2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/vmalloc.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32
{
73 } __attribute__ ((__packed__
));
75 struct btrfs_ioctl_received_subvol_args_32
{
76 char uuid
[BTRFS_UUID_SIZE
]; /* in */
77 __u64 stransid
; /* in */
78 __u64 rtransid
; /* out */
79 struct btrfs_ioctl_timespec_32 stime
; /* in */
80 struct btrfs_ioctl_timespec_32 rtime
; /* out */
82 __u64 reserved
[16]; /* in */
83 } __attribute__ ((__packed__
));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
90 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
91 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
99 else if (S_ISREG(mode
))
100 return flags
& ~FS_DIRSYNC_FL
;
102 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
110 unsigned int iflags
= 0;
112 if (flags
& BTRFS_INODE_SYNC
)
113 iflags
|= FS_SYNC_FL
;
114 if (flags
& BTRFS_INODE_IMMUTABLE
)
115 iflags
|= FS_IMMUTABLE_FL
;
116 if (flags
& BTRFS_INODE_APPEND
)
117 iflags
|= FS_APPEND_FL
;
118 if (flags
& BTRFS_INODE_NODUMP
)
119 iflags
|= FS_NODUMP_FL
;
120 if (flags
& BTRFS_INODE_NOATIME
)
121 iflags
|= FS_NOATIME_FL
;
122 if (flags
& BTRFS_INODE_DIRSYNC
)
123 iflags
|= FS_DIRSYNC_FL
;
124 if (flags
& BTRFS_INODE_NODATACOW
)
125 iflags
|= FS_NOCOW_FL
;
127 if (flags
& BTRFS_INODE_NOCOMPRESS
)
128 iflags
|= FS_NOCOMP_FL
;
129 else if (flags
& BTRFS_INODE_COMPRESS
)
130 iflags
|= FS_COMPR_FL
;
136 * Update inode->i_flags based on the btrfs internal flags.
138 void btrfs_update_iflags(struct inode
*inode
)
140 struct btrfs_inode
*ip
= BTRFS_I(inode
);
141 unsigned int new_fl
= 0;
143 if (ip
->flags
& BTRFS_INODE_SYNC
)
145 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
146 new_fl
|= S_IMMUTABLE
;
147 if (ip
->flags
& BTRFS_INODE_APPEND
)
149 if (ip
->flags
& BTRFS_INODE_NOATIME
)
151 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
154 set_mask_bits(&inode
->i_flags
,
155 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
160 * Inherit flags from the parent inode.
162 * Currently only the compression flags and the cow flags are inherited.
164 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
171 flags
= BTRFS_I(dir
)->flags
;
173 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
174 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
175 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
176 } else if (flags
& BTRFS_INODE_COMPRESS
) {
177 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
178 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
181 if (flags
& BTRFS_INODE_NODATACOW
) {
182 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
183 if (S_ISREG(inode
->i_mode
))
184 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
187 btrfs_update_iflags(inode
);
190 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
192 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
193 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
195 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
200 static int check_flags(unsigned int flags
)
202 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
203 FS_NOATIME_FL
| FS_NODUMP_FL
| \
204 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
205 FS_NOCOMP_FL
| FS_COMPR_FL
|
209 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
215 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
217 struct inode
*inode
= file_inode(file
);
218 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
219 struct btrfs_inode
*ip
= BTRFS_I(inode
);
220 struct btrfs_root
*root
= ip
->root
;
221 struct btrfs_trans_handle
*trans
;
222 unsigned int flags
, oldflags
;
225 unsigned int i_oldflags
;
228 if (!inode_owner_or_capable(inode
))
231 if (btrfs_root_readonly(root
))
234 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
237 ret
= check_flags(flags
);
241 ret
= mnt_want_write_file(file
);
247 ip_oldflags
= ip
->flags
;
248 i_oldflags
= inode
->i_flags
;
249 mode
= inode
->i_mode
;
251 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
252 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
253 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
254 if (!capable(CAP_LINUX_IMMUTABLE
)) {
260 if (flags
& FS_SYNC_FL
)
261 ip
->flags
|= BTRFS_INODE_SYNC
;
263 ip
->flags
&= ~BTRFS_INODE_SYNC
;
264 if (flags
& FS_IMMUTABLE_FL
)
265 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
267 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
268 if (flags
& FS_APPEND_FL
)
269 ip
->flags
|= BTRFS_INODE_APPEND
;
271 ip
->flags
&= ~BTRFS_INODE_APPEND
;
272 if (flags
& FS_NODUMP_FL
)
273 ip
->flags
|= BTRFS_INODE_NODUMP
;
275 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
276 if (flags
& FS_NOATIME_FL
)
277 ip
->flags
|= BTRFS_INODE_NOATIME
;
279 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
280 if (flags
& FS_DIRSYNC_FL
)
281 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
283 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
284 if (flags
& FS_NOCOW_FL
) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode
->i_size
== 0)
292 ip
->flags
|= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM
;
295 ip
->flags
|= BTRFS_INODE_NODATACOW
;
299 * Revert back under same assumptions as above
302 if (inode
->i_size
== 0)
303 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM
);
306 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags
& FS_NOCOMP_FL
) {
316 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
317 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
319 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
320 if (ret
&& ret
!= -ENODATA
)
322 } else if (flags
& FS_COMPR_FL
) {
325 ip
->flags
|= BTRFS_INODE_COMPRESS
;
326 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
328 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
332 ret
= btrfs_set_prop(inode
, "btrfs.compression",
333 comp
, strlen(comp
), 0);
338 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
339 if (ret
&& ret
!= -ENODATA
)
341 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
344 trans
= btrfs_start_transaction(root
, 1);
346 ret
= PTR_ERR(trans
);
350 btrfs_update_iflags(inode
);
351 inode_inc_iversion(inode
);
352 inode
->i_ctime
= current_time(inode
);
353 ret
= btrfs_update_inode(trans
, root
, inode
);
355 btrfs_end_transaction(trans
);
358 ip
->flags
= ip_oldflags
;
359 inode
->i_flags
= i_oldflags
;
364 mnt_drop_write_file(file
);
368 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
370 struct inode
*inode
= file_inode(file
);
372 return put_user(inode
->i_generation
, arg
);
375 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
377 struct inode
*inode
= file_inode(file
);
378 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
379 struct btrfs_device
*device
;
380 struct request_queue
*q
;
381 struct fstrim_range range
;
382 u64 minlen
= ULLONG_MAX
;
384 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
387 if (!capable(CAP_SYS_ADMIN
))
391 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
395 q
= bdev_get_queue(device
->bdev
);
396 if (blk_queue_discard(q
)) {
398 minlen
= min_t(u64
, q
->limits
.discard_granularity
,
406 if (copy_from_user(&range
, arg
, sizeof(range
)))
408 if (range
.start
> total_bytes
||
409 range
.len
< fs_info
->sb
->s_blocksize
)
412 range
.len
= min(range
.len
, total_bytes
- range
.start
);
413 range
.minlen
= max(range
.minlen
, minlen
);
414 ret
= btrfs_trim_fs(fs_info
, &range
);
418 if (copy_to_user(arg
, &range
, sizeof(range
)))
424 int btrfs_is_empty_uuid(u8
*uuid
)
428 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
435 static noinline
int create_subvol(struct inode
*dir
,
436 struct dentry
*dentry
,
437 const char *name
, int namelen
,
439 struct btrfs_qgroup_inherit
*inherit
)
441 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
442 struct btrfs_trans_handle
*trans
;
443 struct btrfs_key key
;
444 struct btrfs_root_item
*root_item
;
445 struct btrfs_inode_item
*inode_item
;
446 struct extent_buffer
*leaf
;
447 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
448 struct btrfs_root
*new_root
;
449 struct btrfs_block_rsv block_rsv
;
450 struct timespec cur_time
= current_time(dir
);
455 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
460 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
464 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &objectid
);
469 * Don't create subvolume whose level is not zero. Or qgroup will be
470 * screwed up since it assumes subvolume qgroup's level to be 0.
472 if (btrfs_qgroup_level(objectid
)) {
477 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
479 * The same as the snapshot creation, please see the comment
480 * of create_snapshot().
482 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
483 8, &qgroup_reserved
, false);
487 trans
= btrfs_start_transaction(root
, 0);
489 ret
= PTR_ERR(trans
);
490 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
493 trans
->block_rsv
= &block_rsv
;
494 trans
->bytes_reserved
= block_rsv
.size
;
496 ret
= btrfs_qgroup_inherit(trans
, fs_info
, 0, objectid
, inherit
);
500 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
506 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
507 btrfs_set_header_bytenr(leaf
, leaf
->start
);
508 btrfs_set_header_generation(leaf
, trans
->transid
);
509 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
510 btrfs_set_header_owner(leaf
, objectid
);
512 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
513 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
514 btrfs_mark_buffer_dirty(leaf
);
516 inode_item
= &root_item
->inode
;
517 btrfs_set_stack_inode_generation(inode_item
, 1);
518 btrfs_set_stack_inode_size(inode_item
, 3);
519 btrfs_set_stack_inode_nlink(inode_item
, 1);
520 btrfs_set_stack_inode_nbytes(inode_item
,
522 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
524 btrfs_set_root_flags(root_item
, 0);
525 btrfs_set_root_limit(root_item
, 0);
526 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
528 btrfs_set_root_bytenr(root_item
, leaf
->start
);
529 btrfs_set_root_generation(root_item
, trans
->transid
);
530 btrfs_set_root_level(root_item
, 0);
531 btrfs_set_root_refs(root_item
, 1);
532 btrfs_set_root_used(root_item
, leaf
->len
);
533 btrfs_set_root_last_snapshot(root_item
, 0);
535 btrfs_set_root_generation_v2(root_item
,
536 btrfs_root_generation(root_item
));
537 uuid_le_gen(&new_uuid
);
538 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
539 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
540 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
541 root_item
->ctime
= root_item
->otime
;
542 btrfs_set_root_ctransid(root_item
, trans
->transid
);
543 btrfs_set_root_otransid(root_item
, trans
->transid
);
545 btrfs_tree_unlock(leaf
);
546 free_extent_buffer(leaf
);
549 btrfs_set_root_dirid(root_item
, new_dirid
);
551 key
.objectid
= objectid
;
553 key
.type
= BTRFS_ROOT_ITEM_KEY
;
554 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
, &key
,
559 key
.offset
= (u64
)-1;
560 new_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
561 if (IS_ERR(new_root
)) {
562 ret
= PTR_ERR(new_root
);
563 btrfs_abort_transaction(trans
, ret
);
567 btrfs_record_root_in_trans(trans
, new_root
);
569 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
571 /* We potentially lose an unused inode item here */
572 btrfs_abort_transaction(trans
, ret
);
576 mutex_lock(&new_root
->objectid_mutex
);
577 new_root
->highest_objectid
= new_dirid
;
578 mutex_unlock(&new_root
->objectid_mutex
);
581 * insert the directory item
583 ret
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
585 btrfs_abort_transaction(trans
, ret
);
589 ret
= btrfs_insert_dir_item(trans
, root
,
590 name
, namelen
, BTRFS_I(dir
), &key
,
591 BTRFS_FT_DIR
, index
);
593 btrfs_abort_transaction(trans
, ret
);
597 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ namelen
* 2);
598 ret
= btrfs_update_inode(trans
, root
, dir
);
601 ret
= btrfs_add_root_ref(trans
, fs_info
,
602 objectid
, root
->root_key
.objectid
,
603 btrfs_ino(BTRFS_I(dir
)), index
, name
, namelen
);
606 ret
= btrfs_uuid_tree_add(trans
, fs_info
, root_item
->uuid
,
607 BTRFS_UUID_KEY_SUBVOL
, objectid
);
609 btrfs_abort_transaction(trans
, ret
);
613 trans
->block_rsv
= NULL
;
614 trans
->bytes_reserved
= 0;
615 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
618 *async_transid
= trans
->transid
;
619 err
= btrfs_commit_transaction_async(trans
, 1);
621 err
= btrfs_commit_transaction(trans
);
623 err
= btrfs_commit_transaction(trans
);
629 inode
= btrfs_lookup_dentry(dir
, dentry
);
631 return PTR_ERR(inode
);
632 d_instantiate(dentry
, inode
);
641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root
*root
)
647 prepare_to_wait(&root
->subv_writers
->wait
, &wait
,
648 TASK_UNINTERRUPTIBLE
);
650 writers
= percpu_counter_sum(&root
->subv_writers
->counter
);
654 finish_wait(&root
->subv_writers
->wait
, &wait
);
658 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
659 struct dentry
*dentry
,
660 u64
*async_transid
, bool readonly
,
661 struct btrfs_qgroup_inherit
*inherit
)
663 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
665 struct btrfs_pending_snapshot
*pending_snapshot
;
666 struct btrfs_trans_handle
*trans
;
669 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
672 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_KERNEL
);
673 if (!pending_snapshot
)
676 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
678 pending_snapshot
->path
= btrfs_alloc_path();
679 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
684 atomic_inc(&root
->will_be_snapshoted
);
685 smp_mb__after_atomic();
686 btrfs_wait_for_no_snapshoting_writes(root
);
688 ret
= btrfs_start_delalloc_inodes(root
, 0);
692 btrfs_wait_ordered_extents(root
, -1, 0, (u64
)-1);
694 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
695 BTRFS_BLOCK_RSV_TEMP
);
697 * 1 - parent dir inode
700 * 2 - root ref/backref
701 * 1 - root of snapshot
704 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
705 &pending_snapshot
->block_rsv
, 8,
706 &pending_snapshot
->qgroup_reserved
,
711 pending_snapshot
->dentry
= dentry
;
712 pending_snapshot
->root
= root
;
713 pending_snapshot
->readonly
= readonly
;
714 pending_snapshot
->dir
= dir
;
715 pending_snapshot
->inherit
= inherit
;
717 trans
= btrfs_start_transaction(root
, 0);
719 ret
= PTR_ERR(trans
);
723 spin_lock(&fs_info
->trans_lock
);
724 list_add(&pending_snapshot
->list
,
725 &trans
->transaction
->pending_snapshots
);
726 spin_unlock(&fs_info
->trans_lock
);
728 *async_transid
= trans
->transid
;
729 ret
= btrfs_commit_transaction_async(trans
, 1);
731 ret
= btrfs_commit_transaction(trans
);
733 ret
= btrfs_commit_transaction(trans
);
738 ret
= pending_snapshot
->error
;
742 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
746 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
748 ret
= PTR_ERR(inode
);
752 d_instantiate(dentry
, inode
);
755 btrfs_subvolume_release_metadata(fs_info
, &pending_snapshot
->block_rsv
);
757 if (atomic_dec_and_test(&root
->will_be_snapshoted
))
758 wake_up_atomic_t(&root
->will_be_snapshoted
);
760 kfree(pending_snapshot
->root_item
);
761 btrfs_free_path(pending_snapshot
->path
);
762 kfree(pending_snapshot
);
767 /* copy of may_delete in fs/namei.c()
768 * Check whether we can remove a link victim from directory dir, check
769 * whether the type of victim is right.
770 * 1. We can't do it if dir is read-only (done in permission())
771 * 2. We should have write and exec permissions on dir
772 * 3. We can't remove anything from append-only dir
773 * 4. We can't do anything with immutable dir (done in permission())
774 * 5. If the sticky bit on dir is set we should either
775 * a. be owner of dir, or
776 * b. be owner of victim, or
777 * c. have CAP_FOWNER capability
778 * 6. If the victim is append-only or immutable we can't do anything with
779 * links pointing to it.
780 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
781 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
782 * 9. We can't remove a root or mountpoint.
783 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
784 * nfs_async_unlink().
787 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
791 if (d_really_is_negative(victim
))
794 BUG_ON(d_inode(victim
->d_parent
) != dir
);
795 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
797 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
802 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
803 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
806 if (!d_is_dir(victim
))
810 } else if (d_is_dir(victim
))
814 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
819 /* copy of may_create in fs/namei.c() */
820 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
822 if (d_really_is_positive(child
))
826 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
830 * Create a new subvolume below @parent. This is largely modeled after
831 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
832 * inside this filesystem so it's quite a bit simpler.
834 static noinline
int btrfs_mksubvol(const struct path
*parent
,
835 const char *name
, int namelen
,
836 struct btrfs_root
*snap_src
,
837 u64
*async_transid
, bool readonly
,
838 struct btrfs_qgroup_inherit
*inherit
)
840 struct inode
*dir
= d_inode(parent
->dentry
);
841 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
842 struct dentry
*dentry
;
845 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
849 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
850 error
= PTR_ERR(dentry
);
854 error
= btrfs_may_create(dir
, dentry
);
859 * even if this name doesn't exist, we may get hash collisions.
860 * check for them now when we can safely fail
862 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
868 down_read(&fs_info
->subvol_sem
);
870 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
874 error
= create_snapshot(snap_src
, dir
, dentry
,
875 async_transid
, readonly
, inherit
);
877 error
= create_subvol(dir
, dentry
, name
, namelen
,
878 async_transid
, inherit
);
881 fsnotify_mkdir(dir
, dentry
);
883 up_read(&fs_info
->subvol_sem
);
892 * When we're defragging a range, we don't want to kick it off again
893 * if it is really just waiting for delalloc to send it down.
894 * If we find a nice big extent or delalloc range for the bytes in the
895 * file you want to defrag, we return 0 to let you know to skip this
898 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
900 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
901 struct extent_map
*em
= NULL
;
902 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
905 read_lock(&em_tree
->lock
);
906 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
907 read_unlock(&em_tree
->lock
);
910 end
= extent_map_end(em
);
912 if (end
- offset
> thresh
)
915 /* if we already have a nice delalloc here, just stop */
917 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
918 thresh
, EXTENT_DELALLOC
, 1);
925 * helper function to walk through a file and find extents
926 * newer than a specific transid, and smaller than thresh.
928 * This is used by the defragging code to find new and small
931 static int find_new_extents(struct btrfs_root
*root
,
932 struct inode
*inode
, u64 newer_than
,
933 u64
*off
, u32 thresh
)
935 struct btrfs_path
*path
;
936 struct btrfs_key min_key
;
937 struct extent_buffer
*leaf
;
938 struct btrfs_file_extent_item
*extent
;
941 u64 ino
= btrfs_ino(BTRFS_I(inode
));
943 path
= btrfs_alloc_path();
947 min_key
.objectid
= ino
;
948 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
949 min_key
.offset
= *off
;
952 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
956 if (min_key
.objectid
!= ino
)
958 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
961 leaf
= path
->nodes
[0];
962 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
963 struct btrfs_file_extent_item
);
965 type
= btrfs_file_extent_type(leaf
, extent
);
966 if (type
== BTRFS_FILE_EXTENT_REG
&&
967 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
968 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
969 *off
= min_key
.offset
;
970 btrfs_free_path(path
);
975 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
976 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
980 if (min_key
.offset
== (u64
)-1)
984 btrfs_release_path(path
);
987 btrfs_free_path(path
);
991 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
993 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
994 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
995 struct extent_map
*em
;
999 * hopefully we have this extent in the tree already, try without
1000 * the full extent lock
1002 read_lock(&em_tree
->lock
);
1003 em
= lookup_extent_mapping(em_tree
, start
, len
);
1004 read_unlock(&em_tree
->lock
);
1007 struct extent_state
*cached
= NULL
;
1008 u64 end
= start
+ len
- 1;
1010 /* get the big lock and read metadata off disk */
1011 lock_extent_bits(io_tree
, start
, end
, &cached
);
1012 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
1013 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
1022 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1024 struct extent_map
*next
;
1027 /* this is the last extent */
1028 if (em
->start
+ em
->len
>= i_size_read(inode
))
1031 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1032 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1034 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1035 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1038 free_extent_map(next
);
1042 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1043 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1046 struct extent_map
*em
;
1048 bool next_mergeable
= true;
1049 bool prev_mergeable
= true;
1052 * make sure that once we start defragging an extent, we keep on
1055 if (start
< *defrag_end
)
1060 em
= defrag_lookup_extent(inode
, start
);
1064 /* this will cover holes, and inline extents */
1065 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1071 prev_mergeable
= false;
1073 next_mergeable
= defrag_check_next_extent(inode
, em
);
1075 * we hit a real extent, if it is big or the next extent is not a
1076 * real extent, don't bother defragging it
1078 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1079 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1083 * last_len ends up being a counter of how many bytes we've defragged.
1084 * every time we choose not to defrag an extent, we reset *last_len
1085 * so that the next tiny extent will force a defrag.
1087 * The end result of this is that tiny extents before a single big
1088 * extent will force at least part of that big extent to be defragged.
1091 *defrag_end
= extent_map_end(em
);
1094 *skip
= extent_map_end(em
);
1098 free_extent_map(em
);
1103 * it doesn't do much good to defrag one or two pages
1104 * at a time. This pulls in a nice chunk of pages
1105 * to COW and defrag.
1107 * It also makes sure the delalloc code has enough
1108 * dirty data to avoid making new small extents as part
1111 * It's a good idea to start RA on this range
1112 * before calling this.
1114 static int cluster_pages_for_defrag(struct inode
*inode
,
1115 struct page
**pages
,
1116 unsigned long start_index
,
1117 unsigned long num_pages
)
1119 unsigned long file_end
;
1120 u64 isize
= i_size_read(inode
);
1127 struct btrfs_ordered_extent
*ordered
;
1128 struct extent_state
*cached_state
= NULL
;
1129 struct extent_io_tree
*tree
;
1130 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1132 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1133 if (!isize
|| start_index
> file_end
)
1136 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1138 ret
= btrfs_delalloc_reserve_space(inode
,
1139 start_index
<< PAGE_SHIFT
,
1140 page_cnt
<< PAGE_SHIFT
);
1144 tree
= &BTRFS_I(inode
)->io_tree
;
1146 /* step one, lock all the pages */
1147 for (i
= 0; i
< page_cnt
; i
++) {
1150 page
= find_or_create_page(inode
->i_mapping
,
1151 start_index
+ i
, mask
);
1155 page_start
= page_offset(page
);
1156 page_end
= page_start
+ PAGE_SIZE
- 1;
1158 lock_extent_bits(tree
, page_start
, page_end
,
1160 ordered
= btrfs_lookup_ordered_extent(inode
,
1162 unlock_extent_cached(tree
, page_start
, page_end
,
1163 &cached_state
, GFP_NOFS
);
1168 btrfs_start_ordered_extent(inode
, ordered
, 1);
1169 btrfs_put_ordered_extent(ordered
);
1172 * we unlocked the page above, so we need check if
1173 * it was released or not.
1175 if (page
->mapping
!= inode
->i_mapping
) {
1182 if (!PageUptodate(page
)) {
1183 btrfs_readpage(NULL
, page
);
1185 if (!PageUptodate(page
)) {
1193 if (page
->mapping
!= inode
->i_mapping
) {
1205 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1209 * so now we have a nice long stream of locked
1210 * and up to date pages, lets wait on them
1212 for (i
= 0; i
< i_done
; i
++)
1213 wait_on_page_writeback(pages
[i
]);
1215 page_start
= page_offset(pages
[0]);
1216 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1218 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1219 page_start
, page_end
- 1, &cached_state
);
1220 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1221 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1222 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1223 &cached_state
, GFP_NOFS
);
1225 if (i_done
!= page_cnt
) {
1226 spin_lock(&BTRFS_I(inode
)->lock
);
1227 BTRFS_I(inode
)->outstanding_extents
++;
1228 spin_unlock(&BTRFS_I(inode
)->lock
);
1229 btrfs_delalloc_release_space(inode
,
1230 start_index
<< PAGE_SHIFT
,
1231 (page_cnt
- i_done
) << PAGE_SHIFT
);
1235 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1238 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1239 page_start
, page_end
- 1, &cached_state
,
1242 for (i
= 0; i
< i_done
; i
++) {
1243 clear_page_dirty_for_io(pages
[i
]);
1244 ClearPageChecked(pages
[i
]);
1245 set_page_extent_mapped(pages
[i
]);
1246 set_page_dirty(pages
[i
]);
1247 unlock_page(pages
[i
]);
1252 for (i
= 0; i
< i_done
; i
++) {
1253 unlock_page(pages
[i
]);
1256 btrfs_delalloc_release_space(inode
,
1257 start_index
<< PAGE_SHIFT
,
1258 page_cnt
<< PAGE_SHIFT
);
1263 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1264 struct btrfs_ioctl_defrag_range_args
*range
,
1265 u64 newer_than
, unsigned long max_to_defrag
)
1267 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1268 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1269 struct file_ra_state
*ra
= NULL
;
1270 unsigned long last_index
;
1271 u64 isize
= i_size_read(inode
);
1275 u64 newer_off
= range
->start
;
1277 unsigned long ra_index
= 0;
1279 int defrag_count
= 0;
1280 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1281 u32 extent_thresh
= range
->extent_thresh
;
1282 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1283 unsigned long cluster
= max_cluster
;
1284 u64 new_align
= ~((u64
)SZ_128K
- 1);
1285 struct page
**pages
= NULL
;
1290 if (range
->start
>= isize
)
1293 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1294 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1296 if (range
->compress_type
)
1297 compress_type
= range
->compress_type
;
1300 if (extent_thresh
== 0)
1301 extent_thresh
= SZ_256K
;
1304 * if we were not given a file, allocate a readahead
1308 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1311 file_ra_state_init(ra
, inode
->i_mapping
);
1316 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*),
1323 /* find the last page to defrag */
1324 if (range
->start
+ range
->len
> range
->start
) {
1325 last_index
= min_t(u64
, isize
- 1,
1326 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1328 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1332 ret
= find_new_extents(root
, inode
, newer_than
,
1333 &newer_off
, SZ_64K
);
1335 range
->start
= newer_off
;
1337 * we always align our defrag to help keep
1338 * the extents in the file evenly spaced
1340 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1344 i
= range
->start
>> PAGE_SHIFT
;
1347 max_to_defrag
= last_index
- i
+ 1;
1350 * make writeback starts from i, so the defrag range can be
1351 * written sequentially.
1353 if (i
< inode
->i_mapping
->writeback_index
)
1354 inode
->i_mapping
->writeback_index
= i
;
1356 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1357 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1359 * make sure we stop running if someone unmounts
1362 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1365 if (btrfs_defrag_cancelled(fs_info
)) {
1366 btrfs_debug(fs_info
, "defrag_file cancelled");
1371 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1372 extent_thresh
, &last_len
, &skip
,
1373 &defrag_end
, range
->flags
&
1374 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1377 * the should_defrag function tells us how much to skip
1378 * bump our counter by the suggested amount
1380 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1381 i
= max(i
+ 1, next
);
1386 cluster
= (PAGE_ALIGN(defrag_end
) >>
1388 cluster
= min(cluster
, max_cluster
);
1390 cluster
= max_cluster
;
1393 if (i
+ cluster
> ra_index
) {
1394 ra_index
= max(i
, ra_index
);
1395 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1397 ra_index
+= cluster
;
1401 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1402 BTRFS_I(inode
)->force_compress
= compress_type
;
1403 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1405 inode_unlock(inode
);
1409 defrag_count
+= ret
;
1410 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1411 inode_unlock(inode
);
1414 if (newer_off
== (u64
)-1)
1420 newer_off
= max(newer_off
+ 1,
1421 (u64
)i
<< PAGE_SHIFT
);
1423 ret
= find_new_extents(root
, inode
, newer_than
,
1424 &newer_off
, SZ_64K
);
1426 range
->start
= newer_off
;
1427 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1434 last_len
+= ret
<< PAGE_SHIFT
;
1442 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1443 filemap_flush(inode
->i_mapping
);
1444 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1445 &BTRFS_I(inode
)->runtime_flags
))
1446 filemap_flush(inode
->i_mapping
);
1449 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1450 /* the filemap_flush will queue IO into the worker threads, but
1451 * we have to make sure the IO is actually started and that
1452 * ordered extents get created before we return
1454 atomic_inc(&fs_info
->async_submit_draining
);
1455 while (atomic_read(&fs_info
->nr_async_submits
) ||
1456 atomic_read(&fs_info
->async_delalloc_pages
)) {
1457 wait_event(fs_info
->async_submit_wait
,
1458 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
1459 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
1461 atomic_dec(&fs_info
->async_submit_draining
);
1464 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1465 btrfs_set_fs_incompat(fs_info
, COMPRESS_LZO
);
1471 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1473 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1474 inode_unlock(inode
);
1482 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1485 struct inode
*inode
= file_inode(file
);
1486 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1490 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1491 struct btrfs_ioctl_vol_args
*vol_args
;
1492 struct btrfs_trans_handle
*trans
;
1493 struct btrfs_device
*device
= NULL
;
1496 char *devstr
= NULL
;
1500 if (!capable(CAP_SYS_ADMIN
))
1503 ret
= mnt_want_write_file(file
);
1507 if (atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
1508 mnt_drop_write_file(file
);
1509 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1512 mutex_lock(&fs_info
->volume_mutex
);
1513 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1514 if (IS_ERR(vol_args
)) {
1515 ret
= PTR_ERR(vol_args
);
1519 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1521 sizestr
= vol_args
->name
;
1522 devstr
= strchr(sizestr
, ':');
1524 sizestr
= devstr
+ 1;
1526 devstr
= vol_args
->name
;
1527 ret
= kstrtoull(devstr
, 10, &devid
);
1534 btrfs_info(fs_info
, "resizing devid %llu", devid
);
1537 device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
1539 btrfs_info(fs_info
, "resizer unable to find device %llu",
1545 if (!device
->writeable
) {
1547 "resizer unable to apply on readonly device %llu",
1553 if (!strcmp(sizestr
, "max"))
1554 new_size
= device
->bdev
->bd_inode
->i_size
;
1556 if (sizestr
[0] == '-') {
1559 } else if (sizestr
[0] == '+') {
1563 new_size
= memparse(sizestr
, &retptr
);
1564 if (*retptr
!= '\0' || new_size
== 0) {
1570 if (device
->is_tgtdev_for_dev_replace
) {
1575 old_size
= btrfs_device_get_total_bytes(device
);
1578 if (new_size
> old_size
) {
1582 new_size
= old_size
- new_size
;
1583 } else if (mod
> 0) {
1584 if (new_size
> ULLONG_MAX
- old_size
) {
1588 new_size
= old_size
+ new_size
;
1591 if (new_size
< SZ_256M
) {
1595 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1600 new_size
= div_u64(new_size
, fs_info
->sectorsize
);
1601 new_size
*= fs_info
->sectorsize
;
1603 btrfs_info_in_rcu(fs_info
, "new size for %s is %llu",
1604 rcu_str_deref(device
->name
), new_size
);
1606 if (new_size
> old_size
) {
1607 trans
= btrfs_start_transaction(root
, 0);
1608 if (IS_ERR(trans
)) {
1609 ret
= PTR_ERR(trans
);
1612 ret
= btrfs_grow_device(trans
, device
, new_size
);
1613 btrfs_commit_transaction(trans
);
1614 } else if (new_size
< old_size
) {
1615 ret
= btrfs_shrink_device(device
, new_size
);
1616 } /* equal, nothing need to do */
1621 mutex_unlock(&fs_info
->volume_mutex
);
1622 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
1623 mnt_drop_write_file(file
);
1627 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1628 const char *name
, unsigned long fd
, int subvol
,
1629 u64
*transid
, bool readonly
,
1630 struct btrfs_qgroup_inherit
*inherit
)
1635 if (!S_ISDIR(file_inode(file
)->i_mode
))
1638 ret
= mnt_want_write_file(file
);
1642 namelen
= strlen(name
);
1643 if (strchr(name
, '/')) {
1645 goto out_drop_write
;
1648 if (name
[0] == '.' &&
1649 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1651 goto out_drop_write
;
1655 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1656 NULL
, transid
, readonly
, inherit
);
1658 struct fd src
= fdget(fd
);
1659 struct inode
*src_inode
;
1662 goto out_drop_write
;
1665 src_inode
= file_inode(src
.file
);
1666 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1667 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1668 "Snapshot src from another FS");
1670 } else if (!inode_owner_or_capable(src_inode
)) {
1672 * Subvolume creation is not restricted, but snapshots
1673 * are limited to own subvolumes only
1677 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1678 BTRFS_I(src_inode
)->root
,
1679 transid
, readonly
, inherit
);
1684 mnt_drop_write_file(file
);
1689 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1690 void __user
*arg
, int subvol
)
1692 struct btrfs_ioctl_vol_args
*vol_args
;
1695 if (!S_ISDIR(file_inode(file
)->i_mode
))
1698 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1699 if (IS_ERR(vol_args
))
1700 return PTR_ERR(vol_args
);
1701 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1703 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1704 vol_args
->fd
, subvol
,
1711 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1712 void __user
*arg
, int subvol
)
1714 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1718 bool readonly
= false;
1719 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1721 if (!S_ISDIR(file_inode(file
)->i_mode
))
1724 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1725 if (IS_ERR(vol_args
))
1726 return PTR_ERR(vol_args
);
1727 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1729 if (vol_args
->flags
&
1730 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1731 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1736 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1738 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1740 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1741 if (vol_args
->size
> PAGE_SIZE
) {
1745 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1746 if (IS_ERR(inherit
)) {
1747 ret
= PTR_ERR(inherit
);
1752 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1753 vol_args
->fd
, subvol
, ptr
,
1758 if (ptr
&& copy_to_user(arg
+
1759 offsetof(struct btrfs_ioctl_vol_args_v2
,
1771 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1774 struct inode
*inode
= file_inode(file
);
1775 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1776 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1780 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
)
1783 down_read(&fs_info
->subvol_sem
);
1784 if (btrfs_root_readonly(root
))
1785 flags
|= BTRFS_SUBVOL_RDONLY
;
1786 up_read(&fs_info
->subvol_sem
);
1788 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1794 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1797 struct inode
*inode
= file_inode(file
);
1798 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1799 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1800 struct btrfs_trans_handle
*trans
;
1805 if (!inode_owner_or_capable(inode
))
1808 ret
= mnt_want_write_file(file
);
1812 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
1814 goto out_drop_write
;
1817 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1819 goto out_drop_write
;
1822 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1824 goto out_drop_write
;
1827 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1829 goto out_drop_write
;
1832 down_write(&fs_info
->subvol_sem
);
1835 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1838 root_flags
= btrfs_root_flags(&root
->root_item
);
1839 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1840 btrfs_set_root_flags(&root
->root_item
,
1841 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1844 * Block RO -> RW transition if this subvolume is involved in
1847 spin_lock(&root
->root_item_lock
);
1848 if (root
->send_in_progress
== 0) {
1849 btrfs_set_root_flags(&root
->root_item
,
1850 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1851 spin_unlock(&root
->root_item_lock
);
1853 spin_unlock(&root
->root_item_lock
);
1855 "Attempt to set subvolume %llu read-write during send",
1856 root
->root_key
.objectid
);
1862 trans
= btrfs_start_transaction(root
, 1);
1863 if (IS_ERR(trans
)) {
1864 ret
= PTR_ERR(trans
);
1868 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
1869 &root
->root_key
, &root
->root_item
);
1871 btrfs_commit_transaction(trans
);
1874 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1876 up_write(&fs_info
->subvol_sem
);
1878 mnt_drop_write_file(file
);
1884 * helper to check if the subvolume references other subvolumes
1886 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1888 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1889 struct btrfs_path
*path
;
1890 struct btrfs_dir_item
*di
;
1891 struct btrfs_key key
;
1895 path
= btrfs_alloc_path();
1899 /* Make sure this root isn't set as the default subvol */
1900 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1901 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
1902 dir_id
, "default", 7, 0);
1903 if (di
&& !IS_ERR(di
)) {
1904 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1905 if (key
.objectid
== root
->root_key
.objectid
) {
1908 "deleting default subvolume %llu is not allowed",
1912 btrfs_release_path(path
);
1915 key
.objectid
= root
->root_key
.objectid
;
1916 key
.type
= BTRFS_ROOT_REF_KEY
;
1917 key
.offset
= (u64
)-1;
1919 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1925 if (path
->slots
[0] > 0) {
1927 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1928 if (key
.objectid
== root
->root_key
.objectid
&&
1929 key
.type
== BTRFS_ROOT_REF_KEY
)
1933 btrfs_free_path(path
);
1937 static noinline
int key_in_sk(struct btrfs_key
*key
,
1938 struct btrfs_ioctl_search_key
*sk
)
1940 struct btrfs_key test
;
1943 test
.objectid
= sk
->min_objectid
;
1944 test
.type
= sk
->min_type
;
1945 test
.offset
= sk
->min_offset
;
1947 ret
= btrfs_comp_cpu_keys(key
, &test
);
1951 test
.objectid
= sk
->max_objectid
;
1952 test
.type
= sk
->max_type
;
1953 test
.offset
= sk
->max_offset
;
1955 ret
= btrfs_comp_cpu_keys(key
, &test
);
1961 static noinline
int copy_to_sk(struct btrfs_path
*path
,
1962 struct btrfs_key
*key
,
1963 struct btrfs_ioctl_search_key
*sk
,
1966 unsigned long *sk_offset
,
1970 struct extent_buffer
*leaf
;
1971 struct btrfs_ioctl_search_header sh
;
1972 struct btrfs_key test
;
1973 unsigned long item_off
;
1974 unsigned long item_len
;
1980 leaf
= path
->nodes
[0];
1981 slot
= path
->slots
[0];
1982 nritems
= btrfs_header_nritems(leaf
);
1984 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1988 found_transid
= btrfs_header_generation(leaf
);
1990 for (i
= slot
; i
< nritems
; i
++) {
1991 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1992 item_len
= btrfs_item_size_nr(leaf
, i
);
1994 btrfs_item_key_to_cpu(leaf
, key
, i
);
1995 if (!key_in_sk(key
, sk
))
1998 if (sizeof(sh
) + item_len
> *buf_size
) {
2005 * return one empty item back for v1, which does not
2009 *buf_size
= sizeof(sh
) + item_len
;
2014 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
2019 sh
.objectid
= key
->objectid
;
2020 sh
.offset
= key
->offset
;
2021 sh
.type
= key
->type
;
2023 sh
.transid
= found_transid
;
2025 /* copy search result header */
2026 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2031 *sk_offset
+= sizeof(sh
);
2034 char __user
*up
= ubuf
+ *sk_offset
;
2036 if (read_extent_buffer_to_user(leaf
, up
,
2037 item_off
, item_len
)) {
2042 *sk_offset
+= item_len
;
2046 if (ret
) /* -EOVERFLOW from above */
2049 if (*num_found
>= sk
->nr_items
) {
2056 test
.objectid
= sk
->max_objectid
;
2057 test
.type
= sk
->max_type
;
2058 test
.offset
= sk
->max_offset
;
2059 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2061 else if (key
->offset
< (u64
)-1)
2063 else if (key
->type
< (u8
)-1) {
2066 } else if (key
->objectid
< (u64
)-1) {
2074 * 0: all items from this leaf copied, continue with next
2075 * 1: * more items can be copied, but unused buffer is too small
2076 * * all items were found
2077 * Either way, it will stops the loop which iterates to the next
2079 * -EOVERFLOW: item was to large for buffer
2080 * -EFAULT: could not copy extent buffer back to userspace
2085 static noinline
int search_ioctl(struct inode
*inode
,
2086 struct btrfs_ioctl_search_key
*sk
,
2090 struct btrfs_fs_info
*info
= btrfs_sb(inode
->i_sb
);
2091 struct btrfs_root
*root
;
2092 struct btrfs_key key
;
2093 struct btrfs_path
*path
;
2096 unsigned long sk_offset
= 0;
2098 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2099 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2103 path
= btrfs_alloc_path();
2107 if (sk
->tree_id
== 0) {
2108 /* search the root of the inode that was passed */
2109 root
= BTRFS_I(inode
)->root
;
2111 key
.objectid
= sk
->tree_id
;
2112 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2113 key
.offset
= (u64
)-1;
2114 root
= btrfs_read_fs_root_no_name(info
, &key
);
2116 btrfs_free_path(path
);
2121 key
.objectid
= sk
->min_objectid
;
2122 key
.type
= sk
->min_type
;
2123 key
.offset
= sk
->min_offset
;
2126 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2132 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2133 &sk_offset
, &num_found
);
2134 btrfs_release_path(path
);
2142 sk
->nr_items
= num_found
;
2143 btrfs_free_path(path
);
2147 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2150 struct btrfs_ioctl_search_args __user
*uargs
;
2151 struct btrfs_ioctl_search_key sk
;
2152 struct inode
*inode
;
2156 if (!capable(CAP_SYS_ADMIN
))
2159 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2161 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2164 buf_size
= sizeof(uargs
->buf
);
2166 inode
= file_inode(file
);
2167 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2170 * In the origin implementation an overflow is handled by returning a
2171 * search header with a len of zero, so reset ret.
2173 if (ret
== -EOVERFLOW
)
2176 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2181 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2184 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2185 struct btrfs_ioctl_search_args_v2 args
;
2186 struct inode
*inode
;
2189 const size_t buf_limit
= SZ_16M
;
2191 if (!capable(CAP_SYS_ADMIN
))
2194 /* copy search header and buffer size */
2195 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2196 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2199 buf_size
= args
.buf_size
;
2201 if (buf_size
< sizeof(struct btrfs_ioctl_search_header
))
2204 /* limit result size to 16MB */
2205 if (buf_size
> buf_limit
)
2206 buf_size
= buf_limit
;
2208 inode
= file_inode(file
);
2209 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2210 (char *)(&uarg
->buf
[0]));
2211 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2213 else if (ret
== -EOVERFLOW
&&
2214 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2221 * Search INODE_REFs to identify path name of 'dirid' directory
2222 * in a 'tree_id' tree. and sets path name to 'name'.
2224 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2225 u64 tree_id
, u64 dirid
, char *name
)
2227 struct btrfs_root
*root
;
2228 struct btrfs_key key
;
2234 struct btrfs_inode_ref
*iref
;
2235 struct extent_buffer
*l
;
2236 struct btrfs_path
*path
;
2238 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2243 path
= btrfs_alloc_path();
2247 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2249 key
.objectid
= tree_id
;
2250 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2251 key
.offset
= (u64
)-1;
2252 root
= btrfs_read_fs_root_no_name(info
, &key
);
2254 btrfs_err(info
, "could not find root %llu", tree_id
);
2259 key
.objectid
= dirid
;
2260 key
.type
= BTRFS_INODE_REF_KEY
;
2261 key
.offset
= (u64
)-1;
2264 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2268 ret
= btrfs_previous_item(root
, path
, dirid
,
2269 BTRFS_INODE_REF_KEY
);
2279 slot
= path
->slots
[0];
2280 btrfs_item_key_to_cpu(l
, &key
, slot
);
2282 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2283 len
= btrfs_inode_ref_name_len(l
, iref
);
2285 total_len
+= len
+ 1;
2287 ret
= -ENAMETOOLONG
;
2292 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2294 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2297 btrfs_release_path(path
);
2298 key
.objectid
= key
.offset
;
2299 key
.offset
= (u64
)-1;
2300 dirid
= key
.objectid
;
2302 memmove(name
, ptr
, total_len
);
2303 name
[total_len
] = '\0';
2306 btrfs_free_path(path
);
2310 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2313 struct btrfs_ioctl_ino_lookup_args
*args
;
2314 struct inode
*inode
;
2317 args
= memdup_user(argp
, sizeof(*args
));
2319 return PTR_ERR(args
);
2321 inode
= file_inode(file
);
2324 * Unprivileged query to obtain the containing subvolume root id. The
2325 * path is reset so it's consistent with btrfs_search_path_in_tree.
2327 if (args
->treeid
== 0)
2328 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2330 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2335 if (!capable(CAP_SYS_ADMIN
)) {
2340 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2341 args
->treeid
, args
->objectid
,
2345 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2352 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2355 struct dentry
*parent
= file
->f_path
.dentry
;
2356 struct btrfs_fs_info
*fs_info
= btrfs_sb(parent
->d_sb
);
2357 struct dentry
*dentry
;
2358 struct inode
*dir
= d_inode(parent
);
2359 struct inode
*inode
;
2360 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2361 struct btrfs_root
*dest
= NULL
;
2362 struct btrfs_ioctl_vol_args
*vol_args
;
2363 struct btrfs_trans_handle
*trans
;
2364 struct btrfs_block_rsv block_rsv
;
2366 u64 qgroup_reserved
;
2371 if (!S_ISDIR(dir
->i_mode
))
2374 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2375 if (IS_ERR(vol_args
))
2376 return PTR_ERR(vol_args
);
2378 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2379 namelen
= strlen(vol_args
->name
);
2380 if (strchr(vol_args
->name
, '/') ||
2381 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2386 err
= mnt_want_write_file(file
);
2391 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2393 goto out_drop_write
;
2394 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2395 if (IS_ERR(dentry
)) {
2396 err
= PTR_ERR(dentry
);
2397 goto out_unlock_dir
;
2400 if (d_really_is_negative(dentry
)) {
2405 inode
= d_inode(dentry
);
2406 dest
= BTRFS_I(inode
)->root
;
2407 if (!capable(CAP_SYS_ADMIN
)) {
2409 * Regular user. Only allow this with a special mount
2410 * option, when the user has write+exec access to the
2411 * subvol root, and when rmdir(2) would have been
2414 * Note that this is _not_ check that the subvol is
2415 * empty or doesn't contain data that we wouldn't
2416 * otherwise be able to delete.
2418 * Users who want to delete empty subvols should try
2422 if (!btrfs_test_opt(fs_info
, USER_SUBVOL_RM_ALLOWED
))
2426 * Do not allow deletion if the parent dir is the same
2427 * as the dir to be deleted. That means the ioctl
2428 * must be called on the dentry referencing the root
2429 * of the subvol, not a random directory contained
2436 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2441 /* check if subvolume may be deleted by a user */
2442 err
= btrfs_may_delete(dir
, dentry
, 1);
2446 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
2454 * Don't allow to delete a subvolume with send in progress. This is
2455 * inside the i_mutex so the error handling that has to drop the bit
2456 * again is not run concurrently.
2458 spin_lock(&dest
->root_item_lock
);
2459 root_flags
= btrfs_root_flags(&dest
->root_item
);
2460 if (dest
->send_in_progress
== 0) {
2461 btrfs_set_root_flags(&dest
->root_item
,
2462 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2463 spin_unlock(&dest
->root_item_lock
);
2465 spin_unlock(&dest
->root_item_lock
);
2467 "Attempt to delete subvolume %llu during send",
2468 dest
->root_key
.objectid
);
2470 goto out_unlock_inode
;
2473 down_write(&fs_info
->subvol_sem
);
2475 err
= may_destroy_subvol(dest
);
2479 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2481 * One for dir inode, two for dir entries, two for root
2484 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2485 5, &qgroup_reserved
, true);
2489 trans
= btrfs_start_transaction(root
, 0);
2490 if (IS_ERR(trans
)) {
2491 err
= PTR_ERR(trans
);
2494 trans
->block_rsv
= &block_rsv
;
2495 trans
->bytes_reserved
= block_rsv
.size
;
2497 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
2499 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2500 dest
->root_key
.objectid
,
2501 dentry
->d_name
.name
,
2502 dentry
->d_name
.len
);
2505 btrfs_abort_transaction(trans
, ret
);
2509 btrfs_record_root_in_trans(trans
, dest
);
2511 memset(&dest
->root_item
.drop_progress
, 0,
2512 sizeof(dest
->root_item
.drop_progress
));
2513 dest
->root_item
.drop_level
= 0;
2514 btrfs_set_root_refs(&dest
->root_item
, 0);
2516 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2517 ret
= btrfs_insert_orphan_item(trans
,
2519 dest
->root_key
.objectid
);
2521 btrfs_abort_transaction(trans
, ret
);
2527 ret
= btrfs_uuid_tree_rem(trans
, fs_info
, dest
->root_item
.uuid
,
2528 BTRFS_UUID_KEY_SUBVOL
,
2529 dest
->root_key
.objectid
);
2530 if (ret
&& ret
!= -ENOENT
) {
2531 btrfs_abort_transaction(trans
, ret
);
2535 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2536 ret
= btrfs_uuid_tree_rem(trans
, fs_info
,
2537 dest
->root_item
.received_uuid
,
2538 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2539 dest
->root_key
.objectid
);
2540 if (ret
&& ret
!= -ENOENT
) {
2541 btrfs_abort_transaction(trans
, ret
);
2548 trans
->block_rsv
= NULL
;
2549 trans
->bytes_reserved
= 0;
2550 ret
= btrfs_end_transaction(trans
);
2553 inode
->i_flags
|= S_DEAD
;
2555 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
2557 up_write(&fs_info
->subvol_sem
);
2559 spin_lock(&dest
->root_item_lock
);
2560 root_flags
= btrfs_root_flags(&dest
->root_item
);
2561 btrfs_set_root_flags(&dest
->root_item
,
2562 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2563 spin_unlock(&dest
->root_item_lock
);
2566 inode_unlock(inode
);
2568 d_invalidate(dentry
);
2569 btrfs_invalidate_inodes(dest
);
2571 ASSERT(dest
->send_in_progress
== 0);
2574 if (dest
->ino_cache_inode
) {
2575 iput(dest
->ino_cache_inode
);
2576 dest
->ino_cache_inode
= NULL
;
2584 mnt_drop_write_file(file
);
2590 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2592 struct inode
*inode
= file_inode(file
);
2593 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2594 struct btrfs_ioctl_defrag_range_args
*range
;
2597 ret
= mnt_want_write_file(file
);
2601 if (btrfs_root_readonly(root
)) {
2606 switch (inode
->i_mode
& S_IFMT
) {
2608 if (!capable(CAP_SYS_ADMIN
)) {
2612 ret
= btrfs_defrag_root(root
);
2615 if (!(file
->f_mode
& FMODE_WRITE
)) {
2620 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2627 if (copy_from_user(range
, argp
,
2633 /* compression requires us to start the IO */
2634 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2635 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2636 range
->extent_thresh
= (u32
)-1;
2639 /* the rest are all set to zero by kzalloc */
2640 range
->len
= (u64
)-1;
2642 ret
= btrfs_defrag_file(file_inode(file
), file
,
2652 mnt_drop_write_file(file
);
2656 static long btrfs_ioctl_add_dev(struct btrfs_fs_info
*fs_info
, void __user
*arg
)
2658 struct btrfs_ioctl_vol_args
*vol_args
;
2661 if (!capable(CAP_SYS_ADMIN
))
2664 if (atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1))
2665 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2667 mutex_lock(&fs_info
->volume_mutex
);
2668 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2669 if (IS_ERR(vol_args
)) {
2670 ret
= PTR_ERR(vol_args
);
2674 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2675 ret
= btrfs_init_new_device(fs_info
, vol_args
->name
);
2678 btrfs_info(fs_info
, "disk added %s", vol_args
->name
);
2682 mutex_unlock(&fs_info
->volume_mutex
);
2683 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
2687 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
2689 struct inode
*inode
= file_inode(file
);
2690 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2691 struct btrfs_ioctl_vol_args_v2
*vol_args
;
2694 if (!capable(CAP_SYS_ADMIN
))
2697 ret
= mnt_want_write_file(file
);
2701 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2702 if (IS_ERR(vol_args
)) {
2703 ret
= PTR_ERR(vol_args
);
2707 /* Check for compatibility reject unknown flags */
2708 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
)
2711 if (atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
2712 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2716 mutex_lock(&fs_info
->volume_mutex
);
2717 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
2718 ret
= btrfs_rm_device(fs_info
, NULL
, vol_args
->devid
);
2720 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
2721 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2723 mutex_unlock(&fs_info
->volume_mutex
);
2724 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
2727 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
2728 btrfs_info(fs_info
, "device deleted: id %llu",
2731 btrfs_info(fs_info
, "device deleted: %s",
2737 mnt_drop_write_file(file
);
2741 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2743 struct inode
*inode
= file_inode(file
);
2744 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2745 struct btrfs_ioctl_vol_args
*vol_args
;
2748 if (!capable(CAP_SYS_ADMIN
))
2751 ret
= mnt_want_write_file(file
);
2755 if (atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
2756 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2757 goto out_drop_write
;
2760 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2761 if (IS_ERR(vol_args
)) {
2762 ret
= PTR_ERR(vol_args
);
2766 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2767 mutex_lock(&fs_info
->volume_mutex
);
2768 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2769 mutex_unlock(&fs_info
->volume_mutex
);
2772 btrfs_info(fs_info
, "disk deleted %s", vol_args
->name
);
2775 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
2777 mnt_drop_write_file(file
);
2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info
*fs_info
,
2785 struct btrfs_ioctl_fs_info_args
*fi_args
;
2786 struct btrfs_device
*device
;
2787 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2790 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2794 mutex_lock(&fs_devices
->device_list_mutex
);
2795 fi_args
->num_devices
= fs_devices
->num_devices
;
2796 memcpy(&fi_args
->fsid
, fs_info
->fsid
, sizeof(fi_args
->fsid
));
2798 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2799 if (device
->devid
> fi_args
->max_id
)
2800 fi_args
->max_id
= device
->devid
;
2802 mutex_unlock(&fs_devices
->device_list_mutex
);
2804 fi_args
->nodesize
= fs_info
->super_copy
->nodesize
;
2805 fi_args
->sectorsize
= fs_info
->super_copy
->sectorsize
;
2806 fi_args
->clone_alignment
= fs_info
->super_copy
->sectorsize
;
2808 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2815 static long btrfs_ioctl_dev_info(struct btrfs_fs_info
*fs_info
,
2818 struct btrfs_ioctl_dev_info_args
*di_args
;
2819 struct btrfs_device
*dev
;
2820 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2822 char *s_uuid
= NULL
;
2824 di_args
= memdup_user(arg
, sizeof(*di_args
));
2825 if (IS_ERR(di_args
))
2826 return PTR_ERR(di_args
);
2828 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2829 s_uuid
= di_args
->uuid
;
2831 mutex_lock(&fs_devices
->device_list_mutex
);
2832 dev
= btrfs_find_device(fs_info
, di_args
->devid
, s_uuid
, NULL
);
2839 di_args
->devid
= dev
->devid
;
2840 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2841 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2842 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2844 struct rcu_string
*name
;
2847 name
= rcu_dereference(dev
->name
);
2848 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2850 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2852 di_args
->path
[0] = '\0';
2856 mutex_unlock(&fs_devices
->device_list_mutex
);
2857 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2864 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2868 page
= grab_cache_page(inode
->i_mapping
, index
);
2870 return ERR_PTR(-ENOMEM
);
2872 if (!PageUptodate(page
)) {
2875 ret
= btrfs_readpage(NULL
, page
);
2877 return ERR_PTR(ret
);
2879 if (!PageUptodate(page
)) {
2882 return ERR_PTR(-EIO
);
2884 if (page
->mapping
!= inode
->i_mapping
) {
2887 return ERR_PTR(-EAGAIN
);
2894 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2895 int num_pages
, u64 off
)
2898 pgoff_t index
= off
>> PAGE_SHIFT
;
2900 for (i
= 0; i
< num_pages
; i
++) {
2902 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2903 if (IS_ERR(pages
[i
])) {
2904 int err
= PTR_ERR(pages
[i
]);
2915 static int lock_extent_range(struct inode
*inode
, u64 off
, u64 len
,
2916 bool retry_range_locking
)
2919 * Do any pending delalloc/csum calculations on inode, one way or
2920 * another, and lock file content.
2921 * The locking order is:
2924 * 2) range in the inode's io tree
2927 struct btrfs_ordered_extent
*ordered
;
2928 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2929 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2932 ordered
->file_offset
+ ordered
->len
<= off
||
2933 ordered
->file_offset
>= off
+ len
) &&
2934 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2935 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2937 btrfs_put_ordered_extent(ordered
);
2940 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2942 btrfs_put_ordered_extent(ordered
);
2943 if (!retry_range_locking
)
2945 btrfs_wait_ordered_range(inode
, off
, len
);
2950 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2952 inode_unlock(inode1
);
2953 inode_unlock(inode2
);
2956 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2958 if (inode1
< inode2
)
2959 swap(inode1
, inode2
);
2961 inode_lock_nested(inode1
, I_MUTEX_PARENT
);
2962 inode_lock_nested(inode2
, I_MUTEX_CHILD
);
2965 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2966 struct inode
*inode2
, u64 loff2
, u64 len
)
2968 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2969 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2972 static int btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2973 struct inode
*inode2
, u64 loff2
, u64 len
,
2974 bool retry_range_locking
)
2978 if (inode1
< inode2
) {
2979 swap(inode1
, inode2
);
2982 ret
= lock_extent_range(inode1
, loff1
, len
, retry_range_locking
);
2985 ret
= lock_extent_range(inode2
, loff2
, len
, retry_range_locking
);
2987 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
,
2994 struct page
**src_pages
;
2995 struct page
**dst_pages
;
2998 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
3003 for (i
= 0; i
< cmp
->num_pages
; i
++) {
3004 pg
= cmp
->src_pages
[i
];
3009 pg
= cmp
->dst_pages
[i
];
3015 kfree(cmp
->src_pages
);
3016 kfree(cmp
->dst_pages
);
3019 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
3020 struct inode
*dst
, u64 dst_loff
,
3021 u64 len
, struct cmp_pages
*cmp
)
3024 int num_pages
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
3025 struct page
**src_pgarr
, **dst_pgarr
;
3028 * We must gather up all the pages before we initiate our
3029 * extent locking. We use an array for the page pointers. Size
3030 * of the array is bounded by len, which is in turn bounded by
3031 * BTRFS_MAX_DEDUPE_LEN.
3033 src_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3034 dst_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3035 if (!src_pgarr
|| !dst_pgarr
) {
3040 cmp
->num_pages
= num_pages
;
3041 cmp
->src_pages
= src_pgarr
;
3042 cmp
->dst_pages
= dst_pgarr
;
3045 * If deduping ranges in the same inode, locking rules make it mandatory
3046 * to always lock pages in ascending order to avoid deadlocks with
3047 * concurrent tasks (such as starting writeback/delalloc).
3049 if (src
== dst
&& dst_loff
< loff
) {
3050 swap(src_pgarr
, dst_pgarr
);
3051 swap(loff
, dst_loff
);
3054 ret
= gather_extent_pages(src
, src_pgarr
, cmp
->num_pages
, loff
);
3058 ret
= gather_extent_pages(dst
, dst_pgarr
, cmp
->num_pages
, dst_loff
);
3062 btrfs_cmp_data_free(cmp
);
3066 static int btrfs_cmp_data(u64 len
, struct cmp_pages
*cmp
)
3070 struct page
*src_page
, *dst_page
;
3071 unsigned int cmp_len
= PAGE_SIZE
;
3072 void *addr
, *dst_addr
;
3076 if (len
< PAGE_SIZE
)
3079 BUG_ON(i
>= cmp
->num_pages
);
3081 src_page
= cmp
->src_pages
[i
];
3082 dst_page
= cmp
->dst_pages
[i
];
3083 ASSERT(PageLocked(src_page
));
3084 ASSERT(PageLocked(dst_page
));
3086 addr
= kmap_atomic(src_page
);
3087 dst_addr
= kmap_atomic(dst_page
);
3089 flush_dcache_page(src_page
);
3090 flush_dcache_page(dst_page
);
3092 if (memcmp(addr
, dst_addr
, cmp_len
))
3095 kunmap_atomic(addr
);
3096 kunmap_atomic(dst_addr
);
3108 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
3112 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
3114 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
3117 /* if we extend to eof, continue to block boundary */
3118 if (off
+ len
== inode
->i_size
)
3119 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
3121 /* Check that we are block aligned - btrfs_clone() requires this */
3122 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
3128 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3129 struct inode
*dst
, u64 dst_loff
)
3133 struct cmp_pages cmp
;
3134 bool same_inode
= (src
== dst
);
3135 u64 same_lock_start
= 0;
3136 u64 same_lock_len
= 0;
3144 btrfs_double_inode_lock(src
, dst
);
3146 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3150 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3156 * Single inode case wants the same checks, except we
3157 * don't want our length pushed out past i_size as
3158 * comparing that data range makes no sense.
3160 * extent_same_check_offsets() will do this for an
3161 * unaligned length at i_size, so catch it here and
3162 * reject the request.
3164 * This effectively means we require aligned extents
3165 * for the single-inode case, whereas the other cases
3166 * allow an unaligned length so long as it ends at
3174 /* Check for overlapping ranges */
3175 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3180 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3181 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3184 /* don't make the dst file partly checksummed */
3185 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3186 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3192 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3197 ret
= lock_extent_range(src
, same_lock_start
, same_lock_len
,
3200 ret
= btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
,
3203 * If one of the inodes has dirty pages in the respective range or
3204 * ordered extents, we need to flush dellaloc and wait for all ordered
3205 * extents in the range. We must unlock the pages and the ranges in the
3206 * io trees to avoid deadlocks when flushing delalloc (requires locking
3207 * pages) and when waiting for ordered extents to complete (they require
3210 if (ret
== -EAGAIN
) {
3212 * Ranges in the io trees already unlocked. Now unlock all
3213 * pages before waiting for all IO to complete.
3215 btrfs_cmp_data_free(&cmp
);
3217 btrfs_wait_ordered_range(src
, same_lock_start
,
3220 btrfs_wait_ordered_range(src
, loff
, len
);
3221 btrfs_wait_ordered_range(dst
, dst_loff
, len
);
3227 /* ranges in the io trees already unlocked */
3228 btrfs_cmp_data_free(&cmp
);
3232 /* pass original length for comparison so we stay within i_size */
3233 ret
= btrfs_cmp_data(olen
, &cmp
);
3235 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3238 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3239 same_lock_start
+ same_lock_len
- 1);
3241 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3243 btrfs_cmp_data_free(&cmp
);
3248 btrfs_double_inode_unlock(src
, dst
);
3253 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3255 ssize_t
btrfs_dedupe_file_range(struct file
*src_file
, u64 loff
, u64 olen
,
3256 struct file
*dst_file
, u64 dst_loff
)
3258 struct inode
*src
= file_inode(src_file
);
3259 struct inode
*dst
= file_inode(dst_file
);
3260 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3263 if (olen
> BTRFS_MAX_DEDUPE_LEN
)
3264 olen
= BTRFS_MAX_DEDUPE_LEN
;
3266 if (WARN_ON_ONCE(bs
< PAGE_SIZE
)) {
3268 * Btrfs does not support blocksize < page_size. As a
3269 * result, btrfs_cmp_data() won't correctly handle
3270 * this situation without an update.
3275 res
= btrfs_extent_same(src
, loff
, olen
, dst
, dst_loff
);
3281 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3282 struct inode
*inode
,
3288 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3291 inode_inc_iversion(inode
);
3292 if (!no_time_update
)
3293 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
3295 * We round up to the block size at eof when determining which
3296 * extents to clone above, but shouldn't round up the file size.
3298 if (endoff
> destoff
+ olen
)
3299 endoff
= destoff
+ olen
;
3300 if (endoff
> inode
->i_size
)
3301 btrfs_i_size_write(BTRFS_I(inode
), endoff
);
3303 ret
= btrfs_update_inode(trans
, root
, inode
);
3305 btrfs_abort_transaction(trans
, ret
);
3306 btrfs_end_transaction(trans
);
3309 ret
= btrfs_end_transaction(trans
);
3314 static void clone_update_extent_map(struct btrfs_inode
*inode
,
3315 const struct btrfs_trans_handle
*trans
,
3316 const struct btrfs_path
*path
,
3317 const u64 hole_offset
,
3320 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
3321 struct extent_map
*em
;
3324 em
= alloc_extent_map();
3326 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3331 struct btrfs_file_extent_item
*fi
;
3333 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3334 struct btrfs_file_extent_item
);
3335 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3336 em
->generation
= -1;
3337 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3338 BTRFS_FILE_EXTENT_INLINE
)
3339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3340 &inode
->runtime_flags
);
3342 em
->start
= hole_offset
;
3344 em
->ram_bytes
= em
->len
;
3345 em
->orig_start
= hole_offset
;
3346 em
->block_start
= EXTENT_MAP_HOLE
;
3348 em
->orig_block_len
= 0;
3349 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3350 em
->generation
= trans
->transid
;
3354 write_lock(&em_tree
->lock
);
3355 ret
= add_extent_mapping(em_tree
, em
, 1);
3356 write_unlock(&em_tree
->lock
);
3357 if (ret
!= -EEXIST
) {
3358 free_extent_map(em
);
3361 btrfs_drop_extent_cache(inode
, em
->start
,
3362 em
->start
+ em
->len
- 1, 0);
3366 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3370 * Make sure we do not end up inserting an inline extent into a file that has
3371 * already other (non-inline) extents. If a file has an inline extent it can
3372 * not have any other extents and the (single) inline extent must start at the
3373 * file offset 0. Failing to respect these rules will lead to file corruption,
3374 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3376 * We can have extents that have been already written to disk or we can have
3377 * dirty ranges still in delalloc, in which case the extent maps and items are
3378 * created only when we run delalloc, and the delalloc ranges might fall outside
3379 * the range we are currently locking in the inode's io tree. So we check the
3380 * inode's i_size because of that (i_size updates are done while holding the
3381 * i_mutex, which we are holding here).
3382 * We also check to see if the inode has a size not greater than "datal" but has
3383 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3384 * protected against such concurrent fallocate calls by the i_mutex).
3386 * If the file has no extents but a size greater than datal, do not allow the
3387 * copy because we would need turn the inline extent into a non-inline one (even
3388 * with NO_HOLES enabled). If we find our destination inode only has one inline
3389 * extent, just overwrite it with the source inline extent if its size is less
3390 * than the source extent's size, or we could copy the source inline extent's
3391 * data into the destination inode's inline extent if the later is greater then
3394 static int clone_copy_inline_extent(struct inode
*dst
,
3395 struct btrfs_trans_handle
*trans
,
3396 struct btrfs_path
*path
,
3397 struct btrfs_key
*new_key
,
3398 const u64 drop_start
,
3404 struct btrfs_fs_info
*fs_info
= btrfs_sb(dst
->i_sb
);
3405 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3406 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3407 fs_info
->sectorsize
);
3409 struct btrfs_key key
;
3411 if (new_key
->offset
> 0)
3414 key
.objectid
= btrfs_ino(BTRFS_I(dst
));
3415 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3417 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3420 } else if (ret
> 0) {
3421 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3422 ret
= btrfs_next_leaf(root
, path
);
3426 goto copy_inline_extent
;
3428 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3429 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3430 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3431 ASSERT(key
.offset
> 0);
3434 } else if (i_size_read(dst
) <= datal
) {
3435 struct btrfs_file_extent_item
*ei
;
3439 * If the file size is <= datal, make sure there are no other
3440 * extents following (can happen do to an fallocate call with
3441 * the flag FALLOC_FL_KEEP_SIZE).
3443 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3444 struct btrfs_file_extent_item
);
3446 * If it's an inline extent, it can not have other extents
3449 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3450 BTRFS_FILE_EXTENT_INLINE
)
3451 goto copy_inline_extent
;
3453 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3454 if (ext_len
> aligned_end
)
3457 ret
= btrfs_next_item(root
, path
);
3460 } else if (ret
== 0) {
3461 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3463 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3464 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3471 * We have no extent items, or we have an extent at offset 0 which may
3472 * or may not be inlined. All these cases are dealt the same way.
3474 if (i_size_read(dst
) > datal
) {
3476 * If the destination inode has an inline extent...
3477 * This would require copying the data from the source inline
3478 * extent into the beginning of the destination's inline extent.
3479 * But this is really complex, both extents can be compressed
3480 * or just one of them, which would require decompressing and
3481 * re-compressing data (which could increase the new compressed
3482 * size, not allowing the compressed data to fit anymore in an
3484 * So just don't support this case for now (it should be rare,
3485 * we are not really saving space when cloning inline extents).
3490 btrfs_release_path(path
);
3491 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3494 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3499 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3501 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3504 write_extent_buffer(path
->nodes
[0], inline_data
,
3505 btrfs_item_ptr_offset(path
->nodes
[0],
3508 inode_add_bytes(dst
, datal
);
3514 * btrfs_clone() - clone a range from inode file to another
3516 * @src: Inode to clone from
3517 * @inode: Inode to clone to
3518 * @off: Offset within source to start clone from
3519 * @olen: Original length, passed by user, of range to clone
3520 * @olen_aligned: Block-aligned value of olen
3521 * @destoff: Offset within @inode to start clone
3522 * @no_time_update: Whether to update mtime/ctime on the target inode
3524 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3525 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3526 const u64 destoff
, int no_time_update
)
3528 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3529 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3530 struct btrfs_path
*path
= NULL
;
3531 struct extent_buffer
*leaf
;
3532 struct btrfs_trans_handle
*trans
;
3534 struct btrfs_key key
;
3538 const u64 len
= olen_aligned
;
3539 u64 last_dest_end
= destoff
;
3542 buf
= kmalloc(fs_info
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
3544 buf
= vmalloc(fs_info
->nodesize
);
3549 path
= btrfs_alloc_path();
3555 path
->reada
= READA_FORWARD
;
3557 key
.objectid
= btrfs_ino(BTRFS_I(src
));
3558 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3562 u64 next_key_min_offset
= key
.offset
+ 1;
3565 * note the key will change type as we walk through the
3568 path
->leave_spinning
= 1;
3569 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3574 * First search, if no extent item that starts at offset off was
3575 * found but the previous item is an extent item, it's possible
3576 * it might overlap our target range, therefore process it.
3578 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3579 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3580 path
->slots
[0] - 1);
3581 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3585 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3587 if (path
->slots
[0] >= nritems
) {
3588 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3593 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3595 leaf
= path
->nodes
[0];
3596 slot
= path
->slots
[0];
3598 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3599 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3600 key
.objectid
!= btrfs_ino(BTRFS_I(src
)))
3603 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3604 struct btrfs_file_extent_item
*extent
;
3607 struct btrfs_key new_key
;
3608 u64 disko
= 0, diskl
= 0;
3609 u64 datao
= 0, datal
= 0;
3613 extent
= btrfs_item_ptr(leaf
, slot
,
3614 struct btrfs_file_extent_item
);
3615 comp
= btrfs_file_extent_compression(leaf
, extent
);
3616 type
= btrfs_file_extent_type(leaf
, extent
);
3617 if (type
== BTRFS_FILE_EXTENT_REG
||
3618 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3619 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3621 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3623 datao
= btrfs_file_extent_offset(leaf
, extent
);
3624 datal
= btrfs_file_extent_num_bytes(leaf
,
3626 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3627 /* take upper bound, may be compressed */
3628 datal
= btrfs_file_extent_ram_bytes(leaf
,
3633 * The first search might have left us at an extent
3634 * item that ends before our target range's start, can
3635 * happen if we have holes and NO_HOLES feature enabled.
3637 if (key
.offset
+ datal
<= off
) {
3640 } else if (key
.offset
>= off
+ len
) {
3643 next_key_min_offset
= key
.offset
+ datal
;
3644 size
= btrfs_item_size_nr(leaf
, slot
);
3645 read_extent_buffer(leaf
, buf
,
3646 btrfs_item_ptr_offset(leaf
, slot
),
3649 btrfs_release_path(path
);
3650 path
->leave_spinning
= 0;
3652 memcpy(&new_key
, &key
, sizeof(new_key
));
3653 new_key
.objectid
= btrfs_ino(BTRFS_I(inode
));
3654 if (off
<= key
.offset
)
3655 new_key
.offset
= key
.offset
+ destoff
- off
;
3657 new_key
.offset
= destoff
;
3660 * Deal with a hole that doesn't have an extent item
3661 * that represents it (NO_HOLES feature enabled).
3662 * This hole is either in the middle of the cloning
3663 * range or at the beginning (fully overlaps it or
3664 * partially overlaps it).
3666 if (new_key
.offset
!= last_dest_end
)
3667 drop_start
= last_dest_end
;
3669 drop_start
= new_key
.offset
;
3672 * 1 - adjusting old extent (we may have to split it)
3673 * 1 - add new extent
3676 trans
= btrfs_start_transaction(root
, 3);
3677 if (IS_ERR(trans
)) {
3678 ret
= PTR_ERR(trans
);
3682 if (type
== BTRFS_FILE_EXTENT_REG
||
3683 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3685 * a | --- range to clone ---| b
3686 * | ------------- extent ------------- |
3689 /* subtract range b */
3690 if (key
.offset
+ datal
> off
+ len
)
3691 datal
= off
+ len
- key
.offset
;
3693 /* subtract range a */
3694 if (off
> key
.offset
) {
3695 datao
+= off
- key
.offset
;
3696 datal
-= off
- key
.offset
;
3699 ret
= btrfs_drop_extents(trans
, root
, inode
,
3701 new_key
.offset
+ datal
,
3704 if (ret
!= -EOPNOTSUPP
)
3705 btrfs_abort_transaction(trans
,
3707 btrfs_end_transaction(trans
);
3711 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3714 btrfs_abort_transaction(trans
, ret
);
3715 btrfs_end_transaction(trans
);
3719 leaf
= path
->nodes
[0];
3720 slot
= path
->slots
[0];
3721 write_extent_buffer(leaf
, buf
,
3722 btrfs_item_ptr_offset(leaf
, slot
),
3725 extent
= btrfs_item_ptr(leaf
, slot
,
3726 struct btrfs_file_extent_item
);
3728 /* disko == 0 means it's a hole */
3732 btrfs_set_file_extent_offset(leaf
, extent
,
3734 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3738 inode_add_bytes(inode
, datal
);
3739 ret
= btrfs_inc_extent_ref(trans
,
3742 root
->root_key
.objectid
,
3743 btrfs_ino(BTRFS_I(inode
)),
3744 new_key
.offset
- datao
);
3746 btrfs_abort_transaction(trans
,
3748 btrfs_end_transaction(trans
);
3753 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3757 if (off
> key
.offset
) {
3758 skip
= off
- key
.offset
;
3759 new_key
.offset
+= skip
;
3762 if (key
.offset
+ datal
> off
+ len
)
3763 trim
= key
.offset
+ datal
- (off
+ len
);
3765 if (comp
&& (skip
|| trim
)) {
3767 btrfs_end_transaction(trans
);
3770 size
-= skip
+ trim
;
3771 datal
-= skip
+ trim
;
3773 ret
= clone_copy_inline_extent(inode
,
3780 if (ret
!= -EOPNOTSUPP
)
3781 btrfs_abort_transaction(trans
,
3783 btrfs_end_transaction(trans
);
3786 leaf
= path
->nodes
[0];
3787 slot
= path
->slots
[0];
3790 /* If we have an implicit hole (NO_HOLES feature). */
3791 if (drop_start
< new_key
.offset
)
3792 clone_update_extent_map(BTRFS_I(inode
), trans
,
3794 new_key
.offset
- drop_start
);
3796 clone_update_extent_map(BTRFS_I(inode
), trans
,
3799 btrfs_mark_buffer_dirty(leaf
);
3800 btrfs_release_path(path
);
3802 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3803 fs_info
->sectorsize
);
3804 ret
= clone_finish_inode_update(trans
, inode
,
3810 if (new_key
.offset
+ datal
>= destoff
+ len
)
3813 btrfs_release_path(path
);
3814 key
.offset
= next_key_min_offset
;
3816 if (fatal_signal_pending(current
)) {
3823 if (last_dest_end
< destoff
+ len
) {
3825 * We have an implicit hole (NO_HOLES feature is enabled) that
3826 * fully or partially overlaps our cloning range at its end.
3828 btrfs_release_path(path
);
3831 * 1 - remove extent(s)
3834 trans
= btrfs_start_transaction(root
, 2);
3835 if (IS_ERR(trans
)) {
3836 ret
= PTR_ERR(trans
);
3839 ret
= btrfs_drop_extents(trans
, root
, inode
,
3840 last_dest_end
, destoff
+ len
, 1);
3842 if (ret
!= -EOPNOTSUPP
)
3843 btrfs_abort_transaction(trans
, ret
);
3844 btrfs_end_transaction(trans
);
3847 clone_update_extent_map(BTRFS_I(inode
), trans
, NULL
,
3849 destoff
+ len
- last_dest_end
);
3850 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3851 destoff
, olen
, no_time_update
);
3855 btrfs_free_path(path
);
3860 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3861 u64 off
, u64 olen
, u64 destoff
)
3863 struct inode
*inode
= file_inode(file
);
3864 struct inode
*src
= file_inode(file_src
);
3865 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3866 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3869 u64 bs
= fs_info
->sb
->s_blocksize
;
3870 int same_inode
= src
== inode
;
3874 * - split compressed inline extents. annoying: we need to
3875 * decompress into destination's address_space (the file offset
3876 * may change, so source mapping won't do), then recompress (or
3877 * otherwise reinsert) a subrange.
3879 * - split destination inode's inline extents. The inline extents can
3880 * be either compressed or non-compressed.
3883 if (btrfs_root_readonly(root
))
3886 if (file_src
->f_path
.mnt
!= file
->f_path
.mnt
||
3887 src
->i_sb
!= inode
->i_sb
)
3890 /* don't make the dst file partly checksummed */
3891 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3892 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3895 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3899 btrfs_double_inode_lock(src
, inode
);
3904 /* determine range to clone */
3906 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3909 olen
= len
= src
->i_size
- off
;
3910 /* if we extend to eof, continue to block boundary */
3911 if (off
+ len
== src
->i_size
)
3912 len
= ALIGN(src
->i_size
, bs
) - off
;
3919 /* verify the end result is block aligned */
3920 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3921 !IS_ALIGNED(destoff
, bs
))
3924 /* verify if ranges are overlapped within the same file */
3926 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3930 if (destoff
> inode
->i_size
) {
3931 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3937 * Lock the target range too. Right after we replace the file extent
3938 * items in the fs tree (which now point to the cloned data), we might
3939 * have a worker replace them with extent items relative to a write
3940 * operation that was issued before this clone operation (i.e. confront
3941 * with inode.c:btrfs_finish_ordered_io).
3944 u64 lock_start
= min_t(u64
, off
, destoff
);
3945 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3947 ret
= lock_extent_range(src
, lock_start
, lock_len
, true);
3949 ret
= btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
,
3954 /* ranges in the io trees already unlocked */
3958 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3961 u64 lock_start
= min_t(u64
, off
, destoff
);
3962 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3964 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3966 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3969 * Truncate page cache pages so that future reads will see the cloned
3970 * data immediately and not the previous data.
3972 truncate_inode_pages_range(&inode
->i_data
,
3973 round_down(destoff
, PAGE_SIZE
),
3974 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3977 btrfs_double_inode_unlock(src
, inode
);
3983 int btrfs_clone_file_range(struct file
*src_file
, loff_t off
,
3984 struct file
*dst_file
, loff_t destoff
, u64 len
)
3986 return btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
3990 * there are many ways the trans_start and trans_end ioctls can lead
3991 * to deadlocks. They should only be used by applications that
3992 * basically own the machine, and have a very in depth understanding
3993 * of all the possible deadlocks and enospc problems.
3995 static long btrfs_ioctl_trans_start(struct file
*file
)
3997 struct inode
*inode
= file_inode(file
);
3998 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3999 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4000 struct btrfs_trans_handle
*trans
;
4004 if (!capable(CAP_SYS_ADMIN
))
4008 if (file
->private_data
)
4012 if (btrfs_root_readonly(root
))
4015 ret
= mnt_want_write_file(file
);
4019 atomic_inc(&fs_info
->open_ioctl_trans
);
4022 trans
= btrfs_start_ioctl_transaction(root
);
4026 file
->private_data
= trans
;
4030 atomic_dec(&fs_info
->open_ioctl_trans
);
4031 mnt_drop_write_file(file
);
4036 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4038 struct inode
*inode
= file_inode(file
);
4039 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4040 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4041 struct btrfs_root
*new_root
;
4042 struct btrfs_dir_item
*di
;
4043 struct btrfs_trans_handle
*trans
;
4044 struct btrfs_path
*path
;
4045 struct btrfs_key location
;
4046 struct btrfs_disk_key disk_key
;
4051 if (!capable(CAP_SYS_ADMIN
))
4054 ret
= mnt_want_write_file(file
);
4058 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4064 objectid
= BTRFS_FS_TREE_OBJECTID
;
4066 location
.objectid
= objectid
;
4067 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4068 location
.offset
= (u64
)-1;
4070 new_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
4071 if (IS_ERR(new_root
)) {
4072 ret
= PTR_ERR(new_root
);
4076 path
= btrfs_alloc_path();
4081 path
->leave_spinning
= 1;
4083 trans
= btrfs_start_transaction(root
, 1);
4084 if (IS_ERR(trans
)) {
4085 btrfs_free_path(path
);
4086 ret
= PTR_ERR(trans
);
4090 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4091 di
= btrfs_lookup_dir_item(trans
, fs_info
->tree_root
, path
,
4092 dir_id
, "default", 7, 1);
4093 if (IS_ERR_OR_NULL(di
)) {
4094 btrfs_free_path(path
);
4095 btrfs_end_transaction(trans
);
4097 "Umm, you don't have the default diritem, this isn't going to work");
4102 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4103 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4104 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4105 btrfs_free_path(path
);
4107 btrfs_set_fs_incompat(fs_info
, DEFAULT_SUBVOL
);
4108 btrfs_end_transaction(trans
);
4110 mnt_drop_write_file(file
);
4114 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4115 struct btrfs_ioctl_space_info
*space
)
4117 struct btrfs_block_group_cache
*block_group
;
4119 space
->total_bytes
= 0;
4120 space
->used_bytes
= 0;
4122 list_for_each_entry(block_group
, groups_list
, list
) {
4123 space
->flags
= block_group
->flags
;
4124 space
->total_bytes
+= block_group
->key
.offset
;
4125 space
->used_bytes
+=
4126 btrfs_block_group_used(&block_group
->item
);
4130 static long btrfs_ioctl_space_info(struct btrfs_fs_info
*fs_info
,
4133 struct btrfs_ioctl_space_args space_args
;
4134 struct btrfs_ioctl_space_info space
;
4135 struct btrfs_ioctl_space_info
*dest
;
4136 struct btrfs_ioctl_space_info
*dest_orig
;
4137 struct btrfs_ioctl_space_info __user
*user_dest
;
4138 struct btrfs_space_info
*info
;
4139 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
4140 BTRFS_BLOCK_GROUP_SYSTEM
,
4141 BTRFS_BLOCK_GROUP_METADATA
,
4142 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
4149 if (copy_from_user(&space_args
,
4150 (struct btrfs_ioctl_space_args __user
*)arg
,
4151 sizeof(space_args
)))
4154 for (i
= 0; i
< num_types
; i
++) {
4155 struct btrfs_space_info
*tmp
;
4159 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4161 if (tmp
->flags
== types
[i
]) {
4171 down_read(&info
->groups_sem
);
4172 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4173 if (!list_empty(&info
->block_groups
[c
]))
4176 up_read(&info
->groups_sem
);
4180 * Global block reserve, exported as a space_info
4184 /* space_slots == 0 means they are asking for a count */
4185 if (space_args
.space_slots
== 0) {
4186 space_args
.total_spaces
= slot_count
;
4190 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4192 alloc_size
= sizeof(*dest
) * slot_count
;
4194 /* we generally have at most 6 or so space infos, one for each raid
4195 * level. So, a whole page should be more than enough for everyone
4197 if (alloc_size
> PAGE_SIZE
)
4200 space_args
.total_spaces
= 0;
4201 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4206 /* now we have a buffer to copy into */
4207 for (i
= 0; i
< num_types
; i
++) {
4208 struct btrfs_space_info
*tmp
;
4215 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4217 if (tmp
->flags
== types
[i
]) {
4226 down_read(&info
->groups_sem
);
4227 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4228 if (!list_empty(&info
->block_groups
[c
])) {
4229 btrfs_get_block_group_info(
4230 &info
->block_groups
[c
], &space
);
4231 memcpy(dest
, &space
, sizeof(space
));
4233 space_args
.total_spaces
++;
4239 up_read(&info
->groups_sem
);
4243 * Add global block reserve
4246 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4248 spin_lock(&block_rsv
->lock
);
4249 space
.total_bytes
= block_rsv
->size
;
4250 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4251 spin_unlock(&block_rsv
->lock
);
4252 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4253 memcpy(dest
, &space
, sizeof(space
));
4254 space_args
.total_spaces
++;
4257 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4258 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4260 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4265 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4272 * there are many ways the trans_start and trans_end ioctls can lead
4273 * to deadlocks. They should only be used by applications that
4274 * basically own the machine, and have a very in depth understanding
4275 * of all the possible deadlocks and enospc problems.
4277 long btrfs_ioctl_trans_end(struct file
*file
)
4279 struct inode
*inode
= file_inode(file
);
4280 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4281 struct btrfs_trans_handle
*trans
;
4283 trans
= file
->private_data
;
4286 file
->private_data
= NULL
;
4288 btrfs_end_transaction(trans
);
4290 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4292 mnt_drop_write_file(file
);
4296 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4299 struct btrfs_trans_handle
*trans
;
4303 trans
= btrfs_attach_transaction_barrier(root
);
4304 if (IS_ERR(trans
)) {
4305 if (PTR_ERR(trans
) != -ENOENT
)
4306 return PTR_ERR(trans
);
4308 /* No running transaction, don't bother */
4309 transid
= root
->fs_info
->last_trans_committed
;
4312 transid
= trans
->transid
;
4313 ret
= btrfs_commit_transaction_async(trans
, 0);
4315 btrfs_end_transaction(trans
);
4320 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4325 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_fs_info
*fs_info
,
4331 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4334 transid
= 0; /* current trans */
4336 return btrfs_wait_for_commit(fs_info
, transid
);
4339 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4341 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
4342 struct btrfs_ioctl_scrub_args
*sa
;
4345 if (!capable(CAP_SYS_ADMIN
))
4348 sa
= memdup_user(arg
, sizeof(*sa
));
4352 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4353 ret
= mnt_want_write_file(file
);
4358 ret
= btrfs_scrub_dev(fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4359 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4362 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4365 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4366 mnt_drop_write_file(file
);
4372 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4374 if (!capable(CAP_SYS_ADMIN
))
4377 return btrfs_scrub_cancel(fs_info
);
4380 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info
*fs_info
,
4383 struct btrfs_ioctl_scrub_args
*sa
;
4386 if (!capable(CAP_SYS_ADMIN
))
4389 sa
= memdup_user(arg
, sizeof(*sa
));
4393 ret
= btrfs_scrub_progress(fs_info
, sa
->devid
, &sa
->progress
);
4395 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4402 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info
*fs_info
,
4405 struct btrfs_ioctl_get_dev_stats
*sa
;
4408 sa
= memdup_user(arg
, sizeof(*sa
));
4412 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4417 ret
= btrfs_get_dev_stats(fs_info
, sa
);
4419 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4426 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info
*fs_info
,
4429 struct btrfs_ioctl_dev_replace_args
*p
;
4432 if (!capable(CAP_SYS_ADMIN
))
4435 p
= memdup_user(arg
, sizeof(*p
));
4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4441 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
4446 &fs_info
->mutually_exclusive_operation_running
, 1)) {
4447 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4449 ret
= btrfs_dev_replace_by_ioctl(fs_info
, p
);
4451 &fs_info
->mutually_exclusive_operation_running
, 0);
4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4455 btrfs_dev_replace_status(fs_info
, p
);
4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4459 ret
= btrfs_dev_replace_cancel(fs_info
, p
);
4466 if (copy_to_user(arg
, p
, sizeof(*p
)))
4473 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4479 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4480 struct inode_fs_paths
*ipath
= NULL
;
4481 struct btrfs_path
*path
;
4483 if (!capable(CAP_DAC_READ_SEARCH
))
4486 path
= btrfs_alloc_path();
4492 ipa
= memdup_user(arg
, sizeof(*ipa
));
4499 size
= min_t(u32
, ipa
->size
, 4096);
4500 ipath
= init_ipath(size
, root
, path
);
4501 if (IS_ERR(ipath
)) {
4502 ret
= PTR_ERR(ipath
);
4507 ret
= paths_from_inode(ipa
->inum
, ipath
);
4511 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4512 rel_ptr
= ipath
->fspath
->val
[i
] -
4513 (u64
)(unsigned long)ipath
->fspath
->val
;
4514 ipath
->fspath
->val
[i
] = rel_ptr
;
4517 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
4518 (void *)(unsigned long)ipath
->fspath
, size
);
4525 btrfs_free_path(path
);
4532 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4534 struct btrfs_data_container
*inodes
= ctx
;
4535 const size_t c
= 3 * sizeof(u64
);
4537 if (inodes
->bytes_left
>= c
) {
4538 inodes
->bytes_left
-= c
;
4539 inodes
->val
[inodes
->elem_cnt
] = inum
;
4540 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4541 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4542 inodes
->elem_cnt
+= 3;
4544 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4545 inodes
->bytes_left
= 0;
4546 inodes
->elem_missed
+= 3;
4552 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info
*fs_info
,
4557 struct btrfs_ioctl_logical_ino_args
*loi
;
4558 struct btrfs_data_container
*inodes
= NULL
;
4559 struct btrfs_path
*path
= NULL
;
4561 if (!capable(CAP_SYS_ADMIN
))
4564 loi
= memdup_user(arg
, sizeof(*loi
));
4566 return PTR_ERR(loi
);
4568 path
= btrfs_alloc_path();
4574 size
= min_t(u32
, loi
->size
, SZ_64K
);
4575 inodes
= init_data_container(size
);
4576 if (IS_ERR(inodes
)) {
4577 ret
= PTR_ERR(inodes
);
4582 ret
= iterate_inodes_from_logical(loi
->logical
, fs_info
, path
,
4583 build_ino_list
, inodes
);
4589 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
4590 (void *)(unsigned long)inodes
, size
);
4595 btrfs_free_path(path
);
4602 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4603 struct btrfs_ioctl_balance_args
*bargs
)
4605 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4607 bargs
->flags
= bctl
->flags
;
4609 if (atomic_read(&fs_info
->balance_running
))
4610 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4611 if (atomic_read(&fs_info
->balance_pause_req
))
4612 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4613 if (atomic_read(&fs_info
->balance_cancel_req
))
4614 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4616 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4617 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4618 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4621 spin_lock(&fs_info
->balance_lock
);
4622 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4623 spin_unlock(&fs_info
->balance_lock
);
4625 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4629 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4631 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4632 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4633 struct btrfs_ioctl_balance_args
*bargs
;
4634 struct btrfs_balance_control
*bctl
;
4635 bool need_unlock
; /* for mut. excl. ops lock */
4638 if (!capable(CAP_SYS_ADMIN
))
4641 ret
= mnt_want_write_file(file
);
4646 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
4647 mutex_lock(&fs_info
->volume_mutex
);
4648 mutex_lock(&fs_info
->balance_mutex
);
4654 * mut. excl. ops lock is locked. Three possibilities:
4655 * (1) some other op is running
4656 * (2) balance is running
4657 * (3) balance is paused -- special case (think resume)
4659 mutex_lock(&fs_info
->balance_mutex
);
4660 if (fs_info
->balance_ctl
) {
4661 /* this is either (2) or (3) */
4662 if (!atomic_read(&fs_info
->balance_running
)) {
4663 mutex_unlock(&fs_info
->balance_mutex
);
4664 if (!mutex_trylock(&fs_info
->volume_mutex
))
4666 mutex_lock(&fs_info
->balance_mutex
);
4668 if (fs_info
->balance_ctl
&&
4669 !atomic_read(&fs_info
->balance_running
)) {
4671 need_unlock
= false;
4675 mutex_unlock(&fs_info
->balance_mutex
);
4676 mutex_unlock(&fs_info
->volume_mutex
);
4680 mutex_unlock(&fs_info
->balance_mutex
);
4686 mutex_unlock(&fs_info
->balance_mutex
);
4687 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4692 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
4695 bargs
= memdup_user(arg
, sizeof(*bargs
));
4696 if (IS_ERR(bargs
)) {
4697 ret
= PTR_ERR(bargs
);
4701 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4702 if (!fs_info
->balance_ctl
) {
4707 bctl
= fs_info
->balance_ctl
;
4708 spin_lock(&fs_info
->balance_lock
);
4709 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4710 spin_unlock(&fs_info
->balance_lock
);
4718 if (fs_info
->balance_ctl
) {
4723 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4729 bctl
->fs_info
= fs_info
;
4731 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4732 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4733 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4735 bctl
->flags
= bargs
->flags
;
4737 /* balance everything - no filters */
4738 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4741 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4748 * Ownership of bctl and mutually_exclusive_operation_running
4749 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4750 * or, if restriper was paused all the way until unmount, in
4751 * free_fs_info. mutually_exclusive_operation_running is
4752 * cleared in __cancel_balance.
4754 need_unlock
= false;
4756 ret
= btrfs_balance(bctl
, bargs
);
4760 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4769 mutex_unlock(&fs_info
->balance_mutex
);
4770 mutex_unlock(&fs_info
->volume_mutex
);
4772 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
4774 mnt_drop_write_file(file
);
4778 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info
*fs_info
, int cmd
)
4780 if (!capable(CAP_SYS_ADMIN
))
4784 case BTRFS_BALANCE_CTL_PAUSE
:
4785 return btrfs_pause_balance(fs_info
);
4786 case BTRFS_BALANCE_CTL_CANCEL
:
4787 return btrfs_cancel_balance(fs_info
);
4793 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info
*fs_info
,
4796 struct btrfs_ioctl_balance_args
*bargs
;
4799 if (!capable(CAP_SYS_ADMIN
))
4802 mutex_lock(&fs_info
->balance_mutex
);
4803 if (!fs_info
->balance_ctl
) {
4808 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4814 update_ioctl_balance_args(fs_info
, 1, bargs
);
4816 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4821 mutex_unlock(&fs_info
->balance_mutex
);
4825 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4827 struct inode
*inode
= file_inode(file
);
4828 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4829 struct btrfs_ioctl_quota_ctl_args
*sa
;
4830 struct btrfs_trans_handle
*trans
= NULL
;
4834 if (!capable(CAP_SYS_ADMIN
))
4837 ret
= mnt_want_write_file(file
);
4841 sa
= memdup_user(arg
, sizeof(*sa
));
4847 down_write(&fs_info
->subvol_sem
);
4848 trans
= btrfs_start_transaction(fs_info
->tree_root
, 2);
4849 if (IS_ERR(trans
)) {
4850 ret
= PTR_ERR(trans
);
4855 case BTRFS_QUOTA_CTL_ENABLE
:
4856 ret
= btrfs_quota_enable(trans
, fs_info
);
4858 case BTRFS_QUOTA_CTL_DISABLE
:
4859 ret
= btrfs_quota_disable(trans
, fs_info
);
4866 err
= btrfs_commit_transaction(trans
);
4871 up_write(&fs_info
->subvol_sem
);
4873 mnt_drop_write_file(file
);
4877 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4879 struct inode
*inode
= file_inode(file
);
4880 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4881 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4882 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4883 struct btrfs_trans_handle
*trans
;
4887 if (!capable(CAP_SYS_ADMIN
))
4890 ret
= mnt_want_write_file(file
);
4894 sa
= memdup_user(arg
, sizeof(*sa
));
4900 trans
= btrfs_join_transaction(root
);
4901 if (IS_ERR(trans
)) {
4902 ret
= PTR_ERR(trans
);
4906 /* FIXME: check if the IDs really exist */
4908 ret
= btrfs_add_qgroup_relation(trans
, fs_info
,
4911 ret
= btrfs_del_qgroup_relation(trans
, fs_info
,
4915 /* update qgroup status and info */
4916 err
= btrfs_run_qgroups(trans
, fs_info
);
4918 btrfs_handle_fs_error(fs_info
, err
,
4919 "failed to update qgroup status and info");
4920 err
= btrfs_end_transaction(trans
);
4927 mnt_drop_write_file(file
);
4931 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4933 struct inode
*inode
= file_inode(file
);
4934 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4935 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4936 struct btrfs_ioctl_qgroup_create_args
*sa
;
4937 struct btrfs_trans_handle
*trans
;
4941 if (!capable(CAP_SYS_ADMIN
))
4944 ret
= mnt_want_write_file(file
);
4948 sa
= memdup_user(arg
, sizeof(*sa
));
4954 if (!sa
->qgroupid
) {
4959 trans
= btrfs_join_transaction(root
);
4960 if (IS_ERR(trans
)) {
4961 ret
= PTR_ERR(trans
);
4965 /* FIXME: check if the IDs really exist */
4967 ret
= btrfs_create_qgroup(trans
, fs_info
, sa
->qgroupid
);
4969 ret
= btrfs_remove_qgroup(trans
, fs_info
, sa
->qgroupid
);
4972 err
= btrfs_end_transaction(trans
);
4979 mnt_drop_write_file(file
);
4983 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4985 struct inode
*inode
= file_inode(file
);
4986 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4987 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4988 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4989 struct btrfs_trans_handle
*trans
;
4994 if (!capable(CAP_SYS_ADMIN
))
4997 ret
= mnt_want_write_file(file
);
5001 sa
= memdup_user(arg
, sizeof(*sa
));
5007 trans
= btrfs_join_transaction(root
);
5008 if (IS_ERR(trans
)) {
5009 ret
= PTR_ERR(trans
);
5013 qgroupid
= sa
->qgroupid
;
5015 /* take the current subvol as qgroup */
5016 qgroupid
= root
->root_key
.objectid
;
5019 /* FIXME: check if the IDs really exist */
5020 ret
= btrfs_limit_qgroup(trans
, fs_info
, qgroupid
, &sa
->lim
);
5022 err
= btrfs_end_transaction(trans
);
5029 mnt_drop_write_file(file
);
5033 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5035 struct inode
*inode
= file_inode(file
);
5036 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5037 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5040 if (!capable(CAP_SYS_ADMIN
))
5043 ret
= mnt_want_write_file(file
);
5047 qsa
= memdup_user(arg
, sizeof(*qsa
));
5058 ret
= btrfs_qgroup_rescan(fs_info
);
5063 mnt_drop_write_file(file
);
5067 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5069 struct inode
*inode
= file_inode(file
);
5070 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5071 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5074 if (!capable(CAP_SYS_ADMIN
))
5077 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5081 if (fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5083 qsa
->progress
= fs_info
->qgroup_rescan_progress
.objectid
;
5086 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5093 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5095 struct inode
*inode
= file_inode(file
);
5096 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5098 if (!capable(CAP_SYS_ADMIN
))
5101 return btrfs_qgroup_wait_for_completion(fs_info
, true);
5104 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5105 struct btrfs_ioctl_received_subvol_args
*sa
)
5107 struct inode
*inode
= file_inode(file
);
5108 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5109 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5110 struct btrfs_root_item
*root_item
= &root
->root_item
;
5111 struct btrfs_trans_handle
*trans
;
5112 struct timespec ct
= current_time(inode
);
5114 int received_uuid_changed
;
5116 if (!inode_owner_or_capable(inode
))
5119 ret
= mnt_want_write_file(file
);
5123 down_write(&fs_info
->subvol_sem
);
5125 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
5130 if (btrfs_root_readonly(root
)) {
5137 * 2 - uuid items (received uuid + subvol uuid)
5139 trans
= btrfs_start_transaction(root
, 3);
5140 if (IS_ERR(trans
)) {
5141 ret
= PTR_ERR(trans
);
5146 sa
->rtransid
= trans
->transid
;
5147 sa
->rtime
.sec
= ct
.tv_sec
;
5148 sa
->rtime
.nsec
= ct
.tv_nsec
;
5150 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5152 if (received_uuid_changed
&&
5153 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5154 btrfs_uuid_tree_rem(trans
, fs_info
, root_item
->received_uuid
,
5155 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5156 root
->root_key
.objectid
);
5157 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5158 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5159 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5160 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5161 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5162 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5163 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5165 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
5166 &root
->root_key
, &root
->root_item
);
5168 btrfs_end_transaction(trans
);
5171 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5172 ret
= btrfs_uuid_tree_add(trans
, fs_info
, sa
->uuid
,
5173 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5174 root
->root_key
.objectid
);
5175 if (ret
< 0 && ret
!= -EEXIST
) {
5176 btrfs_abort_transaction(trans
, ret
);
5180 ret
= btrfs_commit_transaction(trans
);
5182 btrfs_abort_transaction(trans
, ret
);
5187 up_write(&fs_info
->subvol_sem
);
5188 mnt_drop_write_file(file
);
5193 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5196 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5197 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5200 args32
= memdup_user(arg
, sizeof(*args32
));
5202 return PTR_ERR(args32
);
5204 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5210 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5211 args64
->stransid
= args32
->stransid
;
5212 args64
->rtransid
= args32
->rtransid
;
5213 args64
->stime
.sec
= args32
->stime
.sec
;
5214 args64
->stime
.nsec
= args32
->stime
.nsec
;
5215 args64
->rtime
.sec
= args32
->rtime
.sec
;
5216 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5217 args64
->flags
= args32
->flags
;
5219 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5223 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5224 args32
->stransid
= args64
->stransid
;
5225 args32
->rtransid
= args64
->rtransid
;
5226 args32
->stime
.sec
= args64
->stime
.sec
;
5227 args32
->stime
.nsec
= args64
->stime
.nsec
;
5228 args32
->rtime
.sec
= args64
->rtime
.sec
;
5229 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5230 args32
->flags
= args64
->flags
;
5232 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5243 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5246 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5249 sa
= memdup_user(arg
, sizeof(*sa
));
5253 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5258 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5267 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5269 struct inode
*inode
= file_inode(file
);
5270 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5273 char label
[BTRFS_LABEL_SIZE
];
5275 spin_lock(&fs_info
->super_lock
);
5276 memcpy(label
, fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5277 spin_unlock(&fs_info
->super_lock
);
5279 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5281 if (len
== BTRFS_LABEL_SIZE
) {
5283 "label is too long, return the first %zu bytes",
5287 ret
= copy_to_user(arg
, label
, len
);
5289 return ret
? -EFAULT
: 0;
5292 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5294 struct inode
*inode
= file_inode(file
);
5295 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5296 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5297 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5298 struct btrfs_trans_handle
*trans
;
5299 char label
[BTRFS_LABEL_SIZE
];
5302 if (!capable(CAP_SYS_ADMIN
))
5305 if (copy_from_user(label
, arg
, sizeof(label
)))
5308 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5310 "unable to set label with more than %d bytes",
5311 BTRFS_LABEL_SIZE
- 1);
5315 ret
= mnt_want_write_file(file
);
5319 trans
= btrfs_start_transaction(root
, 0);
5320 if (IS_ERR(trans
)) {
5321 ret
= PTR_ERR(trans
);
5325 spin_lock(&fs_info
->super_lock
);
5326 strcpy(super_block
->label
, label
);
5327 spin_unlock(&fs_info
->super_lock
);
5328 ret
= btrfs_commit_transaction(trans
);
5331 mnt_drop_write_file(file
);
5335 #define INIT_FEATURE_FLAGS(suffix) \
5336 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5337 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5338 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5340 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5342 static const struct btrfs_ioctl_feature_flags features
[3] = {
5343 INIT_FEATURE_FLAGS(SUPP
),
5344 INIT_FEATURE_FLAGS(SAFE_SET
),
5345 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5348 if (copy_to_user(arg
, &features
, sizeof(features
)))
5354 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5356 struct inode
*inode
= file_inode(file
);
5357 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5358 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5359 struct btrfs_ioctl_feature_flags features
;
5361 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5362 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5363 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5365 if (copy_to_user(arg
, &features
, sizeof(features
)))
5371 static int check_feature_bits(struct btrfs_fs_info
*fs_info
,
5372 enum btrfs_feature_set set
,
5373 u64 change_mask
, u64 flags
, u64 supported_flags
,
5374 u64 safe_set
, u64 safe_clear
)
5376 const char *type
= btrfs_feature_set_names
[set
];
5378 u64 disallowed
, unsupported
;
5379 u64 set_mask
= flags
& change_mask
;
5380 u64 clear_mask
= ~flags
& change_mask
;
5382 unsupported
= set_mask
& ~supported_flags
;
5384 names
= btrfs_printable_features(set
, unsupported
);
5387 "this kernel does not support the %s feature bit%s",
5388 names
, strchr(names
, ',') ? "s" : "");
5392 "this kernel does not support %s bits 0x%llx",
5397 disallowed
= set_mask
& ~safe_set
;
5399 names
= btrfs_printable_features(set
, disallowed
);
5402 "can't set the %s feature bit%s while mounted",
5403 names
, strchr(names
, ',') ? "s" : "");
5407 "can't set %s bits 0x%llx while mounted",
5412 disallowed
= clear_mask
& ~safe_clear
;
5414 names
= btrfs_printable_features(set
, disallowed
);
5417 "can't clear the %s feature bit%s while mounted",
5418 names
, strchr(names
, ',') ? "s" : "");
5422 "can't clear %s bits 0x%llx while mounted",
5430 #define check_feature(fs_info, change_mask, flags, mask_base) \
5431 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5432 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5433 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5434 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5436 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5438 struct inode
*inode
= file_inode(file
);
5439 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5440 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5441 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5442 struct btrfs_ioctl_feature_flags flags
[2];
5443 struct btrfs_trans_handle
*trans
;
5447 if (!capable(CAP_SYS_ADMIN
))
5450 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5454 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5455 !flags
[0].incompat_flags
)
5458 ret
= check_feature(fs_info
, flags
[0].compat_flags
,
5459 flags
[1].compat_flags
, COMPAT
);
5463 ret
= check_feature(fs_info
, flags
[0].compat_ro_flags
,
5464 flags
[1].compat_ro_flags
, COMPAT_RO
);
5468 ret
= check_feature(fs_info
, flags
[0].incompat_flags
,
5469 flags
[1].incompat_flags
, INCOMPAT
);
5473 ret
= mnt_want_write_file(file
);
5477 trans
= btrfs_start_transaction(root
, 0);
5478 if (IS_ERR(trans
)) {
5479 ret
= PTR_ERR(trans
);
5480 goto out_drop_write
;
5483 spin_lock(&fs_info
->super_lock
);
5484 newflags
= btrfs_super_compat_flags(super_block
);
5485 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5486 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5487 btrfs_set_super_compat_flags(super_block
, newflags
);
5489 newflags
= btrfs_super_compat_ro_flags(super_block
);
5490 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5491 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5492 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5494 newflags
= btrfs_super_incompat_flags(super_block
);
5495 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5496 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5497 btrfs_set_super_incompat_flags(super_block
, newflags
);
5498 spin_unlock(&fs_info
->super_lock
);
5500 ret
= btrfs_commit_transaction(trans
);
5502 mnt_drop_write_file(file
);
5507 long btrfs_ioctl(struct file
*file
, unsigned int
5508 cmd
, unsigned long arg
)
5510 struct inode
*inode
= file_inode(file
);
5511 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5512 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5513 void __user
*argp
= (void __user
*)arg
;
5516 case FS_IOC_GETFLAGS
:
5517 return btrfs_ioctl_getflags(file
, argp
);
5518 case FS_IOC_SETFLAGS
:
5519 return btrfs_ioctl_setflags(file
, argp
);
5520 case FS_IOC_GETVERSION
:
5521 return btrfs_ioctl_getversion(file
, argp
);
5523 return btrfs_ioctl_fitrim(file
, argp
);
5524 case BTRFS_IOC_SNAP_CREATE
:
5525 return btrfs_ioctl_snap_create(file
, argp
, 0);
5526 case BTRFS_IOC_SNAP_CREATE_V2
:
5527 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5528 case BTRFS_IOC_SUBVOL_CREATE
:
5529 return btrfs_ioctl_snap_create(file
, argp
, 1);
5530 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5531 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5532 case BTRFS_IOC_SNAP_DESTROY
:
5533 return btrfs_ioctl_snap_destroy(file
, argp
);
5534 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5535 return btrfs_ioctl_subvol_getflags(file
, argp
);
5536 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5537 return btrfs_ioctl_subvol_setflags(file
, argp
);
5538 case BTRFS_IOC_DEFAULT_SUBVOL
:
5539 return btrfs_ioctl_default_subvol(file
, argp
);
5540 case BTRFS_IOC_DEFRAG
:
5541 return btrfs_ioctl_defrag(file
, NULL
);
5542 case BTRFS_IOC_DEFRAG_RANGE
:
5543 return btrfs_ioctl_defrag(file
, argp
);
5544 case BTRFS_IOC_RESIZE
:
5545 return btrfs_ioctl_resize(file
, argp
);
5546 case BTRFS_IOC_ADD_DEV
:
5547 return btrfs_ioctl_add_dev(fs_info
, argp
);
5548 case BTRFS_IOC_RM_DEV
:
5549 return btrfs_ioctl_rm_dev(file
, argp
);
5550 case BTRFS_IOC_RM_DEV_V2
:
5551 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5552 case BTRFS_IOC_FS_INFO
:
5553 return btrfs_ioctl_fs_info(fs_info
, argp
);
5554 case BTRFS_IOC_DEV_INFO
:
5555 return btrfs_ioctl_dev_info(fs_info
, argp
);
5556 case BTRFS_IOC_BALANCE
:
5557 return btrfs_ioctl_balance(file
, NULL
);
5558 case BTRFS_IOC_TRANS_START
:
5559 return btrfs_ioctl_trans_start(file
);
5560 case BTRFS_IOC_TRANS_END
:
5561 return btrfs_ioctl_trans_end(file
);
5562 case BTRFS_IOC_TREE_SEARCH
:
5563 return btrfs_ioctl_tree_search(file
, argp
);
5564 case BTRFS_IOC_TREE_SEARCH_V2
:
5565 return btrfs_ioctl_tree_search_v2(file
, argp
);
5566 case BTRFS_IOC_INO_LOOKUP
:
5567 return btrfs_ioctl_ino_lookup(file
, argp
);
5568 case BTRFS_IOC_INO_PATHS
:
5569 return btrfs_ioctl_ino_to_path(root
, argp
);
5570 case BTRFS_IOC_LOGICAL_INO
:
5571 return btrfs_ioctl_logical_to_ino(fs_info
, argp
);
5572 case BTRFS_IOC_SPACE_INFO
:
5573 return btrfs_ioctl_space_info(fs_info
, argp
);
5574 case BTRFS_IOC_SYNC
: {
5577 ret
= btrfs_start_delalloc_roots(fs_info
, 0, -1);
5580 ret
= btrfs_sync_fs(inode
->i_sb
, 1);
5582 * The transaction thread may want to do more work,
5583 * namely it pokes the cleaner kthread that will start
5584 * processing uncleaned subvols.
5586 wake_up_process(fs_info
->transaction_kthread
);
5589 case BTRFS_IOC_START_SYNC
:
5590 return btrfs_ioctl_start_sync(root
, argp
);
5591 case BTRFS_IOC_WAIT_SYNC
:
5592 return btrfs_ioctl_wait_sync(fs_info
, argp
);
5593 case BTRFS_IOC_SCRUB
:
5594 return btrfs_ioctl_scrub(file
, argp
);
5595 case BTRFS_IOC_SCRUB_CANCEL
:
5596 return btrfs_ioctl_scrub_cancel(fs_info
);
5597 case BTRFS_IOC_SCRUB_PROGRESS
:
5598 return btrfs_ioctl_scrub_progress(fs_info
, argp
);
5599 case BTRFS_IOC_BALANCE_V2
:
5600 return btrfs_ioctl_balance(file
, argp
);
5601 case BTRFS_IOC_BALANCE_CTL
:
5602 return btrfs_ioctl_balance_ctl(fs_info
, arg
);
5603 case BTRFS_IOC_BALANCE_PROGRESS
:
5604 return btrfs_ioctl_balance_progress(fs_info
, argp
);
5605 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5606 return btrfs_ioctl_set_received_subvol(file
, argp
);
5608 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5609 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5611 case BTRFS_IOC_SEND
:
5612 return btrfs_ioctl_send(file
, argp
);
5613 case BTRFS_IOC_GET_DEV_STATS
:
5614 return btrfs_ioctl_get_dev_stats(fs_info
, argp
);
5615 case BTRFS_IOC_QUOTA_CTL
:
5616 return btrfs_ioctl_quota_ctl(file
, argp
);
5617 case BTRFS_IOC_QGROUP_ASSIGN
:
5618 return btrfs_ioctl_qgroup_assign(file
, argp
);
5619 case BTRFS_IOC_QGROUP_CREATE
:
5620 return btrfs_ioctl_qgroup_create(file
, argp
);
5621 case BTRFS_IOC_QGROUP_LIMIT
:
5622 return btrfs_ioctl_qgroup_limit(file
, argp
);
5623 case BTRFS_IOC_QUOTA_RESCAN
:
5624 return btrfs_ioctl_quota_rescan(file
, argp
);
5625 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5626 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5627 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5628 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5629 case BTRFS_IOC_DEV_REPLACE
:
5630 return btrfs_ioctl_dev_replace(fs_info
, argp
);
5631 case BTRFS_IOC_GET_FSLABEL
:
5632 return btrfs_ioctl_get_fslabel(file
, argp
);
5633 case BTRFS_IOC_SET_FSLABEL
:
5634 return btrfs_ioctl_set_fslabel(file
, argp
);
5635 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5636 return btrfs_ioctl_get_supported_features(argp
);
5637 case BTRFS_IOC_GET_FEATURES
:
5638 return btrfs_ioctl_get_features(file
, argp
);
5639 case BTRFS_IOC_SET_FEATURES
:
5640 return btrfs_ioctl_set_features(file
, argp
);
5646 #ifdef CONFIG_COMPAT
5647 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5650 * These all access 32-bit values anyway so no further
5651 * handling is necessary.
5654 case FS_IOC32_GETFLAGS
:
5655 cmd
= FS_IOC_GETFLAGS
;
5657 case FS_IOC32_SETFLAGS
:
5658 cmd
= FS_IOC_SETFLAGS
;
5660 case FS_IOC32_GETVERSION
:
5661 cmd
= FS_IOC_GETVERSION
;
5665 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));