4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
27 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
30 #define IS_CURSEG(sbi, seg) \
31 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
36 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
38 #define IS_CURSEC(sbi, secno) \
39 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
46 sbi->segs_per_sec) || \
47 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
48 sbi->segs_per_sec) || \
49 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
52 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
53 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
55 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
56 #define MAIN_SECS(sbi) (sbi->total_sections)
58 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
59 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
61 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
62 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
63 sbi->log_blocks_per_seg))
65 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
66 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
68 #define NEXT_FREE_BLKADDR(sbi, curseg) \
69 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
71 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
72 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
73 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
74 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
75 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
77 #define GET_SEGNO(sbi, blk_addr) \
78 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
79 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
80 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
81 #define GET_SECNO(sbi, segno) \
82 ((segno) / sbi->segs_per_sec)
83 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
84 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
86 #define GET_SUM_BLOCK(sbi, segno) \
87 ((sbi->sm_info->ssa_blkaddr) + segno)
89 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
90 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
92 #define SIT_ENTRY_OFFSET(sit_i, segno) \
93 (segno % sit_i->sents_per_block)
94 #define SIT_BLOCK_OFFSET(segno) \
95 (segno / SIT_ENTRY_PER_BLOCK)
96 #define START_SEGNO(segno) \
97 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
98 #define SIT_BLK_CNT(sbi) \
99 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100 #define f2fs_bitmap_size(nr) \
101 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
103 #define SECTOR_FROM_BLOCK(blk_addr) \
104 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105 #define SECTOR_TO_BLOCK(sectors) \
106 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
109 * indicate a block allocation direction: RIGHT and LEFT.
110 * RIGHT means allocating new sections towards the end of volume.
111 * LEFT means the opposite direction.
119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120 * LFS writes data sequentially with cleaning operations.
121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130 * GC_CB is based on cost-benefit algorithm.
131 * GC_GREEDY is based on greedy algorithm.
139 * BG_GC means the background cleaning job.
140 * FG_GC means the on-demand cleaning job.
141 * FORCE_FG_GC means on-demand cleaning job in background.
149 /* for a function parameter to select a victim segment */
150 struct victim_sel_policy
{
151 int alloc_mode
; /* LFS or SSR */
152 int gc_mode
; /* GC_CB or GC_GREEDY */
153 unsigned long *dirty_segmap
; /* dirty segment bitmap */
154 unsigned int max_search
; /* maximum # of segments to search */
155 unsigned int offset
; /* last scanned bitmap offset */
156 unsigned int ofs_unit
; /* bitmap search unit */
157 unsigned int min_cost
; /* minimum cost */
158 unsigned int min_segno
; /* segment # having min. cost */
162 unsigned int type
:6; /* segment type like CURSEG_XXX_TYPE */
163 unsigned int valid_blocks
:10; /* # of valid blocks */
164 unsigned int ckpt_valid_blocks
:10; /* # of valid blocks last cp */
165 unsigned int padding
:6; /* padding */
166 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
167 #ifdef CONFIG_F2FS_CHECK_FS
168 unsigned char *cur_valid_map_mir
; /* mirror of current valid bitmap */
171 * # of valid blocks and the validity bitmap stored in the the last
172 * checkpoint pack. This information is used by the SSR mode.
174 unsigned char *ckpt_valid_map
; /* validity bitmap of blocks last cp */
175 unsigned char *discard_map
;
176 unsigned long long mtime
; /* modification time of the segment */
180 unsigned int valid_blocks
; /* # of valid blocks in a section */
183 struct segment_allocation
{
184 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
188 * this value is set in page as a private data which indicate that
189 * the page is atomically written, and it is in inmem_pages list.
191 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
192 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
194 #define IS_ATOMIC_WRITTEN_PAGE(page) \
195 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
196 #define IS_DUMMY_WRITTEN_PAGE(page) \
197 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
200 struct list_head list
;
202 block_t old_addr
; /* for revoking when fail to commit */
206 const struct segment_allocation
*s_ops
;
208 block_t sit_base_addr
; /* start block address of SIT area */
209 block_t sit_blocks
; /* # of blocks used by SIT area */
210 block_t written_valid_blocks
; /* # of valid blocks in main area */
211 char *sit_bitmap
; /* SIT bitmap pointer */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 char *sit_bitmap_mir
; /* SIT bitmap mirror */
215 unsigned int bitmap_size
; /* SIT bitmap size */
217 unsigned long *tmp_map
; /* bitmap for temporal use */
218 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
219 unsigned int dirty_sentries
; /* # of dirty sentries */
220 unsigned int sents_per_block
; /* # of SIT entries per block */
221 struct mutex sentry_lock
; /* to protect SIT cache */
222 struct seg_entry
*sentries
; /* SIT segment-level cache */
223 struct sec_entry
*sec_entries
; /* SIT section-level cache */
225 /* for cost-benefit algorithm in cleaning procedure */
226 unsigned long long elapsed_time
; /* elapsed time after mount */
227 unsigned long long mounted_time
; /* mount time */
228 unsigned long long min_mtime
; /* min. modification time */
229 unsigned long long max_mtime
; /* max. modification time */
232 struct free_segmap_info
{
233 unsigned int start_segno
; /* start segment number logically */
234 unsigned int free_segments
; /* # of free segments */
235 unsigned int free_sections
; /* # of free sections */
236 spinlock_t segmap_lock
; /* free segmap lock */
237 unsigned long *free_segmap
; /* free segment bitmap */
238 unsigned long *free_secmap
; /* free section bitmap */
241 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
243 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
244 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
245 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
246 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
247 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
248 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
249 DIRTY
, /* to count # of dirty segments */
250 PRE
, /* to count # of entirely obsolete segments */
254 struct dirty_seglist_info
{
255 const struct victim_selection
*v_ops
; /* victim selction operation */
256 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
257 struct mutex seglist_lock
; /* lock for segment bitmaps */
258 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
259 unsigned long *victim_secmap
; /* background GC victims */
262 /* victim selection function for cleaning and SSR */
263 struct victim_selection
{
264 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
268 /* for active log information */
270 struct mutex curseg_mutex
; /* lock for consistency */
271 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
272 struct rw_semaphore journal_rwsem
; /* protect journal area */
273 struct f2fs_journal
*journal
; /* cached journal info */
274 unsigned char alloc_type
; /* current allocation type */
275 unsigned int segno
; /* current segment number */
276 unsigned short next_blkoff
; /* next block offset to write */
277 unsigned int zone
; /* current zone number */
278 unsigned int next_segno
; /* preallocated segment */
281 struct sit_entry_set
{
282 struct list_head set_list
; /* link with all sit sets */
283 unsigned int start_segno
; /* start segno of sits in set */
284 unsigned int entry_cnt
; /* the # of sit entries in set */
290 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
292 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
295 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
298 struct sit_info
*sit_i
= SIT_I(sbi
);
299 return &sit_i
->sentries
[segno
];
302 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
305 struct sit_info
*sit_i
= SIT_I(sbi
);
306 return &sit_i
->sec_entries
[GET_SECNO(sbi
, segno
)];
309 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
310 unsigned int segno
, int section
)
313 * In order to get # of valid blocks in a section instantly from many
314 * segments, f2fs manages two counting structures separately.
317 return get_sec_entry(sbi
, segno
)->valid_blocks
;
319 return get_seg_entry(sbi
, segno
)->valid_blocks
;
322 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
323 struct f2fs_sit_entry
*rs
)
325 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
326 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
327 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
328 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
329 #ifdef CONFIG_F2FS_CHECK_FS
330 memcpy(se
->cur_valid_map_mir
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
332 se
->type
= GET_SIT_TYPE(rs
);
333 se
->mtime
= le64_to_cpu(rs
->mtime
);
336 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
337 struct f2fs_sit_entry
*rs
)
339 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
341 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
342 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
343 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
344 se
->ckpt_valid_blocks
= se
->valid_blocks
;
345 rs
->mtime
= cpu_to_le64(se
->mtime
);
348 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
349 unsigned int max
, unsigned int segno
)
352 spin_lock(&free_i
->segmap_lock
);
353 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
354 spin_unlock(&free_i
->segmap_lock
);
358 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
360 struct free_segmap_info
*free_i
= FREE_I(sbi
);
361 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
362 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
365 spin_lock(&free_i
->segmap_lock
);
366 clear_bit(segno
, free_i
->free_segmap
);
367 free_i
->free_segments
++;
369 next
= find_next_bit(free_i
->free_segmap
,
370 start_segno
+ sbi
->segs_per_sec
, start_segno
);
371 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
372 clear_bit(secno
, free_i
->free_secmap
);
373 free_i
->free_sections
++;
375 spin_unlock(&free_i
->segmap_lock
);
378 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
381 struct free_segmap_info
*free_i
= FREE_I(sbi
);
382 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
383 set_bit(segno
, free_i
->free_segmap
);
384 free_i
->free_segments
--;
385 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
386 free_i
->free_sections
--;
389 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
392 struct free_segmap_info
*free_i
= FREE_I(sbi
);
393 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
394 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
397 spin_lock(&free_i
->segmap_lock
);
398 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
399 free_i
->free_segments
++;
401 next
= find_next_bit(free_i
->free_segmap
,
402 start_segno
+ sbi
->segs_per_sec
, start_segno
);
403 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
404 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
405 free_i
->free_sections
++;
408 spin_unlock(&free_i
->segmap_lock
);
411 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
414 struct free_segmap_info
*free_i
= FREE_I(sbi
);
415 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
416 spin_lock(&free_i
->segmap_lock
);
417 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
418 free_i
->free_segments
--;
419 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
420 free_i
->free_sections
--;
422 spin_unlock(&free_i
->segmap_lock
);
425 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
428 struct sit_info
*sit_i
= SIT_I(sbi
);
430 #ifdef CONFIG_F2FS_CHECK_FS
431 if (memcmp(sit_i
->sit_bitmap
, sit_i
->sit_bitmap_mir
,
435 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
438 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
440 return SIT_I(sbi
)->written_valid_blocks
;
443 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
445 return FREE_I(sbi
)->free_segments
;
448 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
450 return SM_I(sbi
)->reserved_segments
;
453 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
455 return FREE_I(sbi
)->free_sections
;
458 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
460 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
463 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
465 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
466 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
467 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
468 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
469 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
470 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
473 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
475 return SM_I(sbi
)->ovp_segments
;
478 static inline int overprovision_sections(struct f2fs_sb_info
*sbi
)
480 return ((unsigned int) overprovision_segments(sbi
)) / sbi
->segs_per_sec
;
483 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
485 return ((unsigned int) reserved_segments(sbi
)) / sbi
->segs_per_sec
;
488 static inline bool need_SSR(struct f2fs_sb_info
*sbi
)
490 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
491 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
492 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
494 if (test_opt(sbi
, LFS
))
497 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+ imeta_secs
+
498 reserved_sections(sbi
) + 1);
501 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
,
502 int freed
, int needed
)
504 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
505 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
506 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
508 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
511 return (free_sections(sbi
) + freed
) <=
512 (node_secs
+ 2 * dent_secs
+ imeta_secs
+
513 reserved_sections(sbi
) + needed
);
516 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
518 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
521 static inline int utilization(struct f2fs_sb_info
*sbi
)
523 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
524 sbi
->user_block_count
);
528 * Sometimes f2fs may be better to drop out-of-place update policy.
529 * And, users can control the policy through sysfs entries.
530 * There are five policies with triggering conditions as follows.
531 * F2FS_IPU_FORCE - all the time,
532 * F2FS_IPU_SSR - if SSR mode is activated,
533 * F2FS_IPU_UTIL - if FS utilization is over threashold,
534 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
536 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
537 * storages. IPU will be triggered only if the # of dirty
538 * pages over min_fsync_blocks.
539 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
541 #define DEF_MIN_IPU_UTIL 70
542 #define DEF_MIN_FSYNC_BLOCKS 8
552 static inline bool need_inplace_update(struct inode
*inode
)
554 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
555 unsigned int policy
= SM_I(sbi
)->ipu_policy
;
557 /* IPU can be done only for the user data */
558 if (S_ISDIR(inode
->i_mode
) || f2fs_is_atomic_file(inode
))
561 if (test_opt(sbi
, LFS
))
564 if (policy
& (0x1 << F2FS_IPU_FORCE
))
566 if (policy
& (0x1 << F2FS_IPU_SSR
) && need_SSR(sbi
))
568 if (policy
& (0x1 << F2FS_IPU_UTIL
) &&
569 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
571 if (policy
& (0x1 << F2FS_IPU_SSR_UTIL
) && need_SSR(sbi
) &&
572 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
575 /* this is only set during fdatasync */
576 if (policy
& (0x1 << F2FS_IPU_FSYNC
) &&
577 is_inode_flag_set(inode
, FI_NEED_IPU
))
583 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
586 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
587 return curseg
->segno
;
590 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
593 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
594 return curseg
->alloc_type
;
597 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
599 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
600 return curseg
->next_blkoff
;
603 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
605 f2fs_bug_on(sbi
, segno
> TOTAL_SEGS(sbi
) - 1);
608 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
610 BUG_ON(blk_addr
< SEG0_BLKADDR(sbi
)
611 || blk_addr
>= MAX_BLKADDR(sbi
));
615 * Summary block is always treated as an invalid block
617 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
618 int segno
, struct f2fs_sit_entry
*raw_sit
)
620 #ifdef CONFIG_F2FS_CHECK_FS
621 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
622 int valid_blocks
= 0;
623 int cur_pos
= 0, next_pos
;
625 /* check bitmap with valid block count */
628 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
631 valid_blocks
+= next_pos
- cur_pos
;
633 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
637 is_valid
= !is_valid
;
638 } while (cur_pos
< sbi
->blocks_per_seg
);
639 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
);
641 /* check segment usage, and check boundary of a given segment number */
642 f2fs_bug_on(sbi
, GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
643 || segno
> TOTAL_SEGS(sbi
) - 1);
646 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
649 struct sit_info
*sit_i
= SIT_I(sbi
);
650 unsigned int offset
= SIT_BLOCK_OFFSET(start
);
651 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
653 check_seg_range(sbi
, start
);
655 #ifdef CONFIG_F2FS_CHECK_FS
656 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
) !=
657 f2fs_test_bit(offset
, sit_i
->sit_bitmap_mir
))
661 /* calculate sit block address */
662 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
663 blk_addr
+= sit_i
->sit_blocks
;
668 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
671 struct sit_info
*sit_i
= SIT_I(sbi
);
672 block_addr
-= sit_i
->sit_base_addr
;
673 if (block_addr
< sit_i
->sit_blocks
)
674 block_addr
+= sit_i
->sit_blocks
;
676 block_addr
-= sit_i
->sit_blocks
;
678 return block_addr
+ sit_i
->sit_base_addr
;
681 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
683 unsigned int block_off
= SIT_BLOCK_OFFSET(start
);
685 f2fs_change_bit(block_off
, sit_i
->sit_bitmap
);
686 #ifdef CONFIG_F2FS_CHECK_FS
687 f2fs_change_bit(block_off
, sit_i
->sit_bitmap_mir
);
691 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
)
693 struct sit_info
*sit_i
= SIT_I(sbi
);
694 return sit_i
->elapsed_time
+ CURRENT_TIME_SEC
.tv_sec
-
698 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
699 unsigned int ofs_in_node
, unsigned char version
)
701 sum
->nid
= cpu_to_le32(nid
);
702 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
703 sum
->version
= version
;
706 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
708 return __start_cp_addr(sbi
) +
709 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
712 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
714 return __start_cp_addr(sbi
) +
715 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
719 static inline bool no_fggc_candidate(struct f2fs_sb_info
*sbi
,
722 if (get_valid_blocks(sbi
, secno
, sbi
->segs_per_sec
) >=
728 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
730 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
736 * It is very important to gather dirty pages and write at once, so that we can
737 * submit a big bio without interfering other data writes.
738 * By default, 512 pages for directory data,
739 * 512 pages (2MB) * 8 for nodes, and
740 * 256 pages * 8 for meta are set.
742 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
744 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
748 return sbi
->blocks_per_seg
;
749 else if (type
== NODE
)
750 return 8 * sbi
->blocks_per_seg
;
751 else if (type
== META
)
752 return 8 * BIO_MAX_PAGES
;
758 * When writing pages, it'd better align nr_to_write for segment size.
760 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
761 struct writeback_control
*wbc
)
763 long nr_to_write
, desired
;
765 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
768 nr_to_write
= wbc
->nr_to_write
;
769 desired
= BIO_MAX_PAGES
;
773 wbc
->nr_to_write
= desired
;
774 return desired
- nr_to_write
;