_bits(in_ctx_ptr
), 0,
3884 TRB_TYPE(TRB_EVAL_CONTEXT
) | SLOT_ID_FOR_TRB(slot_id
),
3885 command_must_succeed
);
3889 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3890 * activity on an endpoint that is about to be suspended.
3892 int xhci_queue_stop_endpoint(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3893 int slot_id
, unsigned int ep_index
, int suspend
)
3895 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3896 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3897 u32 type
= TRB_TYPE(TRB_STOP_RING
);
3898 u32 trb_suspend
= SUSPEND_PORT_FOR_TRB(suspend
);
3900 return queue_command(xhci
, cmd
, 0, 0, 0,
3901 trb_slot_id
| trb_ep_index
| type
| trb_suspend
, false);
3904 /* Set Transfer Ring Dequeue Pointer command */
3905 void xhci_queue_new_dequeue_state(struct xhci_hcd
*xhci
,
3906 unsigned int slot_id
, unsigned int ep_index
,
3907 unsigned int stream_id
,
3908 struct xhci_dequeue_state
*deq_state
)
3911 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3912 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3913 u32 trb_stream_id
= STREAM_ID_FOR_TRB(stream_id
);
3915 u32 type
= TRB_TYPE(TRB_SET_DEQ
);
3916 struct xhci_virt_ep
*ep
;
3917 struct xhci_command
*cmd
;
3920 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
3921 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3922 deq_state
->new_deq_seg
,
3923 (unsigned long long)deq_state
->new_deq_seg
->dma
,
3924 deq_state
->new_deq_ptr
,
3925 (unsigned long long)xhci_trb_virt_to_dma(
3926 deq_state
->new_deq_seg
, deq_state
->new_deq_ptr
),
3927 deq_state
->new_cycle_state
);
3929 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
3930 deq_state
->new_deq_ptr
);
3932 xhci_warn(xhci
, "WARN Cannot submit Set TR Deq Ptr\n");
3933 xhci_warn(xhci
, "WARN deq seg = %p, deq pt = %p\n",
3934 deq_state
->new_deq_seg
, deq_state
->new_deq_ptr
);
3937 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
3938 if ((ep
->ep_state
& SET_DEQ_PENDING
)) {
3939 xhci_warn(xhci
, "WARN Cannot submit Set TR Deq Ptr\n");
3940 xhci_warn(xhci
, "A Set TR Deq Ptr command is pending.\n");
3944 /* This function gets called from contexts where it cannot sleep */
3945 cmd
= xhci_alloc_command(xhci
, false, false, GFP_ATOMIC
);
3947 xhci_warn(xhci
, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
3951 ep
->queued_deq_seg
= deq_state
->new_deq_seg
;
3952 ep
->queued_deq_ptr
= deq_state
->new_deq_ptr
;
3954 trb_sct
= SCT_FOR_TRB(SCT_PRI_TR
);
3955 ret
= queue_command(xhci
, cmd
,
3956 lower_32_bits(addr
) | trb_sct
| deq_state
->new_cycle_state
,
3957 upper_32_bits(addr
), trb_stream_id
,
3958 trb_slot_id
| trb_ep_index
| type
, false);
3960 xhci_free_command(xhci
, cmd
);
3964 /* Stop the TD queueing code from ringing the doorbell until
3965 * this command completes. The HC won't set the dequeue pointer
3966 * if the ring is running, and ringing the doorbell starts the
3969 ep
->ep_state
|= SET_DEQ_PENDING
;
3972 int xhci_queue_reset_ep(struct xhci_hcd
*xhci
, struct xhci_command
*cmd
,
3973 int slot_id
, unsigned int ep_index
)
3975 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3976 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3977 u32 type
= TRB_TYPE(TRB_RESET_EP
);
3979 return queue_command(xhci
, cmd
, 0, 0, 0,
3980 trb_slot_id
| trb_ep_index
| type
, false);