2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
33 #include "xhci-trace.h"
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk
;
43 module_param(link_quirk
, int, S_IRUGO
| S_IWUSR
);
44 MODULE_PARM_DESC(link_quirk
, "Don't clear the chain bit on a link TRB");
46 static unsigned int quirks
;
47 module_param(quirks
, uint
, S_IRUGO
);
48 MODULE_PARM_DESC(quirks
, "Bit flags for quirks to be enabled as default");
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
58 * Returns negative errno, or zero on success
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
64 int xhci_handshake(void __iomem
*ptr
, u32 mask
, u32 done
, int usec
)
70 if (result
== ~(u32
)0) /* card removed */
82 * Disable interrupts and begin the xHCI halting process.
84 void xhci_quiesce(struct xhci_hcd
*xhci
)
91 halted
= readl(&xhci
->op_regs
->status
) & STS_HALT
;
95 cmd
= readl(&xhci
->op_regs
->command
);
97 writel(cmd
, &xhci
->op_regs
->command
);
101 * Force HC into halt state.
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
108 int xhci_halt(struct xhci_hcd
*xhci
)
111 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Halt the HC");
114 ret
= xhci_handshake(&xhci
->op_regs
->status
,
115 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
);
117 xhci_warn(xhci
, "Host halt failed, %d\n", ret
);
120 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
121 xhci
->cmd_ring_state
= CMD_RING_STATE_STOPPED
;
126 * Set the run bit and wait for the host to be running.
128 static int xhci_start(struct xhci_hcd
*xhci
)
133 temp
= readl(&xhci
->op_regs
->command
);
135 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Turn on HC, cmd = 0x%x.",
137 writel(temp
, &xhci
->op_regs
->command
);
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 ret
= xhci_handshake(&xhci
->op_regs
->status
,
144 STS_HALT
, 0, XHCI_MAX_HALT_USEC
);
145 if (ret
== -ETIMEDOUT
)
146 xhci_err(xhci
, "Host took too long to start, "
147 "waited %u microseconds.\n",
150 /* clear state flags. Including dying, halted or removing */
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
163 int xhci_reset(struct xhci_hcd
*xhci
)
169 state
= readl(&xhci
->op_regs
->status
);
171 if (state
== ~(u32
)0) {
172 xhci_warn(xhci
, "Host not accessible, reset failed.\n");
176 if ((state
& STS_HALT
) == 0) {
177 xhci_warn(xhci
, "Host controller not halted, aborting reset.\n");
181 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Reset the HC");
182 command
= readl(&xhci
->op_regs
->command
);
183 command
|= CMD_RESET
;
184 writel(command
, &xhci
->op_regs
->command
);
186 /* Existing Intel xHCI controllers require a delay of 1 mS,
187 * after setting the CMD_RESET bit, and before accessing any
188 * HC registers. This allows the HC to complete the
189 * reset operation and be ready for HC register access.
190 * Without this delay, the subsequent HC register access,
191 * may result in a system hang very rarely.
193 if (xhci
->quirks
& XHCI_INTEL_HOST
)
196 ret
= xhci_handshake(&xhci
->op_regs
->command
,
197 CMD_RESET
, 0, 10 * 1000 * 1000);
201 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
202 "Wait for controller to be ready for doorbell rings");
204 * xHCI cannot write to any doorbells or operational registers other
205 * than status until the "Controller Not Ready" flag is cleared.
207 ret
= xhci_handshake(&xhci
->op_regs
->status
,
208 STS_CNR
, 0, 10 * 1000 * 1000);
210 for (i
= 0; i
< 2; i
++) {
211 xhci
->bus_state
[i
].port_c_suspend
= 0;
212 xhci
->bus_state
[i
].suspended_ports
= 0;
213 xhci
->bus_state
[i
].resuming_ports
= 0;
220 static int xhci_free_msi(struct xhci_hcd
*xhci
)
224 if (!xhci
->msix_entries
)
227 for (i
= 0; i
< xhci
->msix_count
; i
++)
228 if (xhci
->msix_entries
[i
].vector
)
229 free_irq(xhci
->msix_entries
[i
].vector
,
237 static int xhci_setup_msi(struct xhci_hcd
*xhci
)
240 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
242 ret
= pci_enable_msi(pdev
);
244 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
245 "failed to allocate MSI entry");
249 ret
= request_irq(pdev
->irq
, xhci_msi_irq
,
250 0, "xhci_hcd", xhci_to_hcd(xhci
));
252 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
253 "disable MSI interrupt");
254 pci_disable_msi(pdev
);
262 * free all IRQs request
264 static void xhci_free_irq(struct xhci_hcd
*xhci
)
266 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
269 /* return if using legacy interrupt */
270 if (xhci_to_hcd(xhci
)->irq
> 0)
273 ret
= xhci_free_msi(xhci
);
277 free_irq(pdev
->irq
, xhci_to_hcd(xhci
));
285 static int xhci_setup_msix(struct xhci_hcd
*xhci
)
288 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
289 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
292 * calculate number of msi-x vectors supported.
293 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294 * with max number of interrupters based on the xhci HCSPARAMS1.
295 * - num_online_cpus: maximum msi-x vectors per CPUs core.
296 * Add additional 1 vector to ensure always available interrupt.
298 xhci
->msix_count
= min(num_online_cpus() + 1,
299 HCS_MAX_INTRS(xhci
->hcs_params1
));
302 kmalloc((sizeof(struct msix_entry
))*xhci
->msix_count
,
304 if (!xhci
->msix_entries
)
307 for (i
= 0; i
< xhci
->msix_count
; i
++) {
308 xhci
->msix_entries
[i
].entry
= i
;
309 xhci
->msix_entries
[i
].vector
= 0;
312 ret
= pci_enable_msix_exact(pdev
, xhci
->msix_entries
, xhci
->msix_count
);
314 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
315 "Failed to enable MSI-X");
319 for (i
= 0; i
< xhci
->msix_count
; i
++) {
320 ret
= request_irq(xhci
->msix_entries
[i
].vector
,
322 0, "xhci_hcd", xhci_to_hcd(xhci
));
327 hcd
->msix_enabled
= 1;
331 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "disable MSI-X interrupt");
333 pci_disable_msix(pdev
);
335 kfree(xhci
->msix_entries
);
336 xhci
->msix_entries
= NULL
;
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
343 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
344 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
346 if (xhci
->quirks
& XHCI_PLAT
)
351 if (xhci
->msix_entries
) {
352 pci_disable_msix(pdev
);
353 kfree(xhci
->msix_entries
);
354 xhci
->msix_entries
= NULL
;
356 pci_disable_msi(pdev
);
359 hcd
->msix_enabled
= 0;
363 static void __maybe_unused
xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
367 if (xhci
->msix_entries
) {
368 for (i
= 0; i
< xhci
->msix_count
; i
++)
369 synchronize_irq(xhci
->msix_entries
[i
].vector
);
373 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
375 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
376 struct pci_dev
*pdev
;
379 /* The xhci platform device has set up IRQs through usb_add_hcd. */
380 if (xhci
->quirks
& XHCI_PLAT
)
383 pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
385 * Some Fresco Logic host controllers advertise MSI, but fail to
386 * generate interrupts. Don't even try to enable MSI.
388 if (xhci
->quirks
& XHCI_BROKEN_MSI
)
391 /* unregister the legacy interrupt */
393 free_irq(hcd
->irq
, hcd
);
396 ret
= xhci_setup_msix(xhci
);
398 /* fall back to msi*/
399 ret
= xhci_setup_msi(xhci
);
402 /* hcd->irq is 0, we have MSI */
406 xhci_err(xhci
, "No msi-x/msi found and no IRQ in BIOS\n");
411 if (!strlen(hcd
->irq_descr
))
412 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
413 hcd
->driver
->description
, hcd
->self
.busnum
);
415 /* fall back to legacy interrupt*/
416 ret
= request_irq(pdev
->irq
, &usb_hcd_irq
, IRQF_SHARED
,
417 hcd
->irq_descr
, hcd
);
419 xhci_err(xhci
, "request interrupt %d failed\n",
423 hcd
->irq
= pdev
->irq
;
429 static inline int xhci_try_enable_msi(struct usb_hcd
*hcd
)
434 static inline void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
444 static void compliance_mode_recovery(unsigned long arg
)
446 struct xhci_hcd
*xhci
;
451 xhci
= (struct xhci_hcd
*)arg
;
453 for (i
= 0; i
< xhci
->num_usb3_ports
; i
++) {
454 temp
= readl(xhci
->usb3_ports
[i
]);
455 if ((temp
& PORT_PLS_MASK
) == USB_SS_PORT_LS_COMP_MOD
) {
457 * Compliance Mode Detected. Letting USB Core
458 * handle the Warm Reset
460 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
461 "Compliance mode detected->port %d",
463 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
464 "Attempting compliance mode recovery");
465 hcd
= xhci
->shared_hcd
;
467 if (hcd
->state
== HC_STATE_SUSPENDED
)
468 usb_hcd_resume_root_hub(hcd
);
470 usb_hcd_poll_rh_status(hcd
);
474 if (xhci
->port_status_u0
!= ((1 << xhci
->num_usb3_ports
)-1))
475 mod_timer(&xhci
->comp_mode_recovery_timer
,
476 jiffies
+ msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
));
480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481 * that causes ports behind that hardware to enter compliance mode sometimes.
482 * The quirk creates a timer that polls every 2 seconds the link state of
483 * each host controller's port and recovers it by issuing a Warm reset
484 * if Compliance mode is detected, otherwise the port will become "dead" (no
485 * device connections or disconnections will be detected anymore). Becasue no
486 * status event is generated when entering compliance mode (per xhci spec),
487 * this quirk is needed on systems that have the failing hardware installed.
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd
*xhci
)
491 xhci
->port_status_u0
= 0;
492 setup_timer(&xhci
->comp_mode_recovery_timer
,
493 compliance_mode_recovery
, (unsigned long)xhci
);
494 xhci
->comp_mode_recovery_timer
.expires
= jiffies
+
495 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
);
497 add_timer(&xhci
->comp_mode_recovery_timer
);
498 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
499 "Compliance mode recovery timer initialized");
503 * This function identifies the systems that have installed the SN65LVPE502CP
504 * USB3.0 re-driver and that need the Compliance Mode Quirk.
506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
510 const char *dmi_product_name
, *dmi_sys_vendor
;
512 dmi_product_name
= dmi_get_system_info(DMI_PRODUCT_NAME
);
513 dmi_sys_vendor
= dmi_get_system_info(DMI_SYS_VENDOR
);
514 if (!dmi_product_name
|| !dmi_sys_vendor
)
517 if (!(strstr(dmi_sys_vendor
, "Hewlett-Packard")))
520 if (strstr(dmi_product_name
, "Z420") ||
521 strstr(dmi_product_name
, "Z620") ||
522 strstr(dmi_product_name
, "Z820") ||
523 strstr(dmi_product_name
, "Z1 Workstation"))
529 static int xhci_all_ports_seen_u0(struct xhci_hcd
*xhci
)
531 return (xhci
->port_status_u0
== ((1 << xhci
->num_usb3_ports
)-1));
536 * Initialize memory for HCD and xHC (one-time init).
538 * Program the PAGESIZE register, initialize the device context array, create
539 * device contexts (?), set up a command ring segment (or two?), create event
540 * ring (one for now).
542 int xhci_init(struct usb_hcd
*hcd
)
544 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
547 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "xhci_init");
548 spin_lock_init(&xhci
->lock
);
549 if (xhci
->hci_version
== 0x95 && link_quirk
) {
550 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
551 "QUIRK: Not clearing Link TRB chain bits.");
552 xhci
->quirks
|= XHCI_LINK_TRB_QUIRK
;
554 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
555 "xHCI doesn't need link TRB QUIRK");
557 retval
= xhci_mem_init(xhci
, GFP_KERNEL
);
558 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Finished xhci_init");
560 /* Initializing Compliance Mode Recovery Data If Needed */
561 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562 xhci
->quirks
|= XHCI_COMP_MODE_QUIRK
;
563 compliance_mode_recovery_timer_init(xhci
);
569 /*-------------------------------------------------------------------------*/
572 static int xhci_run_finished(struct xhci_hcd
*xhci
)
574 if (xhci_start(xhci
)) {
578 xhci
->shared_hcd
->state
= HC_STATE_RUNNING
;
579 xhci
->cmd_ring_state
= CMD_RING_STATE_RUNNING
;
581 if (xhci
->quirks
& XHCI_NEC_HOST
)
582 xhci_ring_cmd_db(xhci
);
584 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
585 "Finished xhci_run for USB3 roothub");
590 * Start the HC after it was halted.
592 * This function is called by the USB core when the HC driver is added.
593 * Its opposite is xhci_stop().
595 * xhci_init() must be called once before this function can be called.
596 * Reset the HC, enable device slot contexts, program DCBAAP, and
597 * set command ring pointer and event ring pointer.
599 * Setup MSI-X vectors and enable interrupts.
601 int xhci_run(struct usb_hcd
*hcd
)
606 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
608 /* Start the xHCI host controller running only after the USB 2.0 roothub
612 hcd
->uses_new_polling
= 1;
613 if (!usb_hcd_is_primary_hcd(hcd
))
614 return xhci_run_finished(xhci
);
616 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "xhci_run");
618 ret
= xhci_try_enable_msi(hcd
);
622 xhci_dbg(xhci
, "Command ring memory map follows:\n");
623 xhci_debug_ring(xhci
, xhci
->cmd_ring
);
624 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
625 xhci_dbg_cmd_ptrs(xhci
);
627 xhci_dbg(xhci
, "ERST memory map follows:\n");
628 xhci_dbg_erst(xhci
, &xhci
->erst
);
629 xhci_dbg(xhci
, "Event ring:\n");
630 xhci_debug_ring(xhci
, xhci
->event_ring
);
631 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
632 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
633 temp_64
&= ~ERST_PTR_MASK
;
634 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
635 "ERST deq = 64'h%0lx", (long unsigned int) temp_64
);
637 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
638 "// Set the interrupt modulation register");
639 temp
= readl(&xhci
->ir_set
->irq_control
);
640 temp
&= ~ER_IRQ_INTERVAL_MASK
;
642 * the increment interval is 8 times as much as that defined
643 * in xHCI spec on MTK's controller
645 temp
|= (u32
) ((xhci
->quirks
& XHCI_MTK_HOST
) ? 20 : 160);
646 writel(temp
, &xhci
->ir_set
->irq_control
);
648 /* Set the HCD state before we enable the irqs */
649 temp
= readl(&xhci
->op_regs
->command
);
651 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
652 "// Enable interrupts, cmd = 0x%x.", temp
);
653 writel(temp
, &xhci
->op_regs
->command
);
655 temp
= readl(&xhci
->ir_set
->irq_pending
);
656 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
657 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658 xhci
->ir_set
, (unsigned int) ER_IRQ_ENABLE(temp
));
659 writel(ER_IRQ_ENABLE(temp
), &xhci
->ir_set
->irq_pending
);
660 xhci_print_ir_set(xhci
, 0);
662 if (xhci
->quirks
& XHCI_NEC_HOST
) {
663 struct xhci_command
*command
;
664 command
= xhci_alloc_command(xhci
, false, false, GFP_KERNEL
);
667 xhci_queue_vendor_command(xhci
, command
, 0, 0, 0,
668 TRB_TYPE(TRB_NEC_GET_FW
));
670 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
671 "Finished xhci_run for USB2 roothub");
674 EXPORT_SYMBOL_GPL(xhci_run
);
679 * This function is called by the USB core when the HC driver is removed.
680 * Its opposite is xhci_run().
682 * Disable device contexts, disable IRQs, and quiesce the HC.
683 * Reset the HC, finish any completed transactions, and cleanup memory.
685 void xhci_stop(struct usb_hcd
*hcd
)
688 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
690 mutex_lock(&xhci
->mutex
);
692 if (!(xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
693 spin_lock_irq(&xhci
->lock
);
695 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
696 xhci
->cmd_ring_state
= CMD_RING_STATE_STOPPED
;
699 spin_unlock_irq(&xhci
->lock
);
702 if (!usb_hcd_is_primary_hcd(hcd
)) {
703 mutex_unlock(&xhci
->mutex
);
707 xhci_cleanup_msix(xhci
);
709 /* Deleting Compliance Mode Recovery Timer */
710 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
711 (!(xhci_all_ports_seen_u0(xhci
)))) {
712 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
713 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
714 "%s: compliance mode recovery timer deleted",
718 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
721 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
722 "// Disabling event ring interrupts");
723 temp
= readl(&xhci
->op_regs
->status
);
724 writel(temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
725 temp
= readl(&xhci
->ir_set
->irq_pending
);
726 writel(ER_IRQ_DISABLE(temp
), &xhci
->ir_set
->irq_pending
);
727 xhci_print_ir_set(xhci
, 0);
729 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "cleaning up memory");
730 xhci_mem_cleanup(xhci
);
731 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
732 "xhci_stop completed - status = %x",
733 readl(&xhci
->op_regs
->status
));
734 mutex_unlock(&xhci
->mutex
);
738 * Shutdown HC (not bus-specific)
740 * This is called when the machine is rebooting or halting. We assume that the
741 * machine will be powered off, and the HC's internal state will be reset.
742 * Don't bother to free memory.
744 * This will only ever be called with the main usb_hcd (the USB3 roothub).
746 void xhci_shutdown(struct usb_hcd
*hcd
)
748 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
750 if (xhci
->quirks
& XHCI_SPURIOUS_REBOOT
)
751 usb_disable_xhci_ports(to_pci_dev(hcd
->self
.controller
));
753 spin_lock_irq(&xhci
->lock
);
755 /* Workaround for spurious wakeups at shutdown with HSW */
756 if (xhci
->quirks
& XHCI_SPURIOUS_WAKEUP
)
758 spin_unlock_irq(&xhci
->lock
);
760 xhci_cleanup_msix(xhci
);
762 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
763 "xhci_shutdown completed - status = %x",
764 readl(&xhci
->op_regs
->status
));
766 /* Yet another workaround for spurious wakeups at shutdown with HSW */
767 if (xhci
->quirks
& XHCI_SPURIOUS_WAKEUP
)
768 pci_set_power_state(to_pci_dev(hcd
->self
.controller
), PCI_D3hot
);
772 static void xhci_save_registers(struct xhci_hcd
*xhci
)
774 xhci
->s3
.command
= readl(&xhci
->op_regs
->command
);
775 xhci
->s3
.dev_nt
= readl(&xhci
->op_regs
->dev_notification
);
776 xhci
->s3
.dcbaa_ptr
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
777 xhci
->s3
.config_reg
= readl(&xhci
->op_regs
->config_reg
);
778 xhci
->s3
.erst_size
= readl(&xhci
->ir_set
->erst_size
);
779 xhci
->s3
.erst_base
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
780 xhci
->s3
.erst_dequeue
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
781 xhci
->s3
.irq_pending
= readl(&xhci
->ir_set
->irq_pending
);
782 xhci
->s3
.irq_control
= readl(&xhci
->ir_set
->irq_control
);
785 static void xhci_restore_registers(struct xhci_hcd
*xhci
)
787 writel(xhci
->s3
.command
, &xhci
->op_regs
->command
);
788 writel(xhci
->s3
.dev_nt
, &xhci
->op_regs
->dev_notification
);
789 xhci_write_64(xhci
, xhci
->s3
.dcbaa_ptr
, &xhci
->op_regs
->dcbaa_ptr
);
790 writel(xhci
->s3
.config_reg
, &xhci
->op_regs
->config_reg
);
791 writel(xhci
->s3
.erst_size
, &xhci
->ir_set
->erst_size
);
792 xhci_write_64(xhci
, xhci
->s3
.erst_base
, &xhci
->ir_set
->erst_base
);
793 xhci_write_64(xhci
, xhci
->s3
.erst_dequeue
, &xhci
->ir_set
->erst_dequeue
);
794 writel(xhci
->s3
.irq_pending
, &xhci
->ir_set
->irq_pending
);
795 writel(xhci
->s3
.irq_control
, &xhci
->ir_set
->irq_control
);
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd
*xhci
)
802 /* step 2: initialize command ring buffer */
803 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
804 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
805 (xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
806 xhci
->cmd_ring
->dequeue
) &
807 (u64
) ~CMD_RING_RSVD_BITS
) |
808 xhci
->cmd_ring
->cycle_state
;
809 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
810 "// Setting command ring address to 0x%llx",
811 (long unsigned long) val_64
);
812 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
816 * The whole command ring must be cleared to zero when we suspend the host.
818 * The host doesn't save the command ring pointer in the suspend well, so we
819 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
820 * aligned, because of the reserved bits in the command ring dequeue pointer
821 * register. Therefore, we can't just set the dequeue pointer back in the
822 * middle of the ring (TRBs are 16-byte aligned).
824 static void xhci_clear_command_ring(struct xhci_hcd
*xhci
)
826 struct xhci_ring
*ring
;
827 struct xhci_segment
*seg
;
829 ring
= xhci
->cmd_ring
;
833 sizeof(union xhci_trb
) * (TRBS_PER_SEGMENT
- 1));
834 seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
&=
835 cpu_to_le32(~TRB_CYCLE
);
837 } while (seg
!= ring
->deq_seg
);
839 /* Reset the software enqueue and dequeue pointers */
840 ring
->deq_seg
= ring
->first_seg
;
841 ring
->dequeue
= ring
->first_seg
->trbs
;
842 ring
->enq_seg
= ring
->deq_seg
;
843 ring
->enqueue
= ring
->dequeue
;
845 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
847 * Ring is now zeroed, so the HW should look for change of ownership
848 * when the cycle bit is set to 1.
850 ring
->cycle_state
= 1;
853 * Reset the hardware dequeue pointer.
854 * Yes, this will need to be re-written after resume, but we're paranoid
855 * and want to make sure the hardware doesn't access bogus memory
856 * because, say, the BIOS or an SMI started the host without changing
857 * the command ring pointers.
859 xhci_set_cmd_ring_deq(xhci
);
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd
*xhci
)
865 __le32 __iomem
**port_array
;
869 spin_lock_irqsave(&xhci
->lock
, flags
);
871 /* disable usb3 ports Wake bits */
872 port_index
= xhci
->num_usb3_ports
;
873 port_array
= xhci
->usb3_ports
;
874 while (port_index
--) {
875 t1
= readl(port_array
[port_index
]);
876 t1
= xhci_port_state_to_neutral(t1
);
877 t2
= t1
& ~PORT_WAKE_BITS
;
879 writel(t2
, port_array
[port_index
]);
882 /* disable usb2 ports Wake bits */
883 port_index
= xhci
->num_usb2_ports
;
884 port_array
= xhci
->usb2_ports
;
885 while (port_index
--) {
886 t1
= readl(port_array
[port_index
]);
887 t1
= xhci_port_state_to_neutral(t1
);
888 t2
= t1
& ~PORT_WAKE_BITS
;
890 writel(t2
, port_array
[port_index
]);
893 spin_unlock_irqrestore(&xhci
->lock
, flags
);
897 * Stop HC (not bus-specific)
899 * This is called when the machine transition into S3/S4 mode.
902 int xhci_suspend(struct xhci_hcd
*xhci
, bool do_wakeup
)
905 unsigned int delay
= XHCI_MAX_HALT_USEC
;
906 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
912 if (hcd
->state
!= HC_STATE_SUSPENDED
||
913 xhci
->shared_hcd
->state
!= HC_STATE_SUSPENDED
)
916 /* Clear root port wake on bits if wakeup not allowed. */
918 xhci_disable_port_wake_on_bits(xhci
);
920 /* Don't poll the roothubs on bus suspend. */
921 xhci_dbg(xhci
, "%s: stopping port polling.\n", __func__
);
922 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
923 del_timer_sync(&hcd
->rh_timer
);
924 clear_bit(HCD_FLAG_POLL_RH
, &xhci
->shared_hcd
->flags
);
925 del_timer_sync(&xhci
->shared_hcd
->rh_timer
);
927 spin_lock_irq(&xhci
->lock
);
928 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
929 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
930 /* step 1: stop endpoint */
931 /* skipped assuming that port suspend has done */
933 /* step 2: clear Run/Stop bit */
934 command
= readl(&xhci
->op_regs
->command
);
936 writel(command
, &xhci
->op_regs
->command
);
938 /* Some chips from Fresco Logic need an extraordinary delay */
939 delay
*= (xhci
->quirks
& XHCI_SLOW_SUSPEND
) ? 10 : 1;
941 if (xhci_handshake(&xhci
->op_regs
->status
,
942 STS_HALT
, STS_HALT
, delay
)) {
943 xhci_warn(xhci
, "WARN: xHC CMD_RUN timeout\n");
944 spin_unlock_irq(&xhci
->lock
);
947 xhci_clear_command_ring(xhci
);
949 /* step 3: save registers */
950 xhci_save_registers(xhci
);
952 /* step 4: set CSS flag */
953 command
= readl(&xhci
->op_regs
->command
);
955 writel(command
, &xhci
->op_regs
->command
);
956 if (xhci_handshake(&xhci
->op_regs
->status
,
957 STS_SAVE
, 0, 10 * 1000)) {
958 xhci_warn(xhci
, "WARN: xHC save state timeout\n");
959 spin_unlock_irq(&xhci
->lock
);
962 spin_unlock_irq(&xhci
->lock
);
965 * Deleting Compliance Mode Recovery Timer because the xHCI Host
966 * is about to be suspended.
968 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
969 (!(xhci_all_ports_seen_u0(xhci
)))) {
970 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
971 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
972 "%s: compliance mode recovery timer deleted",
976 /* step 5: remove core well power */
977 /* synchronize irq when using MSI-X */
978 xhci_msix_sync_irqs(xhci
);
982 EXPORT_SYMBOL_GPL(xhci_suspend
);
985 * start xHC (not bus-specific)
987 * This is called when the machine transition from S3/S4 mode.
990 int xhci_resume(struct xhci_hcd
*xhci
, bool hibernated
)
992 u32 command
, temp
= 0, status
;
993 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
994 struct usb_hcd
*secondary_hcd
;
996 bool comp_timer_running
= false;
1001 /* Wait a bit if either of the roothubs need to settle from the
1002 * transition into bus suspend.
1004 if (time_before(jiffies
, xhci
->bus_state
[0].next_statechange
) ||
1005 time_before(jiffies
,
1006 xhci
->bus_state
[1].next_statechange
))
1009 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
1010 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
1012 spin_lock_irq(&xhci
->lock
);
1013 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
1017 /* step 1: restore register */
1018 xhci_restore_registers(xhci
);
1019 /* step 2: initialize command ring buffer */
1020 xhci_set_cmd_ring_deq(xhci
);
1021 /* step 3: restore state and start state*/
1022 /* step 3: set CRS flag */
1023 command
= readl(&xhci
->op_regs
->command
);
1025 writel(command
, &xhci
->op_regs
->command
);
1026 if (xhci_handshake(&xhci
->op_regs
->status
,
1027 STS_RESTORE
, 0, 10 * 1000)) {
1028 xhci_warn(xhci
, "WARN: xHC restore state timeout\n");
1029 spin_unlock_irq(&xhci
->lock
);
1032 temp
= readl(&xhci
->op_regs
->status
);
1035 /* If restore operation fails, re-initialize the HC during resume */
1036 if ((temp
& STS_SRE
) || hibernated
) {
1038 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
1039 !(xhci_all_ports_seen_u0(xhci
))) {
1040 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
1041 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1042 "Compliance Mode Recovery Timer deleted!");
1045 /* Let the USB core know _both_ roothubs lost power. */
1046 usb_root_hub_lost_power(xhci
->main_hcd
->self
.root_hub
);
1047 usb_root_hub_lost_power(xhci
->shared_hcd
->self
.root_hub
);
1049 xhci_dbg(xhci
, "Stop HCD\n");
1052 spin_unlock_irq(&xhci
->lock
);
1053 xhci_cleanup_msix(xhci
);
1055 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
1056 temp
= readl(&xhci
->op_regs
->status
);
1057 writel(temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
1058 temp
= readl(&xhci
->ir_set
->irq_pending
);
1059 writel(ER_IRQ_DISABLE(temp
), &xhci
->ir_set
->irq_pending
);
1060 xhci_print_ir_set(xhci
, 0);
1062 xhci_dbg(xhci
, "cleaning up memory\n");
1063 xhci_mem_cleanup(xhci
);
1064 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
1065 readl(&xhci
->op_regs
->status
));
1067 /* USB core calls the PCI reinit and start functions twice:
1068 * first with the primary HCD, and then with the secondary HCD.
1069 * If we don't do the same, the host will never be started.
1071 if (!usb_hcd_is_primary_hcd(hcd
))
1072 secondary_hcd
= hcd
;
1074 secondary_hcd
= xhci
->shared_hcd
;
1076 xhci_dbg(xhci
, "Initialize the xhci_hcd\n");
1077 retval
= xhci_init(hcd
->primary_hcd
);
1080 comp_timer_running
= true;
1082 xhci_dbg(xhci
, "Start the primary HCD\n");
1083 retval
= xhci_run(hcd
->primary_hcd
);
1085 xhci_dbg(xhci
, "Start the secondary HCD\n");
1086 retval
= xhci_run(secondary_hcd
);
1088 hcd
->state
= HC_STATE_SUSPENDED
;
1089 xhci
->shared_hcd
->state
= HC_STATE_SUSPENDED
;
1093 /* step 4: set Run/Stop bit */
1094 command
= readl(&xhci
->op_regs
->command
);
1096 writel(command
, &xhci
->op_regs
->command
);
1097 xhci_handshake(&xhci
->op_regs
->status
, STS_HALT
,
1100 /* step 5: walk topology and initialize portsc,
1101 * portpmsc and portli
1103 /* this is done in bus_resume */
1105 /* step 6: restart each of the previously
1106 * Running endpoints by ringing their doorbells
1109 spin_unlock_irq(&xhci
->lock
);
1113 /* Resume root hubs only when have pending events. */
1114 status
= readl(&xhci
->op_regs
->status
);
1115 if (status
& STS_EINT
) {
1116 usb_hcd_resume_root_hub(xhci
->shared_hcd
);
1117 usb_hcd_resume_root_hub(hcd
);
1122 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123 * be re-initialized Always after a system resume. Ports are subject
1124 * to suffer the Compliance Mode issue again. It doesn't matter if
1125 * ports have entered previously to U0 before system's suspension.
1127 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) && !comp_timer_running
)
1128 compliance_mode_recovery_timer_init(xhci
);
1130 /* Re-enable port polling. */
1131 xhci_dbg(xhci
, "%s: starting port polling.\n", __func__
);
1132 set_bit(HCD_FLAG_POLL_RH
, &xhci
->shared_hcd
->flags
);
1133 usb_hcd_poll_rh_status(xhci
->shared_hcd
);
1134 set_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
1135 usb_hcd_poll_rh_status(hcd
);
1139 EXPORT_SYMBOL_GPL(xhci_resume
);
1140 #endif /* CONFIG_PM */
1142 /*-------------------------------------------------------------------------*/
1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1147 * value to right shift 1 for the bitmask.
1149 * Index = (epnum * 2) + direction - 1,
1150 * where direction = 0 for OUT, 1 for IN.
1151 * For control endpoints, the IN index is used (OUT index is unused), so
1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor
*desc
)
1157 if (usb_endpoint_xfer_control(desc
))
1158 index
= (unsigned int) (usb_endpoint_num(desc
)*2);
1160 index
= (unsigned int) (usb_endpoint_num(desc
)*2) +
1161 (usb_endpoint_dir_in(desc
) ? 1 : 0) - 1;
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166 * address from the XHCI endpoint index.
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index
)
1170 unsigned int number
= DIV_ROUND_UP(ep_index
, 2);
1171 unsigned int direction
= ep_index
% 2 ? USB_DIR_OUT
: USB_DIR_IN
;
1172 return direction
| number
;
1175 /* Find the flag for this endpoint (for use in the control context). Use the
1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor
*desc
)
1181 return 1 << (xhci_get_endpoint_index(desc
) + 1);
1184 /* Find the flag for this endpoint (for use in the control context). Use the
1185 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index
)
1190 return 1 << (ep_index
+ 1);
1193 /* Compute the last valid endpoint context index. Basically, this is the
1194 * endpoint index plus one. For slot contexts with more than valid endpoint,
1195 * we find the most significant bit set in the added contexts flags.
1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs
)
1201 return fls(added_ctxs
) - 1;
1204 /* Returns 1 if the arguments are OK;
1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1207 static int xhci_check_args(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1208 struct usb_host_endpoint
*ep
, int check_ep
, bool check_virt_dev
,
1210 struct xhci_hcd
*xhci
;
1211 struct xhci_virt_device
*virt_dev
;
1213 if (!hcd
|| (check_ep
&& !ep
) || !udev
) {
1214 pr_debug("xHCI %s called with invalid args\n", func
);
1217 if (!udev
->parent
) {
1218 pr_debug("xHCI %s called for root hub\n", func
);
1222 xhci
= hcd_to_xhci(hcd
);
1223 if (check_virt_dev
) {
1224 if (!udev
->slot_id
|| !xhci
->devs
[udev
->slot_id
]) {
1225 xhci_dbg(xhci
, "xHCI %s called with unaddressed device\n",
1230 virt_dev
= xhci
->devs
[udev
->slot_id
];
1231 if (virt_dev
->udev
!= udev
) {
1232 xhci_dbg(xhci
, "xHCI %s called with udev and "
1233 "virt_dev does not match\n", func
);
1238 if (xhci
->xhc_state
& XHCI_STATE_HALTED
)
1244 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
1245 struct usb_device
*udev
, struct xhci_command
*command
,
1246 bool ctx_change
, bool must_succeed
);
1249 * Full speed devices may have a max packet size greater than 8 bytes, but the
1250 * USB core doesn't know that until it reads the first 8 bytes of the
1251 * descriptor. If the usb_device's max packet size changes after that point,
1252 * we need to issue an evaluate context command and wait on it.
1254 static int xhci_check_maxpacket(struct xhci_hcd
*xhci
, unsigned int slot_id
,
1255 unsigned int ep_index
, struct urb
*urb
)
1257 struct xhci_container_ctx
*out_ctx
;
1258 struct xhci_input_control_ctx
*ctrl_ctx
;
1259 struct xhci_ep_ctx
*ep_ctx
;
1260 struct xhci_command
*command
;
1261 int max_packet_size
;
1262 int hw_max_packet_size
;
1265 out_ctx
= xhci
->devs
[slot_id
]->out_ctx
;
1266 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1267 hw_max_packet_size
= MAX_PACKET_DECODED(le32_to_cpu(ep_ctx
->ep_info2
));
1268 max_packet_size
= usb_endpoint_maxp(&urb
->dev
->ep0
.desc
);
1269 if (hw_max_packet_size
!= max_packet_size
) {
1270 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1271 "Max Packet Size for ep 0 changed.");
1272 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1273 "Max packet size in usb_device = %d",
1275 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1276 "Max packet size in xHCI HW = %d",
1277 hw_max_packet_size
);
1278 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1279 "Issuing evaluate context command.");
1281 /* Set up the input context flags for the command */
1282 /* FIXME: This won't work if a non-default control endpoint
1283 * changes max packet sizes.
1286 command
= xhci_alloc_command(xhci
, false, true, GFP_KERNEL
);
1290 command
->in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
1291 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
1293 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1296 goto command_cleanup
;
1298 /* Set up the modified control endpoint 0 */
1299 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1300 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
1302 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
1303 ep_ctx
->ep_info2
&= cpu_to_le32(~MAX_PACKET_MASK
);
1304 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet_size
));
1306 ctrl_ctx
->add_flags
= cpu_to_le32(EP0_FLAG
);
1307 ctrl_ctx
->drop_flags
= 0;
1309 xhci_dbg(xhci
, "Slot %d input context\n", slot_id
);
1310 xhci_dbg_ctx(xhci
, command
->in_ctx
, ep_index
);
1311 xhci_dbg(xhci
, "Slot %d output context\n", slot_id
);
1312 xhci_dbg_ctx(xhci
, out_ctx
, ep_index
);
1314 ret
= xhci_configure_endpoint(xhci
, urb
->dev
, command
,
1317 /* Clean up the input context for later use by bandwidth
1320 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
);
1322 kfree(command
->completion
);
1329 * non-error returns are a promise to giveback() the urb later
1330 * we drop ownership so next owner (or urb unlink) can get it
1332 int xhci_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
, gfp_t mem_flags
)
1334 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1335 unsigned long flags
;
1337 unsigned int slot_id
, ep_index
, ep_state
;
1338 struct urb_priv
*urb_priv
;
1341 if (!urb
|| xhci_check_args(hcd
, urb
->dev
, urb
->ep
,
1342 true, true, __func__
) <= 0)
1345 slot_id
= urb
->dev
->slot_id
;
1346 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1348 if (!HCD_HW_ACCESSIBLE(hcd
)) {
1349 if (!in_interrupt())
1350 xhci_dbg(xhci
, "urb submitted during PCI suspend\n");
1354 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
))
1355 num_tds
= urb
->number_of_packets
;
1356 else if (usb_endpoint_is_bulk_out(&urb
->ep
->desc
) &&
1357 urb
->transfer_buffer_length
> 0 &&
1358 urb
->transfer_flags
& URB_ZERO_PACKET
&&
1359 !(urb
->transfer_buffer_length
% usb_endpoint_maxp(&urb
->ep
->desc
)))
1364 urb_priv
= kzalloc(sizeof(struct urb_priv
) +
1365 num_tds
* sizeof(struct xhci_td
), mem_flags
);
1369 urb_priv
->num_tds
= num_tds
;
1370 urb_priv
->num_tds_done
= 0;
1371 urb
->hcpriv
= urb_priv
;
1373 trace_xhci_urb_enqueue(urb
);
1375 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1376 /* Check to see if the max packet size for the default control
1377 * endpoint changed during FS device enumeration
1379 if (urb
->dev
->speed
== USB_SPEED_FULL
) {
1380 ret
= xhci_check_maxpacket(xhci
, slot_id
,
1383 xhci_urb_free_priv(urb_priv
);
1390 spin_lock_irqsave(&xhci
->lock
, flags
);
1392 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
1393 xhci_dbg(xhci
, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1394 urb
->ep
->desc
.bEndpointAddress
, urb
);
1399 switch (usb_endpoint_type(&urb
->ep
->desc
)) {
1401 case USB_ENDPOINT_XFER_CONTROL
:
1402 ret
= xhci_queue_ctrl_tx(xhci
, GFP_ATOMIC
, urb
,
1405 case USB_ENDPOINT_XFER_BULK
:
1406 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
1407 if (ep_state
& (EP_GETTING_STREAMS
| EP_GETTING_NO_STREAMS
)) {
1408 xhci_warn(xhci
, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1413 ret
= xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
,
1418 case USB_ENDPOINT_XFER_INT
:
1419 ret
= xhci_queue_intr_tx(xhci
, GFP_ATOMIC
, urb
,
1423 case USB_ENDPOINT_XFER_ISOC
:
1424 ret
= xhci_queue_isoc_tx_prepare(xhci
, GFP_ATOMIC
, urb
,
1430 xhci_urb_free_priv(urb_priv
);
1433 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1438 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1439 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1440 * should pick up where it left off in the TD, unless a Set Transfer Ring
1441 * Dequeue Pointer is issued.
1443 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1444 * the ring. Since the ring is a contiguous structure, they can't be physically
1445 * removed. Instead, there are two options:
1447 * 1) If the HC is in the middle of processing the URB to be canceled, we
1448 * simply move the ring's dequeue pointer past those TRBs using the Set
1449 * Transfer Ring Dequeue Pointer command. This will be the common case,
1450 * when drivers timeout on the last submitted URB and attempt to cancel.
1452 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1453 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1454 * HC will need to invalidate the any TRBs it has cached after the stop
1455 * endpoint command, as noted in the xHCI 0.95 errata.
1457 * 3) The TD may have completed by the time the Stop Endpoint Command
1458 * completes, so software needs to handle that case too.
1460 * This function should protect against the TD enqueueing code ringing the
1461 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1462 * It also needs to account for multiple cancellations on happening at the same
1463 * time for the same endpoint.
1465 * Note that this function can be called in any context, or so says
1466 * usb_hcd_unlink_urb()
1468 int xhci_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1470 unsigned long flags
;
1473 struct xhci_hcd
*xhci
;
1474 struct urb_priv
*urb_priv
;
1476 unsigned int ep_index
;
1477 struct xhci_ring
*ep_ring
;
1478 struct xhci_virt_ep
*ep
;
1479 struct xhci_command
*command
;
1480 struct xhci_virt_device
*vdev
;
1482 xhci
= hcd_to_xhci(hcd
);
1483 spin_lock_irqsave(&xhci
->lock
, flags
);
1485 trace_xhci_urb_dequeue(urb
);
1487 /* Make sure the URB hasn't completed or been unlinked already */
1488 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
1492 /* give back URB now if we can't queue it for cancel */
1493 vdev
= xhci
->devs
[urb
->dev
->slot_id
];
1494 urb_priv
= urb
->hcpriv
;
1495 if (!vdev
|| !urb_priv
)
1498 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1499 ep
= &vdev
->eps
[ep_index
];
1500 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
1501 if (!ep
|| !ep_ring
)
1504 temp
= readl(&xhci
->op_regs
->status
);
1505 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1506 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1507 "HW died, freeing TD.");
1508 for (i
= urb_priv
->num_tds_done
;
1509 i
< urb_priv
->num_tds
;
1511 td
= &urb_priv
->td
[i
];
1512 if (!list_empty(&td
->td_list
))
1513 list_del_init(&td
->td_list
);
1514 if (!list_empty(&td
->cancelled_td_list
))
1515 list_del_init(&td
->cancelled_td_list
);
1520 i
= urb_priv
->num_tds_done
;
1521 if (i
< urb_priv
->num_tds
)
1522 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1523 "Cancel URB %p, dev %s, ep 0x%x, "
1524 "starting at offset 0x%llx",
1525 urb
, urb
->dev
->devpath
,
1526 urb
->ep
->desc
.bEndpointAddress
,
1527 (unsigned long long) xhci_trb_virt_to_dma(
1528 urb_priv
->td
[i
].start_seg
,
1529 urb_priv
->td
[i
].first_trb
));
1531 for (; i
< urb_priv
->num_tds
; i
++) {
1532 td
= &urb_priv
->td
[i
];
1533 list_add_tail(&td
->cancelled_td_list
, &ep
->cancelled_td_list
);
1536 /* Queue a stop endpoint command, but only if this is
1537 * the first cancellation to be handled.
1539 if (!(ep
->ep_state
& EP_STOP_CMD_PENDING
)) {
1540 command
= xhci_alloc_command(xhci
, false, false, GFP_ATOMIC
);
1545 ep
->ep_state
|= EP_STOP_CMD_PENDING
;
1546 ep
->stop_cmd_timer
.expires
= jiffies
+
1547 XHCI_STOP_EP_CMD_TIMEOUT
* HZ
;
1548 add_timer(&ep
->stop_cmd_timer
);
1549 xhci_queue_stop_endpoint(xhci
, command
, urb
->dev
->slot_id
,
1551 xhci_ring_cmd_db(xhci
);
1554 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1559 xhci_urb_free_priv(urb_priv
);
1560 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1561 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1562 usb_hcd_giveback_urb(hcd
, urb
, -ESHUTDOWN
);
1566 /* Drop an endpoint from a new bandwidth configuration for this device.
1567 * Only one call to this function is allowed per endpoint before
1568 * check_bandwidth() or reset_bandwidth() must be called.
1569 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1570 * add the endpoint to the schedule with possibly new parameters denoted by a
1571 * different endpoint descriptor in usb_host_endpoint.
1572 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1575 * The USB core will not allow URBs to be queued to an endpoint that is being
1576 * disabled, so there's no need for mutual exclusion to protect
1577 * the xhci->devs[slot_id] structure.
1579 int xhci_drop_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1580 struct usb_host_endpoint
*ep
)
1582 struct xhci_hcd
*xhci
;
1583 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1584 struct xhci_input_control_ctx
*ctrl_ctx
;
1585 unsigned int ep_index
;
1586 struct xhci_ep_ctx
*ep_ctx
;
1588 u32 new_add_flags
, new_drop_flags
;
1591 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1594 xhci
= hcd_to_xhci(hcd
);
1595 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1598 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1599 drop_flag
= xhci_get_endpoint_flag(&ep
->desc
);
1600 if (drop_flag
== SLOT_FLAG
|| drop_flag
== EP0_FLAG
) {
1601 xhci_dbg(xhci
, "xHCI %s - can't drop slot or ep 0 %#x\n",
1602 __func__
, drop_flag
);
1606 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
1607 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
1608 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
1610 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1615 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1616 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1617 /* If the HC already knows the endpoint is disabled,
1618 * or the HCD has noted it is disabled, ignore this request
1620 if ((GET_EP_CTX_STATE(ep_ctx
) == EP_STATE_DISABLED
) ||
1621 le32_to_cpu(ctrl_ctx
->drop_flags
) &
1622 xhci_get_endpoint_flag(&ep
->desc
)) {
1623 /* Do not warn when called after a usb_device_reset */
1624 if (xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ring
!= NULL
)
1625 xhci_warn(xhci
, "xHCI %s called with disabled ep %p\n",
1630 ctrl_ctx
->drop_flags
|= cpu_to_le32(drop_flag
);
1631 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1633 ctrl_ctx
->add_flags
&= cpu_to_le32(~drop_flag
);
1634 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1636 xhci_endpoint_zero(xhci
, xhci
->devs
[udev
->slot_id
], ep
);
1638 if (xhci
->quirks
& XHCI_MTK_HOST
)
1639 xhci_mtk_drop_ep_quirk(hcd
, udev
, ep
);
1641 xhci_dbg(xhci
, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1642 (unsigned int) ep
->desc
.bEndpointAddress
,
1644 (unsigned int) new_drop_flags
,
1645 (unsigned int) new_add_flags
);
1649 /* Add an endpoint to a new possible bandwidth configuration for this device.
1650 * Only one call to this function is allowed per endpoint before
1651 * check_bandwidth() or reset_bandwidth() must be called.
1652 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1653 * add the endpoint to the schedule with possibly new parameters denoted by a
1654 * different endpoint descriptor in usb_host_endpoint.
1655 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1658 * The USB core will not allow URBs to be queued to an endpoint until the
1659 * configuration or alt setting is installed in the device, so there's no need
1660 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1662 int xhci_add_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1663 struct usb_host_endpoint
*ep
)
1665 struct xhci_hcd
*xhci
;
1666 struct xhci_container_ctx
*in_ctx
;
1667 unsigned int ep_index
;
1668 struct xhci_input_control_ctx
*ctrl_ctx
;
1670 u32 new_add_flags
, new_drop_flags
;
1671 struct xhci_virt_device
*virt_dev
;
1674 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1676 /* So we won't queue a reset ep command for a root hub */
1680 xhci
= hcd_to_xhci(hcd
);
1681 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1684 added_ctxs
= xhci_get_endpoint_flag(&ep
->desc
);
1685 if (added_ctxs
== SLOT_FLAG
|| added_ctxs
== EP0_FLAG
) {
1686 /* FIXME when we have to issue an evaluate endpoint command to
1687 * deal with ep0 max packet size changing once we get the
1690 xhci_dbg(xhci
, "xHCI %s - can't add slot or ep 0 %#x\n",
1691 __func__
, added_ctxs
);
1695 virt_dev
= xhci
->devs
[udev
->slot_id
];
1696 in_ctx
= virt_dev
->in_ctx
;
1697 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
1699 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1704 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1705 /* If this endpoint is already in use, and the upper layers are trying
1706 * to add it again without dropping it, reject the addition.
1708 if (virt_dev
->eps
[ep_index
].ring
&&
1709 !(le32_to_cpu(ctrl_ctx
->drop_flags
) & added_ctxs
)) {
1710 xhci_warn(xhci
, "Trying to add endpoint 0x%x "
1711 "without dropping it.\n",
1712 (unsigned int) ep
->desc
.bEndpointAddress
);
1716 /* If the HCD has already noted the endpoint is enabled,
1717 * ignore this request.
1719 if (le32_to_cpu(ctrl_ctx
->add_flags
) & added_ctxs
) {
1720 xhci_warn(xhci
, "xHCI %s called with enabled ep %p\n",
1726 * Configuration and alternate setting changes must be done in
1727 * process context, not interrupt context (or so documenation
1728 * for usb_set_interface() and usb_set_configuration() claim).
1730 if (xhci_endpoint_init(xhci
, virt_dev
, udev
, ep
, GFP_NOIO
) < 0) {
1731 dev_dbg(&udev
->dev
, "%s - could not initialize ep %#x\n",
1732 __func__
, ep
->desc
.bEndpointAddress
);
1736 if (xhci
->quirks
& XHCI_MTK_HOST
) {
1737 ret
= xhci_mtk_add_ep_quirk(hcd
, udev
, ep
);
1739 xhci_free_or_cache_endpoint_ring(xhci
,
1740 virt_dev
, ep_index
);
1745 ctrl_ctx
->add_flags
|= cpu_to_le32(added_ctxs
);
1746 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1748 /* If xhci_endpoint_disable() was called for this endpoint, but the
1749 * xHC hasn't been notified yet through the check_bandwidth() call,
1750 * this re-adds a new state for the endpoint from the new endpoint
1751 * descriptors. We must drop and re-add this endpoint, so we leave the
1754 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1756 /* Store the usb_device pointer for later use */
1759 xhci_dbg(xhci
, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1760 (unsigned int) ep
->desc
.bEndpointAddress
,
1762 (unsigned int) new_drop_flags
,
1763 (unsigned int) new_add_flags
);
1767 static void xhci_zero_in_ctx(struct xhci_hcd
*xhci
, struct xhci_virt_device
*virt_dev
)
1769 struct xhci_input_control_ctx
*ctrl_ctx
;
1770 struct xhci_ep_ctx
*ep_ctx
;
1771 struct xhci_slot_ctx
*slot_ctx
;
1774 ctrl_ctx
= xhci_get_input_control_ctx(virt_dev
->in_ctx
);
1776 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1781 /* When a device's add flag and drop flag are zero, any subsequent
1782 * configure endpoint command will leave that endpoint's state
1783 * untouched. Make sure we don't leave any old state in the input
1784 * endpoint contexts.
1786 ctrl_ctx
->drop_flags
= 0;
1787 ctrl_ctx
->add_flags
= 0;
1788 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1789 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1790 /* Endpoint 0 is always valid */
1791 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1));
1792 for (i
= 1; i
< 31; i
++) {
1793 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, i
);
1794 ep_ctx
->ep_info
= 0;
1795 ep_ctx
->ep_info2
= 0;
1797 ep_ctx
->tx_info
= 0;
1801 static int xhci_configure_endpoint_result(struct xhci_hcd
*xhci
,
1802 struct usb_device
*udev
, u32
*cmd_status
)
1806 switch (*cmd_status
) {
1807 case COMP_COMMAND_ABORTED
:
1808 case COMP_COMMAND_RING_STOPPED
:
1809 xhci_warn(xhci
, "Timeout while waiting for configure endpoint command\n");
1812 case COMP_RESOURCE_ERROR
:
1813 dev_warn(&udev
->dev
,
1814 "Not enough host controller resources for new device state.\n");
1816 /* FIXME: can we allocate more resources for the HC? */
1818 case COMP_BANDWIDTH_ERROR
:
1819 case COMP_SECONDARY_BANDWIDTH_ERROR
:
1820 dev_warn(&udev
->dev
,
1821 "Not enough bandwidth for new device state.\n");
1823 /* FIXME: can we go back to the old state? */
1825 case COMP_TRB_ERROR
:
1826 /* the HCD set up something wrong */
1827 dev_warn(&udev
->dev
, "ERROR: Endpoint drop flag = 0, "
1829 "and endpoint is not disabled.\n");
1832 case COMP_INCOMPATIBLE_DEVICE_ERROR
:
1833 dev_warn(&udev
->dev
,
1834 "ERROR: Incompatible device for endpoint configure command.\n");
1838 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1839 "Successful Endpoint Configure command");
1843 xhci_err(xhci
, "ERROR: unexpected command completion code 0x%x.\n",
1851 static int xhci_evaluate_context_result(struct xhci_hcd
*xhci
,
1852 struct usb_device
*udev
, u32
*cmd_status
)
1855 struct xhci_virt_device
*virt_dev
= xhci
->devs
[udev
->slot_id
];
1857 switch (*cmd_status
) {
1858 case COMP_COMMAND_ABORTED
:
1859 case COMP_COMMAND_RING_STOPPED
:
1860 xhci_warn(xhci
, "Timeout while waiting for evaluate context command\n");
1863 case COMP_PARAMETER_ERROR
:
1864 dev_warn(&udev
->dev
,
1865 "WARN: xHCI driver setup invalid evaluate context command.\n");
1868 case COMP_SLOT_NOT_ENABLED_ERROR
:
1869 dev_warn(&udev
->dev
,
1870 "WARN: slot not enabled for evaluate context command.\n");
1873 case COMP_CONTEXT_STATE_ERROR
:
1874 dev_warn(&udev
->dev
,
1875 "WARN: invalid context state for evaluate context command.\n");
1876 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 1);
1879 case COMP_INCOMPATIBLE_DEVICE_ERROR
:
1880 dev_warn(&udev
->dev
,
1881 "ERROR: Incompatible device for evaluate context command.\n");
1884 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR
:
1885 /* Max Exit Latency too large error */
1886 dev_warn(&udev
->dev
, "WARN: Max Exit Latency too large\n");
1890 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1891 "Successful evaluate context command");
1895 xhci_err(xhci
, "ERROR: unexpected command completion code 0x%x.\n",
1903 static u32
xhci_count_num_new_endpoints(struct xhci_hcd
*xhci
,
1904 struct xhci_input_control_ctx
*ctrl_ctx
)
1906 u32 valid_add_flags
;
1907 u32 valid_drop_flags
;
1909 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1910 * (bit 1). The default control endpoint is added during the Address
1911 * Device command and is never removed until the slot is disabled.
1913 valid_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
) >> 2;
1914 valid_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
) >> 2;
1916 /* Use hweight32 to count the number of ones in the add flags, or
1917 * number of endpoints added. Don't count endpoints that are changed
1918 * (both added and dropped).
1920 return hweight32(valid_add_flags
) -
1921 hweight32(valid_add_flags
& valid_drop_flags
);
1924 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd
*xhci
,
1925 struct xhci_input_control_ctx
*ctrl_ctx
)
1927 u32 valid_add_flags
;
1928 u32 valid_drop_flags
;
1930 valid_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
) >> 2;
1931 valid_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
) >> 2;
1933 return hweight32(valid_drop_flags
) -
1934 hweight32(valid_add_flags
& valid_drop_flags
);
1938 * We need to reserve the new number of endpoints before the configure endpoint
1939 * command completes. We can't subtract the dropped endpoints from the number
1940 * of active endpoints until the command completes because we can oversubscribe
1941 * the host in this case:
1943 * - the first configure endpoint command drops more endpoints than it adds
1944 * - a second configure endpoint command that adds more endpoints is queued
1945 * - the first configure endpoint command fails, so the config is unchanged
1946 * - the second command may succeed, even though there isn't enough resources
1948 * Must be called with xhci->lock held.
1950 static int xhci_reserve_host_resources(struct xhci_hcd
*xhci
,
1951 struct xhci_input_control_ctx
*ctrl_ctx
)
1955 added_eps
= xhci_count_num_new_endpoints(xhci
, ctrl_ctx
);
1956 if (xhci
->num_active_eps
+ added_eps
> xhci
->limit_active_eps
) {
1957 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1958 "Not enough ep ctxs: "
1959 "%u active, need to add %u, limit is %u.",
1960 xhci
->num_active_eps
, added_eps
,
1961 xhci
->limit_active_eps
);
1964 xhci
->num_active_eps
+= added_eps
;
1965 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1966 "Adding %u ep ctxs, %u now active.", added_eps
,
1967 xhci
->num_active_eps
);
1972 * The configure endpoint was failed by the xHC for some other reason, so we
1973 * need to revert the resources that failed configuration would have used.
1975 * Must be called with xhci->lock held.
1977 static void xhci_free_host_resources(struct xhci_hcd
*xhci
,
1978 struct xhci_input_control_ctx
*ctrl_ctx
)
1982 num_failed_eps
= xhci_count_num_new_endpoints(xhci
, ctrl_ctx
);
1983 xhci
->num_active_eps
-= num_failed_eps
;
1984 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1985 "Removing %u failed ep ctxs, %u now active.",
1987 xhci
->num_active_eps
);
1991 * Now that the command has completed, clean up the active endpoint count by
1992 * subtracting out the endpoints that were dropped (but not changed).
1994 * Must be called with xhci->lock held.
1996 static void xhci_finish_resource_reservation(struct xhci_hcd
*xhci
,
1997 struct xhci_input_control_ctx
*ctrl_ctx
)
1999 u32 num_dropped_eps
;
2001 num_dropped_eps
= xhci_count_num_dropped_endpoints(xhci
, ctrl_ctx
);
2002 xhci
->num_active_eps
-= num_dropped_eps
;
2003 if (num_dropped_eps
)
2004 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2005 "Removing %u dropped ep ctxs, %u now active.",
2007 xhci
->num_active_eps
);
2010 static unsigned int xhci_get_block_size(struct usb_device
*udev
)
2012 switch (udev
->speed
) {
2014 case USB_SPEED_FULL
:
2016 case USB_SPEED_HIGH
:
2018 case USB_SPEED_SUPER
:
2019 case USB_SPEED_SUPER_PLUS
:
2021 case USB_SPEED_UNKNOWN
:
2022 case USB_SPEED_WIRELESS
:
2024 /* Should never happen */
2030 xhci_get_largest_overhead(struct xhci_interval_bw
*interval_bw
)
2032 if (interval_bw
->overhead
[LS_OVERHEAD_TYPE
])
2034 if (interval_bw
->overhead
[FS_OVERHEAD_TYPE
])
2039 /* If we are changing a LS/FS device under a HS hub,
2040 * make sure (if we are activating a new TT) that the HS bus has enough
2041 * bandwidth for this new TT.
2043 static int xhci_check_tt_bw_table(struct xhci_hcd
*xhci
,
2044 struct xhci_virt_device
*virt_dev
,
2047 struct xhci_interval_bw_table
*bw_table
;
2048 struct xhci_tt_bw_info
*tt_info
;
2050 /* Find the bandwidth table for the root port this TT is attached to. */
2051 bw_table
= &xhci
->rh_bw
[virt_dev
->real_port
- 1].bw_table
;
2052 tt_info
= virt_dev
->tt_info
;
2053 /* If this TT already had active endpoints, the bandwidth for this TT
2054 * has already been added. Removing all periodic endpoints (and thus
2055 * making the TT enactive) will only decrease the bandwidth used.
2059 if (old_active_eps
== 0 && tt_info
->active_eps
!= 0) {
2060 if (bw_table
->bw_used
+ TT_HS_OVERHEAD
> HS_BW_LIMIT
)
2064 /* Not sure why we would have no new active endpoints...
2066 * Maybe because of an Evaluate Context change for a hub update or a
2067 * control endpoint 0 max packet size change?
2068 * FIXME: skip the bandwidth calculation in that case.
2073 static int xhci_check_ss_bw(struct xhci_hcd
*xhci
,
2074 struct xhci_virt_device
*virt_dev
)
2076 unsigned int bw_reserved
;
2078 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_IN
, 100);
2079 if (virt_dev
->bw_table
->ss_bw_in
> (SS_BW_LIMIT_IN
- bw_reserved
))
2082 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_OUT
, 100);
2083 if (virt_dev
->bw_table
->ss_bw_out
> (SS_BW_LIMIT_OUT
- bw_reserved
))
2090 * This algorithm is a very conservative estimate of the worst-case scheduling
2091 * scenario for any one interval. The hardware dynamically schedules the
2092 * packets, so we can't tell which microframe could be the limiting factor in
2093 * the bandwidth scheduling. This only takes into account periodic endpoints.
2095 * Obviously, we can't solve an NP complete problem to find the minimum worst
2096 * case scenario. Instead, we come up with an estimate that is no less than
2097 * the worst case bandwidth used for any one microframe, but may be an
2100 * We walk the requirements for each endpoint by interval, starting with the
2101 * smallest interval, and place packets in the schedule where there is only one
2102 * possible way to schedule packets for that interval. In order to simplify
2103 * this algorithm, we record the largest max packet size for each interval, and
2104 * assume all packets will be that size.
2106 * For interval 0, we obviously must schedule all packets for each interval.
2107 * The bandwidth for interval 0 is just the amount of data to be transmitted
2108 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2109 * the number of packets).
2111 * For interval 1, we have two possible microframes to schedule those packets
2112 * in. For this algorithm, if we can schedule the same number of packets for
2113 * each possible scheduling opportunity (each microframe), we will do so. The
2114 * remaining number of packets will be saved to be transmitted in the gaps in
2115 * the next interval's scheduling sequence.
2117 * As we move those remaining packets to be scheduled with interval 2 packets,
2118 * we have to double the number of remaining packets to transmit. This is
2119 * because the intervals are actually powers of 2, and we would be transmitting
2120 * the previous interval's packets twice in this interval. We also have to be
2121 * sure that when we look at the largest max packet size for this interval, we
2122 * also look at the largest max packet size for the remaining packets and take
2123 * the greater of the two.
2125 * The algorithm continues to evenly distribute packets in each scheduling
2126 * opportunity, and push the remaining packets out, until we get to the last
2127 * interval. Then those packets and their associated overhead are just added
2128 * to the bandwidth used.
2130 static int xhci_check_bw_table(struct xhci_hcd
*xhci
,
2131 struct xhci_virt_device
*virt_dev
,
2134 unsigned int bw_reserved
;
2135 unsigned int max_bandwidth
;
2136 unsigned int bw_used
;
2137 unsigned int block_size
;
2138 struct xhci_interval_bw_table
*bw_table
;
2139 unsigned int packet_size
= 0;
2140 unsigned int overhead
= 0;
2141 unsigned int packets_transmitted
= 0;
2142 unsigned int packets_remaining
= 0;
2145 if (virt_dev
->udev
->speed
>= USB_SPEED_SUPER
)
2146 return xhci_check_ss_bw(xhci
, virt_dev
);
2148 if (virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2149 max_bandwidth
= HS_BW_LIMIT
;
2150 /* Convert percent of bus BW reserved to blocks reserved */
2151 bw_reserved
= DIV_ROUND_UP(HS_BW_RESERVED
* max_bandwidth
, 100);
2153 max_bandwidth
= FS_BW_LIMIT
;
2154 bw_reserved
= DIV_ROUND_UP(FS_BW_RESERVED
* max_bandwidth
, 100);
2157 bw_table
= virt_dev
->bw_table
;
2158 /* We need to translate the max packet size and max ESIT payloads into
2159 * the units the hardware uses.
2161 block_size
= xhci_get_block_size(virt_dev
->udev
);
2163 /* If we are manipulating a LS/FS device under a HS hub, double check
2164 * that the HS bus has enough bandwidth if we are activing a new TT.
2166 if (virt_dev
->tt_info
) {
2167 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2168 "Recalculating BW for rootport %u",
2169 virt_dev
->real_port
);
2170 if (xhci_check_tt_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2171 xhci_warn(xhci
, "Not enough bandwidth on HS bus for "
2172 "newly activated TT.\n");
2175 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2176 "Recalculating BW for TT slot %u port %u",
2177 virt_dev
->tt_info
->slot_id
,
2178 virt_dev
->tt_info
->ttport
);
2180 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2181 "Recalculating BW for rootport %u",
2182 virt_dev
->real_port
);
2185 /* Add in how much bandwidth will be used for interval zero, or the
2186 * rounded max ESIT payload + number of packets * largest overhead.
2188 bw_used
= DIV_ROUND_UP(bw_table
->interval0_esit_payload
, block_size
) +
2189 bw_table
->interval_bw
[0].num_packets
*
2190 xhci_get_largest_overhead(&bw_table
->interval_bw
[0]);
2192 for (i
= 1; i
< XHCI_MAX_INTERVAL
; i
++) {
2193 unsigned int bw_added
;
2194 unsigned int largest_mps
;
2195 unsigned int interval_overhead
;
2198 * How many packets could we transmit in this interval?
2199 * If packets didn't fit in the previous interval, we will need
2200 * to transmit that many packets twice within this interval.
2202 packets_remaining
= 2 * packets_remaining
+
2203 bw_table
->interval_bw
[i
].num_packets
;
2205 /* Find the largest max packet size of this or the previous
2208 if (list_empty(&bw_table
->interval_bw
[i
].endpoints
))
2211 struct xhci_virt_ep
*virt_ep
;
2212 struct list_head
*ep_entry
;
2214 ep_entry
= bw_table
->interval_bw
[i
].endpoints
.next
;
2215 virt_ep
= list_entry(ep_entry
,
2216 struct xhci_virt_ep
, bw_endpoint_list
);
2217 /* Convert to blocks, rounding up */
2218 largest_mps
= DIV_ROUND_UP(
2219 virt_ep
->bw_info
.max_packet_size
,
2222 if (largest_mps
> packet_size
)
2223 packet_size
= largest_mps
;
2225 /* Use the larger overhead of this or the previous interval. */
2226 interval_overhead
= xhci_get_largest_overhead(
2227 &bw_table
->interval_bw
[i
]);
2228 if (interval_overhead
> overhead
)
2229 overhead
= interval_overhead
;
2231 /* How many packets can we evenly distribute across
2232 * (1 << (i + 1)) possible scheduling opportunities?
2234 packets_transmitted
= packets_remaining
>> (i
+ 1);
2236 /* Add in the bandwidth used for those scheduled packets */
2237 bw_added
= packets_transmitted
* (overhead
+ packet_size
);
2239 /* How many packets do we have remaining to transmit? */
2240 packets_remaining
= packets_remaining
% (1 << (i
+ 1));
2242 /* What largest max packet size should those packets have? */
2243 /* If we've transmitted all packets, don't carry over the
2244 * largest packet size.
2246 if (packets_remaining
== 0) {
2249 } else if (packets_transmitted
> 0) {
2250 /* Otherwise if we do have remaining packets, and we've
2251 * scheduled some packets in this interval, take the
2252 * largest max packet size from endpoints with this
2255 packet_size
= largest_mps
;
2256 overhead
= interval_overhead
;
2258 /* Otherwise carry over packet_size and overhead from the last
2259 * time we had a remainder.
2261 bw_used
+= bw_added
;
2262 if (bw_used
> max_bandwidth
) {
2263 xhci_warn(xhci
, "Not enough bandwidth. "
2264 "Proposed: %u, Max: %u\n",
2265 bw_used
, max_bandwidth
);
2270 * Ok, we know we have some packets left over after even-handedly
2271 * scheduling interval 15. We don't know which microframes they will
2272 * fit into, so we over-schedule and say they will be scheduled every
2275 if (packets_remaining
> 0)
2276 bw_used
+= overhead
+ packet_size
;
2278 if (!virt_dev
->tt_info
&& virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2279 unsigned int port_index
= virt_dev
->real_port
- 1;
2281 /* OK, we're manipulating a HS device attached to a
2282 * root port bandwidth domain. Include the number of active TTs
2283 * in the bandwidth used.
2285 bw_used
+= TT_HS_OVERHEAD
*
2286 xhci
->rh_bw
[port_index
].num_active_tts
;
2289 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2290 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2291 "Available: %u " "percent",
2292 bw_used
, max_bandwidth
, bw_reserved
,
2293 (max_bandwidth
- bw_used
- bw_reserved
) * 100 /
2296 bw_used
+= bw_reserved
;
2297 if (bw_used
> max_bandwidth
) {
2298 xhci_warn(xhci
, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2299 bw_used
, max_bandwidth
);
2303 bw_table
->bw_used
= bw_used
;
2307 static bool xhci_is_async_ep(unsigned int ep_type
)
2309 return (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
2310 ep_type
!= ISOC_IN_EP
&&
2311 ep_type
!= INT_IN_EP
);
2314 static bool xhci_is_sync_in_ep(unsigned int ep_type
)
2316 return (ep_type
== ISOC_IN_EP
|| ep_type
== INT_IN_EP
);
2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info
*ep_bw
)
2321 unsigned int mps
= DIV_ROUND_UP(ep_bw
->max_packet_size
, SS_BLOCK
);
2323 if (ep_bw
->ep_interval
== 0)
2324 return SS_OVERHEAD_BURST
+
2325 (ep_bw
->mult
* ep_bw
->num_packets
*
2326 (SS_OVERHEAD
+ mps
));
2327 return DIV_ROUND_UP(ep_bw
->mult
* ep_bw
->num_packets
*
2328 (SS_OVERHEAD
+ mps
+ SS_OVERHEAD_BURST
),
2329 1 << ep_bw
->ep_interval
);
2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd
*xhci
,
2334 struct xhci_bw_info
*ep_bw
,
2335 struct xhci_interval_bw_table
*bw_table
,
2336 struct usb_device
*udev
,
2337 struct xhci_virt_ep
*virt_ep
,
2338 struct xhci_tt_bw_info
*tt_info
)
2340 struct xhci_interval_bw
*interval_bw
;
2341 int normalized_interval
;
2343 if (xhci_is_async_ep(ep_bw
->type
))
2346 if (udev
->speed
>= USB_SPEED_SUPER
) {
2347 if (xhci_is_sync_in_ep(ep_bw
->type
))
2348 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
-=
2349 xhci_get_ss_bw_consumed(ep_bw
);
2351 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
-=
2352 xhci_get_ss_bw_consumed(ep_bw
);
2356 /* SuperSpeed endpoints never get added to intervals in the table, so
2357 * this check is only valid for HS/FS/LS devices.
2359 if (list_empty(&virt_ep
->bw_endpoint_list
))
2361 /* For LS/FS devices, we need to translate the interval expressed in
2362 * microframes to frames.
2364 if (udev
->speed
== USB_SPEED_HIGH
)
2365 normalized_interval
= ep_bw
->ep_interval
;
2367 normalized_interval
= ep_bw
->ep_interval
- 3;
2369 if (normalized_interval
== 0)
2370 bw_table
->interval0_esit_payload
-= ep_bw
->max_esit_payload
;
2371 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2372 interval_bw
->num_packets
-= ep_bw
->num_packets
;
2373 switch (udev
->speed
) {
2375 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] -= 1;
2377 case USB_SPEED_FULL
:
2378 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] -= 1;
2380 case USB_SPEED_HIGH
:
2381 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] -= 1;
2383 case USB_SPEED_SUPER
:
2384 case USB_SPEED_SUPER_PLUS
:
2385 case USB_SPEED_UNKNOWN
:
2386 case USB_SPEED_WIRELESS
:
2387 /* Should never happen because only LS/FS/HS endpoints will get
2388 * added to the endpoint list.
2393 tt_info
->active_eps
-= 1;
2394 list_del_init(&virt_ep
->bw_endpoint_list
);
2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd
*xhci
,
2398 struct xhci_bw_info
*ep_bw
,
2399 struct xhci_interval_bw_table
*bw_table
,
2400 struct usb_device
*udev
,
2401 struct xhci_virt_ep
*virt_ep
,
2402 struct xhci_tt_bw_info
*tt_info
)
2404 struct xhci_interval_bw
*interval_bw
;
2405 struct xhci_virt_ep
*smaller_ep
;
2406 int normalized_interval
;
2408 if (xhci_is_async_ep(ep_bw
->type
))
2411 if (udev
->speed
== USB_SPEED_SUPER
) {
2412 if (xhci_is_sync_in_ep(ep_bw
->type
))
2413 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
+=
2414 xhci_get_ss_bw_consumed(ep_bw
);
2416 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
+=
2417 xhci_get_ss_bw_consumed(ep_bw
);
2421 /* For LS/FS devices, we need to translate the interval expressed in
2422 * microframes to frames.
2424 if (udev
->speed
== USB_SPEED_HIGH
)
2425 normalized_interval
= ep_bw
->ep_interval
;
2427 normalized_interval
= ep_bw
->ep_interval
- 3;
2429 if (normalized_interval
== 0)
2430 bw_table
->interval0_esit_payload
+= ep_bw
->max_esit_payload
;
2431 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2432 interval_bw
->num_packets
+= ep_bw
->num_packets
;
2433 switch (udev
->speed
) {
2435 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] += 1;
2437 case USB_SPEED_FULL
:
2438 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] += 1;
2440 case USB_SPEED_HIGH
:
2441 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] += 1;
2443 case USB_SPEED_SUPER
:
2444 case USB_SPEED_SUPER_PLUS
:
2445 case USB_SPEED_UNKNOWN
:
2446 case USB_SPEED_WIRELESS
:
2447 /* Should never happen because only LS/FS/HS endpoints will get
2448 * added to the endpoint list.
2454 tt_info
->active_eps
+= 1;
2455 /* Insert the endpoint into the list, largest max packet size first. */
2456 list_for_each_entry(smaller_ep
, &interval_bw
->endpoints
,
2458 if (ep_bw
->max_packet_size
>=
2459 smaller_ep
->bw_info
.max_packet_size
) {
2460 /* Add the new ep before the smaller endpoint */
2461 list_add_tail(&virt_ep
->bw_endpoint_list
,
2462 &smaller_ep
->bw_endpoint_list
);
2466 /* Add the new endpoint at the end of the list. */
2467 list_add_tail(&virt_ep
->bw_endpoint_list
,
2468 &interval_bw
->endpoints
);
2471 void xhci_update_tt_active_eps(struct xhci_hcd
*xhci
,
2472 struct xhci_virt_device
*virt_dev
,
2475 struct xhci_root_port_bw_info
*rh_bw_info
;
2476 if (!virt_dev
->tt_info
)
2479 rh_bw_info
= &xhci
->rh_bw
[virt_dev
->real_port
- 1];
2480 if (old_active_eps
== 0 &&
2481 virt_dev
->tt_info
->active_eps
!= 0) {
2482 rh_bw_info
->num_active_tts
+= 1;
2483 rh_bw_info
->bw_table
.bw_used
+= TT_HS_OVERHEAD
;
2484 } else if (old_active_eps
!= 0 &&
2485 virt_dev
->tt_info
->active_eps
== 0) {
2486 rh_bw_info
->num_active_tts
-= 1;
2487 rh_bw_info
->bw_table
.bw_used
-= TT_HS_OVERHEAD
;
2491 static int xhci_reserve_bandwidth(struct xhci_hcd
*xhci
,
2492 struct xhci_virt_device
*virt_dev
,
2493 struct xhci_container_ctx
*in_ctx
)
2495 struct xhci_bw_info ep_bw_info
[31];
2497 struct xhci_input_control_ctx
*ctrl_ctx
;
2498 int old_active_eps
= 0;
2500 if (virt_dev
->tt_info
)
2501 old_active_eps
= virt_dev
->tt_info
->active_eps
;
2503 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
2505 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2510 for (i
= 0; i
< 31; i
++) {
2511 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2514 /* Make a copy of the BW info in case we need to revert this */
2515 memcpy(&ep_bw_info
[i
], &virt_dev
->eps
[i
].bw_info
,
2516 sizeof(ep_bw_info
[i
]));
2517 /* Drop the endpoint from the interval table if the endpoint is
2518 * being dropped or changed.
2520 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2521 xhci_drop_ep_from_interval_table(xhci
,
2522 &virt_dev
->eps
[i
].bw_info
,
2528 /* Overwrite the information stored in the endpoints' bw_info */
2529 xhci_update_bw_info(xhci
, virt_dev
->in_ctx
, ctrl_ctx
, virt_dev
);
2530 for (i
= 0; i
< 31; i
++) {
2531 /* Add any changed or added endpoints to the interval table */
2532 if (EP_IS_ADDED(ctrl_ctx
, i
))
2533 xhci_add_ep_to_interval_table(xhci
,
2534 &virt_dev
->eps
[i
].bw_info
,
2541 if (!xhci_check_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2542 /* Ok, this fits in the bandwidth we have.
2543 * Update the number of active TTs.
2545 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
2549 /* We don't have enough bandwidth for this, revert the stored info. */
2550 for (i
= 0; i
< 31; i
++) {
2551 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2554 /* Drop the new copies of any added or changed endpoints from
2555 * the interval table.
2557 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
2558 xhci_drop_ep_from_interval_table(xhci
,
2559 &virt_dev
->eps
[i
].bw_info
,
2565 /* Revert the endpoint back to its old information */
2566 memcpy(&virt_dev
->eps
[i
].bw_info
, &ep_bw_info
[i
],
2567 sizeof(ep_bw_info
[i
]));
2568 /* Add any changed or dropped endpoints back into the table */
2569 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2570 xhci_add_ep_to_interval_table(xhci
,
2571 &virt_dev
->eps
[i
].bw_info
,
2581 /* Issue a configure endpoint command or evaluate context command
2582 * and wait for it to finish.
2584 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
2585 struct usb_device
*udev
,
2586 struct xhci_command
*command
,
2587 bool ctx_change
, bool must_succeed
)
2590 unsigned long flags
;
2591 struct xhci_input_control_ctx
*ctrl_ctx
;
2592 struct xhci_virt_device
*virt_dev
;
2597 spin_lock_irqsave(&xhci
->lock
, flags
);
2598 virt_dev
= xhci
->devs
[udev
->slot_id
];
2600 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
2602 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2603 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2608 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
) &&
2609 xhci_reserve_host_resources(xhci
, ctrl_ctx
)) {
2610 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2611 xhci_warn(xhci
, "Not enough host resources, "
2612 "active endpoint contexts = %u\n",
2613 xhci
->num_active_eps
);
2616 if ((xhci
->quirks
& XHCI_SW_BW_CHECKING
) &&
2617 xhci_reserve_bandwidth(xhci
, virt_dev
, command
->in_ctx
)) {
2618 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2619 xhci_free_host_resources(xhci
, ctrl_ctx
);
2620 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2621 xhci_warn(xhci
, "Not enough bandwidth\n");
2626 ret
= xhci_queue_configure_endpoint(xhci
, command
,
2627 command
->in_ctx
->dma
,
2628 udev
->slot_id
, must_succeed
);
2630 ret
= xhci_queue_evaluate_context(xhci
, command
,
2631 command
->in_ctx
->dma
,
2632 udev
->slot_id
, must_succeed
);
2634 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2635 xhci_free_host_resources(xhci
, ctrl_ctx
);
2636 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2637 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
2638 "FIXME allocate a new ring segment");
2641 xhci_ring_cmd_db(xhci
);
2642 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2644 /* Wait for the configure endpoint command to complete */
2645 wait_for_completion(command
->completion
);
2648 ret
= xhci_configure_endpoint_result(xhci
, udev
,
2651 ret
= xhci_evaluate_context_result(xhci
, udev
,
2654 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
2655 spin_lock_irqsave(&xhci
->lock
, flags
);
2656 /* If the command failed, remove the reserved resources.
2657 * Otherwise, clean up the estimate to include dropped eps.
2660 xhci_free_host_resources(xhci
, ctrl_ctx
);
2662 xhci_finish_resource_reservation(xhci
, ctrl_ctx
);
2663 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2668 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd
*xhci
,
2669 struct xhci_virt_device
*vdev
, int i
)
2671 struct xhci_virt_ep
*ep
= &vdev
->eps
[i
];
2673 if (ep
->ep_state
& EP_HAS_STREAMS
) {
2674 xhci_warn(xhci
, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2675 xhci_get_endpoint_address(i
));
2676 xhci_free_stream_info(xhci
, ep
->stream_info
);
2677 ep
->stream_info
= NULL
;
2678 ep
->ep_state
&= ~EP_HAS_STREAMS
;
2682 /* Called after one or more calls to xhci_add_endpoint() or
2683 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2684 * to call xhci_reset_bandwidth().
2686 * Since we are in the middle of changing either configuration or
2687 * installing a new alt setting, the USB core won't allow URBs to be
2688 * enqueued for any endpoint on the old config or interface. Nothing
2689 * else should be touching the xhci->devs[slot_id] structure, so we
2690 * don't need to take the xhci->lock for manipulating that.
2692 int xhci_check_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2696 struct xhci_hcd
*xhci
;
2697 struct xhci_virt_device
*virt_dev
;
2698 struct xhci_input_control_ctx
*ctrl_ctx
;
2699 struct xhci_slot_ctx
*slot_ctx
;
2700 struct xhci_command
*command
;
2702 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2705 xhci
= hcd_to_xhci(hcd
);
2706 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
2707 (xhci
->xhc_state
& XHCI_STATE_REMOVING
))
2710 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2711 virt_dev
= xhci
->devs
[udev
->slot_id
];
2713 command
= xhci_alloc_command(xhci
, false, true, GFP_KERNEL
);
2717 command
->in_ctx
= virt_dev
->in_ctx
;
2719 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2720 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
2722 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2725 goto command_cleanup
;
2727 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2728 ctrl_ctx
->add_flags
&= cpu_to_le32(~EP0_FLAG
);
2729 ctrl_ctx
->drop_flags
&= cpu_to_le32(~(SLOT_FLAG
| EP0_FLAG
));
2731 /* Don't issue the command if there's no endpoints to update. */
2732 if (ctrl_ctx
->add_flags
== cpu_to_le32(SLOT_FLAG
) &&
2733 ctrl_ctx
->drop_flags
== 0) {
2735 goto command_cleanup
;
2737 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2738 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
2739 for (i
= 31; i
>= 1; i
--) {
2740 __le32 le32
= cpu_to_le32(BIT(i
));
2742 if ((virt_dev
->eps
[i
-1].ring
&& !(ctrl_ctx
->drop_flags
& le32
))
2743 || (ctrl_ctx
->add_flags
& le32
) || i
== 1) {
2744 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
2745 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(i
));
2749 xhci_dbg(xhci
, "New Input Control Context:\n");
2750 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
,
2751 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2753 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
2756 /* Callee should call reset_bandwidth() */
2757 goto command_cleanup
;
2759 xhci_dbg(xhci
, "Output context after successful config ep cmd:\n");
2760 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
,
2761 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2763 /* Free any rings that were dropped, but not changed. */
2764 for (i
= 1; i
< 31; i
++) {
2765 if ((le32_to_cpu(ctrl_ctx
->drop_flags
) & (1 << (i
+ 1))) &&
2766 !(le32_to_cpu(ctrl_ctx
->add_flags
) & (1 << (i
+ 1)))) {
2767 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2768 xhci_check_bw_drop_ep_streams(xhci
, virt_dev
, i
);
2771 xhci_zero_in_ctx(xhci
, virt_dev
);
2773 * Install any rings for completely new endpoints or changed endpoints,
2774 * and free or cache any old rings from changed endpoints.
2776 for (i
= 1; i
< 31; i
++) {
2777 if (!virt_dev
->eps
[i
].new_ring
)
2779 /* Only cache or free the old ring if it exists.
2780 * It may not if this is the first add of an endpoint.
2782 if (virt_dev
->eps
[i
].ring
) {
2783 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2785 xhci_check_bw_drop_ep_streams(xhci
, virt_dev
, i
);
2786 virt_dev
->eps
[i
].ring
= virt_dev
->eps
[i
].new_ring
;
2787 virt_dev
->eps
[i
].new_ring
= NULL
;
2790 kfree(command
->completion
);
2796 void xhci_reset_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2798 struct xhci_hcd
*xhci
;
2799 struct xhci_virt_device
*virt_dev
;
2802 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2805 xhci
= hcd_to_xhci(hcd
);
2807 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2808 virt_dev
= xhci
->devs
[udev
->slot_id
];
2809 /* Free any rings allocated for added endpoints */
2810 for (i
= 0; i
< 31; i
++) {
2811 if (virt_dev
->eps
[i
].new_ring
) {
2812 xhci_ring_free(xhci
, virt_dev
->eps
[i
].new_ring
);
2813 virt_dev
->eps
[i
].new_ring
= NULL
;
2816 xhci_zero_in_ctx(xhci
, virt_dev
);
2819 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd
*xhci
,
2820 struct xhci_container_ctx
*in_ctx
,
2821 struct xhci_container_ctx
*out_ctx
,
2822 struct xhci_input_control_ctx
*ctrl_ctx
,
2823 u32 add_flags
, u32 drop_flags
)
2825 ctrl_ctx
->add_flags
= cpu_to_le32(add_flags
);
2826 ctrl_ctx
->drop_flags
= cpu_to_le32(drop_flags
);
2827 xhci_slot_copy(xhci
, in_ctx
, out_ctx
);
2828 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2830 xhci_dbg(xhci
, "Input Context:\n");
2831 xhci_dbg_ctx(xhci
, in_ctx
, xhci_last_valid_endpoint(add_flags
));
2834 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd
*xhci
,
2835 unsigned int slot_id
, unsigned int ep_index
,
2836 struct xhci_dequeue_state
*deq_state
)
2838 struct xhci_input_control_ctx
*ctrl_ctx
;
2839 struct xhci_container_ctx
*in_ctx
;
2840 struct xhci_ep_ctx
*ep_ctx
;
2844 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
2845 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
2847 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2852 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2853 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2854 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
2855 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
2856 deq_state
->new_deq_ptr
);
2858 xhci_warn(xhci
, "WARN Cannot submit config ep after "
2859 "reset ep command\n");
2860 xhci_warn(xhci
, "WARN deq seg = %p, deq ptr = %p\n",
2861 deq_state
->new_deq_seg
,
2862 deq_state
->new_deq_ptr
);
2865 ep_ctx
->deq
= cpu_to_le64(addr
| deq_state
->new_cycle_state
);
2867 added_ctxs
= xhci_get_endpoint_flag_from_index(ep_index
);
2868 xhci_setup_input_ctx_for_config_ep(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2869 xhci
->devs
[slot_id
]->out_ctx
, ctrl_ctx
,
2870 added_ctxs
, added_ctxs
);
2873 void xhci_cleanup_stalled_ring(struct xhci_hcd
*xhci
,
2874 unsigned int ep_index
, struct xhci_td
*td
)
2876 struct xhci_dequeue_state deq_state
;
2877 struct xhci_virt_ep
*ep
;
2878 struct usb_device
*udev
= td
->urb
->dev
;
2880 xhci_dbg_trace(xhci
, trace_xhci_dbg_reset_ep
,
2881 "Cleaning up stalled endpoint ring");
2882 ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2883 /* We need to move the HW's dequeue pointer past this TD,
2884 * or it will attempt to resend it on the next doorbell ring.
2886 xhci_find_new_dequeue_state(xhci
, udev
->slot_id
,
2887 ep_index
, ep
->stopped_stream
, td
, &deq_state
);
2889 if (!deq_state
.new_deq_ptr
|| !deq_state
.new_deq_seg
)
2892 /* HW with the reset endpoint quirk will use the saved dequeue state to
2893 * issue a configure endpoint command later.
2895 if (!(xhci
->quirks
& XHCI_RESET_EP_QUIRK
)) {
2896 xhci_dbg_trace(xhci
, trace_xhci_dbg_reset_ep
,
2897 "Queueing new dequeue state");
2898 xhci_queue_new_dequeue_state(xhci
, udev
->slot_id
,
2899 ep_index
, ep
->stopped_stream
, &deq_state
);
2901 /* Better hope no one uses the input context between now and the
2902 * reset endpoint completion!
2903 * XXX: No idea how this hardware will react when stream rings
2906 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2907 "Setting up input context for "
2908 "configure endpoint command");
2909 xhci_setup_input_ctx_for_quirk(xhci
, udev
->slot_id
,
2910 ep_index
, &deq_state
);
2914 /* Called when clearing halted device. The core should have sent the control
2915 * message to clear the device halt condition. The host side of the halt should
2916 * already be cleared with a reset endpoint command issued when the STALL tx
2917 * event was received.
2919 * Context: in_interrupt
2922 void xhci_endpoint_reset(struct usb_hcd
*hcd
,
2923 struct usb_host_endpoint
*ep
)
2925 struct xhci_hcd
*xhci
;
2927 xhci
= hcd_to_xhci(hcd
);
2930 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2931 * The Reset Endpoint Command may only be issued to endpoints in the
2932 * Halted state. If software wishes reset the Data Toggle or Sequence
2933 * Number of an endpoint that isn't in the Halted state, then software
2934 * may issue a Configure Endpoint Command with the Drop and Add bits set
2935 * for the target endpoint. that is in the Stopped state.
2938 /* For now just print debug to follow the situation */
2939 xhci_dbg(xhci
, "Endpoint 0x%x ep reset callback called\n",
2940 ep
->desc
.bEndpointAddress
);
2943 static int xhci_check_streams_endpoint(struct xhci_hcd
*xhci
,
2944 struct usb_device
*udev
, struct usb_host_endpoint
*ep
,
2945 unsigned int slot_id
)
2948 unsigned int ep_index
;
2949 unsigned int ep_state
;
2953 ret
= xhci_check_args(xhci_to_hcd(xhci
), udev
, ep
, 1, true, __func__
);
2956 if (usb_ss_max_streams(&ep
->ss_ep_comp
) == 0) {
2957 xhci_warn(xhci
, "WARN: SuperSpeed Endpoint Companion"
2958 " descriptor for ep 0x%x does not support streams\n",
2959 ep
->desc
.bEndpointAddress
);
2963 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2964 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
2965 if (ep_state
& EP_HAS_STREAMS
||
2966 ep_state
& EP_GETTING_STREAMS
) {
2967 xhci_warn(xhci
, "WARN: SuperSpeed bulk endpoint 0x%x "
2968 "already has streams set up.\n",
2969 ep
->desc
.bEndpointAddress
);
2970 xhci_warn(xhci
, "Send email to xHCI maintainer and ask for "
2971 "dynamic stream context array reallocation.\n");
2974 if (!list_empty(&xhci
->devs
[slot_id
]->eps
[ep_index
].ring
->td_list
)) {
2975 xhci_warn(xhci
, "Cannot setup streams for SuperSpeed bulk "
2976 "endpoint 0x%x; URBs are pending.\n",
2977 ep
->desc
.bEndpointAddress
);
2983 static void xhci_calculate_streams_entries(struct xhci_hcd
*xhci
,
2984 unsigned int *num_streams
, unsigned int *num_stream_ctxs
)
2986 unsigned int max_streams
;
2988 /* The stream context array size must be a power of two */
2989 *num_stream_ctxs
= roundup_pow_of_two(*num_streams
);
2991 * Find out how many primary stream array entries the host controller
2992 * supports. Later we may use secondary stream arrays (similar to 2nd
2993 * level page entries), but that's an optional feature for xHCI host
2994 * controllers. xHCs must support at least 4 stream IDs.
2996 max_streams
= HCC_MAX_PSA(xhci
->hcc_params
);
2997 if (*num_stream_ctxs
> max_streams
) {
2998 xhci_dbg(xhci
, "xHCI HW only supports %u stream ctx entries.\n",
3000 *num_stream_ctxs
= max_streams
;
3001 *num_streams
= max_streams
;
3005 /* Returns an error code if one of the endpoint already has streams.
3006 * This does not change any data structures, it only checks and gathers
3009 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd
*xhci
,
3010 struct usb_device
*udev
,
3011 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3012 unsigned int *num_streams
, u32
*changed_ep_bitmask
)
3014 unsigned int max_streams
;
3015 unsigned int endpoint_flag
;
3019 for (i
= 0; i
< num_eps
; i
++) {
3020 ret
= xhci_check_streams_endpoint(xhci
, udev
,
3021 eps
[i
], udev
->slot_id
);
3025 max_streams
= usb_ss_max_streams(&eps
[i
]->ss_ep_comp
);
3026 if (max_streams
< (*num_streams
- 1)) {
3027 xhci_dbg(xhci
, "Ep 0x%x only supports %u stream IDs.\n",
3028 eps
[i
]->desc
.bEndpointAddress
,
3030 *num_streams
= max_streams
+1;
3033 endpoint_flag
= xhci_get_endpoint_flag(&eps
[i
]->desc
);
3034 if (*changed_ep_bitmask
& endpoint_flag
)
3036 *changed_ep_bitmask
|= endpoint_flag
;
3041 static u32
xhci_calculate_no_streams_bitmask(struct xhci_hcd
*xhci
,
3042 struct usb_device
*udev
,
3043 struct usb_host_endpoint
**eps
, unsigned int num_eps
)
3045 u32 changed_ep_bitmask
= 0;
3046 unsigned int slot_id
;
3047 unsigned int ep_index
;
3048 unsigned int ep_state
;
3051 slot_id
= udev
->slot_id
;
3052 if (!xhci
->devs
[slot_id
])
3055 for (i
= 0; i
< num_eps
; i
++) {
3056 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3057 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
3058 /* Are streams already being freed for the endpoint? */
3059 if (ep_state
& EP_GETTING_NO_STREAMS
) {
3060 xhci_warn(xhci
, "WARN Can't disable streams for "
3062 "streams are being disabled already\n",
3063 eps
[i
]->desc
.bEndpointAddress
);
3066 /* Are there actually any streams to free? */
3067 if (!(ep_state
& EP_HAS_STREAMS
) &&
3068 !(ep_state
& EP_GETTING_STREAMS
)) {
3069 xhci_warn(xhci
, "WARN Can't disable streams for "
3071 "streams are already disabled!\n",
3072 eps
[i
]->desc
.bEndpointAddress
);
3073 xhci_warn(xhci
, "WARN xhci_free_streams() called "
3074 "with non-streams endpoint\n");
3077 changed_ep_bitmask
|= xhci_get_endpoint_flag(&eps
[i
]->desc
);
3079 return changed_ep_bitmask
;
3083 * The USB device drivers use this function (through the HCD interface in USB
3084 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3085 * coordinate mass storage command queueing across multiple endpoints (basically
3086 * a stream ID == a task ID).
3088 * Setting up streams involves allocating the same size stream context array
3089 * for each endpoint and issuing a configure endpoint command for all endpoints.
3091 * Don't allow the call to succeed if one endpoint only supports one stream
3092 * (which means it doesn't support streams at all).
3094 * Drivers may get less stream IDs than they asked for, if the host controller
3095 * hardware or endpoints claim they can't support the number of requested
3098 int xhci_alloc_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3099 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3100 unsigned int num_streams
, gfp_t mem_flags
)
3103 struct xhci_hcd
*xhci
;
3104 struct xhci_virt_device
*vdev
;
3105 struct xhci_command
*config_cmd
;
3106 struct xhci_input_control_ctx
*ctrl_ctx
;
3107 unsigned int ep_index
;
3108 unsigned int num_stream_ctxs
;
3109 unsigned int max_packet
;
3110 unsigned long flags
;
3111 u32 changed_ep_bitmask
= 0;
3116 /* Add one to the number of streams requested to account for
3117 * stream 0 that is reserved for xHCI usage.
3120 xhci
= hcd_to_xhci(hcd
);
3121 xhci_dbg(xhci
, "Driver wants %u stream IDs (including stream 0).\n",
3124 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3125 if ((xhci
->quirks
& XHCI_BROKEN_STREAMS
) ||
3126 HCC_MAX_PSA(xhci
->hcc_params
) < 4) {
3127 xhci_dbg(xhci
, "xHCI controller does not support streams.\n");
3131 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
3133 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
3136 ctrl_ctx
= xhci_get_input_control_ctx(config_cmd
->in_ctx
);
3138 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3140 xhci_free_command(xhci
, config_cmd
);
3144 /* Check to make sure all endpoints are not already configured for
3145 * streams. While we're at it, find the maximum number of streams that
3146 * all the endpoints will support and check for duplicate endpoints.
3148 spin_lock_irqsave(&xhci
->lock
, flags
);
3149 ret
= xhci_calculate_streams_and_bitmask(xhci
, udev
, eps
,
3150 num_eps
, &num_streams
, &changed_ep_bitmask
);
3152 xhci_free_command(xhci
, config_cmd
);
3153 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3156 if (num_streams
<= 1) {
3157 xhci_warn(xhci
, "WARN: endpoints can't handle "
3158 "more than one stream.\n");
3159 xhci_free_command(xhci
, config_cmd
);
3160 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3163 vdev
= xhci
->devs
[udev
->slot_id
];
3164 /* Mark each endpoint as being in transition, so
3165 * xhci_urb_enqueue() will reject all URBs.
3167 for (i
= 0; i
< num_eps
; i
++) {
3168 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3169 vdev
->eps
[ep_index
].ep_state
|= EP_GETTING_STREAMS
;
3171 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3173 /* Setup internal data structures and allocate HW data structures for
3174 * streams (but don't install the HW structures in the input context
3175 * until we're sure all memory allocation succeeded).
3177 xhci_calculate_streams_entries(xhci
, &num_streams
, &num_stream_ctxs
);
3178 xhci_dbg(xhci
, "Need %u stream ctx entries for %u stream IDs.\n",
3179 num_stream_ctxs
, num_streams
);
3181 for (i
= 0; i
< num_eps
; i
++) {
3182 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3183 max_packet
= usb_endpoint_maxp(&eps
[i
]->desc
);
3184 vdev
->eps
[ep_index
].stream_info
= xhci_alloc_stream_info(xhci
,
3187 max_packet
, mem_flags
);
3188 if (!vdev
->eps
[ep_index
].stream_info
)
3190 /* Set maxPstreams in endpoint context and update deq ptr to
3191 * point to stream context array. FIXME
3195 /* Set up the input context for a configure endpoint command. */
3196 for (i
= 0; i
< num_eps
; i
++) {
3197 struct xhci_ep_ctx
*ep_ctx
;
3199 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3200 ep_ctx
= xhci_get_ep_ctx(xhci
, config_cmd
->in_ctx
, ep_index
);
3202 xhci_endpoint_copy(xhci
, config_cmd
->in_ctx
,
3203 vdev
->out_ctx
, ep_index
);
3204 xhci_setup_streams_ep_input_ctx(xhci
, ep_ctx
,
3205 vdev
->eps
[ep_index
].stream_info
);
3207 /* Tell the HW to drop its old copy of the endpoint context info
3208 * and add the updated copy from the input context.
3210 xhci_setup_input_ctx_for_config_ep(xhci
, config_cmd
->in_ctx
,
3211 vdev
->out_ctx
, ctrl_ctx
,
3212 changed_ep_bitmask
, changed_ep_bitmask
);
3214 /* Issue and wait for the configure endpoint command */
3215 ret
= xhci_configure_endpoint(xhci
, udev
, config_cmd
,
3218 /* xHC rejected the configure endpoint command for some reason, so we
3219 * leave the old ring intact and free our internal streams data
3225 spin_lock_irqsave(&xhci
->lock
, flags
);
3226 for (i
= 0; i
< num_eps
; i
++) {
3227 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3228 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3229 xhci_dbg(xhci
, "Slot %u ep ctx %u now has streams.\n",
3230 udev
->slot_id
, ep_index
);
3231 vdev
->eps
[ep_index
].ep_state
|= EP_HAS_STREAMS
;
3233 xhci_free_command(xhci
, config_cmd
);
3234 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3236 /* Subtract 1 for stream 0, which drivers can't use */
3237 return num_streams
- 1;
3240 /* If it didn't work, free the streams! */
3241 for (i
= 0; i
< num_eps
; i
++) {
3242 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3243 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3244 vdev
->eps
[ep_index
].stream_info
= NULL
;
3245 /* FIXME Unset maxPstreams in endpoint context and
3246 * update deq ptr to point to normal string ring.
3248 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3249 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3250 xhci_endpoint_zero(xhci
, vdev
, eps
[i
]);
3252 xhci_free_command(xhci
, config_cmd
);
3256 /* Transition the endpoint from using streams to being a "normal" endpoint
3259 * Modify the endpoint context state, submit a configure endpoint command,
3260 * and free all endpoint rings for streams if that completes successfully.
3262 int xhci_free_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3263 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3267 struct xhci_hcd
*xhci
;
3268 struct xhci_virt_device
*vdev
;
3269 struct xhci_command
*command
;
3270 struct xhci_input_control_ctx
*ctrl_ctx
;
3271 unsigned int ep_index
;
3272 unsigned long flags
;
3273 u32 changed_ep_bitmask
;
3275 xhci
= hcd_to_xhci(hcd
);
3276 vdev
= xhci
->devs
[udev
->slot_id
];
3278 /* Set up a configure endpoint command to remove the streams rings */
3279 spin_lock_irqsave(&xhci
->lock
, flags
);
3280 changed_ep_bitmask
= xhci_calculate_no_streams_bitmask(xhci
,
3281 udev
, eps
, num_eps
);
3282 if (changed_ep_bitmask
== 0) {
3283 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3287 /* Use the xhci_command structure from the first endpoint. We may have
3288 * allocated too many, but the driver may call xhci_free_streams() for
3289 * each endpoint it grouped into one call to xhci_alloc_streams().
3291 ep_index
= xhci_get_endpoint_index(&eps
[0]->desc
);
3292 command
= vdev
->eps
[ep_index
].stream_info
->free_streams_command
;
3293 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
3295 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3296 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3301 for (i
= 0; i
< num_eps
; i
++) {
3302 struct xhci_ep_ctx
*ep_ctx
;
3304 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3305 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
3306 xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ep_state
|=
3307 EP_GETTING_NO_STREAMS
;
3309 xhci_endpoint_copy(xhci
, command
->in_ctx
,
3310 vdev
->out_ctx
, ep_index
);
3311 xhci_setup_no_streams_ep_input_ctx(ep_ctx
,
3312 &vdev
->eps
[ep_index
]);
3314 xhci_setup_input_ctx_for_config_ep(xhci
, command
->in_ctx
,
3315 vdev
->out_ctx
, ctrl_ctx
,
3316 changed_ep_bitmask
, changed_ep_bitmask
);
3317 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3319 /* Issue and wait for the configure endpoint command,
3320 * which must succeed.
3322 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
3325 /* xHC rejected the configure endpoint command for some reason, so we
3326 * leave the streams rings intact.
3331 spin_lock_irqsave(&xhci
->lock
, flags
);
3332 for (i
= 0; i
< num_eps
; i
++) {
3333 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3334 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3335 vdev
->eps
[ep_index
].stream_info
= NULL
;
3336 /* FIXME Unset maxPstreams in endpoint context and
3337 * update deq ptr to point to normal string ring.
3339 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_NO_STREAMS
;
3340 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3342 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3348 * Deletes endpoint resources for endpoints that were active before a Reset
3349 * Device command, or a Disable Slot command. The Reset Device command leaves
3350 * the control endpoint intact, whereas the Disable Slot command deletes it.
3352 * Must be called with xhci->lock held.
3354 void xhci_free_device_endpoint_resources(struct xhci_hcd
*xhci
,
3355 struct xhci_virt_device
*virt_dev
, bool drop_control_ep
)
3358 unsigned int num_dropped_eps
= 0;
3359 unsigned int drop_flags
= 0;
3361 for (i
= (drop_control_ep
? 0 : 1); i
< 31; i
++) {
3362 if (virt_dev
->eps
[i
].ring
) {
3363 drop_flags
|= 1 << i
;
3367 xhci
->num_active_eps
-= num_dropped_eps
;
3368 if (num_dropped_eps
)
3369 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3370 "Dropped %u ep ctxs, flags = 0x%x, "
3372 num_dropped_eps
, drop_flags
,
3373 xhci
->num_active_eps
);
3377 * This submits a Reset Device Command, which will set the device state to 0,
3378 * set the device address to 0, and disable all the endpoints except the default
3379 * control endpoint. The USB core should come back and call
3380 * xhci_address_device(), and then re-set up the configuration. If this is
3381 * called because of a usb_reset_and_verify_device(), then the old alternate
3382 * settings will be re-installed through the normal bandwidth allocation
3385 * Wait for the Reset Device command to finish. Remove all structures
3386 * associated with the endpoints that were disabled. Clear the input device
3387 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3389 * If the virt_dev to be reset does not exist or does not match the udev,
3390 * it means the device is lost, possibly due to the xHC restore error and
3391 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3392 * re-allocate the device.
3394 int xhci_discover_or_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3397 unsigned long flags
;
3398 struct xhci_hcd
*xhci
;
3399 unsigned int slot_id
;
3400 struct xhci_virt_device
*virt_dev
;
3401 struct xhci_command
*reset_device_cmd
;
3402 int last_freed_endpoint
;
3403 struct xhci_slot_ctx
*slot_ctx
;
3404 int old_active_eps
= 0;
3406 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, false, __func__
);
3409 xhci
= hcd_to_xhci(hcd
);
3410 slot_id
= udev
->slot_id
;
3411 virt_dev
= xhci
->devs
[slot_id
];
3413 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3414 "not exist. Re-allocate the device\n", slot_id
);
3415 ret
= xhci_alloc_dev(hcd
, udev
);
3422 if (virt_dev
->tt_info
)
3423 old_active_eps
= virt_dev
->tt_info
->active_eps
;
3425 if (virt_dev
->udev
!= udev
) {
3426 /* If the virt_dev and the udev does not match, this virt_dev
3427 * may belong to another udev.
3428 * Re-allocate the device.
3430 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3431 "not match the udev. Re-allocate the device\n",
3433 ret
= xhci_alloc_dev(hcd
, udev
);
3440 /* If device is not setup, there is no point in resetting it */
3441 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3442 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3443 SLOT_STATE_DISABLED
)
3446 xhci_dbg(xhci
, "Resetting device with slot ID %u\n", slot_id
);
3447 /* Allocate the command structure that holds the struct completion.
3448 * Assume we're in process context, since the normal device reset
3449 * process has to wait for the device anyway. Storage devices are
3450 * reset as part of error handling, so use GFP_NOIO instead of
3453 reset_device_cmd
= xhci_alloc_command(xhci
, false, true, GFP_NOIO
);
3454 if (!reset_device_cmd
) {
3455 xhci_dbg(xhci
, "Couldn't allocate command structure.\n");
3459 /* Attempt to submit the Reset Device command to the command ring */
3460 spin_lock_irqsave(&xhci
->lock
, flags
);
3462 ret
= xhci_queue_reset_device(xhci
, reset_device_cmd
, slot_id
);
3464 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3465 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3466 goto command_cleanup
;
3468 xhci_ring_cmd_db(xhci
);
3469 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3471 /* Wait for the Reset Device command to finish */
3472 wait_for_completion(reset_device_cmd
->completion
);
3474 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3475 * unless we tried to reset a slot ID that wasn't enabled,
3476 * or the device wasn't in the addressed or configured state.
3478 ret
= reset_device_cmd
->status
;
3480 case COMP_COMMAND_ABORTED
:
3481 case COMP_COMMAND_RING_STOPPED
:
3482 xhci_warn(xhci
, "Timeout waiting for reset device command\n");
3484 goto command_cleanup
;
3485 case COMP_SLOT_NOT_ENABLED_ERROR
: /* 0.95 completion for bad slot ID */
3486 case COMP_CONTEXT_STATE_ERROR
: /* 0.96 completion code for same thing */
3487 xhci_dbg(xhci
, "Can't reset device (slot ID %u) in %s state\n",
3489 xhci_get_slot_state(xhci
, virt_dev
->out_ctx
));
3490 xhci_dbg(xhci
, "Not freeing device rings.\n");
3491 /* Don't treat this as an error. May change my mind later. */
3493 goto command_cleanup
;
3495 xhci_dbg(xhci
, "Successful reset device command.\n");
3498 if (xhci_is_vendor_info_code(xhci
, ret
))
3500 xhci_warn(xhci
, "Unknown completion code %u for "
3501 "reset device command.\n", ret
);
3503 goto command_cleanup
;
3506 /* Free up host controller endpoint resources */
3507 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3508 spin_lock_irqsave(&xhci
->lock
, flags
);
3509 /* Don't delete the default control endpoint resources */
3510 xhci_free_device_endpoint_resources(xhci
, virt_dev
, false);
3511 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3514 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3515 last_freed_endpoint
= 1;
3516 for (i
= 1; i
< 31; i
++) {
3517 struct xhci_virt_ep
*ep
= &virt_dev
->eps
[i
];
3519 if (ep
->ep_state
& EP_HAS_STREAMS
) {
3520 xhci_warn(xhci
, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3521 xhci_get_endpoint_address(i
));
3522 xhci_free_stream_info(xhci
, ep
->stream_info
);
3523 ep
->stream_info
= NULL
;
3524 ep
->ep_state
&= ~EP_HAS_STREAMS
;
3528 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
3529 last_freed_endpoint
= i
;
3531 if (!list_empty(&virt_dev
->eps
[i
].bw_endpoint_list
))
3532 xhci_drop_ep_from_interval_table(xhci
,
3533 &virt_dev
->eps
[i
].bw_info
,
3538 xhci_clear_endpoint_bw_info(&virt_dev
->eps
[i
].bw_info
);
3540 /* If necessary, update the number of active TTs on this root port */
3541 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
3543 xhci_dbg(xhci
, "Output context after successful reset device cmd:\n");
3544 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, last_freed_endpoint
);
3548 xhci_free_command(xhci
, reset_device_cmd
);
3553 * At this point, the struct usb_device is about to go away, the device has
3554 * disconnected, and all traffic has been stopped and the endpoints have been
3555 * disabled. Free any HC data structures associated with that device.
3557 void xhci_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3559 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3560 struct xhci_virt_device
*virt_dev
;
3561 unsigned long flags
;
3564 struct xhci_command
*command
;
3566 command
= xhci_alloc_command(xhci
, false, false, GFP_KERNEL
);
3570 #ifndef CONFIG_USB_DEFAULT_PERSIST
3572 * We called pm_runtime_get_noresume when the device was attached.
3573 * Decrement the counter here to allow controller to runtime suspend
3574 * if no devices remain.
3576 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
3577 pm_runtime_put_noidle(hcd
->self
.controller
);
3580 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
3581 /* If the host is halted due to driver unload, we still need to free the
3584 if (ret
<= 0 && ret
!= -ENODEV
) {
3589 virt_dev
= xhci
->devs
[udev
->slot_id
];
3591 /* Stop any wayward timer functions (which may grab the lock) */
3592 for (i
= 0; i
< 31; i
++) {
3593 virt_dev
->eps
[i
].ep_state
&= ~EP_STOP_CMD_PENDING
;
3594 del_timer_sync(&virt_dev
->eps
[i
].stop_cmd_timer
);
3597 spin_lock_irqsave(&xhci
->lock
, flags
);
3598 /* Don't disable the slot if the host controller is dead. */
3599 state
= readl(&xhci
->op_regs
->status
);
3600 if (state
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
3601 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
3602 xhci_free_virt_device(xhci
, udev
->slot_id
);
3603 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3608 if (xhci_queue_slot_control(xhci
, command
, TRB_DISABLE_SLOT
,
3610 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3611 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3614 xhci_ring_cmd_db(xhci
);
3615 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3618 * Event command completion handler will free any data structures
3619 * associated with the slot. XXX Can free sleep?
3624 * Checks if we have enough host controller resources for the default control
3627 * Must be called with xhci->lock held.
3629 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd
*xhci
)
3631 if (xhci
->num_active_eps
+ 1 > xhci
->limit_active_eps
) {
3632 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3633 "Not enough ep ctxs: "
3634 "%u active, need to add 1, limit is %u.",
3635 xhci
->num_active_eps
, xhci
->limit_active_eps
);
3638 xhci
->num_active_eps
+= 1;
3639 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3640 "Adding 1 ep ctx, %u now active.",
3641 xhci
->num_active_eps
);
3647 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3648 * timed out, or allocating memory failed. Returns 1 on success.
3650 int xhci_alloc_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3652 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3653 unsigned long flags
;
3655 struct xhci_command
*command
;
3657 command
= xhci_alloc_command(xhci
, false, true, GFP_KERNEL
);
3661 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3662 mutex_lock(&xhci
->mutex
);
3663 spin_lock_irqsave(&xhci
->lock
, flags
);
3664 ret
= xhci_queue_slot_control(xhci
, command
, TRB_ENABLE_SLOT
, 0);
3666 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3667 mutex_unlock(&xhci
->mutex
);
3668 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3669 xhci_free_command(xhci
, command
);
3672 xhci_ring_cmd_db(xhci
);
3673 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3675 wait_for_completion(command
->completion
);
3676 slot_id
= command
->slot_id
;
3677 mutex_unlock(&xhci
->mutex
);
3679 if (!slot_id
|| command
->status
!= COMP_SUCCESS
) {
3680 xhci_err(xhci
, "Error while assigning device slot ID\n");
3681 xhci_err(xhci
, "Max number of devices this xHCI host supports is %u.\n",
3683 readl(&xhci
->cap_regs
->hcs_params1
)));
3684 xhci_free_command(xhci
, command
);
3688 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3689 spin_lock_irqsave(&xhci
->lock
, flags
);
3690 ret
= xhci_reserve_host_control_ep_resources(xhci
);
3692 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3693 xhci_warn(xhci
, "Not enough host resources, "
3694 "active endpoint contexts = %u\n",
3695 xhci
->num_active_eps
);
3698 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3700 /* Use GFP_NOIO, since this function can be called from
3701 * xhci_discover_or_reset_device(), which may be called as part of
3702 * mass storage driver error handling.
3704 if (!xhci_alloc_virt_device(xhci
, slot_id
, udev
, GFP_NOIO
)) {
3705 xhci_warn(xhci
, "Could not allocate xHCI USB device data structures\n");
3708 udev
->slot_id
= slot_id
;
3710 #ifndef CONFIG_USB_DEFAULT_PERSIST
3712 * If resetting upon resume, we can't put the controller into runtime
3713 * suspend if there is a device attached.
3715 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
3716 pm_runtime_get_noresume(hcd
->self
.controller
);
3720 xhci_free_command(xhci
, command
);
3721 /* Is this a LS or FS device under a HS hub? */
3722 /* Hub or peripherial? */
3726 /* Disable slot, if we can do it without mem alloc */
3727 spin_lock_irqsave(&xhci
->lock
, flags
);
3728 kfree(command
->completion
);
3729 command
->completion
= NULL
;
3730 command
->status
= 0;
3731 if (!xhci_queue_slot_control(xhci
, command
, TRB_DISABLE_SLOT
,
3733 xhci_ring_cmd_db(xhci
);
3734 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3739 * Issue an Address Device command and optionally send a corresponding
3740 * SetAddress request to the device.
3742 static int xhci_setup_device(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3743 enum xhci_setup_dev setup
)
3745 const char *act
= setup
== SETUP_CONTEXT_ONLY
? "context" : "address";
3746 unsigned long flags
;
3747 struct xhci_virt_device
*virt_dev
;
3749 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3750 struct xhci_slot_ctx
*slot_ctx
;
3751 struct xhci_input_control_ctx
*ctrl_ctx
;
3753 struct xhci_command
*command
= NULL
;
3755 mutex_lock(&xhci
->mutex
);
3757 if (xhci
->xhc_state
) { /* dying, removing or halted */
3762 if (!udev
->slot_id
) {
3763 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3764 "Bad Slot ID %d", udev
->slot_id
);
3769 virt_dev
= xhci
->devs
[udev
->slot_id
];
3771 if (WARN_ON(!virt_dev
)) {
3773 * In plug/unplug torture test with an NEC controller,
3774 * a zero-dereference was observed once due to virt_dev = 0.
3775 * Print useful debug rather than crash if it is observed again!
3777 xhci_warn(xhci
, "Virt dev invalid for slot_id 0x%x!\n",
3783 if (setup
== SETUP_CONTEXT_ONLY
) {
3784 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3785 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3786 SLOT_STATE_DEFAULT
) {
3787 xhci_dbg(xhci
, "Slot already in default state\n");
3792 command
= xhci_alloc_command(xhci
, false, true, GFP_KERNEL
);
3798 command
->in_ctx
= virt_dev
->in_ctx
;
3800 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
3801 ctrl_ctx
= xhci_get_input_control_ctx(virt_dev
->in_ctx
);
3803 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3809 * If this is the first Set Address since device plug-in or
3810 * virt_device realloaction after a resume with an xHCI power loss,
3811 * then set up the slot context.
3813 if (!slot_ctx
->dev_info
)
3814 xhci_setup_addressable_virt_dev(xhci
, udev
);
3815 /* Otherwise, update the control endpoint ring enqueue pointer. */
3817 xhci_copy_ep0_dequeue_into_input_ctx(xhci
, udev
);
3818 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
3819 ctrl_ctx
->drop_flags
= 0;
3821 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3822 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3823 trace_xhci_address_ctx(xhci
, virt_dev
->in_ctx
,
3824 le32_to_cpu(slot_ctx
->dev_info
) >> 27);
3826 spin_lock_irqsave(&xhci
->lock
, flags
);
3827 trace_xhci_setup_device(virt_dev
);
3828 ret
= xhci_queue_address_device(xhci
, command
, virt_dev
->in_ctx
->dma
,
3829 udev
->slot_id
, setup
);
3831 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3832 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3833 "FIXME: allocate a command ring segment");
3836 xhci_ring_cmd_db(xhci
);
3837 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3839 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3840 wait_for_completion(command
->completion
);
3842 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3843 * the SetAddress() "recovery interval" required by USB and aborting the
3844 * command on a timeout.
3846 switch (command
->status
) {
3847 case COMP_COMMAND_ABORTED
:
3848 case COMP_COMMAND_RING_STOPPED
:
3849 xhci_warn(xhci
, "Timeout while waiting for setup device command\n");
3852 case COMP_CONTEXT_STATE_ERROR
:
3853 case COMP_SLOT_NOT_ENABLED_ERROR
:
3854 xhci_err(xhci
, "Setup ERROR: setup %s command for slot %d.\n",
3855 act
, udev
->slot_id
);
3858 case COMP_USB_TRANSACTION_ERROR
:
3859 dev_warn(&udev
->dev
, "Device not responding to setup %s.\n", act
);
3862 case COMP_INCOMPATIBLE_DEVICE_ERROR
:
3863 dev_warn(&udev
->dev
,
3864 "ERROR: Incompatible device for setup %s command\n", act
);
3868 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3869 "Successful setup %s command", act
);
3873 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3874 act
, command
->status
);
3875 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3876 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3877 trace_xhci_address_ctx(xhci
, virt_dev
->out_ctx
, 1);
3883 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
3884 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3885 "Op regs DCBAA ptr = %#016llx", temp_64
);
3886 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3887 "Slot ID %d dcbaa entry @%p = %#016llx",
3889 &xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
],
3890 (unsigned long long)
3891 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
]));
3892 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3893 "Output Context DMA address = %#08llx",
3894 (unsigned long long)virt_dev
->out_ctx
->dma
);
3895 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3896 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3897 trace_xhci_address_ctx(xhci
, virt_dev
->in_ctx
,
3898 le32_to_cpu(slot_ctx
->dev_info
) >> 27);
3899 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3900 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3902 * USB core uses address 1 for the roothubs, so we add one to the
3903 * address given back to us by the HC.
3905 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3906 trace_xhci_address_ctx(xhci
, virt_dev
->out_ctx
,
3907 le32_to_cpu(slot_ctx
->dev_info
) >> 27);
3908 /* Zero the input context control for later use */
3909 ctrl_ctx
->add_flags
= 0;
3910 ctrl_ctx
->drop_flags
= 0;
3912 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3913 "Internal device address = %d",
3914 le32_to_cpu(slot_ctx
->dev_state
) & DEV_ADDR_MASK
);
3916 mutex_unlock(&xhci
->mutex
);
3918 kfree(command
->completion
);
3924 int xhci_address_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3926 return xhci_setup_device(hcd
, udev
, SETUP_CONTEXT_ADDRESS
);
3929 int xhci_enable_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3931 return xhci_setup_device(hcd
, udev
, SETUP_CONTEXT_ONLY
);
3935 * Transfer the port index into real index in the HW port status
3936 * registers. Caculate offset between the port's PORTSC register
3937 * and port status base. Divide the number of per port register
3938 * to get the real index. The raw port number bases 1.
3940 int xhci_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
3942 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3943 __le32 __iomem
*base_addr
= &xhci
->op_regs
->port_status_base
;
3944 __le32 __iomem
*addr
;
3947 if (hcd
->speed
< HCD_USB3
)
3948 addr
= xhci
->usb2_ports
[port1
- 1];
3950 addr
= xhci
->usb3_ports
[port1
- 1];
3952 raw_port
= (addr
- base_addr
)/NUM_PORT_REGS
+ 1;
3957 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3958 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3960 static int __maybe_unused
xhci_change_max_exit_latency(struct xhci_hcd
*xhci
,
3961 struct usb_device
*udev
, u16 max_exit_latency
)
3963 struct xhci_virt_device
*virt_dev
;
3964 struct xhci_command
*command
;
3965 struct xhci_input_control_ctx
*ctrl_ctx
;
3966 struct xhci_slot_ctx
*slot_ctx
;
3967 unsigned long flags
;
3970 spin_lock_irqsave(&xhci
->lock
, flags
);
3972 virt_dev
= xhci
->devs
[udev
->slot_id
];
3975 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3976 * xHC was re-initialized. Exit latency will be set later after
3977 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3980 if (!virt_dev
|| max_exit_latency
== virt_dev
->current_mel
) {
3981 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3985 /* Attempt to issue an Evaluate Context command to change the MEL. */
3986 command
= xhci
->lpm_command
;
3987 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
3989 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3990 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3995 xhci_slot_copy(xhci
, command
->in_ctx
, virt_dev
->out_ctx
);
3996 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3998 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
3999 slot_ctx
= xhci_get_slot_ctx(xhci
, command
->in_ctx
);
4000 slot_ctx
->dev_info2
&= cpu_to_le32(~((u32
) MAX_EXIT
));
4001 slot_ctx
->dev_info2
|= cpu_to_le32(max_exit_latency
);
4002 slot_ctx
->dev_state
= 0;
4004 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
4005 "Set up evaluate context for LPM MEL change.");
4006 xhci_dbg(xhci
, "Slot %u Input Context:\n", udev
->slot_id
);
4007 xhci_dbg_ctx(xhci
, command
->in_ctx
, 0);
4009 /* Issue and wait for the evaluate context command. */
4010 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
4012 xhci_dbg(xhci
, "Slot %u Output Context:\n", udev
->slot_id
);
4013 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 0);
4016 spin_lock_irqsave(&xhci
->lock
, flags
);
4017 virt_dev
->current_mel
= max_exit_latency
;
4018 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4025 /* BESL to HIRD Encoding array for USB2 LPM */
4026 static int xhci_besl_encoding
[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4027 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4029 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4030 static int xhci_calculate_hird_besl(struct xhci_hcd
*xhci
,
4031 struct usb_device
*udev
)
4033 int u2del
, besl
, besl_host
;
4034 int besl_device
= 0;
4037 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
4038 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4040 if (field
& USB_BESL_SUPPORT
) {
4041 for (besl_host
= 0; besl_host
< 16; besl_host
++) {
4042 if (xhci_besl_encoding
[besl_host
] >= u2del
)
4045 /* Use baseline BESL value as default */
4046 if (field
& USB_BESL_BASELINE_VALID
)
4047 besl_device
= USB_GET_BESL_BASELINE(field
);
4048 else if (field
& USB_BESL_DEEP_VALID
)
4049 besl_device
= USB_GET_BESL_DEEP(field
);
4054 besl_host
= (u2del
- 51) / 75 + 1;
4057 besl
= besl_host
+ besl_device
;
4064 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4065 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device
*udev
)
4072 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4074 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4075 l1
= udev
->l1_params
.timeout
/ 256;
4077 /* device has preferred BESLD */
4078 if (field
& USB_BESL_DEEP_VALID
) {
4079 besld
= USB_GET_BESL_DEEP(field
);
4083 return PORT_BESLD(besld
) | PORT_L1_TIMEOUT(l1
) | PORT_HIRDM(hirdm
);
4086 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
4087 struct usb_device
*udev
, int enable
)
4089 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4090 __le32 __iomem
**port_array
;
4091 __le32 __iomem
*pm_addr
, *hlpm_addr
;
4092 u32 pm_val
, hlpm_val
, field
;
4093 unsigned int port_num
;
4094 unsigned long flags
;
4095 int hird
, exit_latency
;
4098 if (hcd
->speed
>= HCD_USB3
|| !xhci
->hw_lpm_support
||
4102 if (!udev
->parent
|| udev
->parent
->parent
||
4103 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
4106 if (udev
->usb2_hw_lpm_capable
!= 1)
4109 spin_lock_irqsave(&xhci
->lock
, flags
);
4111 port_array
= xhci
->usb2_ports
;
4112 port_num
= udev
->portnum
- 1;
4113 pm_addr
= port_array
[port_num
] + PORTPMSC
;
4114 pm_val
= readl(pm_addr
);
4115 hlpm_addr
= port_array
[port_num
] + PORTHLPMC
;
4116 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4118 xhci_dbg(xhci
, "%s port %d USB2 hardware LPM\n",
4119 enable
? "enable" : "disable", port_num
+ 1);
4122 /* Host supports BESL timeout instead of HIRD */
4123 if (udev
->usb2_hw_lpm_besl_capable
) {
4124 /* if device doesn't have a preferred BESL value use a
4125 * default one which works with mixed HIRD and BESL
4126 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4128 if ((field
& USB_BESL_SUPPORT
) &&
4129 (field
& USB_BESL_BASELINE_VALID
))
4130 hird
= USB_GET_BESL_BASELINE(field
);
4132 hird
= udev
->l1_params
.besl
;
4134 exit_latency
= xhci_besl_encoding
[hird
];
4135 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4137 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4138 * input context for link powermanagement evaluate
4139 * context commands. It is protected by hcd->bandwidth
4140 * mutex and is shared by all devices. We need to set
4141 * the max ext latency in USB 2 BESL LPM as well, so
4142 * use the same mutex and xhci_change_max_exit_latency()
4144 mutex_lock(hcd
->bandwidth_mutex
);
4145 ret
= xhci_change_max_exit_latency(xhci
, udev
,
4147 mutex_unlock(hcd
->bandwidth_mutex
);
4151 spin_lock_irqsave(&xhci
->lock
, flags
);
4153 hlpm_val
= xhci_calculate_usb2_hw_lpm_params(udev
);
4154 writel(hlpm_val
, hlpm_addr
);
4158 hird
= xhci_calculate_hird_besl(xhci
, udev
);
4161 pm_val
&= ~PORT_HIRD_MASK
;
4162 pm_val
|= PORT_HIRD(hird
) | PORT_RWE
| PORT_L1DS(udev
->slot_id
);
4163 writel(pm_val
, pm_addr
);
4164 pm_val
= readl(pm_addr
);
4166 writel(pm_val
, pm_addr
);
4170 pm_val
&= ~(PORT_HLE
| PORT_RWE
| PORT_HIRD_MASK
| PORT_L1DS_MASK
);
4171 writel(pm_val
, pm_addr
);
4174 if (udev
->usb2_hw_lpm_besl_capable
) {
4175 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4176 mutex_lock(hcd
->bandwidth_mutex
);
4177 xhci_change_max_exit_latency(xhci
, udev
, 0);
4178 mutex_unlock(hcd
->bandwidth_mutex
);
4183 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4187 /* check if a usb2 port supports a given extened capability protocol
4188 * only USB2 ports extended protocol capability values are cached.
4189 * Return 1 if capability is supported
4191 static int xhci_check_usb2_port_capability(struct xhci_hcd
*xhci
, int port
,
4192 unsigned capability
)
4194 u32 port_offset
, port_count
;
4197 for (i
= 0; i
< xhci
->num_ext_caps
; i
++) {
4198 if (xhci
->ext_caps
[i
] & capability
) {
4199 /* port offsets starts at 1 */
4200 port_offset
= XHCI_EXT_PORT_OFF(xhci
->ext_caps
[i
]) - 1;
4201 port_count
= XHCI_EXT_PORT_COUNT(xhci
->ext_caps
[i
]);
4202 if (port
>= port_offset
&&
4203 port
< port_offset
+ port_count
)
4210 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4212 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4213 int portnum
= udev
->portnum
- 1;
4215 if (hcd
->speed
>= HCD_USB3
|| !xhci
->sw_lpm_support
||
4219 /* we only support lpm for non-hub device connected to root hub yet */
4220 if (!udev
->parent
|| udev
->parent
->parent
||
4221 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
4224 if (xhci
->hw_lpm_support
== 1 &&
4225 xhci_check_usb2_port_capability(
4226 xhci
, portnum
, XHCI_HLC
)) {
4227 udev
->usb2_hw_lpm_capable
= 1;
4228 udev
->l1_params
.timeout
= XHCI_L1_TIMEOUT
;
4229 udev
->l1_params
.besl
= XHCI_DEFAULT_BESL
;
4230 if (xhci_check_usb2_port_capability(xhci
, portnum
,
4232 udev
->usb2_hw_lpm_besl_capable
= 1;
4238 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4240 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4241 static unsigned long long xhci_service_interval_to_ns(
4242 struct usb_endpoint_descriptor
*desc
)
4244 return (1ULL << (desc
->bInterval
- 1)) * 125 * 1000;
4247 static u16
xhci_get_timeout_no_hub_lpm(struct usb_device
*udev
,
4248 enum usb3_link_state state
)
4250 unsigned long long sel
;
4251 unsigned long long pel
;
4252 unsigned int max_sel_pel
;
4257 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4258 sel
= DIV_ROUND_UP(udev
->u1_params
.sel
, 1000);
4259 pel
= DIV_ROUND_UP(udev
->u1_params
.pel
, 1000);
4260 max_sel_pel
= USB3_LPM_MAX_U1_SEL_PEL
;
4264 sel
= DIV_ROUND_UP(udev
->u2_params
.sel
, 1000);
4265 pel
= DIV_ROUND_UP(udev
->u2_params
.pel
, 1000);
4266 max_sel_pel
= USB3_LPM_MAX_U2_SEL_PEL
;
4270 dev_warn(&udev
->dev
, "%s: Can't get timeout for non-U1 or U2 state.\n",
4272 return USB3_LPM_DISABLED
;
4275 if (sel
<= max_sel_pel
&& pel
<= max_sel_pel
)
4276 return USB3_LPM_DEVICE_INITIATED
;
4278 if (sel
> max_sel_pel
)
4279 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4280 "due to long SEL %llu ms\n",
4283 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4284 "due to long PEL %llu ms\n",
4286 return USB3_LPM_DISABLED
;
4289 /* The U1 timeout should be the maximum of the following values:
4290 * - For control endpoints, U1 system exit latency (SEL) * 3
4291 * - For bulk endpoints, U1 SEL * 5
4292 * - For interrupt endpoints:
4293 * - Notification EPs, U1 SEL * 3
4294 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4295 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4297 static unsigned long long xhci_calculate_intel_u1_timeout(
4298 struct usb_device
*udev
,
4299 struct usb_endpoint_descriptor
*desc
)
4301 unsigned long long timeout_ns
;
4305 ep_type
= usb_endpoint_type(desc
);
4307 case USB_ENDPOINT_XFER_CONTROL
:
4308 timeout_ns
= udev
->u1_params
.sel
* 3;
4310 case USB_ENDPOINT_XFER_BULK
:
4311 timeout_ns
= udev
->u1_params
.sel
* 5;
4313 case USB_ENDPOINT_XFER_INT
:
4314 intr_type
= usb_endpoint_interrupt_type(desc
);
4315 if (intr_type
== USB_ENDPOINT_INTR_NOTIFICATION
) {
4316 timeout_ns
= udev
->u1_params
.sel
* 3;
4319 /* Otherwise the calculation is the same as isoc eps */
4320 case USB_ENDPOINT_XFER_ISOC
:
4321 timeout_ns
= xhci_service_interval_to_ns(desc
);
4322 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
* 105, 100);
4323 if (timeout_ns
< udev
->u1_params
.sel
* 2)
4324 timeout_ns
= udev
->u1_params
.sel
* 2;
4333 /* Returns the hub-encoded U1 timeout value. */
4334 static u16
xhci_calculate_u1_timeout(struct xhci_hcd
*xhci
,
4335 struct usb_device
*udev
,
4336 struct usb_endpoint_descriptor
*desc
)
4338 unsigned long long timeout_ns
;
4340 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4341 timeout_ns
= xhci_calculate_intel_u1_timeout(udev
, desc
);
4343 timeout_ns
= udev
->u1_params
.sel
;
4345 /* The U1 timeout is encoded in 1us intervals.
4346 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4348 if (timeout_ns
== USB3_LPM_DISABLED
)
4351 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 1000);
4353 /* If the necessary timeout value is bigger than what we can set in the
4354 * USB 3.0 hub, we have to disable hub-initiated U1.
4356 if (timeout_ns
<= USB3_LPM_U1_MAX_TIMEOUT
)
4358 dev_dbg(&udev
->dev
, "Hub-initiated U1 disabled "
4359 "due to long timeout %llu ms\n", timeout_ns
);
4360 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U1
);
4363 /* The U2 timeout should be the maximum of:
4364 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4365 * - largest bInterval of any active periodic endpoint (to avoid going
4366 * into lower power link states between intervals).
4367 * - the U2 Exit Latency of the device
4369 static unsigned long long xhci_calculate_intel_u2_timeout(
4370 struct usb_device
*udev
,
4371 struct usb_endpoint_descriptor
*desc
)
4373 unsigned long long timeout_ns
;
4374 unsigned long long u2_del_ns
;
4376 timeout_ns
= 10 * 1000 * 1000;
4378 if ((usb_endpoint_xfer_int(desc
) || usb_endpoint_xfer_isoc(desc
)) &&
4379 (xhci_service_interval_to_ns(desc
) > timeout_ns
))
4380 timeout_ns
= xhci_service_interval_to_ns(desc
);
4382 u2_del_ns
= le16_to_cpu(udev
->bos
->ss_cap
->bU2DevExitLat
) * 1000ULL;
4383 if (u2_del_ns
> timeout_ns
)
4384 timeout_ns
= u2_del_ns
;
4389 /* Returns the hub-encoded U2 timeout value. */
4390 static u16
xhci_calculate_u2_timeout(struct xhci_hcd
*xhci
,
4391 struct usb_device
*udev
,
4392 struct usb_endpoint_descriptor
*desc
)
4394 unsigned long long timeout_ns
;
4396 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4397 timeout_ns
= xhci_calculate_intel_u2_timeout(udev
, desc
);
4399 timeout_ns
= udev
->u2_params
.sel
;
4401 /* The U2 timeout is encoded in 256us intervals */
4402 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 256 * 1000);
4403 /* If the necessary timeout value is bigger than what we can set in the
4404 * USB 3.0 hub, we have to disable hub-initiated U2.
4406 if (timeout_ns
<= USB3_LPM_U2_MAX_TIMEOUT
)
4408 dev_dbg(&udev
->dev
, "Hub-initiated U2 disabled "
4409 "due to long timeout %llu ms\n", timeout_ns
);
4410 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U2
);
4413 static u16
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4414 struct usb_device
*udev
,
4415 struct usb_endpoint_descriptor
*desc
,
4416 enum usb3_link_state state
,
4419 if (state
== USB3_LPM_U1
)
4420 return xhci_calculate_u1_timeout(xhci
, udev
, desc
);
4421 else if (state
== USB3_LPM_U2
)
4422 return xhci_calculate_u2_timeout(xhci
, udev
, desc
);
4424 return USB3_LPM_DISABLED
;
4427 static int xhci_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4428 struct usb_device
*udev
,
4429 struct usb_endpoint_descriptor
*desc
,
4430 enum usb3_link_state state
,
4435 alt_timeout
= xhci_call_host_update_timeout_for_endpoint(xhci
, udev
,
4436 desc
, state
, timeout
);
4438 /* If we found we can't enable hub-initiated LPM, or
4439 * the U1 or U2 exit latency was too high to allow
4440 * device-initiated LPM as well, just stop searching.
4442 if (alt_timeout
== USB3_LPM_DISABLED
||
4443 alt_timeout
== USB3_LPM_DEVICE_INITIATED
) {
4444 *timeout
= alt_timeout
;
4447 if (alt_timeout
> *timeout
)
4448 *timeout
= alt_timeout
;
4452 static int xhci_update_timeout_for_interface(struct xhci_hcd
*xhci
,
4453 struct usb_device
*udev
,
4454 struct usb_host_interface
*alt
,
4455 enum usb3_link_state state
,
4460 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
4461 if (xhci_update_timeout_for_endpoint(xhci
, udev
,
4462 &alt
->endpoint
[j
].desc
, state
, timeout
))
4469 static int xhci_check_intel_tier_policy(struct usb_device
*udev
,
4470 enum usb3_link_state state
)
4472 struct usb_device
*parent
;
4473 unsigned int num_hubs
;
4475 if (state
== USB3_LPM_U2
)
4478 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4479 for (parent
= udev
->parent
, num_hubs
= 0; parent
->parent
;
4480 parent
= parent
->parent
)
4486 dev_dbg(&udev
->dev
, "Disabling U1 link state for device"
4487 " below second-tier hub.\n");
4488 dev_dbg(&udev
->dev
, "Plug device into first-tier hub "
4489 "to decrease power consumption.\n");
4493 static int xhci_check_tier_policy(struct xhci_hcd
*xhci
,
4494 struct usb_device
*udev
,
4495 enum usb3_link_state state
)
4497 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4498 return xhci_check_intel_tier_policy(udev
, state
);
4503 /* Returns the U1 or U2 timeout that should be enabled.
4504 * If the tier check or timeout setting functions return with a non-zero exit
4505 * code, that means the timeout value has been finalized and we shouldn't look
4506 * at any more endpoints.
4508 static u16
xhci_calculate_lpm_timeout(struct usb_hcd
*hcd
,
4509 struct usb_device
*udev
, enum usb3_link_state state
)
4511 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4512 struct usb_host_config
*config
;
4515 u16 timeout
= USB3_LPM_DISABLED
;
4517 if (state
== USB3_LPM_U1
)
4519 else if (state
== USB3_LPM_U2
)
4522 dev_warn(&udev
->dev
, "Can't enable unknown link state %i\n",
4527 if (xhci_check_tier_policy(xhci
, udev
, state
) < 0)
4530 /* Gather some information about the currently installed configuration
4531 * and alternate interface settings.
4533 if (xhci_update_timeout_for_endpoint(xhci
, udev
, &udev
->ep0
.desc
,
4537 config
= udev
->actconfig
;
4541 for (i
= 0; i
< config
->desc
.bNumInterfaces
; i
++) {
4542 struct usb_driver
*driver
;
4543 struct usb_interface
*intf
= config
->interface
[i
];
4548 /* Check if any currently bound drivers want hub-initiated LPM
4551 if (intf
->dev
.driver
) {
4552 driver
= to_usb_driver(intf
->dev
.driver
);
4553 if (driver
&& driver
->disable_hub_initiated_lpm
) {
4554 dev_dbg(&udev
->dev
, "Hub-initiated %s disabled "
4555 "at request of driver %s\n",
4556 state_name
, driver
->name
);
4557 return xhci_get_timeout_no_hub_lpm(udev
, state
);
4561 /* Not sure how this could happen... */
4562 if (!intf
->cur_altsetting
)
4565 if (xhci_update_timeout_for_interface(xhci
, udev
,
4566 intf
->cur_altsetting
,
4573 static int calculate_max_exit_latency(struct usb_device
*udev
,
4574 enum usb3_link_state state_changed
,
4575 u16 hub_encoded_timeout
)
4577 unsigned long long u1_mel_us
= 0;
4578 unsigned long long u2_mel_us
= 0;
4579 unsigned long long mel_us
= 0;
4585 disabling_u1
= (state_changed
== USB3_LPM_U1
&&
4586 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4587 disabling_u2
= (state_changed
== USB3_LPM_U2
&&
4588 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4590 enabling_u1
= (state_changed
== USB3_LPM_U1
&&
4591 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4592 enabling_u2
= (state_changed
== USB3_LPM_U2
&&
4593 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4595 /* If U1 was already enabled and we're not disabling it,
4596 * or we're going to enable U1, account for the U1 max exit latency.
4598 if ((udev
->u1_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u1
) ||
4600 u1_mel_us
= DIV_ROUND_UP(udev
->u1_params
.mel
, 1000);
4601 if ((udev
->u2_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u2
) ||
4603 u2_mel_us
= DIV_ROUND_UP(udev
->u2_params
.mel
, 1000);
4605 if (u1_mel_us
> u2_mel_us
)
4609 /* xHCI host controller max exit latency field is only 16 bits wide. */
4610 if (mel_us
> MAX_EXIT
) {
4611 dev_warn(&udev
->dev
, "Link PM max exit latency of %lluus "
4612 "is too big.\n", mel_us
);
4618 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4619 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4620 struct usb_device
*udev
, enum usb3_link_state state
)
4622 struct xhci_hcd
*xhci
;
4623 u16 hub_encoded_timeout
;
4627 xhci
= hcd_to_xhci(hcd
);
4628 /* The LPM timeout values are pretty host-controller specific, so don't
4629 * enable hub-initiated timeouts unless the vendor has provided
4630 * information about their timeout algorithm.
4632 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4633 !xhci
->devs
[udev
->slot_id
])
4634 return USB3_LPM_DISABLED
;
4636 hub_encoded_timeout
= xhci_calculate_lpm_timeout(hcd
, udev
, state
);
4637 mel
= calculate_max_exit_latency(udev
, state
, hub_encoded_timeout
);
4639 /* Max Exit Latency is too big, disable LPM. */
4640 hub_encoded_timeout
= USB3_LPM_DISABLED
;
4644 ret
= xhci_change_max_exit_latency(xhci
, udev
, mel
);
4647 return hub_encoded_timeout
;
4650 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4651 struct usb_device
*udev
, enum usb3_link_state state
)
4653 struct xhci_hcd
*xhci
;
4656 xhci
= hcd_to_xhci(hcd
);
4657 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4658 !xhci
->devs
[udev
->slot_id
])
4661 mel
= calculate_max_exit_latency(udev
, state
, USB3_LPM_DISABLED
);
4662 return xhci_change_max_exit_latency(xhci
, udev
, mel
);
4664 #else /* CONFIG_PM */
4666 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
4667 struct usb_device
*udev
, int enable
)
4672 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4678 struct usb_device
*udev
, enum usb3_link_state state
)
4680 return USB3_LPM_DISABLED
;
4683 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4684 struct usb_device
*udev
, enum usb3_link_state state
)
4688 #endif /* CONFIG_PM */
4690 /*-------------------------------------------------------------------------*/
4692 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4693 * internal data structures for the device.
4695 int xhci_update_hub_device(struct usb_hcd
*hcd
, struct usb_device
*hdev
,
4696 struct usb_tt
*tt
, gfp_t mem_flags
)
4698 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4699 struct xhci_virt_device
*vdev
;
4700 struct xhci_command
*config_cmd
;
4701 struct xhci_input_control_ctx
*ctrl_ctx
;
4702 struct xhci_slot_ctx
*slot_ctx
;
4703 unsigned long flags
;
4704 unsigned think_time
;
4707 /* Ignore root hubs */
4711 vdev
= xhci
->devs
[hdev
->slot_id
];
4713 xhci_warn(xhci
, "Cannot update hub desc for unknown device.\n");
4716 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
4718 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
4721 ctrl_ctx
= xhci_get_input_control_ctx(config_cmd
->in_ctx
);
4723 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
4725 xhci_free_command(xhci
, config_cmd
);
4729 spin_lock_irqsave(&xhci
->lock
, flags
);
4730 if (hdev
->speed
== USB_SPEED_HIGH
&&
4731 xhci_alloc_tt_info(xhci
, vdev
, hdev
, tt
, GFP_ATOMIC
)) {
4732 xhci_dbg(xhci
, "Could not allocate xHCI TT structure.\n");
4733 xhci_free_command(xhci
, config_cmd
);
4734 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4738 xhci_slot_copy(xhci
, config_cmd
->in_ctx
, vdev
->out_ctx
);
4739 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
4740 slot_ctx
= xhci_get_slot_ctx(xhci
, config_cmd
->in_ctx
);
4741 slot_ctx
->dev_info
|= cpu_to_le32(DEV_HUB
);
4743 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4744 * but it may be already set to 1 when setup an xHCI virtual
4745 * device, so clear it anyway.
4748 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
4749 else if (hdev
->speed
== USB_SPEED_FULL
)
4750 slot_ctx
->dev_info
&= cpu_to_le32(~DEV_MTT
);
4752 if (xhci
->hci_version
> 0x95) {
4753 xhci_dbg(xhci
, "xHCI version %x needs hub "
4754 "TT think time and number of ports\n",
4755 (unsigned int) xhci
->hci_version
);
4756 slot_ctx
->dev_info2
|= cpu_to_le32(XHCI_MAX_PORTS(hdev
->maxchild
));
4757 /* Set TT think time - convert from ns to FS bit times.
4758 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4759 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4761 * xHCI 1.0: this field shall be 0 if the device is not a
4764 think_time
= tt
->think_time
;
4765 if (think_time
!= 0)
4766 think_time
= (think_time
/ 666) - 1;
4767 if (xhci
->hci_version
< 0x100 || hdev
->speed
== USB_SPEED_HIGH
)
4768 slot_ctx
->tt_info
|=
4769 cpu_to_le32(TT_THINK_TIME(think_time
));
4771 xhci_dbg(xhci
, "xHCI version %x doesn't need hub "
4772 "TT think time or number of ports\n",
4773 (unsigned int) xhci
->hci_version
);
4775 slot_ctx
->dev_state
= 0;
4776 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4778 xhci_dbg(xhci
, "Set up %s for hub device.\n",
4779 (xhci
->hci_version
> 0x95) ?
4780 "configure endpoint" : "evaluate context");
4781 xhci_dbg(xhci
, "Slot %u Input Context:\n", hdev
->slot_id
);
4782 xhci_dbg_ctx(xhci
, config_cmd
->in_ctx
, 0);
4784 /* Issue and wait for the configure endpoint or
4785 * evaluate context command.
4787 if (xhci
->hci_version
> 0x95)
4788 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4791 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4794 xhci_dbg(xhci
, "Slot %u Output Context:\n", hdev
->slot_id
);
4795 xhci_dbg_ctx(xhci
, vdev
->out_ctx
, 0);
4797 xhci_free_command(xhci
, config_cmd
);
4801 int xhci_get_frame(struct usb_hcd
*hcd
)
4803 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4804 /* EHCI mods by the periodic size. Why? */
4805 return readl(&xhci
->run_regs
->microframe_index
) >> 3;
4808 int xhci_gen_setup(struct usb_hcd
*hcd
, xhci_get_quirks_t get_quirks
)
4810 struct xhci_hcd
*xhci
;
4811 struct device
*dev
= hcd
->self
.controller
;
4814 /* Accept arbitrarily long scatter-gather lists */
4815 hcd
->self
.sg_tablesize
= ~0;
4817 /* support to build packet from discontinuous buffers */
4818 hcd
->self
.no_sg_constraint
= 1;
4820 /* XHCI controllers don't stop the ep queue on short packets :| */
4821 hcd
->self
.no_stop_on_short
= 1;
4823 xhci
= hcd_to_xhci(hcd
);
4825 if (usb_hcd_is_primary_hcd(hcd
)) {
4826 xhci
->main_hcd
= hcd
;
4827 /* Mark the first roothub as being USB 2.0.
4828 * The xHCI driver will register the USB 3.0 roothub.
4830 hcd
->speed
= HCD_USB2
;
4831 hcd
->self
.root_hub
->speed
= USB_SPEED_HIGH
;
4833 * USB 2.0 roothub under xHCI has an integrated TT,
4834 * (rate matching hub) as opposed to having an OHCI/UHCI
4835 * companion controller.
4839 if (xhci
->sbrn
== 0x31) {
4840 xhci_info(xhci
, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4841 hcd
->speed
= HCD_USB31
;
4842 hcd
->self
.root_hub
->speed
= USB_SPEED_SUPER_PLUS
;
4844 /* xHCI private pointer was set in xhci_pci_probe for the second
4845 * registered roothub.
4850 mutex_init(&xhci
->mutex
);
4851 xhci
->cap_regs
= hcd
->regs
;
4852 xhci
->op_regs
= hcd
->regs
+
4853 HC_LENGTH(readl(&xhci
->cap_regs
->hc_capbase
));
4854 xhci
->run_regs
= hcd
->regs
+
4855 (readl(&xhci
->cap_regs
->run_regs_off
) & RTSOFF_MASK
);
4856 /* Cache read-only capability registers */
4857 xhci
->hcs_params1
= readl(&xhci
->cap_regs
->hcs_params1
);
4858 xhci
->hcs_params2
= readl(&xhci
->cap_regs
->hcs_params2
);
4859 xhci
->hcs_params3
= readl(&xhci
->cap_regs
->hcs_params3
);
4860 xhci
->hcc_params
= readl(&xhci
->cap_regs
->hc_capbase
);
4861 xhci
->hci_version
= HC_VERSION(xhci
->hcc_params
);
4862 xhci
->hcc_params
= readl(&xhci
->cap_regs
->hcc_params
);
4863 if (xhci
->hci_version
> 0x100)
4864 xhci
->hcc_params2
= readl(&xhci
->cap_regs
->hcc_params2
);
4865 xhci_print_registers(xhci
);
4867 xhci
->quirks
|= quirks
;
4869 get_quirks(dev
, xhci
);
4871 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4872 * success event after a short transfer. This quirk will ignore such
4875 if (xhci
->hci_version
> 0x96)
4876 xhci
->quirks
|= XHCI_SPURIOUS_SUCCESS
;
4878 /* Make sure the HC is halted. */
4879 retval
= xhci_halt(xhci
);
4883 xhci_dbg(xhci
, "Resetting HCD\n");
4884 /* Reset the internal HC memory state and registers. */
4885 retval
= xhci_reset(xhci
);
4888 xhci_dbg(xhci
, "Reset complete\n");
4891 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4892 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4893 * address memory pointers actually. So, this driver clears the AC64
4894 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4895 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4897 if (xhci
->quirks
& XHCI_NO_64BIT_SUPPORT
)
4898 xhci
->hcc_params
&= ~BIT(0);
4900 /* Set dma_mask and coherent_dma_mask to 64-bits,
4901 * if xHC supports 64-bit addressing */
4902 if (HCC_64BIT_ADDR(xhci
->hcc_params
) &&
4903 !dma_set_mask(dev
, DMA_BIT_MASK(64))) {
4904 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
4905 dma_set_coherent_mask(dev
, DMA_BIT_MASK(64));
4908 * This is to avoid error in cases where a 32-bit USB
4909 * controller is used on a 64-bit capable system.
4911 retval
= dma_set_mask(dev
, DMA_BIT_MASK(32));
4914 xhci_dbg(xhci
, "Enabling 32-bit DMA addresses.\n");
4915 dma_set_coherent_mask(dev
, DMA_BIT_MASK(32));
4918 xhci_dbg(xhci
, "Calling HCD init\n");
4919 /* Initialize HCD and host controller data structures. */
4920 retval
= xhci_init(hcd
);
4923 xhci_dbg(xhci
, "Called HCD init\n");
4925 xhci_info(xhci
, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4926 xhci
->hcc_params
, xhci
->hci_version
, xhci
->quirks
);
4930 EXPORT_SYMBOL_GPL(xhci_gen_setup
);
4932 static const struct hc_driver xhci_hc_driver
= {
4933 .description
= "xhci-hcd",
4934 .product_desc
= "xHCI Host Controller",
4935 .hcd_priv_size
= sizeof(struct xhci_hcd
),
4938 * generic hardware linkage
4941 .flags
= HCD_MEMORY
| HCD_USB3
| HCD_SHARED
,
4944 * basic lifecycle operations
4946 .reset
= NULL
, /* set in xhci_init_driver() */
4949 .shutdown
= xhci_shutdown
,
4952 * managing i/o requests and associated device resources
4954 .urb_enqueue
= xhci_urb_enqueue
,
4955 .urb_dequeue
= xhci_urb_dequeue
,
4956 .alloc_dev
= xhci_alloc_dev
,
4957 .free_dev
= xhci_free_dev
,
4958 .alloc_streams
= xhci_alloc_streams
,
4959 .free_streams
= xhci_free_streams
,
4960 .add_endpoint
= xhci_add_endpoint
,
4961 .drop_endpoint
= xhci_drop_endpoint
,
4962 .endpoint_reset
= xhci_endpoint_reset
,
4963 .check_bandwidth
= xhci_check_bandwidth
,
4964 .reset_bandwidth
= xhci_reset_bandwidth
,
4965 .address_device
= xhci_address_device
,
4966 .enable_device
= xhci_enable_device
,
4967 .update_hub_device
= xhci_update_hub_device
,
4968 .reset_device
= xhci_discover_or_reset_device
,
4971 * scheduling support
4973 .get_frame_number
= xhci_get_frame
,
4978 .hub_control
= xhci_hub_control
,
4979 .hub_status_data
= xhci_hub_status_data
,
4980 .bus_suspend
= xhci_bus_suspend
,
4981 .bus_resume
= xhci_bus_resume
,
4984 * call back when device connected and addressed
4986 .update_device
= xhci_update_device
,
4987 .set_usb2_hw_lpm
= xhci_set_usb2_hardware_lpm
,
4988 .enable_usb3_lpm_timeout
= xhci_enable_usb3_lpm_timeout
,
4989 .disable_usb3_lpm_timeout
= xhci_disable_usb3_lpm_timeout
,
4990 .find_raw_port_number
= xhci_find_raw_port_number
,
4993 void xhci_init_driver(struct hc_driver
*drv
,
4994 const struct xhci_driver_overrides
*over
)
4998 /* Copy the generic table to drv then apply the overrides */
4999 *drv
= xhci_hc_driver
;
5002 drv
->hcd_priv_size
+= over
->extra_priv_size
;
5004 drv
->reset
= over
->reset
;
5006 drv
->start
= over
->start
;
5009 EXPORT_SYMBOL_GPL(xhci_init_driver
);
5011 MODULE_DESCRIPTION(DRIVER_DESC
);
5012 MODULE_AUTHOR(DRIVER_AUTHOR
);
5013 MODULE_LICENSE("GPL");
5015 static int __init
xhci_hcd_init(void)
5018 * Check the compiler generated sizes of structures that must be laid
5019 * out in specific ways for hardware access.
5021 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
5022 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx
) != 8*32/8);
5023 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx
) != 8*32/8);
5024 /* xhci_device_control has eight fields, and also
5025 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5027 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx
) != 4*32/8);
5028 BUILD_BUG_ON(sizeof(union xhci_trb
) != 4*32/8);
5029 BUILD_BUG_ON(sizeof(struct xhci_erst_entry
) != 4*32/8);
5030 BUILD_BUG_ON(sizeof(struct xhci_cap_regs
) != 8*32/8);
5031 BUILD_BUG_ON(sizeof(struct xhci_intr_reg
) != 8*32/8);
5032 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5033 BUILD_BUG_ON(sizeof(struct xhci_run_regs
) != (8+8*128)*32/8);
5042 * If an init function is provided, an exit function must also be provided
5043 * to allow module unload.
5045 static void __exit
xhci_hcd_fini(void) { }
5047 module_init(xhci_hcd_init
);
5048 module_exit(xhci_hcd_fini
);