2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 struct hugetlbfs_config
{
54 struct hstate
*hstate
;
58 struct hugetlbfs_inode_info
{
59 struct shared_policy policy
;
60 struct inode vfs_inode
;
63 static inline struct hugetlbfs_inode_info
*HUGETLBFS_I(struct inode
*inode
)
65 return container_of(inode
, struct hugetlbfs_inode_info
, vfs_inode
);
68 int sysctl_hugetlb_shm_group
;
71 Opt_size
, Opt_nr_inodes
,
72 Opt_mode
, Opt_uid
, Opt_gid
,
73 Opt_pagesize
, Opt_min_size
,
77 static const match_table_t tokens
= {
78 {Opt_size
, "size=%s"},
79 {Opt_nr_inodes
, "nr_inodes=%s"},
80 {Opt_mode
, "mode=%o"},
83 {Opt_pagesize
, "pagesize=%s"},
84 {Opt_min_size
, "min_size=%s"},
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
90 struct inode
*inode
, pgoff_t index
)
92 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
98 mpol_cond_put(vma
->vm_policy
);
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
102 struct inode
*inode
, pgoff_t index
)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
111 static void huge_pagevec_release(struct pagevec
*pvec
)
115 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
116 put_page(pvec
->pages
[i
]);
118 pagevec_reinit(pvec
);
121 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
123 struct inode
*inode
= file_inode(file
);
126 struct hstate
*h
= hstate_file(file
);
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
136 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
137 vma
->vm_ops
= &hugetlb_vm_ops
;
140 * Offset passed to mmap (before page shift) could have been
141 * negative when represented as a (l)off_t.
143 if (((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) < 0)
146 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
149 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
150 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
151 /* check for overflow */
159 if (hugetlb_reserve_pages(inode
,
160 vma
->vm_pgoff
>> huge_page_order(h
),
161 len
>> huge_page_shift(h
), vma
,
166 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
167 i_size_write(inode
, len
);
175 * Called under down_write(mmap_sem).
178 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
180 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
181 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
183 struct mm_struct
*mm
= current
->mm
;
184 struct vm_area_struct
*vma
;
185 struct hstate
*h
= hstate_file(file
);
186 struct vm_unmapped_area_info info
;
188 if (len
& ~huge_page_mask(h
))
193 if (flags
& MAP_FIXED
) {
194 if (prepare_hugepage_range(file
, addr
, len
))
200 addr
= ALIGN(addr
, huge_page_size(h
));
201 vma
= find_vma(mm
, addr
);
202 if (TASK_SIZE
- len
>= addr
&&
203 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
209 info
.low_limit
= TASK_UNMAPPED_BASE
;
210 info
.high_limit
= TASK_SIZE
;
211 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
212 info
.align_offset
= 0;
213 return vm_unmapped_area(&info
);
218 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
219 struct iov_iter
*to
, unsigned long size
)
224 /* Find which 4k chunk and offset with in that chunk */
225 i
= offset
>> PAGE_SHIFT
;
226 offset
= offset
& ~PAGE_MASK
;
230 chunksize
= PAGE_SIZE
;
233 if (chunksize
> size
)
235 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
247 * Support for read() - Find the page attached to f_mapping and copy out the
248 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
249 * since it has PAGE_SIZE assumptions.
251 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
253 struct file
*file
= iocb
->ki_filp
;
254 struct hstate
*h
= hstate_file(file
);
255 struct address_space
*mapping
= file
->f_mapping
;
256 struct inode
*inode
= mapping
->host
;
257 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
258 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
259 unsigned long end_index
;
263 while (iov_iter_count(to
)) {
267 /* nr is the maximum number of bytes to copy from this page */
268 nr
= huge_page_size(h
);
269 isize
= i_size_read(inode
);
272 end_index
= (isize
- 1) >> huge_page_shift(h
);
273 if (index
> end_index
)
275 if (index
== end_index
) {
276 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
283 page
= find_lock_page(mapping
, index
);
284 if (unlikely(page
== NULL
)) {
286 * We have a HOLE, zero out the user-buffer for the
287 * length of the hole or request.
289 copied
= iov_iter_zero(nr
, to
);
294 * We have the page, copy it to user space buffer.
296 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
301 if (copied
!= nr
&& iov_iter_count(to
)) {
306 index
+= offset
>> huge_page_shift(h
);
307 offset
&= ~huge_page_mask(h
);
309 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
313 static int hugetlbfs_write_begin(struct file
*file
,
314 struct address_space
*mapping
,
315 loff_t pos
, unsigned len
, unsigned flags
,
316 struct page
**pagep
, void **fsdata
)
321 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
322 loff_t pos
, unsigned len
, unsigned copied
,
323 struct page
*page
, void *fsdata
)
329 static void remove_huge_page(struct page
*page
)
331 ClearPageDirty(page
);
332 ClearPageUptodate(page
);
333 delete_from_page_cache(page
);
337 hugetlb_vmdelete_list(struct rb_root
*root
, pgoff_t start
, pgoff_t end
)
339 struct vm_area_struct
*vma
;
342 * end == 0 indicates that the entire range after
343 * start should be unmapped.
345 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
346 unsigned long v_offset
;
350 * Can the expression below overflow on 32-bit arches?
351 * No, because the interval tree returns us only those vmas
352 * which overlap the truncated area starting at pgoff,
353 * and no vma on a 32-bit arch can span beyond the 4GB.
355 if (vma
->vm_pgoff
< start
)
356 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
363 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
365 if (v_end
> vma
->vm_end
)
369 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
375 * remove_inode_hugepages handles two distinct cases: truncation and hole
376 * punch. There are subtle differences in operation for each case.
378 * truncation is indicated by end of range being LLONG_MAX
379 * In this case, we first scan the range and release found pages.
380 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
381 * maps and global counts. Page faults can not race with truncation
382 * in this routine. hugetlb_no_page() prevents page faults in the
383 * truncated range. It checks i_size before allocation, and again after
384 * with the page table lock for the page held. The same lock must be
385 * acquired to unmap a page.
386 * hole punch is indicated if end is not LLONG_MAX
387 * In the hole punch case we scan the range and release found pages.
388 * Only when releasing a page is the associated region/reserv map
389 * deleted. The region/reserv map for ranges without associated
390 * pages are not modified. Page faults can race with hole punch.
391 * This is indicated if we find a mapped page.
392 * Note: If the passed end of range value is beyond the end of file, but
393 * not LLONG_MAX this routine still performs a hole punch operation.
395 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
398 struct hstate
*h
= hstate_inode(inode
);
399 struct address_space
*mapping
= &inode
->i_data
;
400 const pgoff_t start
= lstart
>> huge_page_shift(h
);
401 const pgoff_t end
= lend
>> huge_page_shift(h
);
402 struct vm_area_struct pseudo_vma
;
406 long lookup_nr
= PAGEVEC_SIZE
;
407 bool truncate_op
= (lend
== LLONG_MAX
);
409 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
410 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
411 pagevec_init(&pvec
, 0);
415 * Don't grab more pages than the number left in the range.
417 if (end
- next
< lookup_nr
)
418 lookup_nr
= end
- next
;
421 * When no more pages are found, we are done.
423 if (!pagevec_lookup(&pvec
, mapping
, next
, lookup_nr
))
426 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
427 struct page
*page
= pvec
.pages
[i
];
431 * The page (index) could be beyond end. This is
432 * only possible in the punch hole case as end is
433 * max page offset in the truncate case.
439 hash
= hugetlb_fault_mutex_hash(h
, current
->mm
,
442 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
445 * If page is mapped, it was faulted in after being
446 * unmapped in caller. Unmap (again) now after taking
447 * the fault mutex. The mutex will prevent faults
448 * until we finish removing the page.
450 * This race can only happen in the hole punch case.
451 * Getting here in a truncate operation is a bug.
453 if (unlikely(page_mapped(page
))) {
456 i_mmap_lock_write(mapping
);
457 hugetlb_vmdelete_list(&mapping
->i_mmap
,
458 next
* pages_per_huge_page(h
),
459 (next
+ 1) * pages_per_huge_page(h
));
460 i_mmap_unlock_write(mapping
);
465 * We must free the huge page and remove from page
466 * cache (remove_huge_page) BEFORE removing the
467 * region/reserve map (hugetlb_unreserve_pages). In
468 * rare out of memory conditions, removal of the
469 * region/reserve map could fail. Correspondingly,
470 * the subpool and global reserve usage count can need
473 VM_BUG_ON(PagePrivate(page
));
474 remove_huge_page(page
);
477 if (unlikely(hugetlb_unreserve_pages(inode
,
479 hugetlb_fix_reserve_counts(inode
);
483 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
486 huge_pagevec_release(&pvec
);
491 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
494 static void hugetlbfs_evict_inode(struct inode
*inode
)
496 struct resv_map
*resv_map
;
498 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
499 resv_map
= (struct resv_map
*)inode
->i_mapping
->private_data
;
500 /* root inode doesn't have the resv_map, so we should check it */
502 resv_map_release(&resv_map
->refs
);
506 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
509 struct address_space
*mapping
= inode
->i_mapping
;
510 struct hstate
*h
= hstate_inode(inode
);
512 BUG_ON(offset
& ~huge_page_mask(h
));
513 pgoff
= offset
>> PAGE_SHIFT
;
515 i_size_write(inode
, offset
);
516 i_mmap_lock_write(mapping
);
517 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
518 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
519 i_mmap_unlock_write(mapping
);
520 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
524 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
526 struct hstate
*h
= hstate_inode(inode
);
527 loff_t hpage_size
= huge_page_size(h
);
528 loff_t hole_start
, hole_end
;
531 * For hole punch round up the beginning offset of the hole and
532 * round down the end.
534 hole_start
= round_up(offset
, hpage_size
);
535 hole_end
= round_down(offset
+ len
, hpage_size
);
537 if (hole_end
> hole_start
) {
538 struct address_space
*mapping
= inode
->i_mapping
;
541 i_mmap_lock_write(mapping
);
542 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
543 hugetlb_vmdelete_list(&mapping
->i_mmap
,
544 hole_start
>> PAGE_SHIFT
,
545 hole_end
>> PAGE_SHIFT
);
546 i_mmap_unlock_write(mapping
);
547 remove_inode_hugepages(inode
, hole_start
, hole_end
);
554 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
557 struct inode
*inode
= file_inode(file
);
558 struct address_space
*mapping
= inode
->i_mapping
;
559 struct hstate
*h
= hstate_inode(inode
);
560 struct vm_area_struct pseudo_vma
;
561 struct mm_struct
*mm
= current
->mm
;
562 loff_t hpage_size
= huge_page_size(h
);
563 unsigned long hpage_shift
= huge_page_shift(h
);
564 pgoff_t start
, index
, end
;
568 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
571 if (mode
& FALLOC_FL_PUNCH_HOLE
)
572 return hugetlbfs_punch_hole(inode
, offset
, len
);
575 * Default preallocate case.
576 * For this range, start is rounded down and end is rounded up
577 * as well as being converted to page offsets.
579 start
= offset
>> hpage_shift
;
580 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
584 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
585 error
= inode_newsize_ok(inode
, offset
+ len
);
590 * Initialize a pseudo vma as this is required by the huge page
591 * allocation routines. If NUMA is configured, use page index
592 * as input to create an allocation policy.
594 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
595 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
596 pseudo_vma
.vm_file
= file
;
598 for (index
= start
; index
< end
; index
++) {
600 * This is supposed to be the vaddr where the page is being
601 * faulted in, but we have no vaddr here.
605 int avoid_reserve
= 0;
610 * fallocate(2) manpage permits EINTR; we may have been
611 * interrupted because we are using up too much memory.
613 if (signal_pending(current
)) {
618 /* Set numa allocation policy based on index */
619 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
621 /* addr is the offset within the file (zero based) */
622 addr
= index
* hpage_size
;
624 /* mutex taken here, fault path and hole punch */
625 hash
= hugetlb_fault_mutex_hash(h
, mm
, &pseudo_vma
, mapping
,
627 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
629 /* See if already present in mapping to avoid alloc/free */
630 page
= find_get_page(mapping
, index
);
633 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
634 hugetlb_drop_vma_policy(&pseudo_vma
);
638 /* Allocate page and add to page cache */
639 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
640 hugetlb_drop_vma_policy(&pseudo_vma
);
642 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
643 error
= PTR_ERR(page
);
646 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
647 __SetPageUptodate(page
);
648 error
= huge_add_to_page_cache(page
, mapping
, index
);
649 if (unlikely(error
)) {
651 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
655 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
658 * page_put due to reference from alloc_huge_page()
659 * unlock_page because locked by add_to_page_cache()
665 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
666 i_size_write(inode
, offset
+ len
);
667 inode
->i_ctime
= current_time(inode
);
673 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
675 struct inode
*inode
= d_inode(dentry
);
676 struct hstate
*h
= hstate_inode(inode
);
678 unsigned int ia_valid
= attr
->ia_valid
;
682 error
= setattr_prepare(dentry
, attr
);
686 if (ia_valid
& ATTR_SIZE
) {
688 if (attr
->ia_size
& ~huge_page_mask(h
))
690 error
= hugetlb_vmtruncate(inode
, attr
->ia_size
);
695 setattr_copy(inode
, attr
);
696 mark_inode_dirty(inode
);
700 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
701 struct hugetlbfs_config
*config
)
705 inode
= new_inode(sb
);
707 inode
->i_ino
= get_next_ino();
708 inode
->i_mode
= S_IFDIR
| config
->mode
;
709 inode
->i_uid
= config
->uid
;
710 inode
->i_gid
= config
->gid
;
711 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
712 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
713 inode
->i_fop
= &simple_dir_operations
;
714 /* directory inodes start off with i_nlink == 2 (for "." entry) */
716 lockdep_annotate_inode_mutex_key(inode
);
722 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
723 * be taken from reclaim -- unlike regular filesystems. This needs an
724 * annotation because huge_pmd_share() does an allocation under hugetlb's
727 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
729 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
731 umode_t mode
, dev_t dev
)
734 struct resv_map
*resv_map
;
736 resv_map
= resv_map_alloc();
740 inode
= new_inode(sb
);
742 inode
->i_ino
= get_next_ino();
743 inode_init_owner(inode
, dir
, mode
);
744 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
745 &hugetlbfs_i_mmap_rwsem_key
);
746 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
747 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
748 inode
->i_mapping
->private_data
= resv_map
;
749 switch (mode
& S_IFMT
) {
751 init_special_inode(inode
, mode
, dev
);
754 inode
->i_op
= &hugetlbfs_inode_operations
;
755 inode
->i_fop
= &hugetlbfs_file_operations
;
758 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
759 inode
->i_fop
= &simple_dir_operations
;
761 /* directory inodes start off with i_nlink == 2 (for "." entry) */
765 inode
->i_op
= &page_symlink_inode_operations
;
766 inode_nohighmem(inode
);
769 lockdep_annotate_inode_mutex_key(inode
);
771 kref_put(&resv_map
->refs
, resv_map_release
);
777 * File creation. Allocate an inode, and we're done..
779 static int hugetlbfs_mknod(struct inode
*dir
,
780 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
785 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
787 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
788 d_instantiate(dentry
, inode
);
789 dget(dentry
); /* Extra count - pin the dentry in core */
795 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
797 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
803 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
805 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
808 static int hugetlbfs_symlink(struct inode
*dir
,
809 struct dentry
*dentry
, const char *symname
)
814 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
816 int l
= strlen(symname
)+1;
817 error
= page_symlink(inode
, symname
, l
);
819 d_instantiate(dentry
, inode
);
824 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
830 * mark the head page dirty
832 static int hugetlbfs_set_page_dirty(struct page
*page
)
834 struct page
*head
= compound_head(page
);
840 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
841 struct page
*newpage
, struct page
*page
,
842 enum migrate_mode mode
)
846 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
847 if (rc
!= MIGRATEPAGE_SUCCESS
)
849 migrate_page_copy(newpage
, page
);
851 return MIGRATEPAGE_SUCCESS
;
854 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
856 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
857 struct hstate
*h
= hstate_inode(d_inode(dentry
));
859 buf
->f_type
= HUGETLBFS_MAGIC
;
860 buf
->f_bsize
= huge_page_size(h
);
862 spin_lock(&sbinfo
->stat_lock
);
863 /* If no limits set, just report 0 for max/free/used
864 * blocks, like simple_statfs() */
868 spin_lock(&sbinfo
->spool
->lock
);
869 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
870 free_pages
= sbinfo
->spool
->max_hpages
871 - sbinfo
->spool
->used_hpages
;
872 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
873 spin_unlock(&sbinfo
->spool
->lock
);
874 buf
->f_files
= sbinfo
->max_inodes
;
875 buf
->f_ffree
= sbinfo
->free_inodes
;
877 spin_unlock(&sbinfo
->stat_lock
);
879 buf
->f_namelen
= NAME_MAX
;
883 static void hugetlbfs_put_super(struct super_block
*sb
)
885 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
888 sb
->s_fs_info
= NULL
;
891 hugepage_put_subpool(sbi
->spool
);
897 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
899 if (sbinfo
->free_inodes
>= 0) {
900 spin_lock(&sbinfo
->stat_lock
);
901 if (unlikely(!sbinfo
->free_inodes
)) {
902 spin_unlock(&sbinfo
->stat_lock
);
905 sbinfo
->free_inodes
--;
906 spin_unlock(&sbinfo
->stat_lock
);
912 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
914 if (sbinfo
->free_inodes
>= 0) {
915 spin_lock(&sbinfo
->stat_lock
);
916 sbinfo
->free_inodes
++;
917 spin_unlock(&sbinfo
->stat_lock
);
922 static struct kmem_cache
*hugetlbfs_inode_cachep
;
924 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
926 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
927 struct hugetlbfs_inode_info
*p
;
929 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
931 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
933 hugetlbfs_inc_free_inodes(sbinfo
);
938 * Any time after allocation, hugetlbfs_destroy_inode can be called
939 * for the inode. mpol_free_shared_policy is unconditionally called
940 * as part of hugetlbfs_destroy_inode. So, initialize policy here
941 * in case of a quick call to destroy.
943 * Note that the policy is initialized even if we are creating a
944 * private inode. This simplifies hugetlbfs_destroy_inode.
946 mpol_shared_policy_init(&p
->policy
, NULL
);
948 return &p
->vfs_inode
;
951 static void hugetlbfs_i_callback(struct rcu_head
*head
)
953 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
954 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
957 static void hugetlbfs_destroy_inode(struct inode
*inode
)
959 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
960 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
961 call_rcu(&inode
->i_rcu
, hugetlbfs_i_callback
);
964 static const struct address_space_operations hugetlbfs_aops
= {
965 .write_begin
= hugetlbfs_write_begin
,
966 .write_end
= hugetlbfs_write_end
,
967 .set_page_dirty
= hugetlbfs_set_page_dirty
,
968 .migratepage
= hugetlbfs_migrate_page
,
972 static void init_once(void *foo
)
974 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
976 inode_init_once(&ei
->vfs_inode
);
979 const struct file_operations hugetlbfs_file_operations
= {
980 .read_iter
= hugetlbfs_read_iter
,
981 .mmap
= hugetlbfs_file_mmap
,
983 .get_unmapped_area
= hugetlb_get_unmapped_area
,
984 .llseek
= default_llseek
,
985 .fallocate
= hugetlbfs_fallocate
,
988 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
989 .create
= hugetlbfs_create
,
990 .lookup
= simple_lookup
,
992 .unlink
= simple_unlink
,
993 .symlink
= hugetlbfs_symlink
,
994 .mkdir
= hugetlbfs_mkdir
,
995 .rmdir
= simple_rmdir
,
996 .mknod
= hugetlbfs_mknod
,
997 .rename
= simple_rename
,
998 .setattr
= hugetlbfs_setattr
,
1001 static const struct inode_operations hugetlbfs_inode_operations
= {
1002 .setattr
= hugetlbfs_setattr
,
1005 static const struct super_operations hugetlbfs_ops
= {
1006 .alloc_inode
= hugetlbfs_alloc_inode
,
1007 .destroy_inode
= hugetlbfs_destroy_inode
,
1008 .evict_inode
= hugetlbfs_evict_inode
,
1009 .statfs
= hugetlbfs_statfs
,
1010 .put_super
= hugetlbfs_put_super
,
1011 .show_options
= generic_show_options
,
1014 enum { NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
1017 * Convert size option passed from command line to number of huge pages
1018 * in the pool specified by hstate. Size option could be in bytes
1019 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1022 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1025 if (val_type
== NO_SIZE
)
1028 if (val_type
== SIZE_PERCENT
) {
1029 size_opt
<<= huge_page_shift(h
);
1030 size_opt
*= h
->max_huge_pages
;
1031 do_div(size_opt
, 100);
1034 size_opt
>>= huge_page_shift(h
);
1039 hugetlbfs_parse_options(char *options
, struct hugetlbfs_config
*pconfig
)
1042 substring_t args
[MAX_OPT_ARGS
];
1044 unsigned long long max_size_opt
= 0, min_size_opt
= 0;
1045 int max_val_type
= NO_SIZE
, min_val_type
= NO_SIZE
;
1050 while ((p
= strsep(&options
, ",")) != NULL
) {
1055 token
= match_token(p
, tokens
, args
);
1058 if (match_int(&args
[0], &option
))
1060 pconfig
->uid
= make_kuid(current_user_ns(), option
);
1061 if (!uid_valid(pconfig
->uid
))
1066 if (match_int(&args
[0], &option
))
1068 pconfig
->gid
= make_kgid(current_user_ns(), option
);
1069 if (!gid_valid(pconfig
->gid
))
1074 if (match_octal(&args
[0], &option
))
1076 pconfig
->mode
= option
& 01777U;
1080 /* memparse() will accept a K/M/G without a digit */
1081 if (!isdigit(*args
[0].from
))
1083 max_size_opt
= memparse(args
[0].from
, &rest
);
1084 max_val_type
= SIZE_STD
;
1086 max_val_type
= SIZE_PERCENT
;
1091 /* memparse() will accept a K/M/G without a digit */
1092 if (!isdigit(*args
[0].from
))
1094 pconfig
->nr_inodes
= memparse(args
[0].from
, &rest
);
1097 case Opt_pagesize
: {
1099 ps
= memparse(args
[0].from
, &rest
);
1100 pconfig
->hstate
= size_to_hstate(ps
);
1101 if (!pconfig
->hstate
) {
1102 pr_err("Unsupported page size %lu MB\n",
1109 case Opt_min_size
: {
1110 /* memparse() will accept a K/M/G without a digit */
1111 if (!isdigit(*args
[0].from
))
1113 min_size_opt
= memparse(args
[0].from
, &rest
);
1114 min_val_type
= SIZE_STD
;
1116 min_val_type
= SIZE_PERCENT
;
1121 pr_err("Bad mount option: \"%s\"\n", p
);
1128 * Use huge page pool size (in hstate) to convert the size
1129 * options to number of huge pages. If NO_SIZE, -1 is returned.
1131 pconfig
->max_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1132 max_size_opt
, max_val_type
);
1133 pconfig
->min_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1134 min_size_opt
, min_val_type
);
1137 * If max_size was specified, then min_size must be smaller
1139 if (max_val_type
> NO_SIZE
&&
1140 pconfig
->min_hpages
> pconfig
->max_hpages
) {
1141 pr_err("minimum size can not be greater than maximum size\n");
1148 pr_err("Bad value '%s' for mount option '%s'\n", args
[0].from
, p
);
1153 hugetlbfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1156 struct hugetlbfs_config config
;
1157 struct hugetlbfs_sb_info
*sbinfo
;
1159 save_mount_options(sb
, data
);
1161 config
.max_hpages
= -1; /* No limit on size by default */
1162 config
.nr_inodes
= -1; /* No limit on number of inodes by default */
1163 config
.uid
= current_fsuid();
1164 config
.gid
= current_fsgid();
1166 config
.hstate
= &default_hstate
;
1167 config
.min_hpages
= -1; /* No default minimum size */
1168 ret
= hugetlbfs_parse_options(data
, &config
);
1172 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1175 sb
->s_fs_info
= sbinfo
;
1176 sbinfo
->hstate
= config
.hstate
;
1177 spin_lock_init(&sbinfo
->stat_lock
);
1178 sbinfo
->max_inodes
= config
.nr_inodes
;
1179 sbinfo
->free_inodes
= config
.nr_inodes
;
1180 sbinfo
->spool
= NULL
;
1182 * Allocate and initialize subpool if maximum or minimum size is
1183 * specified. Any needed reservations (for minimim size) are taken
1184 * taken when the subpool is created.
1186 if (config
.max_hpages
!= -1 || config
.min_hpages
!= -1) {
1187 sbinfo
->spool
= hugepage_new_subpool(config
.hstate
,
1193 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1194 sb
->s_blocksize
= huge_page_size(config
.hstate
);
1195 sb
->s_blocksize_bits
= huge_page_shift(config
.hstate
);
1196 sb
->s_magic
= HUGETLBFS_MAGIC
;
1197 sb
->s_op
= &hugetlbfs_ops
;
1198 sb
->s_time_gran
= 1;
1199 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, &config
));
1204 kfree(sbinfo
->spool
);
1209 static struct dentry
*hugetlbfs_mount(struct file_system_type
*fs_type
,
1210 int flags
, const char *dev_name
, void *data
)
1212 return mount_nodev(fs_type
, flags
, data
, hugetlbfs_fill_super
);
1215 static struct file_system_type hugetlbfs_fs_type
= {
1216 .name
= "hugetlbfs",
1217 .mount
= hugetlbfs_mount
,
1218 .kill_sb
= kill_litter_super
,
1221 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1223 static int can_do_hugetlb_shm(void)
1226 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1227 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1230 static int get_hstate_idx(int page_size_log
)
1232 struct hstate
*h
= hstate_sizelog(page_size_log
);
1239 static const struct dentry_operations anon_ops
= {
1240 .d_dname
= simple_dname
1244 * Note that size should be aligned to proper hugepage size in caller side,
1245 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1247 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1248 vm_flags_t acctflag
, struct user_struct
**user
,
1249 int creat_flags
, int page_size_log
)
1251 struct file
*file
= ERR_PTR(-ENOMEM
);
1252 struct inode
*inode
;
1254 struct super_block
*sb
;
1255 struct qstr quick_string
;
1258 hstate_idx
= get_hstate_idx(page_size_log
);
1260 return ERR_PTR(-ENODEV
);
1263 if (!hugetlbfs_vfsmount
[hstate_idx
])
1264 return ERR_PTR(-ENOENT
);
1266 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1267 *user
= current_user();
1268 if (user_shm_lock(size
, *user
)) {
1270 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1271 current
->comm
, current
->pid
);
1272 task_unlock(current
);
1275 return ERR_PTR(-EPERM
);
1279 sb
= hugetlbfs_vfsmount
[hstate_idx
]->mnt_sb
;
1280 quick_string
.name
= name
;
1281 quick_string
.len
= strlen(quick_string
.name
);
1282 quick_string
.hash
= 0;
1283 path
.dentry
= d_alloc_pseudo(sb
, &quick_string
);
1285 goto out_shm_unlock
;
1287 d_set_d_op(path
.dentry
, &anon_ops
);
1288 path
.mnt
= mntget(hugetlbfs_vfsmount
[hstate_idx
]);
1289 file
= ERR_PTR(-ENOSPC
);
1290 inode
= hugetlbfs_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1293 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1294 inode
->i_flags
|= S_PRIVATE
;
1296 file
= ERR_PTR(-ENOMEM
);
1297 if (hugetlb_reserve_pages(inode
, 0,
1298 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1302 d_instantiate(path
.dentry
, inode
);
1303 inode
->i_size
= size
;
1306 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
1307 &hugetlbfs_file_operations
);
1309 goto out_dentry
; /* inode is already attached */
1319 user_shm_unlock(size
, *user
);
1325 static int __init
init_hugetlbfs_fs(void)
1331 if (!hugepages_supported()) {
1332 pr_info("disabling because there are no supported hugepage sizes\n");
1337 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1338 sizeof(struct hugetlbfs_inode_info
),
1339 0, SLAB_ACCOUNT
, init_once
);
1340 if (hugetlbfs_inode_cachep
== NULL
)
1343 error
= register_filesystem(&hugetlbfs_fs_type
);
1348 for_each_hstate(h
) {
1350 unsigned ps_kb
= 1U << (h
->order
+ PAGE_SHIFT
- 10);
1352 snprintf(buf
, sizeof(buf
), "pagesize=%uK", ps_kb
);
1353 hugetlbfs_vfsmount
[i
] = kern_mount_data(&hugetlbfs_fs_type
,
1356 if (IS_ERR(hugetlbfs_vfsmount
[i
])) {
1357 pr_err("Cannot mount internal hugetlbfs for "
1358 "page size %uK", ps_kb
);
1359 error
= PTR_ERR(hugetlbfs_vfsmount
[i
]);
1360 hugetlbfs_vfsmount
[i
] = NULL
;
1364 /* Non default hstates are optional */
1365 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount
[default_hstate_idx
]))
1369 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1373 fs_initcall(init_hugetlbfs_fs
)