x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blob0339daf4ca02fac4090fc59783bbfa745bccc9eb
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 sbi->sb->s_flags |= MS_RDONLY;
33 if (!end_io)
34 f2fs_flush_merged_bios(sbi);
38 * We guarantee no failure on the returned page.
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
57 * We guarantee no failure on the returned page.
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76 repeat:
77 page = f2fs_grab_cache_page(mapping, index, false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
82 if (PageUptodate(page))
83 goto out;
85 fio.page = page;
87 if (f2fs_submit_page_bio(&fio)) {
88 f2fs_put_page(page, 1);
89 goto repeat;
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
101 * meta page.
103 if (unlikely(!PageUptodate(page)))
104 f2fs_stop_checkpoint(sbi, false);
105 out:
106 return page;
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 return __get_meta_page(sbi, index, true);
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
117 return __get_meta_page(sbi, index, false);
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
122 switch (type) {
123 case META_NAT:
124 break;
125 case META_SIT:
126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 return false;
128 break;
129 case META_SSA:
130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 blkaddr < SM_I(sbi)->ssa_blkaddr))
132 return false;
133 break;
134 case META_CP:
135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 blkaddr < __start_cp_addr(sbi)))
137 return false;
138 break;
139 case META_POR:
140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 blkaddr < MAIN_BLKADDR(sbi)))
142 return false;
143 break;
144 default:
145 BUG();
148 return true;
152 * Readahead CP/NAT/SIT/SSA pages
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 int type, bool sync)
157 struct page *page;
158 block_t blkno = start;
159 struct f2fs_io_info fio = {
160 .sbi = sbi,
161 .type = META,
162 .op = REQ_OP_READ,
163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 .encrypted_page = NULL,
166 struct blk_plug plug;
168 if (unlikely(type == META_POR))
169 fio.op_flags &= ~REQ_META;
171 blk_start_plug(&plug);
172 for (; nrpages-- > 0; blkno++) {
174 if (!is_valid_blkaddr(sbi, blkno, type))
175 goto out;
177 switch (type) {
178 case META_NAT:
179 if (unlikely(blkno >=
180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 blkno = 0;
182 /* get nat block addr */
183 fio.new_blkaddr = current_nat_addr(sbi,
184 blkno * NAT_ENTRY_PER_BLOCK);
185 break;
186 case META_SIT:
187 /* get sit block addr */
188 fio.new_blkaddr = current_sit_addr(sbi,
189 blkno * SIT_ENTRY_PER_BLOCK);
190 break;
191 case META_SSA:
192 case META_CP:
193 case META_POR:
194 fio.new_blkaddr = blkno;
195 break;
196 default:
197 BUG();
200 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 fio.new_blkaddr, false);
202 if (!page)
203 continue;
204 if (PageUptodate(page)) {
205 f2fs_put_page(page, 1);
206 continue;
209 fio.page = page;
210 fio.old_blkaddr = fio.new_blkaddr;
211 f2fs_submit_page_mbio(&fio);
212 f2fs_put_page(page, 0);
214 out:
215 f2fs_submit_merged_bio(sbi, META, READ);
216 blk_finish_plug(&plug);
217 return blkno - start;
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
222 struct page *page;
223 bool readahead = false;
225 page = find_get_page(META_MAPPING(sbi), index);
226 if (!page || !PageUptodate(page))
227 readahead = true;
228 f2fs_put_page(page, 0);
230 if (readahead)
231 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
234 static int f2fs_write_meta_page(struct page *page,
235 struct writeback_control *wbc)
237 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
239 trace_f2fs_writepage(page, META);
241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 goto redirty_out;
243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 goto redirty_out;
245 if (unlikely(f2fs_cp_error(sbi)))
246 goto redirty_out;
248 write_meta_page(sbi, page);
249 dec_page_count(sbi, F2FS_DIRTY_META);
251 if (wbc->for_reclaim)
252 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253 0, page->index, META, WRITE);
255 unlock_page(page);
257 if (unlikely(f2fs_cp_error(sbi)))
258 f2fs_submit_merged_bio(sbi, META, WRITE);
260 return 0;
262 redirty_out:
263 redirty_page_for_writepage(wbc, page);
264 return AOP_WRITEPAGE_ACTIVATE;
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268 struct writeback_control *wbc)
270 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271 long diff, written;
273 /* collect a number of dirty meta pages and write together */
274 if (wbc->for_kupdate ||
275 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276 goto skip_write;
278 trace_f2fs_writepages(mapping->host, wbc, META);
280 /* if mounting is failed, skip writing node pages */
281 mutex_lock(&sbi->cp_mutex);
282 diff = nr_pages_to_write(sbi, META, wbc);
283 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
284 mutex_unlock(&sbi->cp_mutex);
285 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
286 return 0;
288 skip_write:
289 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
290 trace_f2fs_writepages(mapping->host, wbc, META);
291 return 0;
294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
295 long nr_to_write)
297 struct address_space *mapping = META_MAPPING(sbi);
298 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
299 struct pagevec pvec;
300 long nwritten = 0;
301 struct writeback_control wbc = {
302 .for_reclaim = 0,
304 struct blk_plug plug;
306 pagevec_init(&pvec, 0);
308 blk_start_plug(&plug);
310 while (index <= end) {
311 int i, nr_pages;
312 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
313 PAGECACHE_TAG_DIRTY,
314 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
315 if (unlikely(nr_pages == 0))
316 break;
318 for (i = 0; i < nr_pages; i++) {
319 struct page *page = pvec.pages[i];
321 if (prev == ULONG_MAX)
322 prev = page->index - 1;
323 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
324 pagevec_release(&pvec);
325 goto stop;
328 lock_page(page);
330 if (unlikely(page->mapping != mapping)) {
331 continue_unlock:
332 unlock_page(page);
333 continue;
335 if (!PageDirty(page)) {
336 /* someone wrote it for us */
337 goto continue_unlock;
340 f2fs_wait_on_page_writeback(page, META, true);
342 BUG_ON(PageWriteback(page));
343 if (!clear_page_dirty_for_io(page))
344 goto continue_unlock;
346 if (mapping->a_ops->writepage(page, &wbc)) {
347 unlock_page(page);
348 break;
350 nwritten++;
351 prev = page->index;
352 if (unlikely(nwritten >= nr_to_write))
353 break;
355 pagevec_release(&pvec);
356 cond_resched();
358 stop:
359 if (nwritten)
360 f2fs_submit_merged_bio(sbi, type, WRITE);
362 blk_finish_plug(&plug);
364 return nwritten;
367 static int f2fs_set_meta_page_dirty(struct page *page)
369 trace_f2fs_set_page_dirty(page, META);
371 if (!PageUptodate(page))
372 SetPageUptodate(page);
373 if (!PageDirty(page)) {
374 f2fs_set_page_dirty_nobuffers(page);
375 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
376 SetPagePrivate(page);
377 f2fs_trace_pid(page);
378 return 1;
380 return 0;
383 const struct address_space_operations f2fs_meta_aops = {
384 .writepage = f2fs_write_meta_page,
385 .writepages = f2fs_write_meta_pages,
386 .set_page_dirty = f2fs_set_meta_page_dirty,
387 .invalidatepage = f2fs_invalidate_page,
388 .releasepage = f2fs_release_page,
389 #ifdef CONFIG_MIGRATION
390 .migratepage = f2fs_migrate_page,
391 #endif
394 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
396 struct inode_management *im = &sbi->im[type];
397 struct ino_entry *e, *tmp;
399 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
400 retry:
401 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
403 spin_lock(&im->ino_lock);
404 e = radix_tree_lookup(&im->ino_root, ino);
405 if (!e) {
406 e = tmp;
407 if (radix_tree_insert(&im->ino_root, ino, e)) {
408 spin_unlock(&im->ino_lock);
409 radix_tree_preload_end();
410 goto retry;
412 memset(e, 0, sizeof(struct ino_entry));
413 e->ino = ino;
415 list_add_tail(&e->list, &im->ino_list);
416 if (type != ORPHAN_INO)
417 im->ino_num++;
419 spin_unlock(&im->ino_lock);
420 radix_tree_preload_end();
422 if (e != tmp)
423 kmem_cache_free(ino_entry_slab, tmp);
426 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 struct inode_management *im = &sbi->im[type];
429 struct ino_entry *e;
431 spin_lock(&im->ino_lock);
432 e = radix_tree_lookup(&im->ino_root, ino);
433 if (e) {
434 list_del(&e->list);
435 radix_tree_delete(&im->ino_root, ino);
436 im->ino_num--;
437 spin_unlock(&im->ino_lock);
438 kmem_cache_free(ino_entry_slab, e);
439 return;
441 spin_unlock(&im->ino_lock);
444 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
446 /* add new dirty ino entry into list */
447 __add_ino_entry(sbi, ino, type);
450 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
452 /* remove dirty ino entry from list */
453 __remove_ino_entry(sbi, ino, type);
456 /* mode should be APPEND_INO or UPDATE_INO */
457 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
459 struct inode_management *im = &sbi->im[mode];
460 struct ino_entry *e;
462 spin_lock(&im->ino_lock);
463 e = radix_tree_lookup(&im->ino_root, ino);
464 spin_unlock(&im->ino_lock);
465 return e ? true : false;
468 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
470 struct ino_entry *e, *tmp;
471 int i;
473 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
474 struct inode_management *im = &sbi->im[i];
476 spin_lock(&im->ino_lock);
477 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
478 list_del(&e->list);
479 radix_tree_delete(&im->ino_root, e->ino);
480 kmem_cache_free(ino_entry_slab, e);
481 im->ino_num--;
483 spin_unlock(&im->ino_lock);
487 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
489 struct inode_management *im = &sbi->im[ORPHAN_INO];
490 int err = 0;
492 spin_lock(&im->ino_lock);
494 #ifdef CONFIG_F2FS_FAULT_INJECTION
495 if (time_to_inject(sbi, FAULT_ORPHAN)) {
496 spin_unlock(&im->ino_lock);
497 f2fs_show_injection_info(FAULT_ORPHAN);
498 return -ENOSPC;
500 #endif
501 if (unlikely(im->ino_num >= sbi->max_orphans))
502 err = -ENOSPC;
503 else
504 im->ino_num++;
505 spin_unlock(&im->ino_lock);
507 return err;
510 void release_orphan_inode(struct f2fs_sb_info *sbi)
512 struct inode_management *im = &sbi->im[ORPHAN_INO];
514 spin_lock(&im->ino_lock);
515 f2fs_bug_on(sbi, im->ino_num == 0);
516 im->ino_num--;
517 spin_unlock(&im->ino_lock);
520 void add_orphan_inode(struct inode *inode)
522 /* add new orphan ino entry into list */
523 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
524 update_inode_page(inode);
527 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
529 /* remove orphan entry from orphan list */
530 __remove_ino_entry(sbi, ino, ORPHAN_INO);
533 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
535 struct inode *inode;
536 struct node_info ni;
537 int err = acquire_orphan_inode(sbi);
539 if (err) {
540 set_sbi_flag(sbi, SBI_NEED_FSCK);
541 f2fs_msg(sbi->sb, KERN_WARNING,
542 "%s: orphan failed (ino=%x), run fsck to fix.",
543 __func__, ino);
544 return err;
547 __add_ino_entry(sbi, ino, ORPHAN_INO);
549 inode = f2fs_iget_retry(sbi->sb, ino);
550 if (IS_ERR(inode)) {
552 * there should be a bug that we can't find the entry
553 * to orphan inode.
555 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
556 return PTR_ERR(inode);
559 clear_nlink(inode);
561 /* truncate all the data during iput */
562 iput(inode);
564 get_node_info(sbi, ino, &ni);
566 /* ENOMEM was fully retried in f2fs_evict_inode. */
567 if (ni.blk_addr != NULL_ADDR) {
568 set_sbi_flag(sbi, SBI_NEED_FSCK);
569 f2fs_msg(sbi->sb, KERN_WARNING,
570 "%s: orphan failed (ino=%x), run fsck to fix.",
571 __func__, ino);
572 return -EIO;
574 __remove_ino_entry(sbi, ino, ORPHAN_INO);
575 return 0;
578 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
580 block_t start_blk, orphan_blocks, i, j;
581 int err;
583 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
584 return 0;
586 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
587 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
589 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
591 for (i = 0; i < orphan_blocks; i++) {
592 struct page *page = get_meta_page(sbi, start_blk + i);
593 struct f2fs_orphan_block *orphan_blk;
595 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
596 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
597 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
598 err = recover_orphan_inode(sbi, ino);
599 if (err) {
600 f2fs_put_page(page, 1);
601 return err;
604 f2fs_put_page(page, 1);
606 /* clear Orphan Flag */
607 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
608 return 0;
611 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
613 struct list_head *head;
614 struct f2fs_orphan_block *orphan_blk = NULL;
615 unsigned int nentries = 0;
616 unsigned short index = 1;
617 unsigned short orphan_blocks;
618 struct page *page = NULL;
619 struct ino_entry *orphan = NULL;
620 struct inode_management *im = &sbi->im[ORPHAN_INO];
622 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
625 * we don't need to do spin_lock(&im->ino_lock) here, since all the
626 * orphan inode operations are covered under f2fs_lock_op().
627 * And, spin_lock should be avoided due to page operations below.
629 head = &im->ino_list;
631 /* loop for each orphan inode entry and write them in Jornal block */
632 list_for_each_entry(orphan, head, list) {
633 if (!page) {
634 page = grab_meta_page(sbi, start_blk++);
635 orphan_blk =
636 (struct f2fs_orphan_block *)page_address(page);
637 memset(orphan_blk, 0, sizeof(*orphan_blk));
640 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
642 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
644 * an orphan block is full of 1020 entries,
645 * then we need to flush current orphan blocks
646 * and bring another one in memory
648 orphan_blk->blk_addr = cpu_to_le16(index);
649 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
650 orphan_blk->entry_count = cpu_to_le32(nentries);
651 set_page_dirty(page);
652 f2fs_put_page(page, 1);
653 index++;
654 nentries = 0;
655 page = NULL;
659 if (page) {
660 orphan_blk->blk_addr = cpu_to_le16(index);
661 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
662 orphan_blk->entry_count = cpu_to_le32(nentries);
663 set_page_dirty(page);
664 f2fs_put_page(page, 1);
668 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
669 struct f2fs_checkpoint **cp_block, struct page **cp_page,
670 unsigned long long *version)
672 unsigned long blk_size = sbi->blocksize;
673 size_t crc_offset = 0;
674 __u32 crc = 0;
676 *cp_page = get_meta_page(sbi, cp_addr);
677 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
679 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
680 if (crc_offset >= blk_size) {
681 f2fs_msg(sbi->sb, KERN_WARNING,
682 "invalid crc_offset: %zu", crc_offset);
683 return -EINVAL;
686 crc = cur_cp_crc(*cp_block);
687 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
688 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
689 return -EINVAL;
692 *version = cur_cp_version(*cp_block);
693 return 0;
696 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
697 block_t cp_addr, unsigned long long *version)
699 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
700 struct f2fs_checkpoint *cp_block = NULL;
701 unsigned long long cur_version = 0, pre_version = 0;
702 int err;
704 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
705 &cp_page_1, version);
706 if (err)
707 goto invalid_cp1;
708 pre_version = *version;
710 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
711 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
712 &cp_page_2, version);
713 if (err)
714 goto invalid_cp2;
715 cur_version = *version;
717 if (cur_version == pre_version) {
718 *version = cur_version;
719 f2fs_put_page(cp_page_2, 1);
720 return cp_page_1;
722 invalid_cp2:
723 f2fs_put_page(cp_page_2, 1);
724 invalid_cp1:
725 f2fs_put_page(cp_page_1, 1);
726 return NULL;
729 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
731 struct f2fs_checkpoint *cp_block;
732 struct f2fs_super_block *fsb = sbi->raw_super;
733 struct page *cp1, *cp2, *cur_page;
734 unsigned long blk_size = sbi->blocksize;
735 unsigned long long cp1_version = 0, cp2_version = 0;
736 unsigned long long cp_start_blk_no;
737 unsigned int cp_blks = 1 + __cp_payload(sbi);
738 block_t cp_blk_no;
739 int i;
741 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
742 if (!sbi->ckpt)
743 return -ENOMEM;
745 * Finding out valid cp block involves read both
746 * sets( cp pack1 and cp pack 2)
748 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
749 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
751 /* The second checkpoint pack should start at the next segment */
752 cp_start_blk_no += ((unsigned long long)1) <<
753 le32_to_cpu(fsb->log_blocks_per_seg);
754 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
756 if (cp1 && cp2) {
757 if (ver_after(cp2_version, cp1_version))
758 cur_page = cp2;
759 else
760 cur_page = cp1;
761 } else if (cp1) {
762 cur_page = cp1;
763 } else if (cp2) {
764 cur_page = cp2;
765 } else {
766 goto fail_no_cp;
769 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
770 memcpy(sbi->ckpt, cp_block, blk_size);
772 /* Sanity checking of checkpoint */
773 if (sanity_check_ckpt(sbi))
774 goto free_fail_no_cp;
776 if (cur_page == cp1)
777 sbi->cur_cp_pack = 1;
778 else
779 sbi->cur_cp_pack = 2;
781 if (cp_blks <= 1)
782 goto done;
784 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
785 if (cur_page == cp2)
786 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
788 for (i = 1; i < cp_blks; i++) {
789 void *sit_bitmap_ptr;
790 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
792 cur_page = get_meta_page(sbi, cp_blk_no + i);
793 sit_bitmap_ptr = page_address(cur_page);
794 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
795 f2fs_put_page(cur_page, 1);
797 done:
798 f2fs_put_page(cp1, 1);
799 f2fs_put_page(cp2, 1);
800 return 0;
802 free_fail_no_cp:
803 f2fs_put_page(cp1, 1);
804 f2fs_put_page(cp2, 1);
805 fail_no_cp:
806 kfree(sbi->ckpt);
807 return -EINVAL;
810 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
812 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
813 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
815 if (is_inode_flag_set(inode, flag))
816 return;
818 set_inode_flag(inode, flag);
819 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
820 stat_inc_dirty_inode(sbi, type);
823 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
825 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
827 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
828 return;
830 list_del_init(&F2FS_I(inode)->dirty_list);
831 clear_inode_flag(inode, flag);
832 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
835 void update_dirty_page(struct inode *inode, struct page *page)
837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
840 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
841 !S_ISLNK(inode->i_mode))
842 return;
844 spin_lock(&sbi->inode_lock[type]);
845 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
846 __add_dirty_inode(inode, type);
847 inode_inc_dirty_pages(inode);
848 spin_unlock(&sbi->inode_lock[type]);
850 SetPagePrivate(page);
851 f2fs_trace_pid(page);
854 void remove_dirty_inode(struct inode *inode)
856 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
857 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
859 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
860 !S_ISLNK(inode->i_mode))
861 return;
863 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
864 return;
866 spin_lock(&sbi->inode_lock[type]);
867 __remove_dirty_inode(inode, type);
868 spin_unlock(&sbi->inode_lock[type]);
871 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
873 struct list_head *head;
874 struct inode *inode;
875 struct f2fs_inode_info *fi;
876 bool is_dir = (type == DIR_INODE);
878 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
879 get_pages(sbi, is_dir ?
880 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
881 retry:
882 if (unlikely(f2fs_cp_error(sbi)))
883 return -EIO;
885 spin_lock(&sbi->inode_lock[type]);
887 head = &sbi->inode_list[type];
888 if (list_empty(head)) {
889 spin_unlock(&sbi->inode_lock[type]);
890 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
891 get_pages(sbi, is_dir ?
892 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
893 return 0;
895 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
896 inode = igrab(&fi->vfs_inode);
897 spin_unlock(&sbi->inode_lock[type]);
898 if (inode) {
899 filemap_fdatawrite(inode->i_mapping);
900 iput(inode);
901 } else {
903 * We should submit bio, since it exists several
904 * wribacking dentry pages in the freeing inode.
906 f2fs_submit_merged_bio(sbi, DATA, WRITE);
907 cond_resched();
909 goto retry;
912 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
914 struct list_head *head = &sbi->inode_list[DIRTY_META];
915 struct inode *inode;
916 struct f2fs_inode_info *fi;
917 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
919 while (total--) {
920 if (unlikely(f2fs_cp_error(sbi)))
921 return -EIO;
923 spin_lock(&sbi->inode_lock[DIRTY_META]);
924 if (list_empty(head)) {
925 spin_unlock(&sbi->inode_lock[DIRTY_META]);
926 return 0;
928 fi = list_first_entry(head, struct f2fs_inode_info,
929 gdirty_list);
930 inode = igrab(&fi->vfs_inode);
931 spin_unlock(&sbi->inode_lock[DIRTY_META]);
932 if (inode) {
933 sync_inode_metadata(inode, 0);
935 /* it's on eviction */
936 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
937 update_inode_page(inode);
938 iput(inode);
941 return 0;
945 * Freeze all the FS-operations for checkpoint.
947 static int block_operations(struct f2fs_sb_info *sbi)
949 struct writeback_control wbc = {
950 .sync_mode = WB_SYNC_ALL,
951 .nr_to_write = LONG_MAX,
952 .for_reclaim = 0,
954 struct blk_plug plug;
955 int err = 0;
957 blk_start_plug(&plug);
959 retry_flush_dents:
960 f2fs_lock_all(sbi);
961 /* write all the dirty dentry pages */
962 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
963 f2fs_unlock_all(sbi);
964 err = sync_dirty_inodes(sbi, DIR_INODE);
965 if (err)
966 goto out;
967 goto retry_flush_dents;
970 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
971 f2fs_unlock_all(sbi);
972 err = f2fs_sync_inode_meta(sbi);
973 if (err)
974 goto out;
975 goto retry_flush_dents;
979 * POR: we should ensure that there are no dirty node pages
980 * until finishing nat/sit flush.
982 retry_flush_nodes:
983 down_write(&sbi->node_write);
985 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
986 up_write(&sbi->node_write);
987 err = sync_node_pages(sbi, &wbc);
988 if (err) {
989 f2fs_unlock_all(sbi);
990 goto out;
992 goto retry_flush_nodes;
994 out:
995 blk_finish_plug(&plug);
996 return err;
999 static void unblock_operations(struct f2fs_sb_info *sbi)
1001 up_write(&sbi->node_write);
1002 f2fs_unlock_all(sbi);
1005 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1007 DEFINE_WAIT(wait);
1009 for (;;) {
1010 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1012 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1013 break;
1015 io_schedule_timeout(5*HZ);
1017 finish_wait(&sbi->cp_wait, &wait);
1020 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1022 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1023 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025 spin_lock(&sbi->cp_lock);
1027 if (cpc->reason == CP_UMOUNT && ckpt->cp_pack_total_block_count >
1028 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1029 disable_nat_bits(sbi, false);
1031 if (cpc->reason == CP_UMOUNT)
1032 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1033 else
1034 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1036 if (cpc->reason == CP_FASTBOOT)
1037 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1038 else
1039 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1041 if (orphan_num)
1042 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1043 else
1044 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1046 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1047 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1049 /* set this flag to activate crc|cp_ver for recovery */
1050 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1052 spin_unlock(&sbi->cp_lock);
1055 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1057 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1058 struct f2fs_nm_info *nm_i = NM_I(sbi);
1059 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1060 nid_t last_nid = nm_i->next_scan_nid;
1061 block_t start_blk;
1062 unsigned int data_sum_blocks, orphan_blocks;
1063 __u32 crc32 = 0;
1064 int i;
1065 int cp_payload_blks = __cp_payload(sbi);
1066 struct super_block *sb = sbi->sb;
1067 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1068 u64 kbytes_written;
1070 /* Flush all the NAT/SIT pages */
1071 while (get_pages(sbi, F2FS_DIRTY_META)) {
1072 sync_meta_pages(sbi, META, LONG_MAX);
1073 if (unlikely(f2fs_cp_error(sbi)))
1074 return -EIO;
1077 next_free_nid(sbi, &last_nid);
1080 * modify checkpoint
1081 * version number is already updated
1083 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1084 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1085 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1086 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1087 ckpt->cur_node_segno[i] =
1088 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1089 ckpt->cur_node_blkoff[i] =
1090 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1091 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1092 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1094 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1095 ckpt->cur_data_segno[i] =
1096 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1097 ckpt->cur_data_blkoff[i] =
1098 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1099 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1100 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1103 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1104 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1105 ckpt->next_free_nid = cpu_to_le32(last_nid);
1107 /* 2 cp + n data seg summary + orphan inode blocks */
1108 data_sum_blocks = npages_for_summary_flush(sbi, false);
1109 spin_lock(&sbi->cp_lock);
1110 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1111 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1112 else
1113 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1114 spin_unlock(&sbi->cp_lock);
1116 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1117 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1118 orphan_blocks);
1120 if (__remain_node_summaries(cpc->reason))
1121 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1122 cp_payload_blks + data_sum_blocks +
1123 orphan_blocks + NR_CURSEG_NODE_TYPE);
1124 else
1125 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1126 cp_payload_blks + data_sum_blocks +
1127 orphan_blocks);
1129 /* update ckpt flag for checkpoint */
1130 update_ckpt_flags(sbi, cpc);
1132 /* update SIT/NAT bitmap */
1133 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1134 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1136 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1137 *((__le32 *)((unsigned char *)ckpt +
1138 le32_to_cpu(ckpt->checksum_offset)))
1139 = cpu_to_le32(crc32);
1141 start_blk = __start_cp_next_addr(sbi);
1143 /* write nat bits */
1144 if (enabled_nat_bits(sbi, cpc)) {
1145 __u64 cp_ver = cur_cp_version(ckpt);
1146 unsigned int i;
1147 block_t blk;
1149 cp_ver |= ((__u64)crc32 << 32);
1150 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1152 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1153 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1154 update_meta_page(sbi, nm_i->nat_bits +
1155 (i << F2FS_BLKSIZE_BITS), blk + i);
1157 /* Flush all the NAT BITS pages */
1158 while (get_pages(sbi, F2FS_DIRTY_META)) {
1159 sync_meta_pages(sbi, META, LONG_MAX);
1160 if (unlikely(f2fs_cp_error(sbi)))
1161 return -EIO;
1165 /* need to wait for end_io results */
1166 wait_on_all_pages_writeback(sbi);
1167 if (unlikely(f2fs_cp_error(sbi)))
1168 return -EIO;
1170 /* write out checkpoint buffer at block 0 */
1171 update_meta_page(sbi, ckpt, start_blk++);
1173 for (i = 1; i < 1 + cp_payload_blks; i++)
1174 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1175 start_blk++);
1177 if (orphan_num) {
1178 write_orphan_inodes(sbi, start_blk);
1179 start_blk += orphan_blocks;
1182 write_data_summaries(sbi, start_blk);
1183 start_blk += data_sum_blocks;
1185 /* Record write statistics in the hot node summary */
1186 kbytes_written = sbi->kbytes_written;
1187 if (sb->s_bdev->bd_part)
1188 kbytes_written += BD_PART_WRITTEN(sbi);
1190 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1192 if (__remain_node_summaries(cpc->reason)) {
1193 write_node_summaries(sbi, start_blk);
1194 start_blk += NR_CURSEG_NODE_TYPE;
1197 /* writeout checkpoint block */
1198 update_meta_page(sbi, ckpt, start_blk);
1200 /* wait for previous submitted node/meta pages writeback */
1201 wait_on_all_pages_writeback(sbi);
1203 if (unlikely(f2fs_cp_error(sbi)))
1204 return -EIO;
1206 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1207 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1209 /* update user_block_counts */
1210 sbi->last_valid_block_count = sbi->total_valid_block_count;
1211 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1213 /* Here, we only have one bio having CP pack */
1214 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1216 /* wait for previous submitted meta pages writeback */
1217 wait_on_all_pages_writeback(sbi);
1219 release_ino_entry(sbi, false);
1221 if (unlikely(f2fs_cp_error(sbi)))
1222 return -EIO;
1224 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1225 clear_sbi_flag(sbi, SBI_NEED_CP);
1226 __set_cp_next_pack(sbi);
1229 * redirty superblock if metadata like node page or inode cache is
1230 * updated during writing checkpoint.
1232 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1233 get_pages(sbi, F2FS_DIRTY_IMETA))
1234 set_sbi_flag(sbi, SBI_IS_DIRTY);
1236 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1238 return 0;
1242 * We guarantee that this checkpoint procedure will not fail.
1244 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1246 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1247 unsigned long long ckpt_ver;
1248 int err = 0;
1250 mutex_lock(&sbi->cp_mutex);
1252 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1253 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1254 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1255 goto out;
1256 if (unlikely(f2fs_cp_error(sbi))) {
1257 err = -EIO;
1258 goto out;
1260 if (f2fs_readonly(sbi->sb)) {
1261 err = -EROFS;
1262 goto out;
1265 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1267 err = block_operations(sbi);
1268 if (err)
1269 goto out;
1271 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1273 f2fs_flush_merged_bios(sbi);
1275 /* this is the case of multiple fstrims without any changes */
1276 if (cpc->reason == CP_DISCARD) {
1277 if (!exist_trim_candidates(sbi, cpc)) {
1278 unblock_operations(sbi);
1279 goto out;
1282 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1283 SIT_I(sbi)->dirty_sentries == 0 &&
1284 prefree_segments(sbi) == 0) {
1285 flush_sit_entries(sbi, cpc);
1286 clear_prefree_segments(sbi, cpc);
1287 unblock_operations(sbi);
1288 goto out;
1293 * update checkpoint pack index
1294 * Increase the version number so that
1295 * SIT entries and seg summaries are written at correct place
1297 ckpt_ver = cur_cp_version(ckpt);
1298 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1300 /* write cached NAT/SIT entries to NAT/SIT area */
1301 flush_nat_entries(sbi, cpc);
1302 flush_sit_entries(sbi, cpc);
1304 /* unlock all the fs_lock[] in do_checkpoint() */
1305 err = do_checkpoint(sbi, cpc);
1306 if (err)
1307 release_discard_addrs(sbi);
1308 else
1309 clear_prefree_segments(sbi, cpc);
1311 unblock_operations(sbi);
1312 stat_inc_cp_count(sbi->stat_info);
1314 if (cpc->reason == CP_RECOVERY)
1315 f2fs_msg(sbi->sb, KERN_NOTICE,
1316 "checkpoint: version = %llx", ckpt_ver);
1318 /* do checkpoint periodically */
1319 f2fs_update_time(sbi, CP_TIME);
1320 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1321 out:
1322 mutex_unlock(&sbi->cp_mutex);
1323 return err;
1326 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1328 int i;
1330 for (i = 0; i < MAX_INO_ENTRY; i++) {
1331 struct inode_management *im = &sbi->im[i];
1333 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1334 spin_lock_init(&im->ino_lock);
1335 INIT_LIST_HEAD(&im->ino_list);
1336 im->ino_num = 0;
1339 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1340 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1341 F2FS_ORPHANS_PER_BLOCK;
1344 int __init create_checkpoint_caches(void)
1346 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1347 sizeof(struct ino_entry));
1348 if (!ino_entry_slab)
1349 return -ENOMEM;
1350 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1351 sizeof(struct inode_entry));
1352 if (!inode_entry_slab) {
1353 kmem_cache_destroy(ino_entry_slab);
1354 return -ENOMEM;
1356 return 0;
1359 void destroy_checkpoint_caches(void)
1361 kmem_cache_destroy(ino_entry_slab);
1362 kmem_cache_destroy(inode_entry_slab);