x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / fs / ceph / mds_client.c
blobc681762d76e66be1edf7004b1de8c13568ec6022
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
13 #include "super.h"
14 #include "mds_client.h"
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 unsigned msg_version;
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
57 static const struct ceph_connection_operations mds_con_ops;
61 * mds reply parsing
65 * parse individual inode info
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
71 int err = -EIO;
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
103 info->pool_ns_len = 0;
104 info->pool_ns_data = NULL;
105 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
106 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
107 if (info->pool_ns_len > 0) {
108 ceph_decode_need(p, end, info->pool_ns_len, bad);
109 info->pool_ns_data = *p;
110 *p += info->pool_ns_len;
114 return 0;
115 bad:
116 return err;
120 * parse a normal reply, which may contain a (dir+)dentry and/or a
121 * target inode.
123 static int parse_reply_info_trace(void **p, void *end,
124 struct ceph_mds_reply_info_parsed *info,
125 u64 features)
127 int err;
129 if (info->head->is_dentry) {
130 err = parse_reply_info_in(p, end, &info->diri, features);
131 if (err < 0)
132 goto out_bad;
134 if (unlikely(*p + sizeof(*info->dirfrag) > end))
135 goto bad;
136 info->dirfrag = *p;
137 *p += sizeof(*info->dirfrag) +
138 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
139 if (unlikely(*p > end))
140 goto bad;
142 ceph_decode_32_safe(p, end, info->dname_len, bad);
143 ceph_decode_need(p, end, info->dname_len, bad);
144 info->dname = *p;
145 *p += info->dname_len;
146 info->dlease = *p;
147 *p += sizeof(*info->dlease);
150 if (info->head->is_target) {
151 err = parse_reply_info_in(p, end, &info->targeti, features);
152 if (err < 0)
153 goto out_bad;
156 if (unlikely(*p != end))
157 goto bad;
158 return 0;
160 bad:
161 err = -EIO;
162 out_bad:
163 pr_err("problem parsing mds trace %d\n", err);
164 return err;
168 * parse readdir results
170 static int parse_reply_info_dir(void **p, void *end,
171 struct ceph_mds_reply_info_parsed *info,
172 u64 features)
174 u32 num, i = 0;
175 int err;
177 info->dir_dir = *p;
178 if (*p + sizeof(*info->dir_dir) > end)
179 goto bad;
180 *p += sizeof(*info->dir_dir) +
181 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
182 if (*p > end)
183 goto bad;
185 ceph_decode_need(p, end, sizeof(num) + 2, bad);
186 num = ceph_decode_32(p);
188 u16 flags = ceph_decode_16(p);
189 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
190 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
191 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
193 if (num == 0)
194 goto done;
196 BUG_ON(!info->dir_entries);
197 if ((unsigned long)(info->dir_entries + num) >
198 (unsigned long)info->dir_entries + info->dir_buf_size) {
199 pr_err("dir contents are larger than expected\n");
200 WARN_ON(1);
201 goto bad;
204 info->dir_nr = num;
205 while (num) {
206 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
207 /* dentry */
208 ceph_decode_need(p, end, sizeof(u32)*2, bad);
209 rde->name_len = ceph_decode_32(p);
210 ceph_decode_need(p, end, rde->name_len, bad);
211 rde->name = *p;
212 *p += rde->name_len;
213 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
214 rde->lease = *p;
215 *p += sizeof(struct ceph_mds_reply_lease);
217 /* inode */
218 err = parse_reply_info_in(p, end, &rde->inode, features);
219 if (err < 0)
220 goto out_bad;
221 /* ceph_readdir_prepopulate() will update it */
222 rde->offset = 0;
223 i++;
224 num--;
227 done:
228 if (*p != end)
229 goto bad;
230 return 0;
232 bad:
233 err = -EIO;
234 out_bad:
235 pr_err("problem parsing dir contents %d\n", err);
236 return err;
240 * parse fcntl F_GETLK results
242 static int parse_reply_info_filelock(void **p, void *end,
243 struct ceph_mds_reply_info_parsed *info,
244 u64 features)
246 if (*p + sizeof(*info->filelock_reply) > end)
247 goto bad;
249 info->filelock_reply = *p;
250 *p += sizeof(*info->filelock_reply);
252 if (unlikely(*p != end))
253 goto bad;
254 return 0;
256 bad:
257 return -EIO;
261 * parse create results
263 static int parse_reply_info_create(void **p, void *end,
264 struct ceph_mds_reply_info_parsed *info,
265 u64 features)
267 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
268 if (*p == end) {
269 info->has_create_ino = false;
270 } else {
271 info->has_create_ino = true;
272 info->ino = ceph_decode_64(p);
276 if (unlikely(*p != end))
277 goto bad;
278 return 0;
280 bad:
281 return -EIO;
285 * parse extra results
287 static int parse_reply_info_extra(void **p, void *end,
288 struct ceph_mds_reply_info_parsed *info,
289 u64 features)
291 u32 op = le32_to_cpu(info->head->op);
293 if (op == CEPH_MDS_OP_GETFILELOCK)
294 return parse_reply_info_filelock(p, end, info, features);
295 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
296 return parse_reply_info_dir(p, end, info, features);
297 else if (op == CEPH_MDS_OP_CREATE)
298 return parse_reply_info_create(p, end, info, features);
299 else
300 return -EIO;
304 * parse entire mds reply
306 static int parse_reply_info(struct ceph_msg *msg,
307 struct ceph_mds_reply_info_parsed *info,
308 u64 features)
310 void *p, *end;
311 u32 len;
312 int err;
314 info->head = msg->front.iov_base;
315 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
316 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
318 /* trace */
319 ceph_decode_32_safe(&p, end, len, bad);
320 if (len > 0) {
321 ceph_decode_need(&p, end, len, bad);
322 err = parse_reply_info_trace(&p, p+len, info, features);
323 if (err < 0)
324 goto out_bad;
327 /* extra */
328 ceph_decode_32_safe(&p, end, len, bad);
329 if (len > 0) {
330 ceph_decode_need(&p, end, len, bad);
331 err = parse_reply_info_extra(&p, p+len, info, features);
332 if (err < 0)
333 goto out_bad;
336 /* snap blob */
337 ceph_decode_32_safe(&p, end, len, bad);
338 info->snapblob_len = len;
339 info->snapblob = p;
340 p += len;
342 if (p != end)
343 goto bad;
344 return 0;
346 bad:
347 err = -EIO;
348 out_bad:
349 pr_err("mds parse_reply err %d\n", err);
350 return err;
353 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
355 if (!info->dir_entries)
356 return;
357 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
362 * sessions
364 const char *ceph_session_state_name(int s)
366 switch (s) {
367 case CEPH_MDS_SESSION_NEW: return "new";
368 case CEPH_MDS_SESSION_OPENING: return "opening";
369 case CEPH_MDS_SESSION_OPEN: return "open";
370 case CEPH_MDS_SESSION_HUNG: return "hung";
371 case CEPH_MDS_SESSION_CLOSING: return "closing";
372 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
373 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
374 case CEPH_MDS_SESSION_REJECTED: return "rejected";
375 default: return "???";
379 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
381 if (atomic_inc_not_zero(&s->s_ref)) {
382 dout("mdsc get_session %p %d -> %d\n", s,
383 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
384 return s;
385 } else {
386 dout("mdsc get_session %p 0 -- FAIL", s);
387 return NULL;
391 void ceph_put_mds_session(struct ceph_mds_session *s)
393 dout("mdsc put_session %p %d -> %d\n", s,
394 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
395 if (atomic_dec_and_test(&s->s_ref)) {
396 if (s->s_auth.authorizer)
397 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
398 kfree(s);
403 * called under mdsc->mutex
405 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
406 int mds)
408 struct ceph_mds_session *session;
410 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
411 return NULL;
412 session = mdsc->sessions[mds];
413 dout("lookup_mds_session %p %d\n", session,
414 atomic_read(&session->s_ref));
415 get_session(session);
416 return session;
419 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
421 if (mds >= mdsc->max_sessions)
422 return false;
423 return mdsc->sessions[mds];
426 static int __verify_registered_session(struct ceph_mds_client *mdsc,
427 struct ceph_mds_session *s)
429 if (s->s_mds >= mdsc->max_sessions ||
430 mdsc->sessions[s->s_mds] != s)
431 return -ENOENT;
432 return 0;
436 * create+register a new session for given mds.
437 * called under mdsc->mutex.
439 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
440 int mds)
442 struct ceph_mds_session *s;
444 if (mds >= mdsc->mdsmap->m_max_mds)
445 return ERR_PTR(-EINVAL);
447 s = kzalloc(sizeof(*s), GFP_NOFS);
448 if (!s)
449 return ERR_PTR(-ENOMEM);
450 s->s_mdsc = mdsc;
451 s->s_mds = mds;
452 s->s_state = CEPH_MDS_SESSION_NEW;
453 s->s_ttl = 0;
454 s->s_seq = 0;
455 mutex_init(&s->s_mutex);
457 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
459 spin_lock_init(&s->s_gen_ttl_lock);
460 s->s_cap_gen = 0;
461 s->s_cap_ttl = jiffies - 1;
463 spin_lock_init(&s->s_cap_lock);
464 s->s_renew_requested = 0;
465 s->s_renew_seq = 0;
466 INIT_LIST_HEAD(&s->s_caps);
467 s->s_nr_caps = 0;
468 s->s_trim_caps = 0;
469 atomic_set(&s->s_ref, 1);
470 INIT_LIST_HEAD(&s->s_waiting);
471 INIT_LIST_HEAD(&s->s_unsafe);
472 s->s_num_cap_releases = 0;
473 s->s_cap_reconnect = 0;
474 s->s_cap_iterator = NULL;
475 INIT_LIST_HEAD(&s->s_cap_releases);
476 INIT_LIST_HEAD(&s->s_cap_flushing);
478 dout("register_session mds%d\n", mds);
479 if (mds >= mdsc->max_sessions) {
480 int newmax = 1 << get_count_order(mds+1);
481 struct ceph_mds_session **sa;
483 dout("register_session realloc to %d\n", newmax);
484 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
485 if (sa == NULL)
486 goto fail_realloc;
487 if (mdsc->sessions) {
488 memcpy(sa, mdsc->sessions,
489 mdsc->max_sessions * sizeof(void *));
490 kfree(mdsc->sessions);
492 mdsc->sessions = sa;
493 mdsc->max_sessions = newmax;
495 mdsc->sessions[mds] = s;
496 atomic_inc(&mdsc->num_sessions);
497 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
499 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
500 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
502 return s;
504 fail_realloc:
505 kfree(s);
506 return ERR_PTR(-ENOMEM);
510 * called under mdsc->mutex
512 static void __unregister_session(struct ceph_mds_client *mdsc,
513 struct ceph_mds_session *s)
515 dout("__unregister_session mds%d %p\n", s->s_mds, s);
516 BUG_ON(mdsc->sessions[s->s_mds] != s);
517 mdsc->sessions[s->s_mds] = NULL;
518 ceph_con_close(&s->s_con);
519 ceph_put_mds_session(s);
520 atomic_dec(&mdsc->num_sessions);
524 * drop session refs in request.
526 * should be last request ref, or hold mdsc->mutex
528 static void put_request_session(struct ceph_mds_request *req)
530 if (req->r_session) {
531 ceph_put_mds_session(req->r_session);
532 req->r_session = NULL;
536 void ceph_mdsc_release_request(struct kref *kref)
538 struct ceph_mds_request *req = container_of(kref,
539 struct ceph_mds_request,
540 r_kref);
541 destroy_reply_info(&req->r_reply_info);
542 if (req->r_request)
543 ceph_msg_put(req->r_request);
544 if (req->r_reply)
545 ceph_msg_put(req->r_reply);
546 if (req->r_inode) {
547 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
548 iput(req->r_inode);
550 if (req->r_parent)
551 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
552 iput(req->r_target_inode);
553 if (req->r_dentry)
554 dput(req->r_dentry);
555 if (req->r_old_dentry)
556 dput(req->r_old_dentry);
557 if (req->r_old_dentry_dir) {
559 * track (and drop pins for) r_old_dentry_dir
560 * separately, since r_old_dentry's d_parent may have
561 * changed between the dir mutex being dropped and
562 * this request being freed.
564 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
565 CEPH_CAP_PIN);
566 iput(req->r_old_dentry_dir);
568 kfree(req->r_path1);
569 kfree(req->r_path2);
570 if (req->r_pagelist)
571 ceph_pagelist_release(req->r_pagelist);
572 put_request_session(req);
573 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
574 kfree(req);
577 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
580 * lookup session, bump ref if found.
582 * called under mdsc->mutex.
584 static struct ceph_mds_request *
585 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
587 struct ceph_mds_request *req;
589 req = lookup_request(&mdsc->request_tree, tid);
590 if (req)
591 ceph_mdsc_get_request(req);
593 return req;
597 * Register an in-flight request, and assign a tid. Link to directory
598 * are modifying (if any).
600 * Called under mdsc->mutex.
602 static void __register_request(struct ceph_mds_client *mdsc,
603 struct ceph_mds_request *req,
604 struct inode *dir)
606 req->r_tid = ++mdsc->last_tid;
607 if (req->r_num_caps)
608 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
609 req->r_num_caps);
610 dout("__register_request %p tid %lld\n", req, req->r_tid);
611 ceph_mdsc_get_request(req);
612 insert_request(&mdsc->request_tree, req);
614 req->r_uid = current_fsuid();
615 req->r_gid = current_fsgid();
617 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
618 mdsc->oldest_tid = req->r_tid;
620 if (dir) {
621 ihold(dir);
622 req->r_unsafe_dir = dir;
626 static void __unregister_request(struct ceph_mds_client *mdsc,
627 struct ceph_mds_request *req)
629 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
631 /* Never leave an unregistered request on an unsafe list! */
632 list_del_init(&req->r_unsafe_item);
634 if (req->r_tid == mdsc->oldest_tid) {
635 struct rb_node *p = rb_next(&req->r_node);
636 mdsc->oldest_tid = 0;
637 while (p) {
638 struct ceph_mds_request *next_req =
639 rb_entry(p, struct ceph_mds_request, r_node);
640 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
641 mdsc->oldest_tid = next_req->r_tid;
642 break;
644 p = rb_next(p);
648 erase_request(&mdsc->request_tree, req);
650 if (req->r_unsafe_dir &&
651 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
652 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
653 spin_lock(&ci->i_unsafe_lock);
654 list_del_init(&req->r_unsafe_dir_item);
655 spin_unlock(&ci->i_unsafe_lock);
657 if (req->r_target_inode &&
658 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
659 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
660 spin_lock(&ci->i_unsafe_lock);
661 list_del_init(&req->r_unsafe_target_item);
662 spin_unlock(&ci->i_unsafe_lock);
665 if (req->r_unsafe_dir) {
666 iput(req->r_unsafe_dir);
667 req->r_unsafe_dir = NULL;
670 complete_all(&req->r_safe_completion);
672 ceph_mdsc_put_request(req);
676 * Walk back up the dentry tree until we hit a dentry representing a
677 * non-snapshot inode. We do this using the rcu_read_lock (which must be held
678 * when calling this) to ensure that the objects won't disappear while we're
679 * working with them. Once we hit a candidate dentry, we attempt to take a
680 * reference to it, and return that as the result.
682 static struct inode *get_nonsnap_parent(struct dentry *dentry)
684 struct inode *inode = NULL;
686 while (dentry && !IS_ROOT(dentry)) {
687 inode = d_inode_rcu(dentry);
688 if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
689 break;
690 dentry = dentry->d_parent;
692 if (inode)
693 inode = igrab(inode);
694 return inode;
698 * Choose mds to send request to next. If there is a hint set in the
699 * request (e.g., due to a prior forward hint from the mds), use that.
700 * Otherwise, consult frag tree and/or caps to identify the
701 * appropriate mds. If all else fails, choose randomly.
703 * Called under mdsc->mutex.
705 static int __choose_mds(struct ceph_mds_client *mdsc,
706 struct ceph_mds_request *req)
708 struct inode *inode;
709 struct ceph_inode_info *ci;
710 struct ceph_cap *cap;
711 int mode = req->r_direct_mode;
712 int mds = -1;
713 u32 hash = req->r_direct_hash;
714 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
717 * is there a specific mds we should try? ignore hint if we have
718 * no session and the mds is not up (active or recovering).
720 if (req->r_resend_mds >= 0 &&
721 (__have_session(mdsc, req->r_resend_mds) ||
722 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
723 dout("choose_mds using resend_mds mds%d\n",
724 req->r_resend_mds);
725 return req->r_resend_mds;
728 if (mode == USE_RANDOM_MDS)
729 goto random;
731 inode = NULL;
732 if (req->r_inode) {
733 inode = req->r_inode;
734 ihold(inode);
735 } else if (req->r_dentry) {
736 /* ignore race with rename; old or new d_parent is okay */
737 struct dentry *parent;
738 struct inode *dir;
740 rcu_read_lock();
741 parent = req->r_dentry->d_parent;
742 dir = req->r_parent ? : d_inode_rcu(parent);
744 if (!dir || dir->i_sb != mdsc->fsc->sb) {
745 /* not this fs or parent went negative */
746 inode = d_inode(req->r_dentry);
747 if (inode)
748 ihold(inode);
749 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
750 /* direct snapped/virtual snapdir requests
751 * based on parent dir inode */
752 inode = get_nonsnap_parent(parent);
753 dout("__choose_mds using nonsnap parent %p\n", inode);
754 } else {
755 /* dentry target */
756 inode = d_inode(req->r_dentry);
757 if (!inode || mode == USE_AUTH_MDS) {
758 /* dir + name */
759 inode = igrab(dir);
760 hash = ceph_dentry_hash(dir, req->r_dentry);
761 is_hash = true;
762 } else {
763 ihold(inode);
766 rcu_read_unlock();
769 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
770 (int)hash, mode);
771 if (!inode)
772 goto random;
773 ci = ceph_inode(inode);
775 if (is_hash && S_ISDIR(inode->i_mode)) {
776 struct ceph_inode_frag frag;
777 int found;
779 ceph_choose_frag(ci, hash, &frag, &found);
780 if (found) {
781 if (mode == USE_ANY_MDS && frag.ndist > 0) {
782 u8 r;
784 /* choose a random replica */
785 get_random_bytes(&r, 1);
786 r %= frag.ndist;
787 mds = frag.dist[r];
788 dout("choose_mds %p %llx.%llx "
789 "frag %u mds%d (%d/%d)\n",
790 inode, ceph_vinop(inode),
791 frag.frag, mds,
792 (int)r, frag.ndist);
793 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
794 CEPH_MDS_STATE_ACTIVE)
795 goto out;
798 /* since this file/dir wasn't known to be
799 * replicated, then we want to look for the
800 * authoritative mds. */
801 mode = USE_AUTH_MDS;
802 if (frag.mds >= 0) {
803 /* choose auth mds */
804 mds = frag.mds;
805 dout("choose_mds %p %llx.%llx "
806 "frag %u mds%d (auth)\n",
807 inode, ceph_vinop(inode), frag.frag, mds);
808 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
809 CEPH_MDS_STATE_ACTIVE)
810 goto out;
815 spin_lock(&ci->i_ceph_lock);
816 cap = NULL;
817 if (mode == USE_AUTH_MDS)
818 cap = ci->i_auth_cap;
819 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
820 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
821 if (!cap) {
822 spin_unlock(&ci->i_ceph_lock);
823 iput(inode);
824 goto random;
826 mds = cap->session->s_mds;
827 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
828 inode, ceph_vinop(inode), mds,
829 cap == ci->i_auth_cap ? "auth " : "", cap);
830 spin_unlock(&ci->i_ceph_lock);
831 out:
832 iput(inode);
833 return mds;
835 random:
836 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
837 dout("choose_mds chose random mds%d\n", mds);
838 return mds;
843 * session messages
845 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
847 struct ceph_msg *msg;
848 struct ceph_mds_session_head *h;
850 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
851 false);
852 if (!msg) {
853 pr_err("create_session_msg ENOMEM creating msg\n");
854 return NULL;
856 h = msg->front.iov_base;
857 h->op = cpu_to_le32(op);
858 h->seq = cpu_to_le64(seq);
860 return msg;
864 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
865 * to include additional client metadata fields.
867 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
869 struct ceph_msg *msg;
870 struct ceph_mds_session_head *h;
871 int i = -1;
872 int metadata_bytes = 0;
873 int metadata_key_count = 0;
874 struct ceph_options *opt = mdsc->fsc->client->options;
875 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
876 void *p;
878 const char* metadata[][2] = {
879 {"hostname", utsname()->nodename},
880 {"kernel_version", utsname()->release},
881 {"entity_id", opt->name ? : ""},
882 {"root", fsopt->server_path ? : "/"},
883 {NULL, NULL}
886 /* Calculate serialized length of metadata */
887 metadata_bytes = 4; /* map length */
888 for (i = 0; metadata[i][0] != NULL; ++i) {
889 metadata_bytes += 8 + strlen(metadata[i][0]) +
890 strlen(metadata[i][1]);
891 metadata_key_count++;
894 /* Allocate the message */
895 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
896 GFP_NOFS, false);
897 if (!msg) {
898 pr_err("create_session_msg ENOMEM creating msg\n");
899 return NULL;
901 h = msg->front.iov_base;
902 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
903 h->seq = cpu_to_le64(seq);
906 * Serialize client metadata into waiting buffer space, using
907 * the format that userspace expects for map<string, string>
909 * ClientSession messages with metadata are v2
911 msg->hdr.version = cpu_to_le16(2);
912 msg->hdr.compat_version = cpu_to_le16(1);
914 /* The write pointer, following the session_head structure */
915 p = msg->front.iov_base + sizeof(*h);
917 /* Number of entries in the map */
918 ceph_encode_32(&p, metadata_key_count);
920 /* Two length-prefixed strings for each entry in the map */
921 for (i = 0; metadata[i][0] != NULL; ++i) {
922 size_t const key_len = strlen(metadata[i][0]);
923 size_t const val_len = strlen(metadata[i][1]);
925 ceph_encode_32(&p, key_len);
926 memcpy(p, metadata[i][0], key_len);
927 p += key_len;
928 ceph_encode_32(&p, val_len);
929 memcpy(p, metadata[i][1], val_len);
930 p += val_len;
933 return msg;
937 * send session open request.
939 * called under mdsc->mutex
941 static int __open_session(struct ceph_mds_client *mdsc,
942 struct ceph_mds_session *session)
944 struct ceph_msg *msg;
945 int mstate;
946 int mds = session->s_mds;
948 /* wait for mds to go active? */
949 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
950 dout("open_session to mds%d (%s)\n", mds,
951 ceph_mds_state_name(mstate));
952 session->s_state = CEPH_MDS_SESSION_OPENING;
953 session->s_renew_requested = jiffies;
955 /* send connect message */
956 msg = create_session_open_msg(mdsc, session->s_seq);
957 if (!msg)
958 return -ENOMEM;
959 ceph_con_send(&session->s_con, msg);
960 return 0;
964 * open sessions for any export targets for the given mds
966 * called under mdsc->mutex
968 static struct ceph_mds_session *
969 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
971 struct ceph_mds_session *session;
973 session = __ceph_lookup_mds_session(mdsc, target);
974 if (!session) {
975 session = register_session(mdsc, target);
976 if (IS_ERR(session))
977 return session;
979 if (session->s_state == CEPH_MDS_SESSION_NEW ||
980 session->s_state == CEPH_MDS_SESSION_CLOSING)
981 __open_session(mdsc, session);
983 return session;
986 struct ceph_mds_session *
987 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
989 struct ceph_mds_session *session;
991 dout("open_export_target_session to mds%d\n", target);
993 mutex_lock(&mdsc->mutex);
994 session = __open_export_target_session(mdsc, target);
995 mutex_unlock(&mdsc->mutex);
997 return session;
1000 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1001 struct ceph_mds_session *session)
1003 struct ceph_mds_info *mi;
1004 struct ceph_mds_session *ts;
1005 int i, mds = session->s_mds;
1007 if (mds >= mdsc->mdsmap->m_max_mds)
1008 return;
1010 mi = &mdsc->mdsmap->m_info[mds];
1011 dout("open_export_target_sessions for mds%d (%d targets)\n",
1012 session->s_mds, mi->num_export_targets);
1014 for (i = 0; i < mi->num_export_targets; i++) {
1015 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1016 if (!IS_ERR(ts))
1017 ceph_put_mds_session(ts);
1021 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1022 struct ceph_mds_session *session)
1024 mutex_lock(&mdsc->mutex);
1025 __open_export_target_sessions(mdsc, session);
1026 mutex_unlock(&mdsc->mutex);
1030 * session caps
1033 /* caller holds s_cap_lock, we drop it */
1034 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1035 struct ceph_mds_session *session)
1036 __releases(session->s_cap_lock)
1038 LIST_HEAD(tmp_list);
1039 list_splice_init(&session->s_cap_releases, &tmp_list);
1040 session->s_num_cap_releases = 0;
1041 spin_unlock(&session->s_cap_lock);
1043 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1044 while (!list_empty(&tmp_list)) {
1045 struct ceph_cap *cap;
1046 /* zero out the in-progress message */
1047 cap = list_first_entry(&tmp_list,
1048 struct ceph_cap, session_caps);
1049 list_del(&cap->session_caps);
1050 ceph_put_cap(mdsc, cap);
1054 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1055 struct ceph_mds_session *session)
1057 struct ceph_mds_request *req;
1058 struct rb_node *p;
1060 dout("cleanup_session_requests mds%d\n", session->s_mds);
1061 mutex_lock(&mdsc->mutex);
1062 while (!list_empty(&session->s_unsafe)) {
1063 req = list_first_entry(&session->s_unsafe,
1064 struct ceph_mds_request, r_unsafe_item);
1065 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1066 req->r_tid);
1067 __unregister_request(mdsc, req);
1069 /* zero r_attempts, so kick_requests() will re-send requests */
1070 p = rb_first(&mdsc->request_tree);
1071 while (p) {
1072 req = rb_entry(p, struct ceph_mds_request, r_node);
1073 p = rb_next(p);
1074 if (req->r_session &&
1075 req->r_session->s_mds == session->s_mds)
1076 req->r_attempts = 0;
1078 mutex_unlock(&mdsc->mutex);
1082 * Helper to safely iterate over all caps associated with a session, with
1083 * special care taken to handle a racing __ceph_remove_cap().
1085 * Caller must hold session s_mutex.
1087 static int iterate_session_caps(struct ceph_mds_session *session,
1088 int (*cb)(struct inode *, struct ceph_cap *,
1089 void *), void *arg)
1091 struct list_head *p;
1092 struct ceph_cap *cap;
1093 struct inode *inode, *last_inode = NULL;
1094 struct ceph_cap *old_cap = NULL;
1095 int ret;
1097 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1098 spin_lock(&session->s_cap_lock);
1099 p = session->s_caps.next;
1100 while (p != &session->s_caps) {
1101 cap = list_entry(p, struct ceph_cap, session_caps);
1102 inode = igrab(&cap->ci->vfs_inode);
1103 if (!inode) {
1104 p = p->next;
1105 continue;
1107 session->s_cap_iterator = cap;
1108 spin_unlock(&session->s_cap_lock);
1110 if (last_inode) {
1111 iput(last_inode);
1112 last_inode = NULL;
1114 if (old_cap) {
1115 ceph_put_cap(session->s_mdsc, old_cap);
1116 old_cap = NULL;
1119 ret = cb(inode, cap, arg);
1120 last_inode = inode;
1122 spin_lock(&session->s_cap_lock);
1123 p = p->next;
1124 if (cap->ci == NULL) {
1125 dout("iterate_session_caps finishing cap %p removal\n",
1126 cap);
1127 BUG_ON(cap->session != session);
1128 cap->session = NULL;
1129 list_del_init(&cap->session_caps);
1130 session->s_nr_caps--;
1131 if (cap->queue_release) {
1132 list_add_tail(&cap->session_caps,
1133 &session->s_cap_releases);
1134 session->s_num_cap_releases++;
1135 } else {
1136 old_cap = cap; /* put_cap it w/o locks held */
1139 if (ret < 0)
1140 goto out;
1142 ret = 0;
1143 out:
1144 session->s_cap_iterator = NULL;
1145 spin_unlock(&session->s_cap_lock);
1147 iput(last_inode);
1148 if (old_cap)
1149 ceph_put_cap(session->s_mdsc, old_cap);
1151 return ret;
1154 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1155 void *arg)
1157 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1158 struct ceph_inode_info *ci = ceph_inode(inode);
1159 LIST_HEAD(to_remove);
1160 bool drop = false;
1161 bool invalidate = false;
1163 dout("removing cap %p, ci is %p, inode is %p\n",
1164 cap, ci, &ci->vfs_inode);
1165 spin_lock(&ci->i_ceph_lock);
1166 __ceph_remove_cap(cap, false);
1167 if (!ci->i_auth_cap) {
1168 struct ceph_cap_flush *cf;
1169 struct ceph_mds_client *mdsc = fsc->mdsc;
1171 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1173 if (ci->i_wrbuffer_ref > 0 &&
1174 READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1175 invalidate = true;
1177 while (!list_empty(&ci->i_cap_flush_list)) {
1178 cf = list_first_entry(&ci->i_cap_flush_list,
1179 struct ceph_cap_flush, i_list);
1180 list_move(&cf->i_list, &to_remove);
1183 spin_lock(&mdsc->cap_dirty_lock);
1185 list_for_each_entry(cf, &to_remove, i_list)
1186 list_del(&cf->g_list);
1188 if (!list_empty(&ci->i_dirty_item)) {
1189 pr_warn_ratelimited(
1190 " dropping dirty %s state for %p %lld\n",
1191 ceph_cap_string(ci->i_dirty_caps),
1192 inode, ceph_ino(inode));
1193 ci->i_dirty_caps = 0;
1194 list_del_init(&ci->i_dirty_item);
1195 drop = true;
1197 if (!list_empty(&ci->i_flushing_item)) {
1198 pr_warn_ratelimited(
1199 " dropping dirty+flushing %s state for %p %lld\n",
1200 ceph_cap_string(ci->i_flushing_caps),
1201 inode, ceph_ino(inode));
1202 ci->i_flushing_caps = 0;
1203 list_del_init(&ci->i_flushing_item);
1204 mdsc->num_cap_flushing--;
1205 drop = true;
1207 spin_unlock(&mdsc->cap_dirty_lock);
1209 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1210 list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove);
1211 ci->i_prealloc_cap_flush = NULL;
1214 spin_unlock(&ci->i_ceph_lock);
1215 while (!list_empty(&to_remove)) {
1216 struct ceph_cap_flush *cf;
1217 cf = list_first_entry(&to_remove,
1218 struct ceph_cap_flush, i_list);
1219 list_del(&cf->i_list);
1220 ceph_free_cap_flush(cf);
1223 wake_up_all(&ci->i_cap_wq);
1224 if (invalidate)
1225 ceph_queue_invalidate(inode);
1226 if (drop)
1227 iput(inode);
1228 return 0;
1232 * caller must hold session s_mutex
1234 static void remove_session_caps(struct ceph_mds_session *session)
1236 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1237 struct super_block *sb = fsc->sb;
1238 dout("remove_session_caps on %p\n", session);
1239 iterate_session_caps(session, remove_session_caps_cb, fsc);
1241 wake_up_all(&fsc->mdsc->cap_flushing_wq);
1243 spin_lock(&session->s_cap_lock);
1244 if (session->s_nr_caps > 0) {
1245 struct inode *inode;
1246 struct ceph_cap *cap, *prev = NULL;
1247 struct ceph_vino vino;
1249 * iterate_session_caps() skips inodes that are being
1250 * deleted, we need to wait until deletions are complete.
1251 * __wait_on_freeing_inode() is designed for the job,
1252 * but it is not exported, so use lookup inode function
1253 * to access it.
1255 while (!list_empty(&session->s_caps)) {
1256 cap = list_entry(session->s_caps.next,
1257 struct ceph_cap, session_caps);
1258 if (cap == prev)
1259 break;
1260 prev = cap;
1261 vino = cap->ci->i_vino;
1262 spin_unlock(&session->s_cap_lock);
1264 inode = ceph_find_inode(sb, vino);
1265 iput(inode);
1267 spin_lock(&session->s_cap_lock);
1271 // drop cap expires and unlock s_cap_lock
1272 cleanup_cap_releases(session->s_mdsc, session);
1274 BUG_ON(session->s_nr_caps > 0);
1275 BUG_ON(!list_empty(&session->s_cap_flushing));
1279 * wake up any threads waiting on this session's caps. if the cap is
1280 * old (didn't get renewed on the client reconnect), remove it now.
1282 * caller must hold s_mutex.
1284 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1285 void *arg)
1287 struct ceph_inode_info *ci = ceph_inode(inode);
1289 if (arg) {
1290 spin_lock(&ci->i_ceph_lock);
1291 ci->i_wanted_max_size = 0;
1292 ci->i_requested_max_size = 0;
1293 spin_unlock(&ci->i_ceph_lock);
1295 wake_up_all(&ci->i_cap_wq);
1296 return 0;
1299 static void wake_up_session_caps(struct ceph_mds_session *session,
1300 int reconnect)
1302 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1303 iterate_session_caps(session, wake_up_session_cb,
1304 (void *)(unsigned long)reconnect);
1308 * Send periodic message to MDS renewing all currently held caps. The
1309 * ack will reset the expiration for all caps from this session.
1311 * caller holds s_mutex
1313 static int send_renew_caps(struct ceph_mds_client *mdsc,
1314 struct ceph_mds_session *session)
1316 struct ceph_msg *msg;
1317 int state;
1319 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1320 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1321 pr_info("mds%d caps stale\n", session->s_mds);
1322 session->s_renew_requested = jiffies;
1324 /* do not try to renew caps until a recovering mds has reconnected
1325 * with its clients. */
1326 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1327 if (state < CEPH_MDS_STATE_RECONNECT) {
1328 dout("send_renew_caps ignoring mds%d (%s)\n",
1329 session->s_mds, ceph_mds_state_name(state));
1330 return 0;
1333 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1334 ceph_mds_state_name(state));
1335 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1336 ++session->s_renew_seq);
1337 if (!msg)
1338 return -ENOMEM;
1339 ceph_con_send(&session->s_con, msg);
1340 return 0;
1343 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1344 struct ceph_mds_session *session, u64 seq)
1346 struct ceph_msg *msg;
1348 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1349 session->s_mds, ceph_session_state_name(session->s_state), seq);
1350 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1351 if (!msg)
1352 return -ENOMEM;
1353 ceph_con_send(&session->s_con, msg);
1354 return 0;
1359 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1361 * Called under session->s_mutex
1363 static void renewed_caps(struct ceph_mds_client *mdsc,
1364 struct ceph_mds_session *session, int is_renew)
1366 int was_stale;
1367 int wake = 0;
1369 spin_lock(&session->s_cap_lock);
1370 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1372 session->s_cap_ttl = session->s_renew_requested +
1373 mdsc->mdsmap->m_session_timeout*HZ;
1375 if (was_stale) {
1376 if (time_before(jiffies, session->s_cap_ttl)) {
1377 pr_info("mds%d caps renewed\n", session->s_mds);
1378 wake = 1;
1379 } else {
1380 pr_info("mds%d caps still stale\n", session->s_mds);
1383 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1384 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1385 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1386 spin_unlock(&session->s_cap_lock);
1388 if (wake)
1389 wake_up_session_caps(session, 0);
1393 * send a session close request
1395 static int request_close_session(struct ceph_mds_client *mdsc,
1396 struct ceph_mds_session *session)
1398 struct ceph_msg *msg;
1400 dout("request_close_session mds%d state %s seq %lld\n",
1401 session->s_mds, ceph_session_state_name(session->s_state),
1402 session->s_seq);
1403 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1404 if (!msg)
1405 return -ENOMEM;
1406 ceph_con_send(&session->s_con, msg);
1407 return 1;
1411 * Called with s_mutex held.
1413 static int __close_session(struct ceph_mds_client *mdsc,
1414 struct ceph_mds_session *session)
1416 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1417 return 0;
1418 session->s_state = CEPH_MDS_SESSION_CLOSING;
1419 return request_close_session(mdsc, session);
1423 * Trim old(er) caps.
1425 * Because we can't cache an inode without one or more caps, we do
1426 * this indirectly: if a cap is unused, we prune its aliases, at which
1427 * point the inode will hopefully get dropped to.
1429 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1430 * memory pressure from the MDS, though, so it needn't be perfect.
1432 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1434 struct ceph_mds_session *session = arg;
1435 struct ceph_inode_info *ci = ceph_inode(inode);
1436 int used, wanted, oissued, mine;
1438 if (session->s_trim_caps <= 0)
1439 return -1;
1441 spin_lock(&ci->i_ceph_lock);
1442 mine = cap->issued | cap->implemented;
1443 used = __ceph_caps_used(ci);
1444 wanted = __ceph_caps_file_wanted(ci);
1445 oissued = __ceph_caps_issued_other(ci, cap);
1447 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1448 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1449 ceph_cap_string(used), ceph_cap_string(wanted));
1450 if (cap == ci->i_auth_cap) {
1451 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1452 !list_empty(&ci->i_cap_snaps))
1453 goto out;
1454 if ((used | wanted) & CEPH_CAP_ANY_WR)
1455 goto out;
1457 /* The inode has cached pages, but it's no longer used.
1458 * we can safely drop it */
1459 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1460 !(oissued & CEPH_CAP_FILE_CACHE)) {
1461 used = 0;
1462 oissued = 0;
1464 if ((used | wanted) & ~oissued & mine)
1465 goto out; /* we need these caps */
1467 session->s_trim_caps--;
1468 if (oissued) {
1469 /* we aren't the only cap.. just remove us */
1470 __ceph_remove_cap(cap, true);
1471 } else {
1472 /* try dropping referring dentries */
1473 spin_unlock(&ci->i_ceph_lock);
1474 d_prune_aliases(inode);
1475 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1476 inode, cap, atomic_read(&inode->i_count));
1477 return 0;
1480 out:
1481 spin_unlock(&ci->i_ceph_lock);
1482 return 0;
1486 * Trim session cap count down to some max number.
1488 static int trim_caps(struct ceph_mds_client *mdsc,
1489 struct ceph_mds_session *session,
1490 int max_caps)
1492 int trim_caps = session->s_nr_caps - max_caps;
1494 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1495 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1496 if (trim_caps > 0) {
1497 session->s_trim_caps = trim_caps;
1498 iterate_session_caps(session, trim_caps_cb, session);
1499 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1500 session->s_mds, session->s_nr_caps, max_caps,
1501 trim_caps - session->s_trim_caps);
1502 session->s_trim_caps = 0;
1505 ceph_send_cap_releases(mdsc, session);
1506 return 0;
1509 static int check_caps_flush(struct ceph_mds_client *mdsc,
1510 u64 want_flush_tid)
1512 int ret = 1;
1514 spin_lock(&mdsc->cap_dirty_lock);
1515 if (!list_empty(&mdsc->cap_flush_list)) {
1516 struct ceph_cap_flush *cf =
1517 list_first_entry(&mdsc->cap_flush_list,
1518 struct ceph_cap_flush, g_list);
1519 if (cf->tid <= want_flush_tid) {
1520 dout("check_caps_flush still flushing tid "
1521 "%llu <= %llu\n", cf->tid, want_flush_tid);
1522 ret = 0;
1525 spin_unlock(&mdsc->cap_dirty_lock);
1526 return ret;
1530 * flush all dirty inode data to disk.
1532 * returns true if we've flushed through want_flush_tid
1534 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1535 u64 want_flush_tid)
1537 dout("check_caps_flush want %llu\n", want_flush_tid);
1539 wait_event(mdsc->cap_flushing_wq,
1540 check_caps_flush(mdsc, want_flush_tid));
1542 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1546 * called under s_mutex
1548 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1549 struct ceph_mds_session *session)
1551 struct ceph_msg *msg = NULL;
1552 struct ceph_mds_cap_release *head;
1553 struct ceph_mds_cap_item *item;
1554 struct ceph_cap *cap;
1555 LIST_HEAD(tmp_list);
1556 int num_cap_releases;
1558 spin_lock(&session->s_cap_lock);
1559 again:
1560 list_splice_init(&session->s_cap_releases, &tmp_list);
1561 num_cap_releases = session->s_num_cap_releases;
1562 session->s_num_cap_releases = 0;
1563 spin_unlock(&session->s_cap_lock);
1565 while (!list_empty(&tmp_list)) {
1566 if (!msg) {
1567 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1568 PAGE_SIZE, GFP_NOFS, false);
1569 if (!msg)
1570 goto out_err;
1571 head = msg->front.iov_base;
1572 head->num = cpu_to_le32(0);
1573 msg->front.iov_len = sizeof(*head);
1575 cap = list_first_entry(&tmp_list, struct ceph_cap,
1576 session_caps);
1577 list_del(&cap->session_caps);
1578 num_cap_releases--;
1580 head = msg->front.iov_base;
1581 le32_add_cpu(&head->num, 1);
1582 item = msg->front.iov_base + msg->front.iov_len;
1583 item->ino = cpu_to_le64(cap->cap_ino);
1584 item->cap_id = cpu_to_le64(cap->cap_id);
1585 item->migrate_seq = cpu_to_le32(cap->mseq);
1586 item->seq = cpu_to_le32(cap->issue_seq);
1587 msg->front.iov_len += sizeof(*item);
1589 ceph_put_cap(mdsc, cap);
1591 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1592 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1593 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1594 ceph_con_send(&session->s_con, msg);
1595 msg = NULL;
1599 BUG_ON(num_cap_releases != 0);
1601 spin_lock(&session->s_cap_lock);
1602 if (!list_empty(&session->s_cap_releases))
1603 goto again;
1604 spin_unlock(&session->s_cap_lock);
1606 if (msg) {
1607 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1608 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1609 ceph_con_send(&session->s_con, msg);
1611 return;
1612 out_err:
1613 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1614 session->s_mds);
1615 spin_lock(&session->s_cap_lock);
1616 list_splice(&tmp_list, &session->s_cap_releases);
1617 session->s_num_cap_releases += num_cap_releases;
1618 spin_unlock(&session->s_cap_lock);
1622 * requests
1625 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1626 struct inode *dir)
1628 struct ceph_inode_info *ci = ceph_inode(dir);
1629 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1630 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1631 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1632 int order, num_entries;
1634 spin_lock(&ci->i_ceph_lock);
1635 num_entries = ci->i_files + ci->i_subdirs;
1636 spin_unlock(&ci->i_ceph_lock);
1637 num_entries = max(num_entries, 1);
1638 num_entries = min(num_entries, opt->max_readdir);
1640 order = get_order(size * num_entries);
1641 while (order >= 0) {
1642 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1643 __GFP_NOWARN,
1644 order);
1645 if (rinfo->dir_entries)
1646 break;
1647 order--;
1649 if (!rinfo->dir_entries)
1650 return -ENOMEM;
1652 num_entries = (PAGE_SIZE << order) / size;
1653 num_entries = min(num_entries, opt->max_readdir);
1655 rinfo->dir_buf_size = PAGE_SIZE << order;
1656 req->r_num_caps = num_entries + 1;
1657 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1658 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1659 return 0;
1663 * Create an mds request.
1665 struct ceph_mds_request *
1666 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1668 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1670 if (!req)
1671 return ERR_PTR(-ENOMEM);
1673 mutex_init(&req->r_fill_mutex);
1674 req->r_mdsc = mdsc;
1675 req->r_started = jiffies;
1676 req->r_resend_mds = -1;
1677 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1678 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1679 req->r_fmode = -1;
1680 kref_init(&req->r_kref);
1681 RB_CLEAR_NODE(&req->r_node);
1682 INIT_LIST_HEAD(&req->r_wait);
1683 init_completion(&req->r_completion);
1684 init_completion(&req->r_safe_completion);
1685 INIT_LIST_HEAD(&req->r_unsafe_item);
1687 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1689 req->r_op = op;
1690 req->r_direct_mode = mode;
1691 return req;
1695 * return oldest (lowest) request, tid in request tree, 0 if none.
1697 * called under mdsc->mutex.
1699 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1701 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1702 return NULL;
1703 return rb_entry(rb_first(&mdsc->request_tree),
1704 struct ceph_mds_request, r_node);
1707 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1709 return mdsc->oldest_tid;
1713 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1714 * on build_path_from_dentry in fs/cifs/dir.c.
1716 * If @stop_on_nosnap, generate path relative to the first non-snapped
1717 * inode.
1719 * Encode hidden .snap dirs as a double /, i.e.
1720 * foo/.snap/bar -> foo//bar
1722 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1723 int stop_on_nosnap)
1725 struct dentry *temp;
1726 char *path;
1727 int len, pos;
1728 unsigned seq;
1730 if (dentry == NULL)
1731 return ERR_PTR(-EINVAL);
1733 retry:
1734 len = 0;
1735 seq = read_seqbegin(&rename_lock);
1736 rcu_read_lock();
1737 for (temp = dentry; !IS_ROOT(temp);) {
1738 struct inode *inode = d_inode(temp);
1739 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1740 len++; /* slash only */
1741 else if (stop_on_nosnap && inode &&
1742 ceph_snap(inode) == CEPH_NOSNAP)
1743 break;
1744 else
1745 len += 1 + temp->d_name.len;
1746 temp = temp->d_parent;
1748 rcu_read_unlock();
1749 if (len)
1750 len--; /* no leading '/' */
1752 path = kmalloc(len+1, GFP_NOFS);
1753 if (path == NULL)
1754 return ERR_PTR(-ENOMEM);
1755 pos = len;
1756 path[pos] = 0; /* trailing null */
1757 rcu_read_lock();
1758 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1759 struct inode *inode;
1761 spin_lock(&temp->d_lock);
1762 inode = d_inode(temp);
1763 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1764 dout("build_path path+%d: %p SNAPDIR\n",
1765 pos, temp);
1766 } else if (stop_on_nosnap && inode &&
1767 ceph_snap(inode) == CEPH_NOSNAP) {
1768 spin_unlock(&temp->d_lock);
1769 break;
1770 } else {
1771 pos -= temp->d_name.len;
1772 if (pos < 0) {
1773 spin_unlock(&temp->d_lock);
1774 break;
1776 strncpy(path + pos, temp->d_name.name,
1777 temp->d_name.len);
1779 spin_unlock(&temp->d_lock);
1780 if (pos)
1781 path[--pos] = '/';
1782 temp = temp->d_parent;
1784 rcu_read_unlock();
1785 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1786 pr_err("build_path did not end path lookup where "
1787 "expected, namelen is %d, pos is %d\n", len, pos);
1788 /* presumably this is only possible if racing with a
1789 rename of one of the parent directories (we can not
1790 lock the dentries above us to prevent this, but
1791 retrying should be harmless) */
1792 kfree(path);
1793 goto retry;
1796 *base = ceph_ino(d_inode(temp));
1797 *plen = len;
1798 dout("build_path on %p %d built %llx '%.*s'\n",
1799 dentry, d_count(dentry), *base, len, path);
1800 return path;
1803 static int build_dentry_path(struct dentry *dentry, struct inode *dir,
1804 const char **ppath, int *ppathlen, u64 *pino,
1805 int *pfreepath)
1807 char *path;
1809 rcu_read_lock();
1810 if (!dir)
1811 dir = d_inode_rcu(dentry->d_parent);
1812 if (dir && ceph_snap(dir) == CEPH_NOSNAP) {
1813 *pino = ceph_ino(dir);
1814 rcu_read_unlock();
1815 *ppath = dentry->d_name.name;
1816 *ppathlen = dentry->d_name.len;
1817 return 0;
1819 rcu_read_unlock();
1820 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1821 if (IS_ERR(path))
1822 return PTR_ERR(path);
1823 *ppath = path;
1824 *pfreepath = 1;
1825 return 0;
1828 static int build_inode_path(struct inode *inode,
1829 const char **ppath, int *ppathlen, u64 *pino,
1830 int *pfreepath)
1832 struct dentry *dentry;
1833 char *path;
1835 if (ceph_snap(inode) == CEPH_NOSNAP) {
1836 *pino = ceph_ino(inode);
1837 *ppathlen = 0;
1838 return 0;
1840 dentry = d_find_alias(inode);
1841 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1842 dput(dentry);
1843 if (IS_ERR(path))
1844 return PTR_ERR(path);
1845 *ppath = path;
1846 *pfreepath = 1;
1847 return 0;
1851 * request arguments may be specified via an inode *, a dentry *, or
1852 * an explicit ino+path.
1854 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1855 struct inode *rdiri, const char *rpath,
1856 u64 rino, const char **ppath, int *pathlen,
1857 u64 *ino, int *freepath)
1859 int r = 0;
1861 if (rinode) {
1862 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1863 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1864 ceph_snap(rinode));
1865 } else if (rdentry) {
1866 r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino,
1867 freepath);
1868 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1869 *ppath);
1870 } else if (rpath || rino) {
1871 *ino = rino;
1872 *ppath = rpath;
1873 *pathlen = rpath ? strlen(rpath) : 0;
1874 dout(" path %.*s\n", *pathlen, rpath);
1877 return r;
1881 * called under mdsc->mutex
1883 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1884 struct ceph_mds_request *req,
1885 int mds, bool drop_cap_releases)
1887 struct ceph_msg *msg;
1888 struct ceph_mds_request_head *head;
1889 const char *path1 = NULL;
1890 const char *path2 = NULL;
1891 u64 ino1 = 0, ino2 = 0;
1892 int pathlen1 = 0, pathlen2 = 0;
1893 int freepath1 = 0, freepath2 = 0;
1894 int len;
1895 u16 releases;
1896 void *p, *end;
1897 int ret;
1899 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1900 req->r_parent, req->r_path1, req->r_ino1.ino,
1901 &path1, &pathlen1, &ino1, &freepath1);
1902 if (ret < 0) {
1903 msg = ERR_PTR(ret);
1904 goto out;
1907 ret = set_request_path_attr(NULL, req->r_old_dentry,
1908 req->r_old_dentry_dir,
1909 req->r_path2, req->r_ino2.ino,
1910 &path2, &pathlen2, &ino2, &freepath2);
1911 if (ret < 0) {
1912 msg = ERR_PTR(ret);
1913 goto out_free1;
1916 len = sizeof(*head) +
1917 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1918 sizeof(struct ceph_timespec);
1920 /* calculate (max) length for cap releases */
1921 len += sizeof(struct ceph_mds_request_release) *
1922 (!!req->r_inode_drop + !!req->r_dentry_drop +
1923 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1924 if (req->r_dentry_drop)
1925 len += req->r_dentry->d_name.len;
1926 if (req->r_old_dentry_drop)
1927 len += req->r_old_dentry->d_name.len;
1929 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1930 if (!msg) {
1931 msg = ERR_PTR(-ENOMEM);
1932 goto out_free2;
1935 msg->hdr.version = cpu_to_le16(2);
1936 msg->hdr.tid = cpu_to_le64(req->r_tid);
1938 head = msg->front.iov_base;
1939 p = msg->front.iov_base + sizeof(*head);
1940 end = msg->front.iov_base + msg->front.iov_len;
1942 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1943 head->op = cpu_to_le32(req->r_op);
1944 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1945 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1946 head->args = req->r_args;
1948 ceph_encode_filepath(&p, end, ino1, path1);
1949 ceph_encode_filepath(&p, end, ino2, path2);
1951 /* make note of release offset, in case we need to replay */
1952 req->r_request_release_offset = p - msg->front.iov_base;
1954 /* cap releases */
1955 releases = 0;
1956 if (req->r_inode_drop)
1957 releases += ceph_encode_inode_release(&p,
1958 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1959 mds, req->r_inode_drop, req->r_inode_unless, 0);
1960 if (req->r_dentry_drop)
1961 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1962 req->r_parent, mds, req->r_dentry_drop,
1963 req->r_dentry_unless);
1964 if (req->r_old_dentry_drop)
1965 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1966 req->r_old_dentry_dir, mds,
1967 req->r_old_dentry_drop,
1968 req->r_old_dentry_unless);
1969 if (req->r_old_inode_drop)
1970 releases += ceph_encode_inode_release(&p,
1971 d_inode(req->r_old_dentry),
1972 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1974 if (drop_cap_releases) {
1975 releases = 0;
1976 p = msg->front.iov_base + req->r_request_release_offset;
1979 head->num_releases = cpu_to_le16(releases);
1981 /* time stamp */
1983 struct ceph_timespec ts;
1984 ceph_encode_timespec(&ts, &req->r_stamp);
1985 ceph_encode_copy(&p, &ts, sizeof(ts));
1988 BUG_ON(p > end);
1989 msg->front.iov_len = p - msg->front.iov_base;
1990 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1992 if (req->r_pagelist) {
1993 struct ceph_pagelist *pagelist = req->r_pagelist;
1994 atomic_inc(&pagelist->refcnt);
1995 ceph_msg_data_add_pagelist(msg, pagelist);
1996 msg->hdr.data_len = cpu_to_le32(pagelist->length);
1997 } else {
1998 msg->hdr.data_len = 0;
2001 msg->hdr.data_off = cpu_to_le16(0);
2003 out_free2:
2004 if (freepath2)
2005 kfree((char *)path2);
2006 out_free1:
2007 if (freepath1)
2008 kfree((char *)path1);
2009 out:
2010 return msg;
2014 * called under mdsc->mutex if error, under no mutex if
2015 * success.
2017 static void complete_request(struct ceph_mds_client *mdsc,
2018 struct ceph_mds_request *req)
2020 if (req->r_callback)
2021 req->r_callback(mdsc, req);
2022 else
2023 complete_all(&req->r_completion);
2027 * called under mdsc->mutex
2029 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2030 struct ceph_mds_request *req,
2031 int mds, bool drop_cap_releases)
2033 struct ceph_mds_request_head *rhead;
2034 struct ceph_msg *msg;
2035 int flags = 0;
2037 req->r_attempts++;
2038 if (req->r_inode) {
2039 struct ceph_cap *cap =
2040 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2042 if (cap)
2043 req->r_sent_on_mseq = cap->mseq;
2044 else
2045 req->r_sent_on_mseq = -1;
2047 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2048 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2050 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2051 void *p;
2053 * Replay. Do not regenerate message (and rebuild
2054 * paths, etc.); just use the original message.
2055 * Rebuilding paths will break for renames because
2056 * d_move mangles the src name.
2058 msg = req->r_request;
2059 rhead = msg->front.iov_base;
2061 flags = le32_to_cpu(rhead->flags);
2062 flags |= CEPH_MDS_FLAG_REPLAY;
2063 rhead->flags = cpu_to_le32(flags);
2065 if (req->r_target_inode)
2066 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2068 rhead->num_retry = req->r_attempts - 1;
2070 /* remove cap/dentry releases from message */
2071 rhead->num_releases = 0;
2073 /* time stamp */
2074 p = msg->front.iov_base + req->r_request_release_offset;
2076 struct ceph_timespec ts;
2077 ceph_encode_timespec(&ts, &req->r_stamp);
2078 ceph_encode_copy(&p, &ts, sizeof(ts));
2081 msg->front.iov_len = p - msg->front.iov_base;
2082 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2083 return 0;
2086 if (req->r_request) {
2087 ceph_msg_put(req->r_request);
2088 req->r_request = NULL;
2090 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2091 if (IS_ERR(msg)) {
2092 req->r_err = PTR_ERR(msg);
2093 return PTR_ERR(msg);
2095 req->r_request = msg;
2097 rhead = msg->front.iov_base;
2098 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2099 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2100 flags |= CEPH_MDS_FLAG_REPLAY;
2101 if (req->r_parent)
2102 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2103 rhead->flags = cpu_to_le32(flags);
2104 rhead->num_fwd = req->r_num_fwd;
2105 rhead->num_retry = req->r_attempts - 1;
2106 rhead->ino = 0;
2108 dout(" r_parent = %p\n", req->r_parent);
2109 return 0;
2113 * send request, or put it on the appropriate wait list.
2115 static int __do_request(struct ceph_mds_client *mdsc,
2116 struct ceph_mds_request *req)
2118 struct ceph_mds_session *session = NULL;
2119 int mds = -1;
2120 int err = 0;
2122 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2123 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
2124 __unregister_request(mdsc, req);
2125 goto out;
2128 if (req->r_timeout &&
2129 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2130 dout("do_request timed out\n");
2131 err = -EIO;
2132 goto finish;
2134 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2135 dout("do_request forced umount\n");
2136 err = -EIO;
2137 goto finish;
2139 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
2140 if (mdsc->mdsmap_err) {
2141 err = mdsc->mdsmap_err;
2142 dout("do_request mdsmap err %d\n", err);
2143 goto finish;
2145 if (mdsc->mdsmap->m_epoch == 0) {
2146 dout("do_request no mdsmap, waiting for map\n");
2147 list_add(&req->r_wait, &mdsc->waiting_for_map);
2148 goto finish;
2150 if (!(mdsc->fsc->mount_options->flags &
2151 CEPH_MOUNT_OPT_MOUNTWAIT) &&
2152 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
2153 err = -ENOENT;
2154 pr_info("probably no mds server is up\n");
2155 goto finish;
2159 put_request_session(req);
2161 mds = __choose_mds(mdsc, req);
2162 if (mds < 0 ||
2163 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2164 dout("do_request no mds or not active, waiting for map\n");
2165 list_add(&req->r_wait, &mdsc->waiting_for_map);
2166 goto out;
2169 /* get, open session */
2170 session = __ceph_lookup_mds_session(mdsc, mds);
2171 if (!session) {
2172 session = register_session(mdsc, mds);
2173 if (IS_ERR(session)) {
2174 err = PTR_ERR(session);
2175 goto finish;
2178 req->r_session = get_session(session);
2180 dout("do_request mds%d session %p state %s\n", mds, session,
2181 ceph_session_state_name(session->s_state));
2182 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2183 session->s_state != CEPH_MDS_SESSION_HUNG) {
2184 if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
2185 err = -EACCES;
2186 goto out_session;
2188 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2189 session->s_state == CEPH_MDS_SESSION_CLOSING)
2190 __open_session(mdsc, session);
2191 list_add(&req->r_wait, &session->s_waiting);
2192 goto out_session;
2195 /* send request */
2196 req->r_resend_mds = -1; /* forget any previous mds hint */
2198 if (req->r_request_started == 0) /* note request start time */
2199 req->r_request_started = jiffies;
2201 err = __prepare_send_request(mdsc, req, mds, false);
2202 if (!err) {
2203 ceph_msg_get(req->r_request);
2204 ceph_con_send(&session->s_con, req->r_request);
2207 out_session:
2208 ceph_put_mds_session(session);
2209 finish:
2210 if (err) {
2211 dout("__do_request early error %d\n", err);
2212 req->r_err = err;
2213 complete_request(mdsc, req);
2214 __unregister_request(mdsc, req);
2216 out:
2217 return err;
2221 * called under mdsc->mutex
2223 static void __wake_requests(struct ceph_mds_client *mdsc,
2224 struct list_head *head)
2226 struct ceph_mds_request *req;
2227 LIST_HEAD(tmp_list);
2229 list_splice_init(head, &tmp_list);
2231 while (!list_empty(&tmp_list)) {
2232 req = list_entry(tmp_list.next,
2233 struct ceph_mds_request, r_wait);
2234 list_del_init(&req->r_wait);
2235 dout(" wake request %p tid %llu\n", req, req->r_tid);
2236 __do_request(mdsc, req);
2241 * Wake up threads with requests pending for @mds, so that they can
2242 * resubmit their requests to a possibly different mds.
2244 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2246 struct ceph_mds_request *req;
2247 struct rb_node *p = rb_first(&mdsc->request_tree);
2249 dout("kick_requests mds%d\n", mds);
2250 while (p) {
2251 req = rb_entry(p, struct ceph_mds_request, r_node);
2252 p = rb_next(p);
2253 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2254 continue;
2255 if (req->r_attempts > 0)
2256 continue; /* only new requests */
2257 if (req->r_session &&
2258 req->r_session->s_mds == mds) {
2259 dout(" kicking tid %llu\n", req->r_tid);
2260 list_del_init(&req->r_wait);
2261 __do_request(mdsc, req);
2266 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2267 struct ceph_mds_request *req)
2269 dout("submit_request on %p\n", req);
2270 mutex_lock(&mdsc->mutex);
2271 __register_request(mdsc, req, NULL);
2272 __do_request(mdsc, req);
2273 mutex_unlock(&mdsc->mutex);
2277 * Synchrously perform an mds request. Take care of all of the
2278 * session setup, forwarding, retry details.
2280 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2281 struct inode *dir,
2282 struct ceph_mds_request *req)
2284 int err;
2286 dout("do_request on %p\n", req);
2288 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
2289 if (req->r_inode)
2290 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2291 if (req->r_parent)
2292 ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
2293 if (req->r_old_dentry_dir)
2294 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2295 CEPH_CAP_PIN);
2297 /* issue */
2298 mutex_lock(&mdsc->mutex);
2299 __register_request(mdsc, req, dir);
2300 __do_request(mdsc, req);
2302 if (req->r_err) {
2303 err = req->r_err;
2304 goto out;
2307 /* wait */
2308 mutex_unlock(&mdsc->mutex);
2309 dout("do_request waiting\n");
2310 if (!req->r_timeout && req->r_wait_for_completion) {
2311 err = req->r_wait_for_completion(mdsc, req);
2312 } else {
2313 long timeleft = wait_for_completion_killable_timeout(
2314 &req->r_completion,
2315 ceph_timeout_jiffies(req->r_timeout));
2316 if (timeleft > 0)
2317 err = 0;
2318 else if (!timeleft)
2319 err = -EIO; /* timed out */
2320 else
2321 err = timeleft; /* killed */
2323 dout("do_request waited, got %d\n", err);
2324 mutex_lock(&mdsc->mutex);
2326 /* only abort if we didn't race with a real reply */
2327 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2328 err = le32_to_cpu(req->r_reply_info.head->result);
2329 } else if (err < 0) {
2330 dout("aborted request %lld with %d\n", req->r_tid, err);
2333 * ensure we aren't running concurrently with
2334 * ceph_fill_trace or ceph_readdir_prepopulate, which
2335 * rely on locks (dir mutex) held by our caller.
2337 mutex_lock(&req->r_fill_mutex);
2338 req->r_err = err;
2339 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
2340 mutex_unlock(&req->r_fill_mutex);
2342 if (req->r_parent &&
2343 (req->r_op & CEPH_MDS_OP_WRITE))
2344 ceph_invalidate_dir_request(req);
2345 } else {
2346 err = req->r_err;
2349 out:
2350 mutex_unlock(&mdsc->mutex);
2351 dout("do_request %p done, result %d\n", req, err);
2352 return err;
2356 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2357 * namespace request.
2359 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2361 struct inode *inode = req->r_parent;
2363 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2365 ceph_dir_clear_complete(inode);
2366 if (req->r_dentry)
2367 ceph_invalidate_dentry_lease(req->r_dentry);
2368 if (req->r_old_dentry)
2369 ceph_invalidate_dentry_lease(req->r_old_dentry);
2373 * Handle mds reply.
2375 * We take the session mutex and parse and process the reply immediately.
2376 * This preserves the logical ordering of replies, capabilities, etc., sent
2377 * by the MDS as they are applied to our local cache.
2379 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2381 struct ceph_mds_client *mdsc = session->s_mdsc;
2382 struct ceph_mds_request *req;
2383 struct ceph_mds_reply_head *head = msg->front.iov_base;
2384 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2385 struct ceph_snap_realm *realm;
2386 u64 tid;
2387 int err, result;
2388 int mds = session->s_mds;
2390 if (msg->front.iov_len < sizeof(*head)) {
2391 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2392 ceph_msg_dump(msg);
2393 return;
2396 /* get request, session */
2397 tid = le64_to_cpu(msg->hdr.tid);
2398 mutex_lock(&mdsc->mutex);
2399 req = lookup_get_request(mdsc, tid);
2400 if (!req) {
2401 dout("handle_reply on unknown tid %llu\n", tid);
2402 mutex_unlock(&mdsc->mutex);
2403 return;
2405 dout("handle_reply %p\n", req);
2407 /* correct session? */
2408 if (req->r_session != session) {
2409 pr_err("mdsc_handle_reply got %llu on session mds%d"
2410 " not mds%d\n", tid, session->s_mds,
2411 req->r_session ? req->r_session->s_mds : -1);
2412 mutex_unlock(&mdsc->mutex);
2413 goto out;
2416 /* dup? */
2417 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
2418 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
2419 pr_warn("got a dup %s reply on %llu from mds%d\n",
2420 head->safe ? "safe" : "unsafe", tid, mds);
2421 mutex_unlock(&mdsc->mutex);
2422 goto out;
2424 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
2425 pr_warn("got unsafe after safe on %llu from mds%d\n",
2426 tid, mds);
2427 mutex_unlock(&mdsc->mutex);
2428 goto out;
2431 result = le32_to_cpu(head->result);
2434 * Handle an ESTALE
2435 * if we're not talking to the authority, send to them
2436 * if the authority has changed while we weren't looking,
2437 * send to new authority
2438 * Otherwise we just have to return an ESTALE
2440 if (result == -ESTALE) {
2441 dout("got ESTALE on request %llu", req->r_tid);
2442 req->r_resend_mds = -1;
2443 if (req->r_direct_mode != USE_AUTH_MDS) {
2444 dout("not using auth, setting for that now");
2445 req->r_direct_mode = USE_AUTH_MDS;
2446 __do_request(mdsc, req);
2447 mutex_unlock(&mdsc->mutex);
2448 goto out;
2449 } else {
2450 int mds = __choose_mds(mdsc, req);
2451 if (mds >= 0 && mds != req->r_session->s_mds) {
2452 dout("but auth changed, so resending");
2453 __do_request(mdsc, req);
2454 mutex_unlock(&mdsc->mutex);
2455 goto out;
2458 dout("have to return ESTALE on request %llu", req->r_tid);
2462 if (head->safe) {
2463 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
2464 __unregister_request(mdsc, req);
2466 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2468 * We already handled the unsafe response, now do the
2469 * cleanup. No need to examine the response; the MDS
2470 * doesn't include any result info in the safe
2471 * response. And even if it did, there is nothing
2472 * useful we could do with a revised return value.
2474 dout("got safe reply %llu, mds%d\n", tid, mds);
2476 /* last unsafe request during umount? */
2477 if (mdsc->stopping && !__get_oldest_req(mdsc))
2478 complete_all(&mdsc->safe_umount_waiters);
2479 mutex_unlock(&mdsc->mutex);
2480 goto out;
2482 } else {
2483 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
2484 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2485 if (req->r_unsafe_dir) {
2486 struct ceph_inode_info *ci =
2487 ceph_inode(req->r_unsafe_dir);
2488 spin_lock(&ci->i_unsafe_lock);
2489 list_add_tail(&req->r_unsafe_dir_item,
2490 &ci->i_unsafe_dirops);
2491 spin_unlock(&ci->i_unsafe_lock);
2495 dout("handle_reply tid %lld result %d\n", tid, result);
2496 rinfo = &req->r_reply_info;
2497 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2498 mutex_unlock(&mdsc->mutex);
2500 mutex_lock(&session->s_mutex);
2501 if (err < 0) {
2502 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2503 ceph_msg_dump(msg);
2504 goto out_err;
2507 /* snap trace */
2508 realm = NULL;
2509 if (rinfo->snapblob_len) {
2510 down_write(&mdsc->snap_rwsem);
2511 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2512 rinfo->snapblob + rinfo->snapblob_len,
2513 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2514 &realm);
2515 downgrade_write(&mdsc->snap_rwsem);
2516 } else {
2517 down_read(&mdsc->snap_rwsem);
2520 /* insert trace into our cache */
2521 mutex_lock(&req->r_fill_mutex);
2522 current->journal_info = req;
2523 err = ceph_fill_trace(mdsc->fsc->sb, req);
2524 if (err == 0) {
2525 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2526 req->r_op == CEPH_MDS_OP_LSSNAP))
2527 ceph_readdir_prepopulate(req, req->r_session);
2528 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2530 current->journal_info = NULL;
2531 mutex_unlock(&req->r_fill_mutex);
2533 up_read(&mdsc->snap_rwsem);
2534 if (realm)
2535 ceph_put_snap_realm(mdsc, realm);
2537 if (err == 0 && req->r_target_inode &&
2538 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2539 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2540 spin_lock(&ci->i_unsafe_lock);
2541 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2542 spin_unlock(&ci->i_unsafe_lock);
2544 out_err:
2545 mutex_lock(&mdsc->mutex);
2546 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2547 if (err) {
2548 req->r_err = err;
2549 } else {
2550 req->r_reply = ceph_msg_get(msg);
2551 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
2553 } else {
2554 dout("reply arrived after request %lld was aborted\n", tid);
2556 mutex_unlock(&mdsc->mutex);
2558 mutex_unlock(&session->s_mutex);
2560 /* kick calling process */
2561 complete_request(mdsc, req);
2562 out:
2563 ceph_mdsc_put_request(req);
2564 return;
2570 * handle mds notification that our request has been forwarded.
2572 static void handle_forward(struct ceph_mds_client *mdsc,
2573 struct ceph_mds_session *session,
2574 struct ceph_msg *msg)
2576 struct ceph_mds_request *req;
2577 u64 tid = le64_to_cpu(msg->hdr.tid);
2578 u32 next_mds;
2579 u32 fwd_seq;
2580 int err = -EINVAL;
2581 void *p = msg->front.iov_base;
2582 void *end = p + msg->front.iov_len;
2584 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2585 next_mds = ceph_decode_32(&p);
2586 fwd_seq = ceph_decode_32(&p);
2588 mutex_lock(&mdsc->mutex);
2589 req = lookup_get_request(mdsc, tid);
2590 if (!req) {
2591 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2592 goto out; /* dup reply? */
2595 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2596 dout("forward tid %llu aborted, unregistering\n", tid);
2597 __unregister_request(mdsc, req);
2598 } else if (fwd_seq <= req->r_num_fwd) {
2599 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2600 tid, next_mds, req->r_num_fwd, fwd_seq);
2601 } else {
2602 /* resend. forward race not possible; mds would drop */
2603 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2604 BUG_ON(req->r_err);
2605 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
2606 req->r_attempts = 0;
2607 req->r_num_fwd = fwd_seq;
2608 req->r_resend_mds = next_mds;
2609 put_request_session(req);
2610 __do_request(mdsc, req);
2612 ceph_mdsc_put_request(req);
2613 out:
2614 mutex_unlock(&mdsc->mutex);
2615 return;
2617 bad:
2618 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2622 * handle a mds session control message
2624 static void handle_session(struct ceph_mds_session *session,
2625 struct ceph_msg *msg)
2627 struct ceph_mds_client *mdsc = session->s_mdsc;
2628 u32 op;
2629 u64 seq;
2630 int mds = session->s_mds;
2631 struct ceph_mds_session_head *h = msg->front.iov_base;
2632 int wake = 0;
2634 /* decode */
2635 if (msg->front.iov_len != sizeof(*h))
2636 goto bad;
2637 op = le32_to_cpu(h->op);
2638 seq = le64_to_cpu(h->seq);
2640 mutex_lock(&mdsc->mutex);
2641 if (op == CEPH_SESSION_CLOSE)
2642 __unregister_session(mdsc, session);
2643 /* FIXME: this ttl calculation is generous */
2644 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2645 mutex_unlock(&mdsc->mutex);
2647 mutex_lock(&session->s_mutex);
2649 dout("handle_session mds%d %s %p state %s seq %llu\n",
2650 mds, ceph_session_op_name(op), session,
2651 ceph_session_state_name(session->s_state), seq);
2653 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2654 session->s_state = CEPH_MDS_SESSION_OPEN;
2655 pr_info("mds%d came back\n", session->s_mds);
2658 switch (op) {
2659 case CEPH_SESSION_OPEN:
2660 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2661 pr_info("mds%d reconnect success\n", session->s_mds);
2662 session->s_state = CEPH_MDS_SESSION_OPEN;
2663 renewed_caps(mdsc, session, 0);
2664 wake = 1;
2665 if (mdsc->stopping)
2666 __close_session(mdsc, session);
2667 break;
2669 case CEPH_SESSION_RENEWCAPS:
2670 if (session->s_renew_seq == seq)
2671 renewed_caps(mdsc, session, 1);
2672 break;
2674 case CEPH_SESSION_CLOSE:
2675 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2676 pr_info("mds%d reconnect denied\n", session->s_mds);
2677 cleanup_session_requests(mdsc, session);
2678 remove_session_caps(session);
2679 wake = 2; /* for good measure */
2680 wake_up_all(&mdsc->session_close_wq);
2681 break;
2683 case CEPH_SESSION_STALE:
2684 pr_info("mds%d caps went stale, renewing\n",
2685 session->s_mds);
2686 spin_lock(&session->s_gen_ttl_lock);
2687 session->s_cap_gen++;
2688 session->s_cap_ttl = jiffies - 1;
2689 spin_unlock(&session->s_gen_ttl_lock);
2690 send_renew_caps(mdsc, session);
2691 break;
2693 case CEPH_SESSION_RECALL_STATE:
2694 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2695 break;
2697 case CEPH_SESSION_FLUSHMSG:
2698 send_flushmsg_ack(mdsc, session, seq);
2699 break;
2701 case CEPH_SESSION_FORCE_RO:
2702 dout("force_session_readonly %p\n", session);
2703 spin_lock(&session->s_cap_lock);
2704 session->s_readonly = true;
2705 spin_unlock(&session->s_cap_lock);
2706 wake_up_session_caps(session, 0);
2707 break;
2709 case CEPH_SESSION_REJECT:
2710 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
2711 pr_info("mds%d rejected session\n", session->s_mds);
2712 session->s_state = CEPH_MDS_SESSION_REJECTED;
2713 cleanup_session_requests(mdsc, session);
2714 remove_session_caps(session);
2715 wake = 2; /* for good measure */
2716 break;
2718 default:
2719 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2720 WARN_ON(1);
2723 mutex_unlock(&session->s_mutex);
2724 if (wake) {
2725 mutex_lock(&mdsc->mutex);
2726 __wake_requests(mdsc, &session->s_waiting);
2727 if (wake == 2)
2728 kick_requests(mdsc, mds);
2729 mutex_unlock(&mdsc->mutex);
2731 return;
2733 bad:
2734 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2735 (int)msg->front.iov_len);
2736 ceph_msg_dump(msg);
2737 return;
2742 * called under session->mutex.
2744 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2745 struct ceph_mds_session *session)
2747 struct ceph_mds_request *req, *nreq;
2748 struct rb_node *p;
2749 int err;
2751 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2753 mutex_lock(&mdsc->mutex);
2754 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2755 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2756 if (!err) {
2757 ceph_msg_get(req->r_request);
2758 ceph_con_send(&session->s_con, req->r_request);
2763 * also re-send old requests when MDS enters reconnect stage. So that MDS
2764 * can process completed request in clientreplay stage.
2766 p = rb_first(&mdsc->request_tree);
2767 while (p) {
2768 req = rb_entry(p, struct ceph_mds_request, r_node);
2769 p = rb_next(p);
2770 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2771 continue;
2772 if (req->r_attempts == 0)
2773 continue; /* only old requests */
2774 if (req->r_session &&
2775 req->r_session->s_mds == session->s_mds) {
2776 err = __prepare_send_request(mdsc, req,
2777 session->s_mds, true);
2778 if (!err) {
2779 ceph_msg_get(req->r_request);
2780 ceph_con_send(&session->s_con, req->r_request);
2784 mutex_unlock(&mdsc->mutex);
2788 * Encode information about a cap for a reconnect with the MDS.
2790 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2791 void *arg)
2793 union {
2794 struct ceph_mds_cap_reconnect v2;
2795 struct ceph_mds_cap_reconnect_v1 v1;
2796 } rec;
2797 struct ceph_inode_info *ci;
2798 struct ceph_reconnect_state *recon_state = arg;
2799 struct ceph_pagelist *pagelist = recon_state->pagelist;
2800 char *path;
2801 int pathlen, err;
2802 u64 pathbase;
2803 u64 snap_follows;
2804 struct dentry *dentry;
2806 ci = cap->ci;
2808 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2809 inode, ceph_vinop(inode), cap, cap->cap_id,
2810 ceph_cap_string(cap->issued));
2811 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2812 if (err)
2813 return err;
2815 dentry = d_find_alias(inode);
2816 if (dentry) {
2817 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2818 if (IS_ERR(path)) {
2819 err = PTR_ERR(path);
2820 goto out_dput;
2822 } else {
2823 path = NULL;
2824 pathlen = 0;
2825 pathbase = 0;
2828 spin_lock(&ci->i_ceph_lock);
2829 cap->seq = 0; /* reset cap seq */
2830 cap->issue_seq = 0; /* and issue_seq */
2831 cap->mseq = 0; /* and migrate_seq */
2832 cap->cap_gen = cap->session->s_cap_gen;
2834 if (recon_state->msg_version >= 2) {
2835 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2836 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2837 rec.v2.issued = cpu_to_le32(cap->issued);
2838 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2839 rec.v2.pathbase = cpu_to_le64(pathbase);
2840 rec.v2.flock_len = 0;
2841 } else {
2842 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2843 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2844 rec.v1.issued = cpu_to_le32(cap->issued);
2845 rec.v1.size = cpu_to_le64(inode->i_size);
2846 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2847 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2848 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2849 rec.v1.pathbase = cpu_to_le64(pathbase);
2852 if (list_empty(&ci->i_cap_snaps)) {
2853 snap_follows = 0;
2854 } else {
2855 struct ceph_cap_snap *capsnap =
2856 list_first_entry(&ci->i_cap_snaps,
2857 struct ceph_cap_snap, ci_item);
2858 snap_follows = capsnap->follows;
2860 spin_unlock(&ci->i_ceph_lock);
2862 if (recon_state->msg_version >= 2) {
2863 int num_fcntl_locks, num_flock_locks;
2864 struct ceph_filelock *flocks;
2865 size_t struct_len, total_len = 0;
2866 u8 struct_v = 0;
2868 encode_again:
2869 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2870 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2871 sizeof(struct ceph_filelock), GFP_NOFS);
2872 if (!flocks) {
2873 err = -ENOMEM;
2874 goto out_free;
2876 err = ceph_encode_locks_to_buffer(inode, flocks,
2877 num_fcntl_locks,
2878 num_flock_locks);
2879 if (err) {
2880 kfree(flocks);
2881 if (err == -ENOSPC)
2882 goto encode_again;
2883 goto out_free;
2886 if (recon_state->msg_version >= 3) {
2887 /* version, compat_version and struct_len */
2888 total_len = 2 * sizeof(u8) + sizeof(u32);
2889 struct_v = 2;
2892 * number of encoded locks is stable, so copy to pagelist
2894 struct_len = 2 * sizeof(u32) +
2895 (num_fcntl_locks + num_flock_locks) *
2896 sizeof(struct ceph_filelock);
2897 rec.v2.flock_len = cpu_to_le32(struct_len);
2899 struct_len += sizeof(rec.v2);
2900 struct_len += sizeof(u32) + pathlen;
2902 if (struct_v >= 2)
2903 struct_len += sizeof(u64); /* snap_follows */
2905 total_len += struct_len;
2906 err = ceph_pagelist_reserve(pagelist, total_len);
2908 if (!err) {
2909 if (recon_state->msg_version >= 3) {
2910 ceph_pagelist_encode_8(pagelist, struct_v);
2911 ceph_pagelist_encode_8(pagelist, 1);
2912 ceph_pagelist_encode_32(pagelist, struct_len);
2914 ceph_pagelist_encode_string(pagelist, path, pathlen);
2915 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
2916 ceph_locks_to_pagelist(flocks, pagelist,
2917 num_fcntl_locks,
2918 num_flock_locks);
2919 if (struct_v >= 2)
2920 ceph_pagelist_encode_64(pagelist, snap_follows);
2922 kfree(flocks);
2923 } else {
2924 size_t size = sizeof(u32) + pathlen + sizeof(rec.v1);
2925 err = ceph_pagelist_reserve(pagelist, size);
2926 if (!err) {
2927 ceph_pagelist_encode_string(pagelist, path, pathlen);
2928 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
2932 recon_state->nr_caps++;
2933 out_free:
2934 kfree(path);
2935 out_dput:
2936 dput(dentry);
2937 return err;
2942 * If an MDS fails and recovers, clients need to reconnect in order to
2943 * reestablish shared state. This includes all caps issued through
2944 * this session _and_ the snap_realm hierarchy. Because it's not
2945 * clear which snap realms the mds cares about, we send everything we
2946 * know about.. that ensures we'll then get any new info the
2947 * recovering MDS might have.
2949 * This is a relatively heavyweight operation, but it's rare.
2951 * called with mdsc->mutex held.
2953 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2954 struct ceph_mds_session *session)
2956 struct ceph_msg *reply;
2957 struct rb_node *p;
2958 int mds = session->s_mds;
2959 int err = -ENOMEM;
2960 int s_nr_caps;
2961 struct ceph_pagelist *pagelist;
2962 struct ceph_reconnect_state recon_state;
2964 pr_info("mds%d reconnect start\n", mds);
2966 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2967 if (!pagelist)
2968 goto fail_nopagelist;
2969 ceph_pagelist_init(pagelist);
2971 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2972 if (!reply)
2973 goto fail_nomsg;
2975 mutex_lock(&session->s_mutex);
2976 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2977 session->s_seq = 0;
2979 dout("session %p state %s\n", session,
2980 ceph_session_state_name(session->s_state));
2982 spin_lock(&session->s_gen_ttl_lock);
2983 session->s_cap_gen++;
2984 spin_unlock(&session->s_gen_ttl_lock);
2986 spin_lock(&session->s_cap_lock);
2987 /* don't know if session is readonly */
2988 session->s_readonly = 0;
2990 * notify __ceph_remove_cap() that we are composing cap reconnect.
2991 * If a cap get released before being added to the cap reconnect,
2992 * __ceph_remove_cap() should skip queuing cap release.
2994 session->s_cap_reconnect = 1;
2995 /* drop old cap expires; we're about to reestablish that state */
2996 cleanup_cap_releases(mdsc, session);
2998 /* trim unused caps to reduce MDS's cache rejoin time */
2999 if (mdsc->fsc->sb->s_root)
3000 shrink_dcache_parent(mdsc->fsc->sb->s_root);
3002 ceph_con_close(&session->s_con);
3003 ceph_con_open(&session->s_con,
3004 CEPH_ENTITY_TYPE_MDS, mds,
3005 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
3007 /* replay unsafe requests */
3008 replay_unsafe_requests(mdsc, session);
3010 down_read(&mdsc->snap_rwsem);
3012 /* traverse this session's caps */
3013 s_nr_caps = session->s_nr_caps;
3014 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
3015 if (err)
3016 goto fail;
3018 recon_state.nr_caps = 0;
3019 recon_state.pagelist = pagelist;
3020 if (session->s_con.peer_features & CEPH_FEATURE_MDSENC)
3021 recon_state.msg_version = 3;
3022 else if (session->s_con.peer_features & CEPH_FEATURE_FLOCK)
3023 recon_state.msg_version = 2;
3024 else
3025 recon_state.msg_version = 1;
3026 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
3027 if (err < 0)
3028 goto fail;
3030 spin_lock(&session->s_cap_lock);
3031 session->s_cap_reconnect = 0;
3032 spin_unlock(&session->s_cap_lock);
3035 * snaprealms. we provide mds with the ino, seq (version), and
3036 * parent for all of our realms. If the mds has any newer info,
3037 * it will tell us.
3039 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
3040 struct ceph_snap_realm *realm =
3041 rb_entry(p, struct ceph_snap_realm, node);
3042 struct ceph_mds_snaprealm_reconnect sr_rec;
3044 dout(" adding snap realm %llx seq %lld parent %llx\n",
3045 realm->ino, realm->seq, realm->parent_ino);
3046 sr_rec.ino = cpu_to_le64(realm->ino);
3047 sr_rec.seq = cpu_to_le64(realm->seq);
3048 sr_rec.parent = cpu_to_le64(realm->parent_ino);
3049 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3050 if (err)
3051 goto fail;
3054 reply->hdr.version = cpu_to_le16(recon_state.msg_version);
3056 /* raced with cap release? */
3057 if (s_nr_caps != recon_state.nr_caps) {
3058 struct page *page = list_first_entry(&pagelist->head,
3059 struct page, lru);
3060 __le32 *addr = kmap_atomic(page);
3061 *addr = cpu_to_le32(recon_state.nr_caps);
3062 kunmap_atomic(addr);
3065 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3066 ceph_msg_data_add_pagelist(reply, pagelist);
3068 ceph_early_kick_flushing_caps(mdsc, session);
3070 ceph_con_send(&session->s_con, reply);
3072 mutex_unlock(&session->s_mutex);
3074 mutex_lock(&mdsc->mutex);
3075 __wake_requests(mdsc, &session->s_waiting);
3076 mutex_unlock(&mdsc->mutex);
3078 up_read(&mdsc->snap_rwsem);
3079 return;
3081 fail:
3082 ceph_msg_put(reply);
3083 up_read(&mdsc->snap_rwsem);
3084 mutex_unlock(&session->s_mutex);
3085 fail_nomsg:
3086 ceph_pagelist_release(pagelist);
3087 fail_nopagelist:
3088 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3089 return;
3094 * compare old and new mdsmaps, kicking requests
3095 * and closing out old connections as necessary
3097 * called under mdsc->mutex.
3099 static void check_new_map(struct ceph_mds_client *mdsc,
3100 struct ceph_mdsmap *newmap,
3101 struct ceph_mdsmap *oldmap)
3103 int i;
3104 int oldstate, newstate;
3105 struct ceph_mds_session *s;
3107 dout("check_new_map new %u old %u\n",
3108 newmap->m_epoch, oldmap->m_epoch);
3110 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3111 if (mdsc->sessions[i] == NULL)
3112 continue;
3113 s = mdsc->sessions[i];
3114 oldstate = ceph_mdsmap_get_state(oldmap, i);
3115 newstate = ceph_mdsmap_get_state(newmap, i);
3117 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3118 i, ceph_mds_state_name(oldstate),
3119 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3120 ceph_mds_state_name(newstate),
3121 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3122 ceph_session_state_name(s->s_state));
3124 if (i >= newmap->m_max_mds ||
3125 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3126 ceph_mdsmap_get_addr(newmap, i),
3127 sizeof(struct ceph_entity_addr))) {
3128 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3129 /* the session never opened, just close it
3130 * out now */
3131 __wake_requests(mdsc, &s->s_waiting);
3132 __unregister_session(mdsc, s);
3133 } else {
3134 /* just close it */
3135 mutex_unlock(&mdsc->mutex);
3136 mutex_lock(&s->s_mutex);
3137 mutex_lock(&mdsc->mutex);
3138 ceph_con_close(&s->s_con);
3139 mutex_unlock(&s->s_mutex);
3140 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3142 } else if (oldstate == newstate) {
3143 continue; /* nothing new with this mds */
3147 * send reconnect?
3149 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3150 newstate >= CEPH_MDS_STATE_RECONNECT) {
3151 mutex_unlock(&mdsc->mutex);
3152 send_mds_reconnect(mdsc, s);
3153 mutex_lock(&mdsc->mutex);
3157 * kick request on any mds that has gone active.
3159 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3160 newstate >= CEPH_MDS_STATE_ACTIVE) {
3161 if (oldstate != CEPH_MDS_STATE_CREATING &&
3162 oldstate != CEPH_MDS_STATE_STARTING)
3163 pr_info("mds%d recovery completed\n", s->s_mds);
3164 kick_requests(mdsc, i);
3165 ceph_kick_flushing_caps(mdsc, s);
3166 wake_up_session_caps(s, 1);
3170 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3171 s = mdsc->sessions[i];
3172 if (!s)
3173 continue;
3174 if (!ceph_mdsmap_is_laggy(newmap, i))
3175 continue;
3176 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3177 s->s_state == CEPH_MDS_SESSION_HUNG ||
3178 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3179 dout(" connecting to export targets of laggy mds%d\n",
3181 __open_export_target_sessions(mdsc, s);
3189 * leases
3193 * caller must hold session s_mutex, dentry->d_lock
3195 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3197 struct ceph_dentry_info *di = ceph_dentry(dentry);
3199 ceph_put_mds_session(di->lease_session);
3200 di->lease_session = NULL;
3203 static void handle_lease(struct ceph_mds_client *mdsc,
3204 struct ceph_mds_session *session,
3205 struct ceph_msg *msg)
3207 struct super_block *sb = mdsc->fsc->sb;
3208 struct inode *inode;
3209 struct dentry *parent, *dentry;
3210 struct ceph_dentry_info *di;
3211 int mds = session->s_mds;
3212 struct ceph_mds_lease *h = msg->front.iov_base;
3213 u32 seq;
3214 struct ceph_vino vino;
3215 struct qstr dname;
3216 int release = 0;
3218 dout("handle_lease from mds%d\n", mds);
3220 /* decode */
3221 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3222 goto bad;
3223 vino.ino = le64_to_cpu(h->ino);
3224 vino.snap = CEPH_NOSNAP;
3225 seq = le32_to_cpu(h->seq);
3226 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3227 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3228 if (dname.len != get_unaligned_le32(h+1))
3229 goto bad;
3231 /* lookup inode */
3232 inode = ceph_find_inode(sb, vino);
3233 dout("handle_lease %s, ino %llx %p %.*s\n",
3234 ceph_lease_op_name(h->action), vino.ino, inode,
3235 dname.len, dname.name);
3237 mutex_lock(&session->s_mutex);
3238 session->s_seq++;
3240 if (inode == NULL) {
3241 dout("handle_lease no inode %llx\n", vino.ino);
3242 goto release;
3245 /* dentry */
3246 parent = d_find_alias(inode);
3247 if (!parent) {
3248 dout("no parent dentry on inode %p\n", inode);
3249 WARN_ON(1);
3250 goto release; /* hrm... */
3252 dname.hash = full_name_hash(parent, dname.name, dname.len);
3253 dentry = d_lookup(parent, &dname);
3254 dput(parent);
3255 if (!dentry)
3256 goto release;
3258 spin_lock(&dentry->d_lock);
3259 di = ceph_dentry(dentry);
3260 switch (h->action) {
3261 case CEPH_MDS_LEASE_REVOKE:
3262 if (di->lease_session == session) {
3263 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3264 h->seq = cpu_to_le32(di->lease_seq);
3265 __ceph_mdsc_drop_dentry_lease(dentry);
3267 release = 1;
3268 break;
3270 case CEPH_MDS_LEASE_RENEW:
3271 if (di->lease_session == session &&
3272 di->lease_gen == session->s_cap_gen &&
3273 di->lease_renew_from &&
3274 di->lease_renew_after == 0) {
3275 unsigned long duration =
3276 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3278 di->lease_seq = seq;
3279 di->time = di->lease_renew_from + duration;
3280 di->lease_renew_after = di->lease_renew_from +
3281 (duration >> 1);
3282 di->lease_renew_from = 0;
3284 break;
3286 spin_unlock(&dentry->d_lock);
3287 dput(dentry);
3289 if (!release)
3290 goto out;
3292 release:
3293 /* let's just reuse the same message */
3294 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3295 ceph_msg_get(msg);
3296 ceph_con_send(&session->s_con, msg);
3298 out:
3299 iput(inode);
3300 mutex_unlock(&session->s_mutex);
3301 return;
3303 bad:
3304 pr_err("corrupt lease message\n");
3305 ceph_msg_dump(msg);
3308 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3309 struct inode *inode,
3310 struct dentry *dentry, char action,
3311 u32 seq)
3313 struct ceph_msg *msg;
3314 struct ceph_mds_lease *lease;
3315 int len = sizeof(*lease) + sizeof(u32);
3316 int dnamelen = 0;
3318 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3319 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3320 dnamelen = dentry->d_name.len;
3321 len += dnamelen;
3323 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3324 if (!msg)
3325 return;
3326 lease = msg->front.iov_base;
3327 lease->action = action;
3328 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3329 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3330 lease->seq = cpu_to_le32(seq);
3331 put_unaligned_le32(dnamelen, lease + 1);
3332 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3335 * if this is a preemptive lease RELEASE, no need to
3336 * flush request stream, since the actual request will
3337 * soon follow.
3339 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3341 ceph_con_send(&session->s_con, msg);
3345 * drop all leases (and dentry refs) in preparation for umount
3347 static void drop_leases(struct ceph_mds_client *mdsc)
3349 int i;
3351 dout("drop_leases\n");
3352 mutex_lock(&mdsc->mutex);
3353 for (i = 0; i < mdsc->max_sessions; i++) {
3354 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3355 if (!s)
3356 continue;
3357 mutex_unlock(&mdsc->mutex);
3358 mutex_lock(&s->s_mutex);
3359 mutex_unlock(&s->s_mutex);
3360 ceph_put_mds_session(s);
3361 mutex_lock(&mdsc->mutex);
3363 mutex_unlock(&mdsc->mutex);
3369 * delayed work -- periodically trim expired leases, renew caps with mds
3371 static void schedule_delayed(struct ceph_mds_client *mdsc)
3373 int delay = 5;
3374 unsigned hz = round_jiffies_relative(HZ * delay);
3375 schedule_delayed_work(&mdsc->delayed_work, hz);
3378 static void delayed_work(struct work_struct *work)
3380 int i;
3381 struct ceph_mds_client *mdsc =
3382 container_of(work, struct ceph_mds_client, delayed_work.work);
3383 int renew_interval;
3384 int renew_caps;
3386 dout("mdsc delayed_work\n");
3387 ceph_check_delayed_caps(mdsc);
3389 mutex_lock(&mdsc->mutex);
3390 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3391 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3392 mdsc->last_renew_caps);
3393 if (renew_caps)
3394 mdsc->last_renew_caps = jiffies;
3396 for (i = 0; i < mdsc->max_sessions; i++) {
3397 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3398 if (s == NULL)
3399 continue;
3400 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3401 dout("resending session close request for mds%d\n",
3402 s->s_mds);
3403 request_close_session(mdsc, s);
3404 ceph_put_mds_session(s);
3405 continue;
3407 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3408 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3409 s->s_state = CEPH_MDS_SESSION_HUNG;
3410 pr_info("mds%d hung\n", s->s_mds);
3413 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3414 /* this mds is failed or recovering, just wait */
3415 ceph_put_mds_session(s);
3416 continue;
3418 mutex_unlock(&mdsc->mutex);
3420 mutex_lock(&s->s_mutex);
3421 if (renew_caps)
3422 send_renew_caps(mdsc, s);
3423 else
3424 ceph_con_keepalive(&s->s_con);
3425 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3426 s->s_state == CEPH_MDS_SESSION_HUNG)
3427 ceph_send_cap_releases(mdsc, s);
3428 mutex_unlock(&s->s_mutex);
3429 ceph_put_mds_session(s);
3431 mutex_lock(&mdsc->mutex);
3433 mutex_unlock(&mdsc->mutex);
3435 schedule_delayed(mdsc);
3438 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3441 struct ceph_mds_client *mdsc;
3443 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3444 if (!mdsc)
3445 return -ENOMEM;
3446 mdsc->fsc = fsc;
3447 fsc->mdsc = mdsc;
3448 mutex_init(&mdsc->mutex);
3449 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3450 if (mdsc->mdsmap == NULL) {
3451 kfree(mdsc);
3452 return -ENOMEM;
3455 init_completion(&mdsc->safe_umount_waiters);
3456 init_waitqueue_head(&mdsc->session_close_wq);
3457 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3458 mdsc->sessions = NULL;
3459 atomic_set(&mdsc->num_sessions, 0);
3460 mdsc->max_sessions = 0;
3461 mdsc->stopping = 0;
3462 mdsc->last_snap_seq = 0;
3463 init_rwsem(&mdsc->snap_rwsem);
3464 mdsc->snap_realms = RB_ROOT;
3465 INIT_LIST_HEAD(&mdsc->snap_empty);
3466 spin_lock_init(&mdsc->snap_empty_lock);
3467 mdsc->last_tid = 0;
3468 mdsc->oldest_tid = 0;
3469 mdsc->request_tree = RB_ROOT;
3470 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3471 mdsc->last_renew_caps = jiffies;
3472 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3473 spin_lock_init(&mdsc->cap_delay_lock);
3474 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3475 spin_lock_init(&mdsc->snap_flush_lock);
3476 mdsc->last_cap_flush_tid = 1;
3477 INIT_LIST_HEAD(&mdsc->cap_flush_list);
3478 INIT_LIST_HEAD(&mdsc->cap_dirty);
3479 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3480 mdsc->num_cap_flushing = 0;
3481 spin_lock_init(&mdsc->cap_dirty_lock);
3482 init_waitqueue_head(&mdsc->cap_flushing_wq);
3483 spin_lock_init(&mdsc->dentry_lru_lock);
3484 INIT_LIST_HEAD(&mdsc->dentry_lru);
3486 ceph_caps_init(mdsc);
3487 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3489 init_rwsem(&mdsc->pool_perm_rwsem);
3490 mdsc->pool_perm_tree = RB_ROOT;
3492 return 0;
3496 * Wait for safe replies on open mds requests. If we time out, drop
3497 * all requests from the tree to avoid dangling dentry refs.
3499 static void wait_requests(struct ceph_mds_client *mdsc)
3501 struct ceph_options *opts = mdsc->fsc->client->options;
3502 struct ceph_mds_request *req;
3504 mutex_lock(&mdsc->mutex);
3505 if (__get_oldest_req(mdsc)) {
3506 mutex_unlock(&mdsc->mutex);
3508 dout("wait_requests waiting for requests\n");
3509 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3510 ceph_timeout_jiffies(opts->mount_timeout));
3512 /* tear down remaining requests */
3513 mutex_lock(&mdsc->mutex);
3514 while ((req = __get_oldest_req(mdsc))) {
3515 dout("wait_requests timed out on tid %llu\n",
3516 req->r_tid);
3517 __unregister_request(mdsc, req);
3520 mutex_unlock(&mdsc->mutex);
3521 dout("wait_requests done\n");
3525 * called before mount is ro, and before dentries are torn down.
3526 * (hmm, does this still race with new lookups?)
3528 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3530 dout("pre_umount\n");
3531 mdsc->stopping = 1;
3533 drop_leases(mdsc);
3534 ceph_flush_dirty_caps(mdsc);
3535 wait_requests(mdsc);
3538 * wait for reply handlers to drop their request refs and
3539 * their inode/dcache refs
3541 ceph_msgr_flush();
3545 * wait for all write mds requests to flush.
3547 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3549 struct ceph_mds_request *req = NULL, *nextreq;
3550 struct rb_node *n;
3552 mutex_lock(&mdsc->mutex);
3553 dout("wait_unsafe_requests want %lld\n", want_tid);
3554 restart:
3555 req = __get_oldest_req(mdsc);
3556 while (req && req->r_tid <= want_tid) {
3557 /* find next request */
3558 n = rb_next(&req->r_node);
3559 if (n)
3560 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3561 else
3562 nextreq = NULL;
3563 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3564 (req->r_op & CEPH_MDS_OP_WRITE)) {
3565 /* write op */
3566 ceph_mdsc_get_request(req);
3567 if (nextreq)
3568 ceph_mdsc_get_request(nextreq);
3569 mutex_unlock(&mdsc->mutex);
3570 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3571 req->r_tid, want_tid);
3572 wait_for_completion(&req->r_safe_completion);
3573 mutex_lock(&mdsc->mutex);
3574 ceph_mdsc_put_request(req);
3575 if (!nextreq)
3576 break; /* next dne before, so we're done! */
3577 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3578 /* next request was removed from tree */
3579 ceph_mdsc_put_request(nextreq);
3580 goto restart;
3582 ceph_mdsc_put_request(nextreq); /* won't go away */
3584 req = nextreq;
3586 mutex_unlock(&mdsc->mutex);
3587 dout("wait_unsafe_requests done\n");
3590 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3592 u64 want_tid, want_flush;
3594 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3595 return;
3597 dout("sync\n");
3598 mutex_lock(&mdsc->mutex);
3599 want_tid = mdsc->last_tid;
3600 mutex_unlock(&mdsc->mutex);
3602 ceph_flush_dirty_caps(mdsc);
3603 spin_lock(&mdsc->cap_dirty_lock);
3604 want_flush = mdsc->last_cap_flush_tid;
3605 if (!list_empty(&mdsc->cap_flush_list)) {
3606 struct ceph_cap_flush *cf =
3607 list_last_entry(&mdsc->cap_flush_list,
3608 struct ceph_cap_flush, g_list);
3609 cf->wake = true;
3611 spin_unlock(&mdsc->cap_dirty_lock);
3613 dout("sync want tid %lld flush_seq %lld\n",
3614 want_tid, want_flush);
3616 wait_unsafe_requests(mdsc, want_tid);
3617 wait_caps_flush(mdsc, want_flush);
3621 * true if all sessions are closed, or we force unmount
3623 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
3625 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3626 return true;
3627 return atomic_read(&mdsc->num_sessions) <= skipped;
3631 * called after sb is ro.
3633 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3635 struct ceph_options *opts = mdsc->fsc->client->options;
3636 struct ceph_mds_session *session;
3637 int i;
3638 int skipped = 0;
3640 dout("close_sessions\n");
3642 /* close sessions */
3643 mutex_lock(&mdsc->mutex);
3644 for (i = 0; i < mdsc->max_sessions; i++) {
3645 session = __ceph_lookup_mds_session(mdsc, i);
3646 if (!session)
3647 continue;
3648 mutex_unlock(&mdsc->mutex);
3649 mutex_lock(&session->s_mutex);
3650 if (__close_session(mdsc, session) <= 0)
3651 skipped++;
3652 mutex_unlock(&session->s_mutex);
3653 ceph_put_mds_session(session);
3654 mutex_lock(&mdsc->mutex);
3656 mutex_unlock(&mdsc->mutex);
3658 dout("waiting for sessions to close\n");
3659 wait_event_timeout(mdsc->session_close_wq,
3660 done_closing_sessions(mdsc, skipped),
3661 ceph_timeout_jiffies(opts->mount_timeout));
3663 /* tear down remaining sessions */
3664 mutex_lock(&mdsc->mutex);
3665 for (i = 0; i < mdsc->max_sessions; i++) {
3666 if (mdsc->sessions[i]) {
3667 session = get_session(mdsc->sessions[i]);
3668 __unregister_session(mdsc, session);
3669 mutex_unlock(&mdsc->mutex);
3670 mutex_lock(&session->s_mutex);
3671 remove_session_caps(session);
3672 mutex_unlock(&session->s_mutex);
3673 ceph_put_mds_session(session);
3674 mutex_lock(&mdsc->mutex);
3677 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3678 mutex_unlock(&mdsc->mutex);
3680 ceph_cleanup_empty_realms(mdsc);
3682 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3684 dout("stopped\n");
3687 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3689 struct ceph_mds_session *session;
3690 int mds;
3692 dout("force umount\n");
3694 mutex_lock(&mdsc->mutex);
3695 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3696 session = __ceph_lookup_mds_session(mdsc, mds);
3697 if (!session)
3698 continue;
3699 mutex_unlock(&mdsc->mutex);
3700 mutex_lock(&session->s_mutex);
3701 __close_session(mdsc, session);
3702 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3703 cleanup_session_requests(mdsc, session);
3704 remove_session_caps(session);
3706 mutex_unlock(&session->s_mutex);
3707 ceph_put_mds_session(session);
3708 mutex_lock(&mdsc->mutex);
3709 kick_requests(mdsc, mds);
3711 __wake_requests(mdsc, &mdsc->waiting_for_map);
3712 mutex_unlock(&mdsc->mutex);
3715 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3717 dout("stop\n");
3718 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3719 if (mdsc->mdsmap)
3720 ceph_mdsmap_destroy(mdsc->mdsmap);
3721 kfree(mdsc->sessions);
3722 ceph_caps_finalize(mdsc);
3723 ceph_pool_perm_destroy(mdsc);
3726 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3728 struct ceph_mds_client *mdsc = fsc->mdsc;
3730 dout("mdsc_destroy %p\n", mdsc);
3731 ceph_mdsc_stop(mdsc);
3733 /* flush out any connection work with references to us */
3734 ceph_msgr_flush();
3736 fsc->mdsc = NULL;
3737 kfree(mdsc);
3738 dout("mdsc_destroy %p done\n", mdsc);
3741 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3743 struct ceph_fs_client *fsc = mdsc->fsc;
3744 const char *mds_namespace = fsc->mount_options->mds_namespace;
3745 void *p = msg->front.iov_base;
3746 void *end = p + msg->front.iov_len;
3747 u32 epoch;
3748 u32 map_len;
3749 u32 num_fs;
3750 u32 mount_fscid = (u32)-1;
3751 u8 struct_v, struct_cv;
3752 int err = -EINVAL;
3754 ceph_decode_need(&p, end, sizeof(u32), bad);
3755 epoch = ceph_decode_32(&p);
3757 dout("handle_fsmap epoch %u\n", epoch);
3759 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3760 struct_v = ceph_decode_8(&p);
3761 struct_cv = ceph_decode_8(&p);
3762 map_len = ceph_decode_32(&p);
3764 ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3765 p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3767 num_fs = ceph_decode_32(&p);
3768 while (num_fs-- > 0) {
3769 void *info_p, *info_end;
3770 u32 info_len;
3771 u8 info_v, info_cv;
3772 u32 fscid, namelen;
3774 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3775 info_v = ceph_decode_8(&p);
3776 info_cv = ceph_decode_8(&p);
3777 info_len = ceph_decode_32(&p);
3778 ceph_decode_need(&p, end, info_len, bad);
3779 info_p = p;
3780 info_end = p + info_len;
3781 p = info_end;
3783 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3784 fscid = ceph_decode_32(&info_p);
3785 namelen = ceph_decode_32(&info_p);
3786 ceph_decode_need(&info_p, info_end, namelen, bad);
3788 if (mds_namespace &&
3789 strlen(mds_namespace) == namelen &&
3790 !strncmp(mds_namespace, (char *)info_p, namelen)) {
3791 mount_fscid = fscid;
3792 break;
3796 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3797 if (mount_fscid != (u32)-1) {
3798 fsc->client->monc.fs_cluster_id = mount_fscid;
3799 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
3800 0, true);
3801 ceph_monc_renew_subs(&fsc->client->monc);
3802 } else {
3803 err = -ENOENT;
3804 goto err_out;
3806 return;
3807 bad:
3808 pr_err("error decoding fsmap\n");
3809 err_out:
3810 mutex_lock(&mdsc->mutex);
3811 mdsc->mdsmap_err = -ENOENT;
3812 __wake_requests(mdsc, &mdsc->waiting_for_map);
3813 mutex_unlock(&mdsc->mutex);
3814 return;
3818 * handle mds map update.
3820 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3822 u32 epoch;
3823 u32 maplen;
3824 void *p = msg->front.iov_base;
3825 void *end = p + msg->front.iov_len;
3826 struct ceph_mdsmap *newmap, *oldmap;
3827 struct ceph_fsid fsid;
3828 int err = -EINVAL;
3830 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3831 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3832 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3833 return;
3834 epoch = ceph_decode_32(&p);
3835 maplen = ceph_decode_32(&p);
3836 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3838 /* do we need it? */
3839 mutex_lock(&mdsc->mutex);
3840 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3841 dout("handle_map epoch %u <= our %u\n",
3842 epoch, mdsc->mdsmap->m_epoch);
3843 mutex_unlock(&mdsc->mutex);
3844 return;
3847 newmap = ceph_mdsmap_decode(&p, end);
3848 if (IS_ERR(newmap)) {
3849 err = PTR_ERR(newmap);
3850 goto bad_unlock;
3853 /* swap into place */
3854 if (mdsc->mdsmap) {
3855 oldmap = mdsc->mdsmap;
3856 mdsc->mdsmap = newmap;
3857 check_new_map(mdsc, newmap, oldmap);
3858 ceph_mdsmap_destroy(oldmap);
3859 } else {
3860 mdsc->mdsmap = newmap; /* first mds map */
3862 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3864 __wake_requests(mdsc, &mdsc->waiting_for_map);
3865 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3866 mdsc->mdsmap->m_epoch);
3868 mutex_unlock(&mdsc->mutex);
3869 schedule_delayed(mdsc);
3870 return;
3872 bad_unlock:
3873 mutex_unlock(&mdsc->mutex);
3874 bad:
3875 pr_err("error decoding mdsmap %d\n", err);
3876 return;
3879 static struct ceph_connection *con_get(struct ceph_connection *con)
3881 struct ceph_mds_session *s = con->private;
3883 if (get_session(s)) {
3884 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3885 return con;
3887 dout("mdsc con_get %p FAIL\n", s);
3888 return NULL;
3891 static void con_put(struct ceph_connection *con)
3893 struct ceph_mds_session *s = con->private;
3895 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3896 ceph_put_mds_session(s);
3900 * if the client is unresponsive for long enough, the mds will kill
3901 * the session entirely.
3903 static void peer_reset(struct ceph_connection *con)
3905 struct ceph_mds_session *s = con->private;
3906 struct ceph_mds_client *mdsc = s->s_mdsc;
3908 pr_warn("mds%d closed our session\n", s->s_mds);
3909 send_mds_reconnect(mdsc, s);
3912 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3914 struct ceph_mds_session *s = con->private;
3915 struct ceph_mds_client *mdsc = s->s_mdsc;
3916 int type = le16_to_cpu(msg->hdr.type);
3918 mutex_lock(&mdsc->mutex);
3919 if (__verify_registered_session(mdsc, s) < 0) {
3920 mutex_unlock(&mdsc->mutex);
3921 goto out;
3923 mutex_unlock(&mdsc->mutex);
3925 switch (type) {
3926 case CEPH_MSG_MDS_MAP:
3927 ceph_mdsc_handle_mdsmap(mdsc, msg);
3928 break;
3929 case CEPH_MSG_FS_MAP_USER:
3930 ceph_mdsc_handle_fsmap(mdsc, msg);
3931 break;
3932 case CEPH_MSG_CLIENT_SESSION:
3933 handle_session(s, msg);
3934 break;
3935 case CEPH_MSG_CLIENT_REPLY:
3936 handle_reply(s, msg);
3937 break;
3938 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3939 handle_forward(mdsc, s, msg);
3940 break;
3941 case CEPH_MSG_CLIENT_CAPS:
3942 ceph_handle_caps(s, msg);
3943 break;
3944 case CEPH_MSG_CLIENT_SNAP:
3945 ceph_handle_snap(mdsc, s, msg);
3946 break;
3947 case CEPH_MSG_CLIENT_LEASE:
3948 handle_lease(mdsc, s, msg);
3949 break;
3951 default:
3952 pr_err("received unknown message type %d %s\n", type,
3953 ceph_msg_type_name(type));
3955 out:
3956 ceph_msg_put(msg);
3960 * authentication
3964 * Note: returned pointer is the address of a structure that's
3965 * managed separately. Caller must *not* attempt to free it.
3967 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3968 int *proto, int force_new)
3970 struct ceph_mds_session *s = con->private;
3971 struct ceph_mds_client *mdsc = s->s_mdsc;
3972 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3973 struct ceph_auth_handshake *auth = &s->s_auth;
3975 if (force_new && auth->authorizer) {
3976 ceph_auth_destroy_authorizer(auth->authorizer);
3977 auth->authorizer = NULL;
3979 if (!auth->authorizer) {
3980 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3981 auth);
3982 if (ret)
3983 return ERR_PTR(ret);
3984 } else {
3985 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3986 auth);
3987 if (ret)
3988 return ERR_PTR(ret);
3990 *proto = ac->protocol;
3992 return auth;
3996 static int verify_authorizer_reply(struct ceph_connection *con)
3998 struct ceph_mds_session *s = con->private;
3999 struct ceph_mds_client *mdsc = s->s_mdsc;
4000 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4002 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer);
4005 static int invalidate_authorizer(struct ceph_connection *con)
4007 struct ceph_mds_session *s = con->private;
4008 struct ceph_mds_client *mdsc = s->s_mdsc;
4009 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4011 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
4013 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
4016 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
4017 struct ceph_msg_header *hdr, int *skip)
4019 struct ceph_msg *msg;
4020 int type = (int) le16_to_cpu(hdr->type);
4021 int front_len = (int) le32_to_cpu(hdr->front_len);
4023 if (con->in_msg)
4024 return con->in_msg;
4026 *skip = 0;
4027 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
4028 if (!msg) {
4029 pr_err("unable to allocate msg type %d len %d\n",
4030 type, front_len);
4031 return NULL;
4034 return msg;
4037 static int mds_sign_message(struct ceph_msg *msg)
4039 struct ceph_mds_session *s = msg->con->private;
4040 struct ceph_auth_handshake *auth = &s->s_auth;
4042 return ceph_auth_sign_message(auth, msg);
4045 static int mds_check_message_signature(struct ceph_msg *msg)
4047 struct ceph_mds_session *s = msg->con->private;
4048 struct ceph_auth_handshake *auth = &s->s_auth;
4050 return ceph_auth_check_message_signature(auth, msg);
4053 static const struct ceph_connection_operations mds_con_ops = {
4054 .get = con_get,
4055 .put = con_put,
4056 .dispatch = dispatch,
4057 .get_authorizer = get_authorizer,
4058 .verify_authorizer_reply = verify_authorizer_reply,
4059 .invalidate_authorizer = invalidate_authorizer,
4060 .peer_reset = peer_reset,
4061 .alloc_msg = mds_alloc_msg,
4062 .sign_message = mds_sign_message,
4063 .check_message_signature = mds_check_message_signature,
4066 /* eof */