4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*discard_cmd_slab
;
30 static struct kmem_cache
*sit_entry_set_slab
;
31 static struct kmem_cache
*inmem_entry_slab
;
33 static unsigned long __reverse_ulong(unsigned char *str
)
35 unsigned long tmp
= 0;
36 int shift
= 24, idx
= 0;
38 #if BITS_PER_LONG == 64
42 tmp
|= (unsigned long)str
[idx
++] << shift
;
43 shift
-= BITS_PER_BYTE
;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word
)
56 #if BITS_PER_LONG == 64
57 if ((word
& 0xffffffff00000000UL
) == 0)
62 if ((word
& 0xffff0000) == 0)
67 if ((word
& 0xff00) == 0)
72 if ((word
& 0xf0) == 0)
77 if ((word
& 0xc) == 0)
82 if ((word
& 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
97 unsigned long size
, unsigned long offset
)
99 const unsigned long *p
= addr
+ BIT_WORD(offset
);
100 unsigned long result
= size
;
106 size
-= (offset
& ~(BITS_PER_LONG
- 1));
107 offset
%= BITS_PER_LONG
;
113 tmp
= __reverse_ulong((unsigned char *)p
);
115 tmp
&= ~0UL >> offset
;
116 if (size
< BITS_PER_LONG
)
117 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
121 if (size
<= BITS_PER_LONG
)
123 size
-= BITS_PER_LONG
;
129 return result
- size
+ __reverse_ffs(tmp
);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
133 unsigned long size
, unsigned long offset
)
135 const unsigned long *p
= addr
+ BIT_WORD(offset
);
136 unsigned long result
= size
;
142 size
-= (offset
& ~(BITS_PER_LONG
- 1));
143 offset
%= BITS_PER_LONG
;
149 tmp
= __reverse_ulong((unsigned char *)p
);
152 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
153 if (size
< BITS_PER_LONG
)
158 if (size
<= BITS_PER_LONG
)
160 size
-= BITS_PER_LONG
;
166 return result
- size
+ __reverse_ffz(tmp
);
169 void register_inmem_page(struct inode
*inode
, struct page
*page
)
171 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
172 struct inmem_pages
*new;
174 f2fs_trace_pid(page
);
176 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
177 SetPagePrivate(page
);
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
181 /* add atomic page indices to the list */
183 INIT_LIST_HEAD(&new->list
);
185 /* increase reference count with clean state */
186 mutex_lock(&fi
->inmem_lock
);
188 list_add_tail(&new->list
, &fi
->inmem_pages
);
189 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
190 mutex_unlock(&fi
->inmem_lock
);
192 trace_f2fs_register_inmem_page(page
, INMEM
);
195 static int __revoke_inmem_pages(struct inode
*inode
,
196 struct list_head
*head
, bool drop
, bool recover
)
198 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
199 struct inmem_pages
*cur
, *tmp
;
202 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
203 struct page
*page
= cur
->page
;
206 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
211 struct dnode_of_data dn
;
214 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
216 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
217 if (get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
)) {
221 get_node_info(sbi
, dn
.nid
, &ni
);
222 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
223 cur
->old_addr
, ni
.version
, true, true);
227 /* we don't need to invalidate this in the sccessful status */
229 ClearPageUptodate(page
);
230 set_page_private(page
, 0);
231 ClearPagePrivate(page
);
232 f2fs_put_page(page
, 1);
234 list_del(&cur
->list
);
235 kmem_cache_free(inmem_entry_slab
, cur
);
236 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
241 void drop_inmem_pages(struct inode
*inode
)
243 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
245 mutex_lock(&fi
->inmem_lock
);
246 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
247 mutex_unlock(&fi
->inmem_lock
);
249 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
250 stat_dec_atomic_write(inode
);
253 static int __commit_inmem_pages(struct inode
*inode
,
254 struct list_head
*revoke_list
)
256 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
257 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
258 struct inmem_pages
*cur
, *tmp
;
259 struct f2fs_io_info fio
= {
263 .op_flags
= REQ_SYNC
| REQ_PRIO
,
264 .encrypted_page
= NULL
,
266 pgoff_t last_idx
= ULONG_MAX
;
269 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
270 struct page
*page
= cur
->page
;
273 if (page
->mapping
== inode
->i_mapping
) {
274 trace_f2fs_commit_inmem_page(page
, INMEM
);
276 set_page_dirty(page
);
277 f2fs_wait_on_page_writeback(page
, DATA
, true);
278 if (clear_page_dirty_for_io(page
)) {
279 inode_dec_dirty_pages(inode
);
280 remove_dirty_inode(inode
);
284 err
= do_write_data_page(&fio
);
290 /* record old blkaddr for revoking */
291 cur
->old_addr
= fio
.old_blkaddr
;
292 last_idx
= page
->index
;
295 list_move_tail(&cur
->list
, revoke_list
);
298 if (last_idx
!= ULONG_MAX
)
299 f2fs_submit_merged_bio_cond(sbi
, inode
, 0, last_idx
,
303 __revoke_inmem_pages(inode
, revoke_list
, false, false);
308 int commit_inmem_pages(struct inode
*inode
)
310 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
311 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
312 struct list_head revoke_list
;
315 INIT_LIST_HEAD(&revoke_list
);
316 f2fs_balance_fs(sbi
, true);
319 set_inode_flag(inode
, FI_ATOMIC_COMMIT
);
321 mutex_lock(&fi
->inmem_lock
);
322 err
= __commit_inmem_pages(inode
, &revoke_list
);
326 * try to revoke all committed pages, but still we could fail
327 * due to no memory or other reason, if that happened, EAGAIN
328 * will be returned, which means in such case, transaction is
329 * already not integrity, caller should use journal to do the
330 * recovery or rewrite & commit last transaction. For other
331 * error number, revoking was done by filesystem itself.
333 ret
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
337 /* drop all uncommitted pages */
338 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
340 mutex_unlock(&fi
->inmem_lock
);
342 clear_inode_flag(inode
, FI_ATOMIC_COMMIT
);
349 * This function balances dirty node and dentry pages.
350 * In addition, it controls garbage collection.
352 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
354 #ifdef CONFIG_F2FS_FAULT_INJECTION
355 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
356 f2fs_show_injection_info(FAULT_CHECKPOINT
);
357 f2fs_stop_checkpoint(sbi
, false);
364 /* balance_fs_bg is able to be pending */
365 if (excess_cached_nats(sbi
))
366 f2fs_balance_fs_bg(sbi
);
369 * We should do GC or end up with checkpoint, if there are so many dirty
370 * dir/node pages without enough free segments.
372 if (has_not_enough_free_secs(sbi
, 0, 0)) {
373 mutex_lock(&sbi
->gc_mutex
);
374 f2fs_gc(sbi
, false, false);
378 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
380 /* try to shrink extent cache when there is no enough memory */
381 if (!available_free_memory(sbi
, EXTENT_CACHE
))
382 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
384 /* check the # of cached NAT entries */
385 if (!available_free_memory(sbi
, NAT_ENTRIES
))
386 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
388 if (!available_free_memory(sbi
, FREE_NIDS
))
389 try_to_free_nids(sbi
, MAX_FREE_NIDS
);
391 build_free_nids(sbi
, false, false);
396 /* checkpoint is the only way to shrink partial cached entries */
397 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
398 !available_free_memory(sbi
, INO_ENTRIES
) ||
399 excess_prefree_segs(sbi
) ||
400 excess_dirty_nats(sbi
) ||
401 f2fs_time_over(sbi
, CP_TIME
)) {
402 if (test_opt(sbi
, DATA_FLUSH
)) {
403 struct blk_plug plug
;
405 blk_start_plug(&plug
);
406 sync_dirty_inodes(sbi
, FILE_INODE
);
407 blk_finish_plug(&plug
);
409 f2fs_sync_fs(sbi
->sb
, true);
410 stat_inc_bg_cp_count(sbi
->stat_info
);
414 static int __submit_flush_wait(struct block_device
*bdev
)
416 struct bio
*bio
= f2fs_bio_alloc(0);
419 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
421 ret
= submit_bio_wait(bio
);
426 static int submit_flush_wait(struct f2fs_sb_info
*sbi
)
428 int ret
= __submit_flush_wait(sbi
->sb
->s_bdev
);
431 if (sbi
->s_ndevs
&& !ret
) {
432 for (i
= 1; i
< sbi
->s_ndevs
; i
++) {
433 trace_f2fs_issue_flush(FDEV(i
).bdev
,
434 test_opt(sbi
, NOBARRIER
),
435 test_opt(sbi
, FLUSH_MERGE
));
436 ret
= __submit_flush_wait(FDEV(i
).bdev
);
444 static int issue_flush_thread(void *data
)
446 struct f2fs_sb_info
*sbi
= data
;
447 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
448 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
450 if (kthread_should_stop())
453 if (!llist_empty(&fcc
->issue_list
)) {
454 struct flush_cmd
*cmd
, *next
;
457 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
458 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
460 ret
= submit_flush_wait(sbi
);
461 llist_for_each_entry_safe(cmd
, next
,
462 fcc
->dispatch_list
, llnode
) {
464 complete(&cmd
->wait
);
466 fcc
->dispatch_list
= NULL
;
469 wait_event_interruptible(*q
,
470 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
474 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
476 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
477 struct flush_cmd cmd
;
479 if (test_opt(sbi
, NOBARRIER
))
482 if (!test_opt(sbi
, FLUSH_MERGE
))
483 return submit_flush_wait(sbi
);
485 if (!atomic_read(&fcc
->submit_flush
)) {
488 atomic_inc(&fcc
->submit_flush
);
489 ret
= submit_flush_wait(sbi
);
490 atomic_dec(&fcc
->submit_flush
);
494 init_completion(&cmd
.wait
);
496 atomic_inc(&fcc
->submit_flush
);
497 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
499 if (!fcc
->dispatch_list
)
500 wake_up(&fcc
->flush_wait_queue
);
502 if (fcc
->f2fs_issue_flush
) {
503 wait_for_completion(&cmd
.wait
);
504 atomic_dec(&fcc
->submit_flush
);
506 llist_del_all(&fcc
->issue_list
);
507 atomic_set(&fcc
->submit_flush
, 0);
513 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
515 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
516 struct flush_cmd_control
*fcc
;
519 if (SM_I(sbi
)->fcc_info
) {
520 fcc
= SM_I(sbi
)->fcc_info
;
524 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
527 atomic_set(&fcc
->submit_flush
, 0);
528 init_waitqueue_head(&fcc
->flush_wait_queue
);
529 init_llist_head(&fcc
->issue_list
);
530 SM_I(sbi
)->fcc_info
= fcc
;
532 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
533 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
534 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
535 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
537 SM_I(sbi
)->fcc_info
= NULL
;
544 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
546 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
548 if (fcc
&& fcc
->f2fs_issue_flush
) {
549 struct task_struct
*flush_thread
= fcc
->f2fs_issue_flush
;
551 fcc
->f2fs_issue_flush
= NULL
;
552 kthread_stop(flush_thread
);
556 SM_I(sbi
)->fcc_info
= NULL
;
560 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
561 enum dirty_type dirty_type
)
563 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
565 /* need not be added */
566 if (IS_CURSEG(sbi
, segno
))
569 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
570 dirty_i
->nr_dirty
[dirty_type
]++;
572 if (dirty_type
== DIRTY
) {
573 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
574 enum dirty_type t
= sentry
->type
;
576 if (unlikely(t
>= DIRTY
)) {
580 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
581 dirty_i
->nr_dirty
[t
]++;
585 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
586 enum dirty_type dirty_type
)
588 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
590 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
591 dirty_i
->nr_dirty
[dirty_type
]--;
593 if (dirty_type
== DIRTY
) {
594 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
595 enum dirty_type t
= sentry
->type
;
597 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
598 dirty_i
->nr_dirty
[t
]--;
600 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
601 clear_bit(GET_SECNO(sbi
, segno
),
602 dirty_i
->victim_secmap
);
607 * Should not occur error such as -ENOMEM.
608 * Adding dirty entry into seglist is not critical operation.
609 * If a given segment is one of current working segments, it won't be added.
611 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
613 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
614 unsigned short valid_blocks
;
616 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
619 mutex_lock(&dirty_i
->seglist_lock
);
621 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
623 if (valid_blocks
== 0) {
624 __locate_dirty_segment(sbi
, segno
, PRE
);
625 __remove_dirty_segment(sbi
, segno
, DIRTY
);
626 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
627 __locate_dirty_segment(sbi
, segno
, DIRTY
);
629 /* Recovery routine with SSR needs this */
630 __remove_dirty_segment(sbi
, segno
, DIRTY
);
633 mutex_unlock(&dirty_i
->seglist_lock
);
636 static void __add_discard_cmd(struct f2fs_sb_info
*sbi
,
637 struct bio
*bio
, block_t lstart
, block_t len
)
639 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
640 struct list_head
*cmd_list
= &(dcc
->discard_cmd_list
);
641 struct discard_cmd
*dc
;
643 dc
= f2fs_kmem_cache_alloc(discard_cmd_slab
, GFP_NOFS
);
644 INIT_LIST_HEAD(&dc
->list
);
646 bio
->bi_private
= dc
;
650 init_completion(&dc
->wait
);
652 mutex_lock(&dcc
->cmd_lock
);
653 list_add_tail(&dc
->list
, cmd_list
);
654 mutex_unlock(&dcc
->cmd_lock
);
657 static void __remove_discard_cmd(struct f2fs_sb_info
*sbi
, struct discard_cmd
*dc
)
659 int err
= dc
->bio
->bi_error
;
661 if (dc
->state
== D_DONE
)
662 atomic_dec(&(SM_I(sbi
)->dcc_info
->submit_discard
));
664 if (err
== -EOPNOTSUPP
)
668 f2fs_msg(sbi
->sb
, KERN_INFO
,
669 "Issue discard failed, ret: %d", err
);
672 kmem_cache_free(discard_cmd_slab
, dc
);
675 /* This should be covered by global mutex, &sit_i->sentry_lock */
676 void f2fs_wait_discard_bio(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
678 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
679 struct list_head
*wait_list
= &(dcc
->discard_cmd_list
);
680 struct discard_cmd
*dc
, *tmp
;
681 struct blk_plug plug
;
683 mutex_lock(&dcc
->cmd_lock
);
685 blk_start_plug(&plug
);
687 list_for_each_entry_safe(dc
, tmp
, wait_list
, list
) {
689 if (blkaddr
== NULL_ADDR
) {
690 if (dc
->state
== D_PREP
) {
691 dc
->state
= D_SUBMIT
;
693 atomic_inc(&dcc
->submit_discard
);
698 if (dc
->lstart
<= blkaddr
&& blkaddr
< dc
->lstart
+ dc
->len
) {
699 if (dc
->state
== D_SUBMIT
)
700 wait_for_completion_io(&dc
->wait
);
702 __remove_discard_cmd(sbi
, dc
);
705 blk_finish_plug(&plug
);
707 /* this comes from f2fs_put_super */
708 if (blkaddr
== NULL_ADDR
) {
709 list_for_each_entry_safe(dc
, tmp
, wait_list
, list
) {
710 wait_for_completion_io(&dc
->wait
);
711 __remove_discard_cmd(sbi
, dc
);
714 mutex_unlock(&dcc
->cmd_lock
);
717 static void f2fs_submit_discard_endio(struct bio
*bio
)
719 struct discard_cmd
*dc
= (struct discard_cmd
*)bio
->bi_private
;
725 static int issue_discard_thread(void *data
)
727 struct f2fs_sb_info
*sbi
= data
;
728 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
729 wait_queue_head_t
*q
= &dcc
->discard_wait_queue
;
730 struct list_head
*cmd_list
= &dcc
->discard_cmd_list
;
731 struct discard_cmd
*dc
, *tmp
;
732 struct blk_plug plug
;
735 if (kthread_should_stop())
738 blk_start_plug(&plug
);
740 mutex_lock(&dcc
->cmd_lock
);
741 list_for_each_entry_safe(dc
, tmp
, cmd_list
, list
) {
742 if (dc
->state
== D_PREP
) {
743 dc
->state
= D_SUBMIT
;
745 atomic_inc(&dcc
->submit_discard
);
746 if (iter
++ > DISCARD_ISSUE_RATE
)
748 } else if (dc
->state
== D_DONE
) {
749 __remove_discard_cmd(sbi
, dc
);
752 mutex_unlock(&dcc
->cmd_lock
);
754 blk_finish_plug(&plug
);
757 congestion_wait(BLK_RW_SYNC
, HZ
/50);
759 wait_event_interruptible(*q
,
760 kthread_should_stop() || !list_empty(&dcc
->discard_cmd_list
));
765 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
766 static int __f2fs_issue_discard_async(struct f2fs_sb_info
*sbi
,
767 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
769 struct bio
*bio
= NULL
;
770 block_t lblkstart
= blkstart
;
773 trace_f2fs_issue_discard(bdev
, blkstart
, blklen
);
776 int devi
= f2fs_target_device_index(sbi
, blkstart
);
778 blkstart
-= FDEV(devi
).start_blk
;
780 err
= __blkdev_issue_discard(bdev
,
781 SECTOR_FROM_BLOCK(blkstart
),
782 SECTOR_FROM_BLOCK(blklen
),
785 bio
->bi_end_io
= f2fs_submit_discard_endio
;
786 bio
->bi_opf
|= REQ_SYNC
;
788 __add_discard_cmd(sbi
, bio
, lblkstart
, blklen
);
789 wake_up(&SM_I(sbi
)->dcc_info
->discard_wait_queue
);
794 #ifdef CONFIG_BLK_DEV_ZONED
795 static int __f2fs_issue_discard_zone(struct f2fs_sb_info
*sbi
,
796 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
798 sector_t sector
, nr_sects
;
802 devi
= f2fs_target_device_index(sbi
, blkstart
);
803 blkstart
-= FDEV(devi
).start_blk
;
807 * We need to know the type of the zone: for conventional zones,
808 * use regular discard if the drive supports it. For sequential
809 * zones, reset the zone write pointer.
811 switch (get_blkz_type(sbi
, bdev
, blkstart
)) {
813 case BLK_ZONE_TYPE_CONVENTIONAL
:
814 if (!blk_queue_discard(bdev_get_queue(bdev
)))
816 return __f2fs_issue_discard_async(sbi
, bdev
, blkstart
, blklen
);
817 case BLK_ZONE_TYPE_SEQWRITE_REQ
:
818 case BLK_ZONE_TYPE_SEQWRITE_PREF
:
819 sector
= SECTOR_FROM_BLOCK(blkstart
);
820 nr_sects
= SECTOR_FROM_BLOCK(blklen
);
822 if (sector
& (bdev_zone_sectors(bdev
) - 1) ||
823 nr_sects
!= bdev_zone_sectors(bdev
)) {
824 f2fs_msg(sbi
->sb
, KERN_INFO
,
825 "(%d) %s: Unaligned discard attempted (block %x + %x)",
826 devi
, sbi
->s_ndevs
? FDEV(devi
).path
: "",
830 trace_f2fs_issue_reset_zone(bdev
, blkstart
);
831 return blkdev_reset_zones(bdev
, sector
,
834 /* Unknown zone type: broken device ? */
840 static int __issue_discard_async(struct f2fs_sb_info
*sbi
,
841 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
843 #ifdef CONFIG_BLK_DEV_ZONED
844 if (f2fs_sb_mounted_blkzoned(sbi
->sb
) &&
845 bdev_zoned_model(bdev
) != BLK_ZONED_NONE
)
846 return __f2fs_issue_discard_zone(sbi
, bdev
, blkstart
, blklen
);
848 return __f2fs_issue_discard_async(sbi
, bdev
, blkstart
, blklen
);
851 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
852 block_t blkstart
, block_t blklen
)
854 sector_t start
= blkstart
, len
= 0;
855 struct block_device
*bdev
;
856 struct seg_entry
*se
;
861 bdev
= f2fs_target_device(sbi
, blkstart
, NULL
);
863 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++, len
++) {
865 struct block_device
*bdev2
=
866 f2fs_target_device(sbi
, i
, NULL
);
869 err
= __issue_discard_async(sbi
, bdev
,
879 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
880 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
882 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
887 err
= __issue_discard_async(sbi
, bdev
, start
, len
);
891 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
892 struct cp_control
*cpc
, struct seg_entry
*se
,
893 unsigned int start
, unsigned int end
)
895 struct list_head
*head
= &SM_I(sbi
)->dcc_info
->discard_entry_list
;
896 struct discard_entry
*new, *last
;
898 if (!list_empty(head
)) {
899 last
= list_last_entry(head
, struct discard_entry
, list
);
900 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
901 last
->blkaddr
+ last
->len
&&
902 last
->len
< MAX_DISCARD_BLOCKS(sbi
)) {
903 last
->len
+= end
- start
;
908 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
909 INIT_LIST_HEAD(&new->list
);
910 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
911 new->len
= end
- start
;
912 list_add_tail(&new->list
, head
);
914 SM_I(sbi
)->dcc_info
->nr_discards
+= end
- start
;
917 static bool add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
,
920 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
921 int max_blocks
= sbi
->blocks_per_seg
;
922 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
923 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
924 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
925 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
926 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
927 unsigned int start
= 0, end
= -1;
928 bool force
= (cpc
->reason
== CP_DISCARD
);
931 if (se
->valid_blocks
== max_blocks
|| !f2fs_discard_en(sbi
))
935 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
936 SM_I(sbi
)->dcc_info
->nr_discards
>=
937 SM_I(sbi
)->dcc_info
->max_discards
)
941 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
942 for (i
= 0; i
< entries
; i
++)
943 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
944 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
946 while (force
|| SM_I(sbi
)->dcc_info
->nr_discards
<=
947 SM_I(sbi
)->dcc_info
->max_discards
) {
948 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
949 if (start
>= max_blocks
)
952 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
953 if (force
&& start
&& end
!= max_blocks
954 && (end
- start
) < cpc
->trim_minlen
)
960 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
965 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
967 struct list_head
*head
= &(SM_I(sbi
)->dcc_info
->discard_entry_list
);
968 struct discard_entry
*entry
, *this;
971 list_for_each_entry_safe(entry
, this, head
, list
) {
972 list_del(&entry
->list
);
973 kmem_cache_free(discard_entry_slab
, entry
);
978 * Should call clear_prefree_segments after checkpoint is done.
980 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
982 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
985 mutex_lock(&dirty_i
->seglist_lock
);
986 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
987 __set_test_and_free(sbi
, segno
);
988 mutex_unlock(&dirty_i
->seglist_lock
);
991 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
993 struct list_head
*head
= &(SM_I(sbi
)->dcc_info
->discard_entry_list
);
994 struct discard_entry
*entry
, *this;
995 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
996 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
997 unsigned int start
= 0, end
= -1;
998 unsigned int secno
, start_segno
;
999 bool force
= (cpc
->reason
== CP_DISCARD
);
1001 mutex_lock(&dirty_i
->seglist_lock
);
1005 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
1006 if (start
>= MAIN_SEGS(sbi
))
1008 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
1011 for (i
= start
; i
< end
; i
++)
1012 clear_bit(i
, prefree_map
);
1014 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
1016 if (!test_opt(sbi
, DISCARD
))
1019 if (force
&& start
>= cpc
->trim_start
&&
1020 (end
- 1) <= cpc
->trim_end
)
1023 if (!test_opt(sbi
, LFS
) || sbi
->segs_per_sec
== 1) {
1024 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
1025 (end
- start
) << sbi
->log_blocks_per_seg
);
1029 secno
= GET_SECNO(sbi
, start
);
1030 start_segno
= secno
* sbi
->segs_per_sec
;
1031 if (!IS_CURSEC(sbi
, secno
) &&
1032 !get_valid_blocks(sbi
, start
, sbi
->segs_per_sec
))
1033 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
1034 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
1036 start
= start_segno
+ sbi
->segs_per_sec
;
1042 mutex_unlock(&dirty_i
->seglist_lock
);
1044 /* send small discards */
1045 list_for_each_entry_safe(entry
, this, head
, list
) {
1046 if (force
&& entry
->len
< cpc
->trim_minlen
)
1048 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
1049 cpc
->trimmed
+= entry
->len
;
1051 list_del(&entry
->list
);
1052 SM_I(sbi
)->dcc_info
->nr_discards
-= entry
->len
;
1053 kmem_cache_free(discard_entry_slab
, entry
);
1057 static int create_discard_cmd_control(struct f2fs_sb_info
*sbi
)
1059 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
1060 struct discard_cmd_control
*dcc
;
1063 if (SM_I(sbi
)->dcc_info
) {
1064 dcc
= SM_I(sbi
)->dcc_info
;
1068 dcc
= kzalloc(sizeof(struct discard_cmd_control
), GFP_KERNEL
);
1072 INIT_LIST_HEAD(&dcc
->discard_entry_list
);
1073 INIT_LIST_HEAD(&dcc
->discard_cmd_list
);
1074 mutex_init(&dcc
->cmd_lock
);
1075 atomic_set(&dcc
->submit_discard
, 0);
1076 dcc
->nr_discards
= 0;
1077 dcc
->max_discards
= 0;
1079 init_waitqueue_head(&dcc
->discard_wait_queue
);
1080 SM_I(sbi
)->dcc_info
= dcc
;
1082 dcc
->f2fs_issue_discard
= kthread_run(issue_discard_thread
, sbi
,
1083 "f2fs_discard-%u:%u", MAJOR(dev
), MINOR(dev
));
1084 if (IS_ERR(dcc
->f2fs_issue_discard
)) {
1085 err
= PTR_ERR(dcc
->f2fs_issue_discard
);
1087 SM_I(sbi
)->dcc_info
= NULL
;
1094 static void destroy_discard_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
1096 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1098 if (dcc
&& dcc
->f2fs_issue_discard
) {
1099 struct task_struct
*discard_thread
= dcc
->f2fs_issue_discard
;
1101 dcc
->f2fs_issue_discard
= NULL
;
1102 kthread_stop(discard_thread
);
1106 SM_I(sbi
)->dcc_info
= NULL
;
1110 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1112 struct sit_info
*sit_i
= SIT_I(sbi
);
1114 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
1115 sit_i
->dirty_sentries
++;
1122 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
1123 unsigned int segno
, int modified
)
1125 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
1128 __mark_sit_entry_dirty(sbi
, segno
);
1131 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
1133 struct seg_entry
*se
;
1134 unsigned int segno
, offset
;
1135 long int new_vblocks
;
1137 segno
= GET_SEGNO(sbi
, blkaddr
);
1139 se
= get_seg_entry(sbi
, segno
);
1140 new_vblocks
= se
->valid_blocks
+ del
;
1141 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
1143 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
1144 (new_vblocks
> sbi
->blocks_per_seg
)));
1146 se
->valid_blocks
= new_vblocks
;
1147 se
->mtime
= get_mtime(sbi
);
1148 SIT_I(sbi
)->max_mtime
= se
->mtime
;
1150 /* Update valid block bitmap */
1152 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
)) {
1153 #ifdef CONFIG_F2FS_CHECK_FS
1154 if (f2fs_test_and_set_bit(offset
,
1155 se
->cur_valid_map_mir
))
1156 f2fs_bug_on(sbi
, 1);
1160 f2fs_bug_on(sbi
, 1);
1163 if (f2fs_discard_en(sbi
) &&
1164 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
1165 sbi
->discard_blks
--;
1167 /* don't overwrite by SSR to keep node chain */
1168 if (se
->type
== CURSEG_WARM_NODE
) {
1169 if (!f2fs_test_and_set_bit(offset
, se
->ckpt_valid_map
))
1170 se
->ckpt_valid_blocks
++;
1173 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
)) {
1174 #ifdef CONFIG_F2FS_CHECK_FS
1175 if (!f2fs_test_and_clear_bit(offset
,
1176 se
->cur_valid_map_mir
))
1177 f2fs_bug_on(sbi
, 1);
1181 f2fs_bug_on(sbi
, 1);
1184 if (f2fs_discard_en(sbi
) &&
1185 f2fs_test_and_clear_bit(offset
, se
->discard_map
))
1186 sbi
->discard_blks
++;
1188 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
1189 se
->ckpt_valid_blocks
+= del
;
1191 __mark_sit_entry_dirty(sbi
, segno
);
1193 /* update total number of valid blocks to be written in ckpt area */
1194 SIT_I(sbi
)->written_valid_blocks
+= del
;
1196 if (sbi
->segs_per_sec
> 1)
1197 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
1200 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
1202 update_sit_entry(sbi
, new, 1);
1203 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
1204 update_sit_entry(sbi
, old
, -1);
1206 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
1207 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
1210 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
1212 unsigned int segno
= GET_SEGNO(sbi
, addr
);
1213 struct sit_info
*sit_i
= SIT_I(sbi
);
1215 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
1216 if (addr
== NEW_ADDR
)
1219 /* add it into sit main buffer */
1220 mutex_lock(&sit_i
->sentry_lock
);
1222 update_sit_entry(sbi
, addr
, -1);
1224 /* add it into dirty seglist */
1225 locate_dirty_segment(sbi
, segno
);
1227 mutex_unlock(&sit_i
->sentry_lock
);
1230 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1232 struct sit_info
*sit_i
= SIT_I(sbi
);
1233 unsigned int segno
, offset
;
1234 struct seg_entry
*se
;
1237 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
1240 mutex_lock(&sit_i
->sentry_lock
);
1242 segno
= GET_SEGNO(sbi
, blkaddr
);
1243 se
= get_seg_entry(sbi
, segno
);
1244 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
1246 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
1249 mutex_unlock(&sit_i
->sentry_lock
);
1255 * This function should be resided under the curseg_mutex lock
1257 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
1258 struct f2fs_summary
*sum
)
1260 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1261 void *addr
= curseg
->sum_blk
;
1262 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
1263 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
1267 * Calculate the number of current summary pages for writing
1269 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
1271 int valid_sum_count
= 0;
1274 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1275 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1276 valid_sum_count
+= sbi
->blocks_per_seg
;
1279 valid_sum_count
+= le16_to_cpu(
1280 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
1282 valid_sum_count
+= curseg_blkoff(sbi
, i
);
1286 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
1287 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
1288 if (valid_sum_count
<= sum_in_page
)
1290 else if ((valid_sum_count
- sum_in_page
) <=
1291 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
1297 * Caller should put this summary page
1299 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1301 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
1304 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
1306 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1307 void *dst
= page_address(page
);
1310 memcpy(dst
, src
, PAGE_SIZE
);
1312 memset(dst
, 0, PAGE_SIZE
);
1313 set_page_dirty(page
);
1314 f2fs_put_page(page
, 1);
1317 static void write_sum_page(struct f2fs_sb_info
*sbi
,
1318 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
1320 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
1323 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
1324 int type
, block_t blk_addr
)
1326 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1327 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1328 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
1329 struct f2fs_summary_block
*dst
;
1331 dst
= (struct f2fs_summary_block
*)page_address(page
);
1333 mutex_lock(&curseg
->curseg_mutex
);
1335 down_read(&curseg
->journal_rwsem
);
1336 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
1337 up_read(&curseg
->journal_rwsem
);
1339 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
1340 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
1342 mutex_unlock(&curseg
->curseg_mutex
);
1344 set_page_dirty(page
);
1345 f2fs_put_page(page
, 1);
1349 * Find a new segment from the free segments bitmap to right order
1350 * This function should be returned with success, otherwise BUG
1352 static void get_new_segment(struct f2fs_sb_info
*sbi
,
1353 unsigned int *newseg
, bool new_sec
, int dir
)
1355 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1356 unsigned int segno
, secno
, zoneno
;
1357 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
1358 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
1359 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
1360 unsigned int left_start
= hint
;
1365 spin_lock(&free_i
->segmap_lock
);
1367 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
1368 segno
= find_next_zero_bit(free_i
->free_segmap
,
1369 (hint
+ 1) * sbi
->segs_per_sec
, *newseg
+ 1);
1370 if (segno
< (hint
+ 1) * sbi
->segs_per_sec
)
1374 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
1375 if (secno
>= MAIN_SECS(sbi
)) {
1376 if (dir
== ALLOC_RIGHT
) {
1377 secno
= find_next_zero_bit(free_i
->free_secmap
,
1379 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
1382 left_start
= hint
- 1;
1388 while (test_bit(left_start
, free_i
->free_secmap
)) {
1389 if (left_start
> 0) {
1393 left_start
= find_next_zero_bit(free_i
->free_secmap
,
1395 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
1401 segno
= secno
* sbi
->segs_per_sec
;
1402 zoneno
= secno
/ sbi
->secs_per_zone
;
1404 /* give up on finding another zone */
1407 if (sbi
->secs_per_zone
== 1)
1409 if (zoneno
== old_zoneno
)
1411 if (dir
== ALLOC_LEFT
) {
1412 if (!go_left
&& zoneno
+ 1 >= total_zones
)
1414 if (go_left
&& zoneno
== 0)
1417 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1418 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
1421 if (i
< NR_CURSEG_TYPE
) {
1422 /* zone is in user, try another */
1424 hint
= zoneno
* sbi
->secs_per_zone
- 1;
1425 else if (zoneno
+ 1 >= total_zones
)
1428 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
1430 goto find_other_zone
;
1433 /* set it as dirty segment in free segmap */
1434 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
1435 __set_inuse(sbi
, segno
);
1437 spin_unlock(&free_i
->segmap_lock
);
1440 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
1442 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1443 struct summary_footer
*sum_footer
;
1445 curseg
->segno
= curseg
->next_segno
;
1446 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
1447 curseg
->next_blkoff
= 0;
1448 curseg
->next_segno
= NULL_SEGNO
;
1450 sum_footer
= &(curseg
->sum_blk
->footer
);
1451 memset(sum_footer
, 0, sizeof(struct summary_footer
));
1452 if (IS_DATASEG(type
))
1453 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
1454 if (IS_NODESEG(type
))
1455 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
1456 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
1460 * Allocate a current working segment.
1461 * This function always allocates a free segment in LFS manner.
1463 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
1465 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1466 unsigned int segno
= curseg
->segno
;
1467 int dir
= ALLOC_LEFT
;
1469 write_sum_page(sbi
, curseg
->sum_blk
,
1470 GET_SUM_BLOCK(sbi
, segno
));
1471 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
1474 if (test_opt(sbi
, NOHEAP
))
1477 get_new_segment(sbi
, &segno
, new_sec
, dir
);
1478 curseg
->next_segno
= segno
;
1479 reset_curseg(sbi
, type
, 1);
1480 curseg
->alloc_type
= LFS
;
1483 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
1484 struct curseg_info
*seg
, block_t start
)
1486 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
1487 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1488 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
1489 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1490 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1493 for (i
= 0; i
< entries
; i
++)
1494 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1496 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1498 seg
->next_blkoff
= pos
;
1502 * If a segment is written by LFS manner, next block offset is just obtained
1503 * by increasing the current block offset. However, if a segment is written by
1504 * SSR manner, next block offset obtained by calling __next_free_blkoff
1506 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1507 struct curseg_info
*seg
)
1509 if (seg
->alloc_type
== SSR
)
1510 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1516 * This function always allocates a used segment(from dirty seglist) by SSR
1517 * manner, so it should recover the existing segment information of valid blocks
1519 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1521 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1522 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1523 unsigned int new_segno
= curseg
->next_segno
;
1524 struct f2fs_summary_block
*sum_node
;
1525 struct page
*sum_page
;
1527 write_sum_page(sbi
, curseg
->sum_blk
,
1528 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1529 __set_test_and_inuse(sbi
, new_segno
);
1531 mutex_lock(&dirty_i
->seglist_lock
);
1532 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1533 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1534 mutex_unlock(&dirty_i
->seglist_lock
);
1536 reset_curseg(sbi
, type
, 1);
1537 curseg
->alloc_type
= SSR
;
1538 __next_free_blkoff(sbi
, curseg
, 0);
1541 sum_page
= get_sum_page(sbi
, new_segno
);
1542 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1543 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1544 f2fs_put_page(sum_page
, 1);
1548 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1550 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1551 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1553 bool reversed
= false;
1555 /* need_SSR() already forces to do this */
1556 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
, BG_GC
, type
, SSR
))
1559 /* For node segments, let's do SSR more intensively */
1560 if (IS_NODESEG(type
)) {
1561 if (type
>= CURSEG_WARM_NODE
) {
1563 i
= CURSEG_COLD_NODE
;
1565 i
= CURSEG_HOT_NODE
;
1567 cnt
= NR_CURSEG_NODE_TYPE
;
1569 if (type
>= CURSEG_WARM_DATA
) {
1571 i
= CURSEG_COLD_DATA
;
1573 i
= CURSEG_HOT_DATA
;
1575 cnt
= NR_CURSEG_DATA_TYPE
;
1578 for (; cnt
-- > 0; reversed
? i
-- : i
++) {
1581 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1589 * flush out current segment and replace it with new segment
1590 * This function should be returned with success, otherwise BUG
1592 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1593 int type
, bool force
)
1596 new_curseg(sbi
, type
, true);
1597 else if (!is_set_ckpt_flags(sbi
, CP_CRC_RECOVERY_FLAG
) &&
1598 type
== CURSEG_WARM_NODE
)
1599 new_curseg(sbi
, type
, false);
1600 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1601 change_curseg(sbi
, type
, true);
1603 new_curseg(sbi
, type
, false);
1605 stat_inc_seg_type(sbi
, CURSEG_I(sbi
, type
));
1608 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1610 struct curseg_info
*curseg
;
1611 unsigned int old_segno
;
1614 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1615 curseg
= CURSEG_I(sbi
, i
);
1616 old_segno
= curseg
->segno
;
1617 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
1618 locate_dirty_segment(sbi
, old_segno
);
1622 static const struct segment_allocation default_salloc_ops
= {
1623 .allocate_segment
= allocate_segment_by_default
,
1626 bool exist_trim_candidates(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1628 __u64 trim_start
= cpc
->trim_start
;
1629 bool has_candidate
= false;
1631 mutex_lock(&SIT_I(sbi
)->sentry_lock
);
1632 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++) {
1633 if (add_discard_addrs(sbi
, cpc
, true)) {
1634 has_candidate
= true;
1638 mutex_unlock(&SIT_I(sbi
)->sentry_lock
);
1640 cpc
->trim_start
= trim_start
;
1641 return has_candidate
;
1644 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1646 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1647 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1648 unsigned int start_segno
, end_segno
;
1649 struct cp_control cpc
;
1652 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1656 if (end
<= MAIN_BLKADDR(sbi
))
1659 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1660 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1661 "Found FS corruption, run fsck to fix.");
1665 /* start/end segment number in main_area */
1666 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1667 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1668 GET_SEGNO(sbi
, end
);
1669 cpc
.reason
= CP_DISCARD
;
1670 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1672 /* do checkpoint to issue discard commands safely */
1673 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1674 cpc
.trim_start
= start_segno
;
1676 if (sbi
->discard_blks
== 0)
1678 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1679 cpc
.trim_end
= end_segno
;
1681 cpc
.trim_end
= min_t(unsigned int,
1682 rounddown(start_segno
+
1683 BATCHED_TRIM_SEGMENTS(sbi
),
1684 sbi
->segs_per_sec
) - 1, end_segno
);
1686 mutex_lock(&sbi
->gc_mutex
);
1687 err
= write_checkpoint(sbi
, &cpc
);
1688 mutex_unlock(&sbi
->gc_mutex
);
1695 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1699 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1701 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1702 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1707 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1710 return CURSEG_HOT_DATA
;
1712 return CURSEG_HOT_NODE
;
1715 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1717 if (p_type
== DATA
) {
1718 struct inode
*inode
= page
->mapping
->host
;
1720 if (S_ISDIR(inode
->i_mode
))
1721 return CURSEG_HOT_DATA
;
1723 return CURSEG_COLD_DATA
;
1725 if (IS_DNODE(page
) && is_cold_node(page
))
1726 return CURSEG_WARM_NODE
;
1728 return CURSEG_COLD_NODE
;
1732 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1734 if (p_type
== DATA
) {
1735 struct inode
*inode
= page
->mapping
->host
;
1737 if (S_ISDIR(inode
->i_mode
))
1738 return CURSEG_HOT_DATA
;
1739 else if (is_cold_data(page
) || file_is_cold(inode
))
1740 return CURSEG_COLD_DATA
;
1742 return CURSEG_WARM_DATA
;
1745 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1748 return CURSEG_COLD_NODE
;
1752 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1754 switch (F2FS_P_SB(page
)->active_logs
) {
1756 return __get_segment_type_2(page
, p_type
);
1758 return __get_segment_type_4(page
, p_type
);
1760 /* NR_CURSEG_TYPE(6) logs by default */
1761 f2fs_bug_on(F2FS_P_SB(page
),
1762 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1763 return __get_segment_type_6(page
, p_type
);
1766 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1767 block_t old_blkaddr
, block_t
*new_blkaddr
,
1768 struct f2fs_summary
*sum
, int type
)
1770 struct sit_info
*sit_i
= SIT_I(sbi
);
1771 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1773 mutex_lock(&curseg
->curseg_mutex
);
1774 mutex_lock(&sit_i
->sentry_lock
);
1776 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1778 f2fs_wait_discard_bio(sbi
, *new_blkaddr
);
1781 * __add_sum_entry should be resided under the curseg_mutex
1782 * because, this function updates a summary entry in the
1783 * current summary block.
1785 __add_sum_entry(sbi
, type
, sum
);
1787 __refresh_next_blkoff(sbi
, curseg
);
1789 stat_inc_block_count(sbi
, curseg
);
1791 if (!__has_curseg_space(sbi
, type
))
1792 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1794 * SIT information should be updated after segment allocation,
1795 * since we need to keep dirty segments precisely under SSR.
1797 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1799 mutex_unlock(&sit_i
->sentry_lock
);
1801 if (page
&& IS_NODESEG(type
))
1802 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1804 mutex_unlock(&curseg
->curseg_mutex
);
1807 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1809 int type
= __get_segment_type(fio
->page
, fio
->type
);
1812 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1813 mutex_lock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1815 allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
1816 &fio
->new_blkaddr
, sum
, type
);
1818 /* writeout dirty page into bdev */
1819 err
= f2fs_submit_page_mbio(fio
);
1820 if (err
== -EAGAIN
) {
1821 fio
->old_blkaddr
= fio
->new_blkaddr
;
1825 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1826 mutex_unlock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1829 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1831 struct f2fs_io_info fio
= {
1835 .op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
,
1836 .old_blkaddr
= page
->index
,
1837 .new_blkaddr
= page
->index
,
1839 .encrypted_page
= NULL
,
1842 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1843 fio
.op_flags
&= ~REQ_META
;
1845 set_page_writeback(page
);
1846 f2fs_submit_page_mbio(&fio
);
1849 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1851 struct f2fs_summary sum
;
1853 set_summary(&sum
, nid
, 0, 0);
1854 do_write_page(&sum
, fio
);
1857 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1859 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1860 struct f2fs_summary sum
;
1861 struct node_info ni
;
1863 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1864 get_node_info(sbi
, dn
->nid
, &ni
);
1865 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1866 do_write_page(&sum
, fio
);
1867 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
1870 void rewrite_data_page(struct f2fs_io_info
*fio
)
1872 fio
->new_blkaddr
= fio
->old_blkaddr
;
1873 stat_inc_inplace_blocks(fio
->sbi
);
1874 f2fs_submit_page_mbio(fio
);
1877 void __f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
1878 block_t old_blkaddr
, block_t new_blkaddr
,
1879 bool recover_curseg
, bool recover_newaddr
)
1881 struct sit_info
*sit_i
= SIT_I(sbi
);
1882 struct curseg_info
*curseg
;
1883 unsigned int segno
, old_cursegno
;
1884 struct seg_entry
*se
;
1886 unsigned short old_blkoff
;
1888 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1889 se
= get_seg_entry(sbi
, segno
);
1892 if (!recover_curseg
) {
1893 /* for recovery flow */
1894 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1895 if (old_blkaddr
== NULL_ADDR
)
1896 type
= CURSEG_COLD_DATA
;
1898 type
= CURSEG_WARM_DATA
;
1901 if (!IS_CURSEG(sbi
, segno
))
1902 type
= CURSEG_WARM_DATA
;
1905 curseg
= CURSEG_I(sbi
, type
);
1907 mutex_lock(&curseg
->curseg_mutex
);
1908 mutex_lock(&sit_i
->sentry_lock
);
1910 old_cursegno
= curseg
->segno
;
1911 old_blkoff
= curseg
->next_blkoff
;
1913 /* change the current segment */
1914 if (segno
!= curseg
->segno
) {
1915 curseg
->next_segno
= segno
;
1916 change_curseg(sbi
, type
, true);
1919 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1920 __add_sum_entry(sbi
, type
, sum
);
1922 if (!recover_curseg
|| recover_newaddr
)
1923 update_sit_entry(sbi
, new_blkaddr
, 1);
1924 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1925 update_sit_entry(sbi
, old_blkaddr
, -1);
1927 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1928 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1930 locate_dirty_segment(sbi
, old_cursegno
);
1932 if (recover_curseg
) {
1933 if (old_cursegno
!= curseg
->segno
) {
1934 curseg
->next_segno
= old_cursegno
;
1935 change_curseg(sbi
, type
, true);
1937 curseg
->next_blkoff
= old_blkoff
;
1940 mutex_unlock(&sit_i
->sentry_lock
);
1941 mutex_unlock(&curseg
->curseg_mutex
);
1944 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1945 block_t old_addr
, block_t new_addr
,
1946 unsigned char version
, bool recover_curseg
,
1947 bool recover_newaddr
)
1949 struct f2fs_summary sum
;
1951 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1953 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
,
1954 recover_curseg
, recover_newaddr
);
1956 f2fs_update_data_blkaddr(dn
, new_addr
);
1959 void f2fs_wait_on_page_writeback(struct page
*page
,
1960 enum page_type type
, bool ordered
)
1962 if (PageWriteback(page
)) {
1963 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1965 f2fs_submit_merged_bio_cond(sbi
, page
->mapping
->host
,
1966 0, page
->index
, type
, WRITE
);
1968 wait_on_page_writeback(page
);
1970 wait_for_stable_page(page
);
1974 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1979 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
1982 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1984 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
1985 f2fs_put_page(cpage
, 1);
1989 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1991 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1992 struct curseg_info
*seg_i
;
1993 unsigned char *kaddr
;
1998 start
= start_sum_block(sbi
);
2000 page
= get_meta_page(sbi
, start
++);
2001 kaddr
= (unsigned char *)page_address(page
);
2003 /* Step 1: restore nat cache */
2004 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2005 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
2007 /* Step 2: restore sit cache */
2008 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2009 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
2010 offset
= 2 * SUM_JOURNAL_SIZE
;
2012 /* Step 3: restore summary entries */
2013 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2014 unsigned short blk_off
;
2017 seg_i
= CURSEG_I(sbi
, i
);
2018 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
2019 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
2020 seg_i
->next_segno
= segno
;
2021 reset_curseg(sbi
, i
, 0);
2022 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
2023 seg_i
->next_blkoff
= blk_off
;
2025 if (seg_i
->alloc_type
== SSR
)
2026 blk_off
= sbi
->blocks_per_seg
;
2028 for (j
= 0; j
< blk_off
; j
++) {
2029 struct f2fs_summary
*s
;
2030 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
2031 seg_i
->sum_blk
->entries
[j
] = *s
;
2032 offset
+= SUMMARY_SIZE
;
2033 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
2037 f2fs_put_page(page
, 1);
2040 page
= get_meta_page(sbi
, start
++);
2041 kaddr
= (unsigned char *)page_address(page
);
2045 f2fs_put_page(page
, 1);
2049 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
2051 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2052 struct f2fs_summary_block
*sum
;
2053 struct curseg_info
*curseg
;
2055 unsigned short blk_off
;
2056 unsigned int segno
= 0;
2057 block_t blk_addr
= 0;
2059 /* get segment number and block addr */
2060 if (IS_DATASEG(type
)) {
2061 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
2062 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
2064 if (__exist_node_summaries(sbi
))
2065 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
2067 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
2069 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
2071 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
2073 if (__exist_node_summaries(sbi
))
2074 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
2075 type
- CURSEG_HOT_NODE
);
2077 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
2080 new = get_meta_page(sbi
, blk_addr
);
2081 sum
= (struct f2fs_summary_block
*)page_address(new);
2083 if (IS_NODESEG(type
)) {
2084 if (__exist_node_summaries(sbi
)) {
2085 struct f2fs_summary
*ns
= &sum
->entries
[0];
2087 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
2089 ns
->ofs_in_node
= 0;
2094 err
= restore_node_summary(sbi
, segno
, sum
);
2096 f2fs_put_page(new, 1);
2102 /* set uncompleted segment to curseg */
2103 curseg
= CURSEG_I(sbi
, type
);
2104 mutex_lock(&curseg
->curseg_mutex
);
2106 /* update journal info */
2107 down_write(&curseg
->journal_rwsem
);
2108 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
2109 up_write(&curseg
->journal_rwsem
);
2111 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
2112 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
2113 curseg
->next_segno
= segno
;
2114 reset_curseg(sbi
, type
, 0);
2115 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
2116 curseg
->next_blkoff
= blk_off
;
2117 mutex_unlock(&curseg
->curseg_mutex
);
2118 f2fs_put_page(new, 1);
2122 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
2124 int type
= CURSEG_HOT_DATA
;
2127 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
2128 int npages
= npages_for_summary_flush(sbi
, true);
2131 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
2134 /* restore for compacted data summary */
2135 if (read_compacted_summaries(sbi
))
2137 type
= CURSEG_HOT_NODE
;
2140 if (__exist_node_summaries(sbi
))
2141 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
2142 NR_CURSEG_TYPE
- type
, META_CP
, true);
2144 for (; type
<= CURSEG_COLD_NODE
; type
++) {
2145 err
= read_normal_summaries(sbi
, type
);
2153 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
2156 unsigned char *kaddr
;
2157 struct f2fs_summary
*summary
;
2158 struct curseg_info
*seg_i
;
2159 int written_size
= 0;
2162 page
= grab_meta_page(sbi
, blkaddr
++);
2163 kaddr
= (unsigned char *)page_address(page
);
2165 /* Step 1: write nat cache */
2166 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2167 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
2168 written_size
+= SUM_JOURNAL_SIZE
;
2170 /* Step 2: write sit cache */
2171 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2172 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
2173 written_size
+= SUM_JOURNAL_SIZE
;
2175 /* Step 3: write summary entries */
2176 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2177 unsigned short blkoff
;
2178 seg_i
= CURSEG_I(sbi
, i
);
2179 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
2180 blkoff
= sbi
->blocks_per_seg
;
2182 blkoff
= curseg_blkoff(sbi
, i
);
2184 for (j
= 0; j
< blkoff
; j
++) {
2186 page
= grab_meta_page(sbi
, blkaddr
++);
2187 kaddr
= (unsigned char *)page_address(page
);
2190 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
2191 *summary
= seg_i
->sum_blk
->entries
[j
];
2192 written_size
+= SUMMARY_SIZE
;
2194 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
2198 set_page_dirty(page
);
2199 f2fs_put_page(page
, 1);
2204 set_page_dirty(page
);
2205 f2fs_put_page(page
, 1);
2209 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
2210 block_t blkaddr
, int type
)
2213 if (IS_DATASEG(type
))
2214 end
= type
+ NR_CURSEG_DATA_TYPE
;
2216 end
= type
+ NR_CURSEG_NODE_TYPE
;
2218 for (i
= type
; i
< end
; i
++)
2219 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
2222 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
2224 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
2225 write_compacted_summaries(sbi
, start_blk
);
2227 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
2230 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
2232 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
2235 int lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
2236 unsigned int val
, int alloc
)
2240 if (type
== NAT_JOURNAL
) {
2241 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2242 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
2245 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
2246 return update_nats_in_cursum(journal
, 1);
2247 } else if (type
== SIT_JOURNAL
) {
2248 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
2249 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
2251 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
2252 return update_sits_in_cursum(journal
, 1);
2257 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
2260 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
2263 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
2266 struct sit_info
*sit_i
= SIT_I(sbi
);
2267 struct page
*src_page
, *dst_page
;
2268 pgoff_t src_off
, dst_off
;
2269 void *src_addr
, *dst_addr
;
2271 src_off
= current_sit_addr(sbi
, start
);
2272 dst_off
= next_sit_addr(sbi
, src_off
);
2274 /* get current sit block page without lock */
2275 src_page
= get_meta_page(sbi
, src_off
);
2276 dst_page
= grab_meta_page(sbi
, dst_off
);
2277 f2fs_bug_on(sbi
, PageDirty(src_page
));
2279 src_addr
= page_address(src_page
);
2280 dst_addr
= page_address(dst_page
);
2281 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
2283 set_page_dirty(dst_page
);
2284 f2fs_put_page(src_page
, 1);
2286 set_to_next_sit(sit_i
, start
);
2291 static struct sit_entry_set
*grab_sit_entry_set(void)
2293 struct sit_entry_set
*ses
=
2294 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
2297 INIT_LIST_HEAD(&ses
->set_list
);
2301 static void release_sit_entry_set(struct sit_entry_set
*ses
)
2303 list_del(&ses
->set_list
);
2304 kmem_cache_free(sit_entry_set_slab
, ses
);
2307 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
2308 struct list_head
*head
)
2310 struct sit_entry_set
*next
= ses
;
2312 if (list_is_last(&ses
->set_list
, head
))
2315 list_for_each_entry_continue(next
, head
, set_list
)
2316 if (ses
->entry_cnt
<= next
->entry_cnt
)
2319 list_move_tail(&ses
->set_list
, &next
->set_list
);
2322 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
2324 struct sit_entry_set
*ses
;
2325 unsigned int start_segno
= START_SEGNO(segno
);
2327 list_for_each_entry(ses
, head
, set_list
) {
2328 if (ses
->start_segno
== start_segno
) {
2330 adjust_sit_entry_set(ses
, head
);
2335 ses
= grab_sit_entry_set();
2337 ses
->start_segno
= start_segno
;
2339 list_add(&ses
->set_list
, head
);
2342 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
2344 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2345 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
2346 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
2349 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
2350 add_sit_entry(segno
, set_list
);
2353 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
2355 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2356 struct f2fs_journal
*journal
= curseg
->journal
;
2359 down_write(&curseg
->journal_rwsem
);
2360 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2364 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
2365 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
2368 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
2370 update_sits_in_cursum(journal
, -i
);
2371 up_write(&curseg
->journal_rwsem
);
2375 * CP calls this function, which flushes SIT entries including sit_journal,
2376 * and moves prefree segs to free segs.
2378 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2380 struct sit_info
*sit_i
= SIT_I(sbi
);
2381 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
2382 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2383 struct f2fs_journal
*journal
= curseg
->journal
;
2384 struct sit_entry_set
*ses
, *tmp
;
2385 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
2386 bool to_journal
= true;
2387 struct seg_entry
*se
;
2389 mutex_lock(&sit_i
->sentry_lock
);
2391 if (!sit_i
->dirty_sentries
)
2395 * add and account sit entries of dirty bitmap in sit entry
2398 add_sits_in_set(sbi
);
2401 * if there are no enough space in journal to store dirty sit
2402 * entries, remove all entries from journal and add and account
2403 * them in sit entry set.
2405 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
2406 remove_sits_in_journal(sbi
);
2409 * there are two steps to flush sit entries:
2410 * #1, flush sit entries to journal in current cold data summary block.
2411 * #2, flush sit entries to sit page.
2413 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
2414 struct page
*page
= NULL
;
2415 struct f2fs_sit_block
*raw_sit
= NULL
;
2416 unsigned int start_segno
= ses
->start_segno
;
2417 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
2418 (unsigned long)MAIN_SEGS(sbi
));
2419 unsigned int segno
= start_segno
;
2422 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
2426 down_write(&curseg
->journal_rwsem
);
2428 page
= get_next_sit_page(sbi
, start_segno
);
2429 raw_sit
= page_address(page
);
2432 /* flush dirty sit entries in region of current sit set */
2433 for_each_set_bit_from(segno
, bitmap
, end
) {
2434 int offset
, sit_offset
;
2436 se
= get_seg_entry(sbi
, segno
);
2438 /* add discard candidates */
2439 if (cpc
->reason
!= CP_DISCARD
) {
2440 cpc
->trim_start
= segno
;
2441 add_discard_addrs(sbi
, cpc
, false);
2445 offset
= lookup_journal_in_cursum(journal
,
2446 SIT_JOURNAL
, segno
, 1);
2447 f2fs_bug_on(sbi
, offset
< 0);
2448 segno_in_journal(journal
, offset
) =
2450 seg_info_to_raw_sit(se
,
2451 &sit_in_journal(journal
, offset
));
2453 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
2454 seg_info_to_raw_sit(se
,
2455 &raw_sit
->entries
[sit_offset
]);
2458 __clear_bit(segno
, bitmap
);
2459 sit_i
->dirty_sentries
--;
2464 up_write(&curseg
->journal_rwsem
);
2466 f2fs_put_page(page
, 1);
2468 f2fs_bug_on(sbi
, ses
->entry_cnt
);
2469 release_sit_entry_set(ses
);
2472 f2fs_bug_on(sbi
, !list_empty(head
));
2473 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
2475 if (cpc
->reason
== CP_DISCARD
) {
2476 __u64 trim_start
= cpc
->trim_start
;
2478 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
2479 add_discard_addrs(sbi
, cpc
, false);
2481 cpc
->trim_start
= trim_start
;
2483 mutex_unlock(&sit_i
->sentry_lock
);
2485 set_prefree_as_free_segments(sbi
);
2488 static int build_sit_info(struct f2fs_sb_info
*sbi
)
2490 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2491 struct sit_info
*sit_i
;
2492 unsigned int sit_segs
, start
;
2494 unsigned int bitmap_size
;
2496 /* allocate memory for SIT information */
2497 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
2501 SM_I(sbi
)->sit_info
= sit_i
;
2503 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
2504 sizeof(struct seg_entry
), GFP_KERNEL
);
2505 if (!sit_i
->sentries
)
2508 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2509 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2510 if (!sit_i
->dirty_sentries_bitmap
)
2513 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2514 sit_i
->sentries
[start
].cur_valid_map
2515 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2516 sit_i
->sentries
[start
].ckpt_valid_map
2517 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2518 if (!sit_i
->sentries
[start
].cur_valid_map
||
2519 !sit_i
->sentries
[start
].ckpt_valid_map
)
2522 #ifdef CONFIG_F2FS_CHECK_FS
2523 sit_i
->sentries
[start
].cur_valid_map_mir
2524 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2525 if (!sit_i
->sentries
[start
].cur_valid_map_mir
)
2529 if (f2fs_discard_en(sbi
)) {
2530 sit_i
->sentries
[start
].discard_map
2531 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2532 if (!sit_i
->sentries
[start
].discard_map
)
2537 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2538 if (!sit_i
->tmp_map
)
2541 if (sbi
->segs_per_sec
> 1) {
2542 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2543 sizeof(struct sec_entry
), GFP_KERNEL
);
2544 if (!sit_i
->sec_entries
)
2548 /* get information related with SIT */
2549 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2551 /* setup SIT bitmap from ckeckpoint pack */
2552 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2553 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2555 sit_i
->sit_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2556 if (!sit_i
->sit_bitmap
)
2559 #ifdef CONFIG_F2FS_CHECK_FS
2560 sit_i
->sit_bitmap_mir
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2561 if (!sit_i
->sit_bitmap_mir
)
2565 /* init SIT information */
2566 sit_i
->s_ops
= &default_salloc_ops
;
2568 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2569 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2570 sit_i
->written_valid_blocks
= 0;
2571 sit_i
->bitmap_size
= bitmap_size
;
2572 sit_i
->dirty_sentries
= 0;
2573 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2574 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2575 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2576 mutex_init(&sit_i
->sentry_lock
);
2580 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2582 struct free_segmap_info
*free_i
;
2583 unsigned int bitmap_size
, sec_bitmap_size
;
2585 /* allocate memory for free segmap information */
2586 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2590 SM_I(sbi
)->free_info
= free_i
;
2592 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2593 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2594 if (!free_i
->free_segmap
)
2597 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2598 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2599 if (!free_i
->free_secmap
)
2602 /* set all segments as dirty temporarily */
2603 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2604 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2606 /* init free segmap information */
2607 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2608 free_i
->free_segments
= 0;
2609 free_i
->free_sections
= 0;
2610 spin_lock_init(&free_i
->segmap_lock
);
2614 static int build_curseg(struct f2fs_sb_info
*sbi
)
2616 struct curseg_info
*array
;
2619 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2623 SM_I(sbi
)->curseg_array
= array
;
2625 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2626 mutex_init(&array
[i
].curseg_mutex
);
2627 array
[i
].sum_blk
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
2628 if (!array
[i
].sum_blk
)
2630 init_rwsem(&array
[i
].journal_rwsem
);
2631 array
[i
].journal
= kzalloc(sizeof(struct f2fs_journal
),
2633 if (!array
[i
].journal
)
2635 array
[i
].segno
= NULL_SEGNO
;
2636 array
[i
].next_blkoff
= 0;
2638 return restore_curseg_summaries(sbi
);
2641 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
2643 struct sit_info
*sit_i
= SIT_I(sbi
);
2644 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2645 struct f2fs_journal
*journal
= curseg
->journal
;
2646 struct seg_entry
*se
;
2647 struct f2fs_sit_entry sit
;
2648 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2649 unsigned int i
, start
, end
;
2650 unsigned int readed
, start_blk
= 0;
2653 readed
= ra_meta_pages(sbi
, start_blk
, BIO_MAX_PAGES
,
2656 start
= start_blk
* sit_i
->sents_per_block
;
2657 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2659 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2660 struct f2fs_sit_block
*sit_blk
;
2663 se
= &sit_i
->sentries
[start
];
2664 page
= get_current_sit_page(sbi
, start
);
2665 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2666 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2667 f2fs_put_page(page
, 1);
2669 check_block_count(sbi
, start
, &sit
);
2670 seg_info_from_raw_sit(se
, &sit
);
2672 /* build discard map only one time */
2673 if (f2fs_discard_en(sbi
)) {
2674 memcpy(se
->discard_map
, se
->cur_valid_map
,
2675 SIT_VBLOCK_MAP_SIZE
);
2676 sbi
->discard_blks
+= sbi
->blocks_per_seg
-
2680 if (sbi
->segs_per_sec
> 1)
2681 get_sec_entry(sbi
, start
)->valid_blocks
+=
2684 start_blk
+= readed
;
2685 } while (start_blk
< sit_blk_cnt
);
2687 down_read(&curseg
->journal_rwsem
);
2688 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2689 unsigned int old_valid_blocks
;
2691 start
= le32_to_cpu(segno_in_journal(journal
, i
));
2692 se
= &sit_i
->sentries
[start
];
2693 sit
= sit_in_journal(journal
, i
);
2695 old_valid_blocks
= se
->valid_blocks
;
2697 check_block_count(sbi
, start
, &sit
);
2698 seg_info_from_raw_sit(se
, &sit
);
2700 if (f2fs_discard_en(sbi
)) {
2701 memcpy(se
->discard_map
, se
->cur_valid_map
,
2702 SIT_VBLOCK_MAP_SIZE
);
2703 sbi
->discard_blks
+= old_valid_blocks
-
2707 if (sbi
->segs_per_sec
> 1)
2708 get_sec_entry(sbi
, start
)->valid_blocks
+=
2709 se
->valid_blocks
- old_valid_blocks
;
2711 up_read(&curseg
->journal_rwsem
);
2714 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2719 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2720 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2721 if (!sentry
->valid_blocks
)
2722 __set_free(sbi
, start
);
2724 SIT_I(sbi
)->written_valid_blocks
+=
2725 sentry
->valid_blocks
;
2728 /* set use the current segments */
2729 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2730 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2731 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2735 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2737 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2738 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2739 unsigned int segno
= 0, offset
= 0;
2740 unsigned short valid_blocks
;
2743 /* find dirty segment based on free segmap */
2744 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2745 if (segno
>= MAIN_SEGS(sbi
))
2748 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2749 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2751 if (valid_blocks
> sbi
->blocks_per_seg
) {
2752 f2fs_bug_on(sbi
, 1);
2755 mutex_lock(&dirty_i
->seglist_lock
);
2756 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2757 mutex_unlock(&dirty_i
->seglist_lock
);
2761 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2763 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2764 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2766 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2767 if (!dirty_i
->victim_secmap
)
2772 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2774 struct dirty_seglist_info
*dirty_i
;
2775 unsigned int bitmap_size
, i
;
2777 /* allocate memory for dirty segments list information */
2778 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2782 SM_I(sbi
)->dirty_info
= dirty_i
;
2783 mutex_init(&dirty_i
->seglist_lock
);
2785 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2787 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2788 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2789 if (!dirty_i
->dirty_segmap
[i
])
2793 init_dirty_segmap(sbi
);
2794 return init_victim_secmap(sbi
);
2798 * Update min, max modified time for cost-benefit GC algorithm
2800 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2802 struct sit_info
*sit_i
= SIT_I(sbi
);
2805 mutex_lock(&sit_i
->sentry_lock
);
2807 sit_i
->min_mtime
= LLONG_MAX
;
2809 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2811 unsigned long long mtime
= 0;
2813 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2814 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2816 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2818 if (sit_i
->min_mtime
> mtime
)
2819 sit_i
->min_mtime
= mtime
;
2821 sit_i
->max_mtime
= get_mtime(sbi
);
2822 mutex_unlock(&sit_i
->sentry_lock
);
2825 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2827 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2828 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2829 struct f2fs_sm_info
*sm_info
;
2832 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2837 sbi
->sm_info
= sm_info
;
2838 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2839 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2840 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2841 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2842 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2843 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2844 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2845 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2846 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2847 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
2848 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
2850 if (!test_opt(sbi
, LFS
))
2851 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2852 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2853 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2855 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2857 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2859 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
2860 err
= create_flush_cmd_control(sbi
);
2865 err
= create_discard_cmd_control(sbi
);
2869 err
= build_sit_info(sbi
);
2872 err
= build_free_segmap(sbi
);
2875 err
= build_curseg(sbi
);
2879 /* reinit free segmap based on SIT */
2880 build_sit_entries(sbi
);
2882 init_free_segmap(sbi
);
2883 err
= build_dirty_segmap(sbi
);
2887 init_min_max_mtime(sbi
);
2891 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2892 enum dirty_type dirty_type
)
2894 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2896 mutex_lock(&dirty_i
->seglist_lock
);
2897 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2898 dirty_i
->nr_dirty
[dirty_type
] = 0;
2899 mutex_unlock(&dirty_i
->seglist_lock
);
2902 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2904 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2905 kvfree(dirty_i
->victim_secmap
);
2908 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2910 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2916 /* discard pre-free/dirty segments list */
2917 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2918 discard_dirty_segmap(sbi
, i
);
2920 destroy_victim_secmap(sbi
);
2921 SM_I(sbi
)->dirty_info
= NULL
;
2925 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2927 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2932 SM_I(sbi
)->curseg_array
= NULL
;
2933 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2934 kfree(array
[i
].sum_blk
);
2935 kfree(array
[i
].journal
);
2940 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2942 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2945 SM_I(sbi
)->free_info
= NULL
;
2946 kvfree(free_i
->free_segmap
);
2947 kvfree(free_i
->free_secmap
);
2951 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2953 struct sit_info
*sit_i
= SIT_I(sbi
);
2959 if (sit_i
->sentries
) {
2960 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2961 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2962 #ifdef CONFIG_F2FS_CHECK_FS
2963 kfree(sit_i
->sentries
[start
].cur_valid_map_mir
);
2965 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2966 kfree(sit_i
->sentries
[start
].discard_map
);
2969 kfree(sit_i
->tmp_map
);
2971 kvfree(sit_i
->sentries
);
2972 kvfree(sit_i
->sec_entries
);
2973 kvfree(sit_i
->dirty_sentries_bitmap
);
2975 SM_I(sbi
)->sit_info
= NULL
;
2976 kfree(sit_i
->sit_bitmap
);
2977 #ifdef CONFIG_F2FS_CHECK_FS
2978 kfree(sit_i
->sit_bitmap_mir
);
2983 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2985 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2989 destroy_flush_cmd_control(sbi
, true);
2990 destroy_discard_cmd_control(sbi
, true);
2991 destroy_dirty_segmap(sbi
);
2992 destroy_curseg(sbi
);
2993 destroy_free_segmap(sbi
);
2994 destroy_sit_info(sbi
);
2995 sbi
->sm_info
= NULL
;
2999 int __init
create_segment_manager_caches(void)
3001 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
3002 sizeof(struct discard_entry
));
3003 if (!discard_entry_slab
)
3006 discard_cmd_slab
= f2fs_kmem_cache_create("discard_cmd",
3007 sizeof(struct discard_cmd
));
3008 if (!discard_cmd_slab
)
3009 goto destroy_discard_entry
;
3011 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
3012 sizeof(struct sit_entry_set
));
3013 if (!sit_entry_set_slab
)
3014 goto destroy_discard_cmd
;
3016 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
3017 sizeof(struct inmem_pages
));
3018 if (!inmem_entry_slab
)
3019 goto destroy_sit_entry_set
;
3022 destroy_sit_entry_set
:
3023 kmem_cache_destroy(sit_entry_set_slab
);
3024 destroy_discard_cmd
:
3025 kmem_cache_destroy(discard_cmd_slab
);
3026 destroy_discard_entry
:
3027 kmem_cache_destroy(discard_entry_slab
);
3032 void destroy_segment_manager_caches(void)
3034 kmem_cache_destroy(sit_entry_set_slab
);
3035 kmem_cache_destroy(discard_cmd_slab
);
3036 kmem_cache_destroy(discard_entry_slab
);
3037 kmem_cache_destroy(inmem_entry_slab
);