x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / fs / namei.c
blob19dcf62133cc95162d364f7ef43c17d280ee6448
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
42 #include "internal.h"
43 #include "mount.h"
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
93 * [10-Sep-98 Alan Modra] Another symlink change.
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
129 struct filename *result;
130 char *kname;
131 int len;
133 result = audit_reusename(filename);
134 if (result)
135 return result;
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
145 kname = (char *)result->iname;
146 result->name = kname;
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
205 struct filename *
206 getname(const char __user * filename)
208 return getname_flags(filename, 0, NULL);
211 struct filename *
212 getname_kernel(const char * filename)
214 struct filename *result;
215 int len = strlen(filename) + 1;
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
228 __putname(result);
229 return ERR_PTR(-ENOMEM);
231 tmp->name = (char *)result;
232 result = tmp;
233 } else {
234 __putname(result);
235 return ERR_PTR(-ENAMETOOLONG);
237 memcpy((char *)result->name, filename, len);
238 result->uptr = NULL;
239 result->aname = NULL;
240 result->refcnt = 1;
241 audit_getname(result);
243 return result;
246 void putname(struct filename *name)
248 BUG_ON(name->refcnt <= 0);
250 if (--name->refcnt > 0)
251 return;
253 if (name->name != name->iname) {
254 __putname(name->name);
255 kfree(name);
256 } else
257 __putname(name);
260 static int check_acl(struct inode *inode, int mask)
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 if (!acl)
268 return -EAGAIN;
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
271 return -ECHILD;
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
276 if (IS_ERR(acl))
277 return PTR_ERR(acl);
278 if (acl) {
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
281 return error;
283 #endif
285 return -EAGAIN;
289 * This does the basic permission checking
291 static int acl_permission_check(struct inode *inode, int mask)
293 unsigned int mode = inode->i_mode;
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 mode >>= 6;
297 else {
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
301 return error;
304 if (in_group_p(inode->i_gid))
305 mode >>= 3;
309 * If the DACs are ok we don't need any capability check.
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 return 0;
313 return -EACCES;
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
330 int generic_permission(struct inode *inode, int mask)
332 int ret;
335 * Do the basic permission checks.
337 ret = acl_permission_check(inode, mask);
338 if (ret != -EACCES)
339 return ret;
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 return 0;
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 return -EACCES;
352 * Read/write DACs are always overridable.
353 * Executable DACs are overridable when there is
354 * at least one exec bit set.
356 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358 return 0;
361 * Searching includes executable on directories, else just read.
363 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364 if (mask == MAY_READ)
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366 return 0;
368 return -EACCES;
370 EXPORT_SYMBOL(generic_permission);
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
378 static inline int do_inode_permission(struct inode *inode, int mask)
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
389 return generic_permission(inode, mask);
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397 * Check for read/write/execute permissions on an inode.
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
404 int __inode_permission(struct inode *inode, int mask)
406 int retval;
408 if (unlikely(mask & MAY_WRITE)) {
410 * Nobody gets write access to an immutable file.
412 if (IS_IMMUTABLE(inode))
413 return -EPERM;
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
418 * to the vfs.
420 if (HAS_UNMAPPED_ID(inode))
421 return -EACCES;
424 retval = do_inode_permission(inode, mask);
425 if (retval)
426 return retval;
428 retval = devcgroup_inode_permission(inode, mask);
429 if (retval)
430 return retval;
432 return security_inode_permission(inode, mask);
434 EXPORT_SYMBOL(__inode_permission);
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442 * Separate out file-system wide checks from inode-specific permission checks.
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
449 /* Nobody gets write access to a read-only fs. */
450 if ((sb->s_flags & MS_RDONLY) &&
451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
454 return 0;
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
468 int inode_permission(struct inode *inode, int mask)
470 int retval;
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
477 EXPORT_SYMBOL(inode_permission);
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
483 * Given a path increment the reference count to the dentry and the vfsmount.
485 void path_get(const struct path *path)
487 mntget(path->mnt);
488 dget(path->dentry);
490 EXPORT_SYMBOL(path_get);
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
496 * Given a path decrement the reference count to the dentry and the vfsmount.
498 void path_put(const struct path *path)
500 dput(path->dentry);
501 mntput(path->mnt);
503 EXPORT_SYMBOL(path_put);
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
540 static void restore_nameidata(void)
542 struct nameidata *now = current->nameidata, *old = now->saved;
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
551 static int __nd_alloc_stack(struct nameidata *nd)
553 struct saved *p;
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
578 static bool path_connected(const struct path *path)
580 struct vfsmount *mnt = path->mnt;
582 /* Only bind mounts can have disconnected paths */
583 if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 return true;
586 return is_subdir(path->dentry, mnt->mnt_root);
589 static inline int nd_alloc_stack(struct nameidata *nd)
591 if (likely(nd->depth != EMBEDDED_LEVELS))
592 return 0;
593 if (likely(nd->stack != nd->internal))
594 return 0;
595 return __nd_alloc_stack(nd);
598 static void drop_links(struct nameidata *nd)
600 int i = nd->depth;
601 while (i--) {
602 struct saved *last = nd->stack + i;
603 do_delayed_call(&last->done);
604 clear_delayed_call(&last->done);
608 static void terminate_walk(struct nameidata *nd)
610 drop_links(nd);
611 if (!(nd->flags & LOOKUP_RCU)) {
612 int i;
613 path_put(&nd->path);
614 for (i = 0; i < nd->depth; i++)
615 path_put(&nd->stack[i].link);
616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 path_put(&nd->root);
618 nd->root.mnt = NULL;
620 } else {
621 nd->flags &= ~LOOKUP_RCU;
622 if (!(nd->flags & LOOKUP_ROOT))
623 nd->root.mnt = NULL;
624 rcu_read_unlock();
626 nd->depth = 0;
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 struct path *path, unsigned seq)
633 int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 if (unlikely(res)) {
635 if (res > 0)
636 path->mnt = NULL;
637 path->dentry = NULL;
638 return false;
640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 path->dentry = NULL;
642 return false;
644 return !read_seqcount_retry(&path->dentry->d_seq, seq);
647 static bool legitimize_links(struct nameidata *nd)
649 int i;
650 for (i = 0; i < nd->depth; i++) {
651 struct saved *last = nd->stack + i;
652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 drop_links(nd);
654 nd->depth = i + 1;
655 return false;
658 return true;
662 * Path walking has 2 modes, rcu-walk and ref-walk (see
663 * Documentation/filesystems/path-lookup.txt). In situations when we can't
664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
666 * mode. Refcounts are grabbed at the last known good point before rcu-walk
667 * got stuck, so ref-walk may continue from there. If this is not successful
668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
669 * to restart the path walk from the beginning in ref-walk mode.
673 * unlazy_walk - try to switch to ref-walk mode.
674 * @nd: nameidata pathwalk data
675 * Returns: 0 on success, -ECHILD on failure
677 * unlazy_walk attempts to legitimize the current nd->path and nd->root
678 * for ref-walk mode.
679 * Must be called from rcu-walk context.
680 * Nothing should touch nameidata between unlazy_walk() failure and
681 * terminate_walk().
683 static int unlazy_walk(struct nameidata *nd)
685 struct dentry *parent = nd->path.dentry;
687 BUG_ON(!(nd->flags & LOOKUP_RCU));
689 nd->flags &= ~LOOKUP_RCU;
690 if (unlikely(!legitimize_links(nd)))
691 goto out2;
692 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693 goto out1;
694 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696 goto out;
698 rcu_read_unlock();
699 BUG_ON(nd->inode != parent->d_inode);
700 return 0;
702 out2:
703 nd->path.mnt = NULL;
704 nd->path.dentry = NULL;
705 out1:
706 if (!(nd->flags & LOOKUP_ROOT))
707 nd->root.mnt = NULL;
708 out:
709 rcu_read_unlock();
710 return -ECHILD;
714 * unlazy_child - try to switch to ref-walk mode.
715 * @nd: nameidata pathwalk data
716 * @dentry: child of nd->path.dentry
717 * @seq: seq number to check dentry against
718 * Returns: 0 on success, -ECHILD on failure
720 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
722 * @nd. Must be called from rcu-walk context.
723 * Nothing should touch nameidata between unlazy_child() failure and
724 * terminate_walk().
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
728 BUG_ON(!(nd->flags & LOOKUP_RCU));
730 nd->flags &= ~LOOKUP_RCU;
731 if (unlikely(!legitimize_links(nd)))
732 goto out2;
733 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734 goto out2;
735 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736 goto out1;
739 * We need to move both the parent and the dentry from the RCU domain
740 * to be properly refcounted. And the sequence number in the dentry
741 * validates *both* dentry counters, since we checked the sequence
742 * number of the parent after we got the child sequence number. So we
743 * know the parent must still be valid if the child sequence number is
745 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746 goto out;
747 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748 rcu_read_unlock();
749 dput(dentry);
750 goto drop_root_mnt;
753 * Sequence counts matched. Now make sure that the root is
754 * still valid and get it if required.
756 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758 rcu_read_unlock();
759 dput(dentry);
760 return -ECHILD;
764 rcu_read_unlock();
765 return 0;
767 out2:
768 nd->path.mnt = NULL;
769 out1:
770 nd->path.dentry = NULL;
771 out:
772 rcu_read_unlock();
773 drop_root_mnt:
774 if (!(nd->flags & LOOKUP_ROOT))
775 nd->root.mnt = NULL;
776 return -ECHILD;
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
781 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782 return dentry->d_op->d_revalidate(dentry, flags);
783 else
784 return 1;
788 * complete_walk - successful completion of path walk
789 * @nd: pointer nameidata
791 * If we had been in RCU mode, drop out of it and legitimize nd->path.
792 * Revalidate the final result, unless we'd already done that during
793 * the path walk or the filesystem doesn't ask for it. Return 0 on
794 * success, -error on failure. In case of failure caller does not
795 * need to drop nd->path.
797 static int complete_walk(struct nameidata *nd)
799 struct dentry *dentry = nd->path.dentry;
800 int status;
802 if (nd->flags & LOOKUP_RCU) {
803 if (!(nd->flags & LOOKUP_ROOT))
804 nd->root.mnt = NULL;
805 if (unlikely(unlazy_walk(nd)))
806 return -ECHILD;
809 if (likely(!(nd->flags & LOOKUP_JUMPED)))
810 return 0;
812 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813 return 0;
815 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816 if (status > 0)
817 return 0;
819 if (!status)
820 status = -ESTALE;
822 return status;
825 static void set_root(struct nameidata *nd)
827 struct fs_struct *fs = current->fs;
829 if (nd->flags & LOOKUP_RCU) {
830 unsigned seq;
832 do {
833 seq = read_seqcount_begin(&fs->seq);
834 nd->root = fs->root;
835 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836 } while (read_seqcount_retry(&fs->seq, seq));
837 } else {
838 get_fs_root(fs, &nd->root);
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
844 dput(path->dentry);
845 if (path->mnt != nd->path.mnt)
846 mntput(path->mnt);
849 static inline void path_to_nameidata(const struct path *path,
850 struct nameidata *nd)
852 if (!(nd->flags & LOOKUP_RCU)) {
853 dput(nd->path.dentry);
854 if (nd->path.mnt != path->mnt)
855 mntput(nd->path.mnt);
857 nd->path.mnt = path->mnt;
858 nd->path.dentry = path->dentry;
861 static int nd_jump_root(struct nameidata *nd)
863 if (nd->flags & LOOKUP_RCU) {
864 struct dentry *d;
865 nd->path = nd->root;
866 d = nd->path.dentry;
867 nd->inode = d->d_inode;
868 nd->seq = nd->root_seq;
869 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870 return -ECHILD;
871 } else {
872 path_put(&nd->path);
873 nd->path = nd->root;
874 path_get(&nd->path);
875 nd->inode = nd->path.dentry->d_inode;
877 nd->flags |= LOOKUP_JUMPED;
878 return 0;
882 * Helper to directly jump to a known parsed path from ->get_link,
883 * caller must have taken a reference to path beforehand.
885 void nd_jump_link(struct path *path)
887 struct nameidata *nd = current->nameidata;
888 path_put(&nd->path);
890 nd->path = *path;
891 nd->inode = nd->path.dentry->d_inode;
892 nd->flags |= LOOKUP_JUMPED;
895 static inline void put_link(struct nameidata *nd)
897 struct saved *last = nd->stack + --nd->depth;
898 do_delayed_call(&last->done);
899 if (!(nd->flags & LOOKUP_RCU))
900 path_put(&last->link);
903 int sysctl_protected_symlinks __read_mostly = 0;
904 int sysctl_protected_hardlinks __read_mostly = 0;
907 * may_follow_link - Check symlink following for unsafe situations
908 * @nd: nameidata pathwalk data
910 * In the case of the sysctl_protected_symlinks sysctl being enabled,
911 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912 * in a sticky world-writable directory. This is to protect privileged
913 * processes from failing races against path names that may change out
914 * from under them by way of other users creating malicious symlinks.
915 * It will permit symlinks to be followed only when outside a sticky
916 * world-writable directory, or when the uid of the symlink and follower
917 * match, or when the directory owner matches the symlink's owner.
919 * Returns 0 if following the symlink is allowed, -ve on error.
921 static inline int may_follow_link(struct nameidata *nd)
923 const struct inode *inode;
924 const struct inode *parent;
925 kuid_t puid;
927 if (!sysctl_protected_symlinks)
928 return 0;
930 /* Allowed if owner and follower match. */
931 inode = nd->link_inode;
932 if (uid_eq(current_cred()->fsuid, inode->i_uid))
933 return 0;
935 /* Allowed if parent directory not sticky and world-writable. */
936 parent = nd->inode;
937 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938 return 0;
940 /* Allowed if parent directory and link owner match. */
941 puid = parent->i_uid;
942 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943 return 0;
945 if (nd->flags & LOOKUP_RCU)
946 return -ECHILD;
948 audit_log_link_denied("follow_link", &nd->stack[0].link);
949 return -EACCES;
953 * safe_hardlink_source - Check for safe hardlink conditions
954 * @inode: the source inode to hardlink from
956 * Return false if at least one of the following conditions:
957 * - inode is not a regular file
958 * - inode is setuid
959 * - inode is setgid and group-exec
960 * - access failure for read and write
962 * Otherwise returns true.
964 static bool safe_hardlink_source(struct inode *inode)
966 umode_t mode = inode->i_mode;
968 /* Special files should not get pinned to the filesystem. */
969 if (!S_ISREG(mode))
970 return false;
972 /* Setuid files should not get pinned to the filesystem. */
973 if (mode & S_ISUID)
974 return false;
976 /* Executable setgid files should not get pinned to the filesystem. */
977 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978 return false;
980 /* Hardlinking to unreadable or unwritable sources is dangerous. */
981 if (inode_permission(inode, MAY_READ | MAY_WRITE))
982 return false;
984 return true;
988 * may_linkat - Check permissions for creating a hardlink
989 * @link: the source to hardlink from
991 * Block hardlink when all of:
992 * - sysctl_protected_hardlinks enabled
993 * - fsuid does not match inode
994 * - hardlink source is unsafe (see safe_hardlink_source() above)
995 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
997 * Returns 0 if successful, -ve on error.
999 static int may_linkat(struct path *link)
1001 struct inode *inode;
1003 if (!sysctl_protected_hardlinks)
1004 return 0;
1006 inode = link->dentry->d_inode;
1008 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009 * otherwise, it must be a safe source.
1011 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1012 return 0;
1014 audit_log_link_denied("linkat", link);
1015 return -EPERM;
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1021 struct saved *last = nd->stack + nd->depth - 1;
1022 struct dentry *dentry = last->link.dentry;
1023 struct inode *inode = nd->link_inode;
1024 int error;
1025 const char *res;
1027 if (!(nd->flags & LOOKUP_RCU)) {
1028 touch_atime(&last->link);
1029 cond_resched();
1030 } else if (atime_needs_update_rcu(&last->link, inode)) {
1031 if (unlikely(unlazy_walk(nd)))
1032 return ERR_PTR(-ECHILD);
1033 touch_atime(&last->link);
1036 error = security_inode_follow_link(dentry, inode,
1037 nd->flags & LOOKUP_RCU);
1038 if (unlikely(error))
1039 return ERR_PTR(error);
1041 nd->last_type = LAST_BIND;
1042 res = inode->i_link;
1043 if (!res) {
1044 const char * (*get)(struct dentry *, struct inode *,
1045 struct delayed_call *);
1046 get = inode->i_op->get_link;
1047 if (nd->flags & LOOKUP_RCU) {
1048 res = get(NULL, inode, &last->done);
1049 if (res == ERR_PTR(-ECHILD)) {
1050 if (unlikely(unlazy_walk(nd)))
1051 return ERR_PTR(-ECHILD);
1052 res = get(dentry, inode, &last->done);
1054 } else {
1055 res = get(dentry, inode, &last->done);
1057 if (IS_ERR_OR_NULL(res))
1058 return res;
1060 if (*res == '/') {
1061 if (!nd->root.mnt)
1062 set_root(nd);
1063 if (unlikely(nd_jump_root(nd)))
1064 return ERR_PTR(-ECHILD);
1065 while (unlikely(*++res == '/'))
1068 if (!*res)
1069 res = NULL;
1070 return res;
1074 * follow_up - Find the mountpoint of path's vfsmount
1076 * Given a path, find the mountpoint of its source file system.
1077 * Replace @path with the path of the mountpoint in the parent mount.
1078 * Up is towards /.
1080 * Return 1 if we went up a level and 0 if we were already at the
1081 * root.
1083 int follow_up(struct path *path)
1085 struct mount *mnt = real_mount(path->mnt);
1086 struct mount *parent;
1087 struct dentry *mountpoint;
1089 read_seqlock_excl(&mount_lock);
1090 parent = mnt->mnt_parent;
1091 if (parent == mnt) {
1092 read_sequnlock_excl(&mount_lock);
1093 return 0;
1095 mntget(&parent->mnt);
1096 mountpoint = dget(mnt->mnt_mountpoint);
1097 read_sequnlock_excl(&mount_lock);
1098 dput(path->dentry);
1099 path->dentry = mountpoint;
1100 mntput(path->mnt);
1101 path->mnt = &parent->mnt;
1102 return 1;
1104 EXPORT_SYMBOL(follow_up);
1107 * Perform an automount
1108 * - return -EISDIR to tell follow_managed() to stop and return the path we
1109 * were called with.
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112 bool *need_mntput)
1114 struct vfsmount *mnt;
1115 int err;
1117 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118 return -EREMOTE;
1120 /* We don't want to mount if someone's just doing a stat -
1121 * unless they're stat'ing a directory and appended a '/' to
1122 * the name.
1124 * We do, however, want to mount if someone wants to open or
1125 * create a file of any type under the mountpoint, wants to
1126 * traverse through the mountpoint or wants to open the
1127 * mounted directory. Also, autofs may mark negative dentries
1128 * as being automount points. These will need the attentions
1129 * of the daemon to instantiate them before they can be used.
1131 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1133 path->dentry->d_inode)
1134 return -EISDIR;
1136 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1137 return -EACCES;
1139 nd->total_link_count++;
1140 if (nd->total_link_count >= 40)
1141 return -ELOOP;
1143 mnt = path->dentry->d_op->d_automount(path);
1144 if (IS_ERR(mnt)) {
1146 * The filesystem is allowed to return -EISDIR here to indicate
1147 * it doesn't want to automount. For instance, autofs would do
1148 * this so that its userspace daemon can mount on this dentry.
1150 * However, we can only permit this if it's a terminal point in
1151 * the path being looked up; if it wasn't then the remainder of
1152 * the path is inaccessible and we should say so.
1154 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1155 return -EREMOTE;
1156 return PTR_ERR(mnt);
1159 if (!mnt) /* mount collision */
1160 return 0;
1162 if (!*need_mntput) {
1163 /* lock_mount() may release path->mnt on error */
1164 mntget(path->mnt);
1165 *need_mntput = true;
1167 err = finish_automount(mnt, path);
1169 switch (err) {
1170 case -EBUSY:
1171 /* Someone else made a mount here whilst we were busy */
1172 return 0;
1173 case 0:
1174 path_put(path);
1175 path->mnt = mnt;
1176 path->dentry = dget(mnt->mnt_root);
1177 return 0;
1178 default:
1179 return err;
1185 * Handle a dentry that is managed in some way.
1186 * - Flagged for transit management (autofs)
1187 * - Flagged as mountpoint
1188 * - Flagged as automount point
1190 * This may only be called in refwalk mode.
1192 * Serialization is taken care of in namespace.c
1194 static int follow_managed(struct path *path, struct nameidata *nd)
1196 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1197 unsigned managed;
1198 bool need_mntput = false;
1199 int ret = 0;
1201 /* Given that we're not holding a lock here, we retain the value in a
1202 * local variable for each dentry as we look at it so that we don't see
1203 * the components of that value change under us */
1204 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1205 managed &= DCACHE_MANAGED_DENTRY,
1206 unlikely(managed != 0)) {
1207 /* Allow the filesystem to manage the transit without i_mutex
1208 * being held. */
1209 if (managed & DCACHE_MANAGE_TRANSIT) {
1210 BUG_ON(!path->dentry->d_op);
1211 BUG_ON(!path->dentry->d_op->d_manage);
1212 ret = path->dentry->d_op->d_manage(path, false);
1213 if (ret < 0)
1214 break;
1217 /* Transit to a mounted filesystem. */
1218 if (managed & DCACHE_MOUNTED) {
1219 struct vfsmount *mounted = lookup_mnt(path);
1220 if (mounted) {
1221 dput(path->dentry);
1222 if (need_mntput)
1223 mntput(path->mnt);
1224 path->mnt = mounted;
1225 path->dentry = dget(mounted->mnt_root);
1226 need_mntput = true;
1227 continue;
1230 /* Something is mounted on this dentry in another
1231 * namespace and/or whatever was mounted there in this
1232 * namespace got unmounted before lookup_mnt() could
1233 * get it */
1236 /* Handle an automount point */
1237 if (managed & DCACHE_NEED_AUTOMOUNT) {
1238 ret = follow_automount(path, nd, &need_mntput);
1239 if (ret < 0)
1240 break;
1241 continue;
1244 /* We didn't change the current path point */
1245 break;
1248 if (need_mntput && path->mnt == mnt)
1249 mntput(path->mnt);
1250 if (ret == -EISDIR || !ret)
1251 ret = 1;
1252 if (need_mntput)
1253 nd->flags |= LOOKUP_JUMPED;
1254 if (unlikely(ret < 0))
1255 path_put_conditional(path, nd);
1256 return ret;
1259 int follow_down_one(struct path *path)
1261 struct vfsmount *mounted;
1263 mounted = lookup_mnt(path);
1264 if (mounted) {
1265 dput(path->dentry);
1266 mntput(path->mnt);
1267 path->mnt = mounted;
1268 path->dentry = dget(mounted->mnt_root);
1269 return 1;
1271 return 0;
1273 EXPORT_SYMBOL(follow_down_one);
1275 static inline int managed_dentry_rcu(const struct path *path)
1277 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1278 path->dentry->d_op->d_manage(path, true) : 0;
1282 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1283 * we meet a managed dentry that would need blocking.
1285 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1286 struct inode **inode, unsigned *seqp)
1288 for (;;) {
1289 struct mount *mounted;
1291 * Don't forget we might have a non-mountpoint managed dentry
1292 * that wants to block transit.
1294 switch (managed_dentry_rcu(path)) {
1295 case -ECHILD:
1296 default:
1297 return false;
1298 case -EISDIR:
1299 return true;
1300 case 0:
1301 break;
1304 if (!d_mountpoint(path->dentry))
1305 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1307 mounted = __lookup_mnt(path->mnt, path->dentry);
1308 if (!mounted)
1309 break;
1310 path->mnt = &mounted->mnt;
1311 path->dentry = mounted->mnt.mnt_root;
1312 nd->flags |= LOOKUP_JUMPED;
1313 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1315 * Update the inode too. We don't need to re-check the
1316 * dentry sequence number here after this d_inode read,
1317 * because a mount-point is always pinned.
1319 *inode = path->dentry->d_inode;
1321 return !read_seqretry(&mount_lock, nd->m_seq) &&
1322 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1325 static int follow_dotdot_rcu(struct nameidata *nd)
1327 struct inode *inode = nd->inode;
1329 while (1) {
1330 if (path_equal(&nd->path, &nd->root))
1331 break;
1332 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1333 struct dentry *old = nd->path.dentry;
1334 struct dentry *parent = old->d_parent;
1335 unsigned seq;
1337 inode = parent->d_inode;
1338 seq = read_seqcount_begin(&parent->d_seq);
1339 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1340 return -ECHILD;
1341 nd->path.dentry = parent;
1342 nd->seq = seq;
1343 if (unlikely(!path_connected(&nd->path)))
1344 return -ENOENT;
1345 break;
1346 } else {
1347 struct mount *mnt = real_mount(nd->path.mnt);
1348 struct mount *mparent = mnt->mnt_parent;
1349 struct dentry *mountpoint = mnt->mnt_mountpoint;
1350 struct inode *inode2 = mountpoint->d_inode;
1351 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1352 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1353 return -ECHILD;
1354 if (&mparent->mnt == nd->path.mnt)
1355 break;
1356 /* we know that mountpoint was pinned */
1357 nd->path.dentry = mountpoint;
1358 nd->path.mnt = &mparent->mnt;
1359 inode = inode2;
1360 nd->seq = seq;
1363 while (unlikely(d_mountpoint(nd->path.dentry))) {
1364 struct mount *mounted;
1365 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1366 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1367 return -ECHILD;
1368 if (!mounted)
1369 break;
1370 nd->path.mnt = &mounted->mnt;
1371 nd->path.dentry = mounted->mnt.mnt_root;
1372 inode = nd->path.dentry->d_inode;
1373 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1375 nd->inode = inode;
1376 return 0;
1380 * Follow down to the covering mount currently visible to userspace. At each
1381 * point, the filesystem owning that dentry may be queried as to whether the
1382 * caller is permitted to proceed or not.
1384 int follow_down(struct path *path)
1386 unsigned managed;
1387 int ret;
1389 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1390 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1391 /* Allow the filesystem to manage the transit without i_mutex
1392 * being held.
1394 * We indicate to the filesystem if someone is trying to mount
1395 * something here. This gives autofs the chance to deny anyone
1396 * other than its daemon the right to mount on its
1397 * superstructure.
1399 * The filesystem may sleep at this point.
1401 if (managed & DCACHE_MANAGE_TRANSIT) {
1402 BUG_ON(!path->dentry->d_op);
1403 BUG_ON(!path->dentry->d_op->d_manage);
1404 ret = path->dentry->d_op->d_manage(path, false);
1405 if (ret < 0)
1406 return ret == -EISDIR ? 0 : ret;
1409 /* Transit to a mounted filesystem. */
1410 if (managed & DCACHE_MOUNTED) {
1411 struct vfsmount *mounted = lookup_mnt(path);
1412 if (!mounted)
1413 break;
1414 dput(path->dentry);
1415 mntput(path->mnt);
1416 path->mnt = mounted;
1417 path->dentry = dget(mounted->mnt_root);
1418 continue;
1421 /* Don't handle automount points here */
1422 break;
1424 return 0;
1426 EXPORT_SYMBOL(follow_down);
1429 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1431 static void follow_mount(struct path *path)
1433 while (d_mountpoint(path->dentry)) {
1434 struct vfsmount *mounted = lookup_mnt(path);
1435 if (!mounted)
1436 break;
1437 dput(path->dentry);
1438 mntput(path->mnt);
1439 path->mnt = mounted;
1440 path->dentry = dget(mounted->mnt_root);
1444 static int path_parent_directory(struct path *path)
1446 struct dentry *old = path->dentry;
1447 /* rare case of legitimate dget_parent()... */
1448 path->dentry = dget_parent(path->dentry);
1449 dput(old);
1450 if (unlikely(!path_connected(path)))
1451 return -ENOENT;
1452 return 0;
1455 static int follow_dotdot(struct nameidata *nd)
1457 while(1) {
1458 if (nd->path.dentry == nd->root.dentry &&
1459 nd->path.mnt == nd->root.mnt) {
1460 break;
1462 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1463 int ret = path_parent_directory(&nd->path);
1464 if (ret)
1465 return ret;
1466 break;
1468 if (!follow_up(&nd->path))
1469 break;
1471 follow_mount(&nd->path);
1472 nd->inode = nd->path.dentry->d_inode;
1473 return 0;
1477 * This looks up the name in dcache and possibly revalidates the found dentry.
1478 * NULL is returned if the dentry does not exist in the cache.
1480 static struct dentry *lookup_dcache(const struct qstr *name,
1481 struct dentry *dir,
1482 unsigned int flags)
1484 struct dentry *dentry = d_lookup(dir, name);
1485 if (dentry) {
1486 int error = d_revalidate(dentry, flags);
1487 if (unlikely(error <= 0)) {
1488 if (!error)
1489 d_invalidate(dentry);
1490 dput(dentry);
1491 return ERR_PTR(error);
1494 return dentry;
1498 * Call i_op->lookup on the dentry. The dentry must be negative and
1499 * unhashed.
1501 * dir->d_inode->i_mutex must be held
1503 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1504 unsigned int flags)
1506 struct dentry *old;
1508 /* Don't create child dentry for a dead directory. */
1509 if (unlikely(IS_DEADDIR(dir))) {
1510 dput(dentry);
1511 return ERR_PTR(-ENOENT);
1514 old = dir->i_op->lookup(dir, dentry, flags);
1515 if (unlikely(old)) {
1516 dput(dentry);
1517 dentry = old;
1519 return dentry;
1522 static struct dentry *__lookup_hash(const struct qstr *name,
1523 struct dentry *base, unsigned int flags)
1525 struct dentry *dentry = lookup_dcache(name, base, flags);
1527 if (dentry)
1528 return dentry;
1530 dentry = d_alloc(base, name);
1531 if (unlikely(!dentry))
1532 return ERR_PTR(-ENOMEM);
1534 return lookup_real(base->d_inode, dentry, flags);
1537 static int lookup_fast(struct nameidata *nd,
1538 struct path *path, struct inode **inode,
1539 unsigned *seqp)
1541 struct vfsmount *mnt = nd->path.mnt;
1542 struct dentry *dentry, *parent = nd->path.dentry;
1543 int status = 1;
1544 int err;
1547 * Rename seqlock is not required here because in the off chance
1548 * of a false negative due to a concurrent rename, the caller is
1549 * going to fall back to non-racy lookup.
1551 if (nd->flags & LOOKUP_RCU) {
1552 unsigned seq;
1553 bool negative;
1554 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1555 if (unlikely(!dentry)) {
1556 if (unlazy_walk(nd))
1557 return -ECHILD;
1558 return 0;
1562 * This sequence count validates that the inode matches
1563 * the dentry name information from lookup.
1565 *inode = d_backing_inode(dentry);
1566 negative = d_is_negative(dentry);
1567 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1568 return -ECHILD;
1571 * This sequence count validates that the parent had no
1572 * changes while we did the lookup of the dentry above.
1574 * The memory barrier in read_seqcount_begin of child is
1575 * enough, we can use __read_seqcount_retry here.
1577 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1578 return -ECHILD;
1580 *seqp = seq;
1581 status = d_revalidate(dentry, nd->flags);
1582 if (likely(status > 0)) {
1584 * Note: do negative dentry check after revalidation in
1585 * case that drops it.
1587 if (unlikely(negative))
1588 return -ENOENT;
1589 path->mnt = mnt;
1590 path->dentry = dentry;
1591 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1592 return 1;
1594 if (unlazy_child(nd, dentry, seq))
1595 return -ECHILD;
1596 if (unlikely(status == -ECHILD))
1597 /* we'd been told to redo it in non-rcu mode */
1598 status = d_revalidate(dentry, nd->flags);
1599 } else {
1600 dentry = __d_lookup(parent, &nd->last);
1601 if (unlikely(!dentry))
1602 return 0;
1603 status = d_revalidate(dentry, nd->flags);
1605 if (unlikely(status <= 0)) {
1606 if (!status)
1607 d_invalidate(dentry);
1608 dput(dentry);
1609 return status;
1611 if (unlikely(d_is_negative(dentry))) {
1612 dput(dentry);
1613 return -ENOENT;
1616 path->mnt = mnt;
1617 path->dentry = dentry;
1618 err = follow_managed(path, nd);
1619 if (likely(err > 0))
1620 *inode = d_backing_inode(path->dentry);
1621 return err;
1624 /* Fast lookup failed, do it the slow way */
1625 static struct dentry *lookup_slow(const struct qstr *name,
1626 struct dentry *dir,
1627 unsigned int flags)
1629 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630 struct inode *inode = dir->d_inode;
1631 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1633 inode_lock_shared(inode);
1634 /* Don't go there if it's already dead */
1635 if (unlikely(IS_DEADDIR(inode)))
1636 goto out;
1637 again:
1638 dentry = d_alloc_parallel(dir, name, &wq);
1639 if (IS_ERR(dentry))
1640 goto out;
1641 if (unlikely(!d_in_lookup(dentry))) {
1642 if (!(flags & LOOKUP_NO_REVAL)) {
1643 int error = d_revalidate(dentry, flags);
1644 if (unlikely(error <= 0)) {
1645 if (!error) {
1646 d_invalidate(dentry);
1647 dput(dentry);
1648 goto again;
1650 dput(dentry);
1651 dentry = ERR_PTR(error);
1654 } else {
1655 old = inode->i_op->lookup(inode, dentry, flags);
1656 d_lookup_done(dentry);
1657 if (unlikely(old)) {
1658 dput(dentry);
1659 dentry = old;
1662 out:
1663 inode_unlock_shared(inode);
1664 return dentry;
1667 static inline int may_lookup(struct nameidata *nd)
1669 if (nd->flags & LOOKUP_RCU) {
1670 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1671 if (err != -ECHILD)
1672 return err;
1673 if (unlazy_walk(nd))
1674 return -ECHILD;
1676 return inode_permission(nd->inode, MAY_EXEC);
1679 static inline int handle_dots(struct nameidata *nd, int type)
1681 if (type == LAST_DOTDOT) {
1682 if (!nd->root.mnt)
1683 set_root(nd);
1684 if (nd->flags & LOOKUP_RCU) {
1685 return follow_dotdot_rcu(nd);
1686 } else
1687 return follow_dotdot(nd);
1689 return 0;
1692 static int pick_link(struct nameidata *nd, struct path *link,
1693 struct inode *inode, unsigned seq)
1695 int error;
1696 struct saved *last;
1697 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1698 path_to_nameidata(link, nd);
1699 return -ELOOP;
1701 if (!(nd->flags & LOOKUP_RCU)) {
1702 if (link->mnt == nd->path.mnt)
1703 mntget(link->mnt);
1705 error = nd_alloc_stack(nd);
1706 if (unlikely(error)) {
1707 if (error == -ECHILD) {
1708 if (unlikely(!legitimize_path(nd, link, seq))) {
1709 drop_links(nd);
1710 nd->depth = 0;
1711 nd->flags &= ~LOOKUP_RCU;
1712 nd->path.mnt = NULL;
1713 nd->path.dentry = NULL;
1714 if (!(nd->flags & LOOKUP_ROOT))
1715 nd->root.mnt = NULL;
1716 rcu_read_unlock();
1717 } else if (likely(unlazy_walk(nd)) == 0)
1718 error = nd_alloc_stack(nd);
1720 if (error) {
1721 path_put(link);
1722 return error;
1726 last = nd->stack + nd->depth++;
1727 last->link = *link;
1728 clear_delayed_call(&last->done);
1729 nd->link_inode = inode;
1730 last->seq = seq;
1731 return 1;
1734 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1737 * Do we need to follow links? We _really_ want to be able
1738 * to do this check without having to look at inode->i_op,
1739 * so we keep a cache of "no, this doesn't need follow_link"
1740 * for the common case.
1742 static inline int step_into(struct nameidata *nd, struct path *path,
1743 int flags, struct inode *inode, unsigned seq)
1745 if (!(flags & WALK_MORE) && nd->depth)
1746 put_link(nd);
1747 if (likely(!d_is_symlink(path->dentry)) ||
1748 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1749 /* not a symlink or should not follow */
1750 path_to_nameidata(path, nd);
1751 nd->inode = inode;
1752 nd->seq = seq;
1753 return 0;
1755 /* make sure that d_is_symlink above matches inode */
1756 if (nd->flags & LOOKUP_RCU) {
1757 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1758 return -ECHILD;
1760 return pick_link(nd, path, inode, seq);
1763 static int walk_component(struct nameidata *nd, int flags)
1765 struct path path;
1766 struct inode *inode;
1767 unsigned seq;
1768 int err;
1770 * "." and ".." are special - ".." especially so because it has
1771 * to be able to know about the current root directory and
1772 * parent relationships.
1774 if (unlikely(nd->last_type != LAST_NORM)) {
1775 err = handle_dots(nd, nd->last_type);
1776 if (!(flags & WALK_MORE) && nd->depth)
1777 put_link(nd);
1778 return err;
1780 err = lookup_fast(nd, &path, &inode, &seq);
1781 if (unlikely(err <= 0)) {
1782 if (err < 0)
1783 return err;
1784 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1785 nd->flags);
1786 if (IS_ERR(path.dentry))
1787 return PTR_ERR(path.dentry);
1789 path.mnt = nd->path.mnt;
1790 err = follow_managed(&path, nd);
1791 if (unlikely(err < 0))
1792 return err;
1794 if (unlikely(d_is_negative(path.dentry))) {
1795 path_to_nameidata(&path, nd);
1796 return -ENOENT;
1799 seq = 0; /* we are already out of RCU mode */
1800 inode = d_backing_inode(path.dentry);
1803 return step_into(nd, &path, flags, inode, seq);
1807 * We can do the critical dentry name comparison and hashing
1808 * operations one word at a time, but we are limited to:
1810 * - Architectures with fast unaligned word accesses. We could
1811 * do a "get_unaligned()" if this helps and is sufficiently
1812 * fast.
1814 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1815 * do not trap on the (extremely unlikely) case of a page
1816 * crossing operation.
1818 * - Furthermore, we need an efficient 64-bit compile for the
1819 * 64-bit case in order to generate the "number of bytes in
1820 * the final mask". Again, that could be replaced with a
1821 * efficient population count instruction or similar.
1823 #ifdef CONFIG_DCACHE_WORD_ACCESS
1825 #include <asm/word-at-a-time.h>
1827 #ifdef HASH_MIX
1829 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1831 #elif defined(CONFIG_64BIT)
1833 * Register pressure in the mixing function is an issue, particularly
1834 * on 32-bit x86, but almost any function requires one state value and
1835 * one temporary. Instead, use a function designed for two state values
1836 * and no temporaries.
1838 * This function cannot create a collision in only two iterations, so
1839 * we have two iterations to achieve avalanche. In those two iterations,
1840 * we have six layers of mixing, which is enough to spread one bit's
1841 * influence out to 2^6 = 64 state bits.
1843 * Rotate constants are scored by considering either 64 one-bit input
1844 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1845 * probability of that delta causing a change to each of the 128 output
1846 * bits, using a sample of random initial states.
1848 * The Shannon entropy of the computed probabilities is then summed
1849 * to produce a score. Ideally, any input change has a 50% chance of
1850 * toggling any given output bit.
1852 * Mixing scores (in bits) for (12,45):
1853 * Input delta: 1-bit 2-bit
1854 * 1 round: 713.3 42542.6
1855 * 2 rounds: 2753.7 140389.8
1856 * 3 rounds: 5954.1 233458.2
1857 * 4 rounds: 7862.6 256672.2
1858 * Perfect: 8192 258048
1859 * (64*128) (64*63/2 * 128)
1861 #define HASH_MIX(x, y, a) \
1862 ( x ^= (a), \
1863 y ^= x, x = rol64(x,12),\
1864 x += y, y = rol64(y,45),\
1865 y *= 9 )
1868 * Fold two longs into one 32-bit hash value. This must be fast, but
1869 * latency isn't quite as critical, as there is a fair bit of additional
1870 * work done before the hash value is used.
1872 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1874 y ^= x * GOLDEN_RATIO_64;
1875 y *= GOLDEN_RATIO_64;
1876 return y >> 32;
1879 #else /* 32-bit case */
1882 * Mixing scores (in bits) for (7,20):
1883 * Input delta: 1-bit 2-bit
1884 * 1 round: 330.3 9201.6
1885 * 2 rounds: 1246.4 25475.4
1886 * 3 rounds: 1907.1 31295.1
1887 * 4 rounds: 2042.3 31718.6
1888 * Perfect: 2048 31744
1889 * (32*64) (32*31/2 * 64)
1891 #define HASH_MIX(x, y, a) \
1892 ( x ^= (a), \
1893 y ^= x, x = rol32(x, 7),\
1894 x += y, y = rol32(y,20),\
1895 y *= 9 )
1897 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1899 /* Use arch-optimized multiply if one exists */
1900 return __hash_32(y ^ __hash_32(x));
1903 #endif
1906 * Return the hash of a string of known length. This is carfully
1907 * designed to match hash_name(), which is the more critical function.
1908 * In particular, we must end by hashing a final word containing 0..7
1909 * payload bytes, to match the way that hash_name() iterates until it
1910 * finds the delimiter after the name.
1912 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1914 unsigned long a, x = 0, y = (unsigned long)salt;
1916 for (;;) {
1917 if (!len)
1918 goto done;
1919 a = load_unaligned_zeropad(name);
1920 if (len < sizeof(unsigned long))
1921 break;
1922 HASH_MIX(x, y, a);
1923 name += sizeof(unsigned long);
1924 len -= sizeof(unsigned long);
1926 x ^= a & bytemask_from_count(len);
1927 done:
1928 return fold_hash(x, y);
1930 EXPORT_SYMBOL(full_name_hash);
1932 /* Return the "hash_len" (hash and length) of a null-terminated string */
1933 u64 hashlen_string(const void *salt, const char *name)
1935 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1936 unsigned long adata, mask, len;
1937 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1939 len = 0;
1940 goto inside;
1942 do {
1943 HASH_MIX(x, y, a);
1944 len += sizeof(unsigned long);
1945 inside:
1946 a = load_unaligned_zeropad(name+len);
1947 } while (!has_zero(a, &adata, &constants));
1949 adata = prep_zero_mask(a, adata, &constants);
1950 mask = create_zero_mask(adata);
1951 x ^= a & zero_bytemask(mask);
1953 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1955 EXPORT_SYMBOL(hashlen_string);
1958 * Calculate the length and hash of the path component, and
1959 * return the "hash_len" as the result.
1961 static inline u64 hash_name(const void *salt, const char *name)
1963 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1964 unsigned long adata, bdata, mask, len;
1965 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1967 len = 0;
1968 goto inside;
1970 do {
1971 HASH_MIX(x, y, a);
1972 len += sizeof(unsigned long);
1973 inside:
1974 a = load_unaligned_zeropad(name+len);
1975 b = a ^ REPEAT_BYTE('/');
1976 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1978 adata = prep_zero_mask(a, adata, &constants);
1979 bdata = prep_zero_mask(b, bdata, &constants);
1980 mask = create_zero_mask(adata | bdata);
1981 x ^= a & zero_bytemask(mask);
1983 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1986 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1988 /* Return the hash of a string of known length */
1989 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1991 unsigned long hash = init_name_hash(salt);
1992 while (len--)
1993 hash = partial_name_hash((unsigned char)*name++, hash);
1994 return end_name_hash(hash);
1996 EXPORT_SYMBOL(full_name_hash);
1998 /* Return the "hash_len" (hash and length) of a null-terminated string */
1999 u64 hashlen_string(const void *salt, const char *name)
2001 unsigned long hash = init_name_hash(salt);
2002 unsigned long len = 0, c;
2004 c = (unsigned char)*name;
2005 while (c) {
2006 len++;
2007 hash = partial_name_hash(c, hash);
2008 c = (unsigned char)name[len];
2010 return hashlen_create(end_name_hash(hash), len);
2012 EXPORT_SYMBOL(hashlen_string);
2015 * We know there's a real path component here of at least
2016 * one character.
2018 static inline u64 hash_name(const void *salt, const char *name)
2020 unsigned long hash = init_name_hash(salt);
2021 unsigned long len = 0, c;
2023 c = (unsigned char)*name;
2024 do {
2025 len++;
2026 hash = partial_name_hash(c, hash);
2027 c = (unsigned char)name[len];
2028 } while (c && c != '/');
2029 return hashlen_create(end_name_hash(hash), len);
2032 #endif
2035 * Name resolution.
2036 * This is the basic name resolution function, turning a pathname into
2037 * the final dentry. We expect 'base' to be positive and a directory.
2039 * Returns 0 and nd will have valid dentry and mnt on success.
2040 * Returns error and drops reference to input namei data on failure.
2042 static int link_path_walk(const char *name, struct nameidata *nd)
2044 int err;
2046 while (*name=='/')
2047 name++;
2048 if (!*name)
2049 return 0;
2051 /* At this point we know we have a real path component. */
2052 for(;;) {
2053 u64 hash_len;
2054 int type;
2056 err = may_lookup(nd);
2057 if (err)
2058 return err;
2060 hash_len = hash_name(nd->path.dentry, name);
2062 type = LAST_NORM;
2063 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2064 case 2:
2065 if (name[1] == '.') {
2066 type = LAST_DOTDOT;
2067 nd->flags |= LOOKUP_JUMPED;
2069 break;
2070 case 1:
2071 type = LAST_DOT;
2073 if (likely(type == LAST_NORM)) {
2074 struct dentry *parent = nd->path.dentry;
2075 nd->flags &= ~LOOKUP_JUMPED;
2076 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2077 struct qstr this = { { .hash_len = hash_len }, .name = name };
2078 err = parent->d_op->d_hash(parent, &this);
2079 if (err < 0)
2080 return err;
2081 hash_len = this.hash_len;
2082 name = this.name;
2086 nd->last.hash_len = hash_len;
2087 nd->last.name = name;
2088 nd->last_type = type;
2090 name += hashlen_len(hash_len);
2091 if (!*name)
2092 goto OK;
2094 * If it wasn't NUL, we know it was '/'. Skip that
2095 * slash, and continue until no more slashes.
2097 do {
2098 name++;
2099 } while (unlikely(*name == '/'));
2100 if (unlikely(!*name)) {
2102 /* pathname body, done */
2103 if (!nd->depth)
2104 return 0;
2105 name = nd->stack[nd->depth - 1].name;
2106 /* trailing symlink, done */
2107 if (!name)
2108 return 0;
2109 /* last component of nested symlink */
2110 err = walk_component(nd, WALK_FOLLOW);
2111 } else {
2112 /* not the last component */
2113 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2115 if (err < 0)
2116 return err;
2118 if (err) {
2119 const char *s = get_link(nd);
2121 if (IS_ERR(s))
2122 return PTR_ERR(s);
2123 err = 0;
2124 if (unlikely(!s)) {
2125 /* jumped */
2126 put_link(nd);
2127 } else {
2128 nd->stack[nd->depth - 1].name = name;
2129 name = s;
2130 continue;
2133 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2134 if (nd->flags & LOOKUP_RCU) {
2135 if (unlazy_walk(nd))
2136 return -ECHILD;
2138 return -ENOTDIR;
2143 static const char *path_init(struct nameidata *nd, unsigned flags)
2145 int retval = 0;
2146 const char *s = nd->name->name;
2148 if (!*s)
2149 flags &= ~LOOKUP_RCU;
2151 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2152 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2153 nd->depth = 0;
2154 if (flags & LOOKUP_ROOT) {
2155 struct dentry *root = nd->root.dentry;
2156 struct inode *inode = root->d_inode;
2157 if (*s) {
2158 if (!d_can_lookup(root))
2159 return ERR_PTR(-ENOTDIR);
2160 retval = inode_permission(inode, MAY_EXEC);
2161 if (retval)
2162 return ERR_PTR(retval);
2164 nd->path = nd->root;
2165 nd->inode = inode;
2166 if (flags & LOOKUP_RCU) {
2167 rcu_read_lock();
2168 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2169 nd->root_seq = nd->seq;
2170 nd->m_seq = read_seqbegin(&mount_lock);
2171 } else {
2172 path_get(&nd->path);
2174 return s;
2177 nd->root.mnt = NULL;
2178 nd->path.mnt = NULL;
2179 nd->path.dentry = NULL;
2181 nd->m_seq = read_seqbegin(&mount_lock);
2182 if (*s == '/') {
2183 if (flags & LOOKUP_RCU)
2184 rcu_read_lock();
2185 set_root(nd);
2186 if (likely(!nd_jump_root(nd)))
2187 return s;
2188 nd->root.mnt = NULL;
2189 rcu_read_unlock();
2190 return ERR_PTR(-ECHILD);
2191 } else if (nd->dfd == AT_FDCWD) {
2192 if (flags & LOOKUP_RCU) {
2193 struct fs_struct *fs = current->fs;
2194 unsigned seq;
2196 rcu_read_lock();
2198 do {
2199 seq = read_seqcount_begin(&fs->seq);
2200 nd->path = fs->pwd;
2201 nd->inode = nd->path.dentry->d_inode;
2202 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2203 } while (read_seqcount_retry(&fs->seq, seq));
2204 } else {
2205 get_fs_pwd(current->fs, &nd->path);
2206 nd->inode = nd->path.dentry->d_inode;
2208 return s;
2209 } else {
2210 /* Caller must check execute permissions on the starting path component */
2211 struct fd f = fdget_raw(nd->dfd);
2212 struct dentry *dentry;
2214 if (!f.file)
2215 return ERR_PTR(-EBADF);
2217 dentry = f.file->f_path.dentry;
2219 if (*s) {
2220 if (!d_can_lookup(dentry)) {
2221 fdput(f);
2222 return ERR_PTR(-ENOTDIR);
2226 nd->path = f.file->f_path;
2227 if (flags & LOOKUP_RCU) {
2228 rcu_read_lock();
2229 nd->inode = nd->path.dentry->d_inode;
2230 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2231 } else {
2232 path_get(&nd->path);
2233 nd->inode = nd->path.dentry->d_inode;
2235 fdput(f);
2236 return s;
2240 static const char *trailing_symlink(struct nameidata *nd)
2242 const char *s;
2243 int error = may_follow_link(nd);
2244 if (unlikely(error))
2245 return ERR_PTR(error);
2246 nd->flags |= LOOKUP_PARENT;
2247 nd->stack[0].name = NULL;
2248 s = get_link(nd);
2249 return s ? s : "";
2252 static inline int lookup_last(struct nameidata *nd)
2254 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2255 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2257 nd->flags &= ~LOOKUP_PARENT;
2258 return walk_component(nd, 0);
2261 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2262 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2264 const char *s = path_init(nd, flags);
2265 int err;
2267 if (IS_ERR(s))
2268 return PTR_ERR(s);
2269 while (!(err = link_path_walk(s, nd))
2270 && ((err = lookup_last(nd)) > 0)) {
2271 s = trailing_symlink(nd);
2272 if (IS_ERR(s)) {
2273 err = PTR_ERR(s);
2274 break;
2277 if (!err)
2278 err = complete_walk(nd);
2280 if (!err && nd->flags & LOOKUP_DIRECTORY)
2281 if (!d_can_lookup(nd->path.dentry))
2282 err = -ENOTDIR;
2283 if (!err) {
2284 *path = nd->path;
2285 nd->path.mnt = NULL;
2286 nd->path.dentry = NULL;
2288 terminate_walk(nd);
2289 return err;
2292 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2293 struct path *path, struct path *root)
2295 int retval;
2296 struct nameidata nd;
2297 if (IS_ERR(name))
2298 return PTR_ERR(name);
2299 if (unlikely(root)) {
2300 nd.root = *root;
2301 flags |= LOOKUP_ROOT;
2303 set_nameidata(&nd, dfd, name);
2304 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2305 if (unlikely(retval == -ECHILD))
2306 retval = path_lookupat(&nd, flags, path);
2307 if (unlikely(retval == -ESTALE))
2308 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2310 if (likely(!retval))
2311 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2312 restore_nameidata();
2313 putname(name);
2314 return retval;
2317 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2318 static int path_parentat(struct nameidata *nd, unsigned flags,
2319 struct path *parent)
2321 const char *s = path_init(nd, flags);
2322 int err;
2323 if (IS_ERR(s))
2324 return PTR_ERR(s);
2325 err = link_path_walk(s, nd);
2326 if (!err)
2327 err = complete_walk(nd);
2328 if (!err) {
2329 *parent = nd->path;
2330 nd->path.mnt = NULL;
2331 nd->path.dentry = NULL;
2333 terminate_walk(nd);
2334 return err;
2337 static struct filename *filename_parentat(int dfd, struct filename *name,
2338 unsigned int flags, struct path *parent,
2339 struct qstr *last, int *type)
2341 int retval;
2342 struct nameidata nd;
2344 if (IS_ERR(name))
2345 return name;
2346 set_nameidata(&nd, dfd, name);
2347 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2348 if (unlikely(retval == -ECHILD))
2349 retval = path_parentat(&nd, flags, parent);
2350 if (unlikely(retval == -ESTALE))
2351 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2352 if (likely(!retval)) {
2353 *last = nd.last;
2354 *type = nd.last_type;
2355 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2356 } else {
2357 putname(name);
2358 name = ERR_PTR(retval);
2360 restore_nameidata();
2361 return name;
2364 /* does lookup, returns the object with parent locked */
2365 struct dentry *kern_path_locked(const char *name, struct path *path)
2367 struct filename *filename;
2368 struct dentry *d;
2369 struct qstr last;
2370 int type;
2372 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2373 &last, &type);
2374 if (IS_ERR(filename))
2375 return ERR_CAST(filename);
2376 if (unlikely(type != LAST_NORM)) {
2377 path_put(path);
2378 putname(filename);
2379 return ERR_PTR(-EINVAL);
2381 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2382 d = __lookup_hash(&last, path->dentry, 0);
2383 if (IS_ERR(d)) {
2384 inode_unlock(path->dentry->d_inode);
2385 path_put(path);
2387 putname(filename);
2388 return d;
2391 int kern_path(const char *name, unsigned int flags, struct path *path)
2393 return filename_lookup(AT_FDCWD, getname_kernel(name),
2394 flags, path, NULL);
2396 EXPORT_SYMBOL(kern_path);
2399 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2400 * @dentry: pointer to dentry of the base directory
2401 * @mnt: pointer to vfs mount of the base directory
2402 * @name: pointer to file name
2403 * @flags: lookup flags
2404 * @path: pointer to struct path to fill
2406 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2407 const char *name, unsigned int flags,
2408 struct path *path)
2410 struct path root = {.mnt = mnt, .dentry = dentry};
2411 /* the first argument of filename_lookup() is ignored with root */
2412 return filename_lookup(AT_FDCWD, getname_kernel(name),
2413 flags , path, &root);
2415 EXPORT_SYMBOL(vfs_path_lookup);
2418 * lookup_one_len - filesystem helper to lookup single pathname component
2419 * @name: pathname component to lookup
2420 * @base: base directory to lookup from
2421 * @len: maximum length @len should be interpreted to
2423 * Note that this routine is purely a helper for filesystem usage and should
2424 * not be called by generic code.
2426 * The caller must hold base->i_mutex.
2428 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2430 struct qstr this;
2431 unsigned int c;
2432 int err;
2434 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2436 this.name = name;
2437 this.len = len;
2438 this.hash = full_name_hash(base, name, len);
2439 if (!len)
2440 return ERR_PTR(-EACCES);
2442 if (unlikely(name[0] == '.')) {
2443 if (len < 2 || (len == 2 && name[1] == '.'))
2444 return ERR_PTR(-EACCES);
2447 while (len--) {
2448 c = *(const unsigned char *)name++;
2449 if (c == '/' || c == '\0')
2450 return ERR_PTR(-EACCES);
2453 * See if the low-level filesystem might want
2454 * to use its own hash..
2456 if (base->d_flags & DCACHE_OP_HASH) {
2457 int err = base->d_op->d_hash(base, &this);
2458 if (err < 0)
2459 return ERR_PTR(err);
2462 err = inode_permission(base->d_inode, MAY_EXEC);
2463 if (err)
2464 return ERR_PTR(err);
2466 return __lookup_hash(&this, base, 0);
2468 EXPORT_SYMBOL(lookup_one_len);
2471 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2472 * @name: pathname component to lookup
2473 * @base: base directory to lookup from
2474 * @len: maximum length @len should be interpreted to
2476 * Note that this routine is purely a helper for filesystem usage and should
2477 * not be called by generic code.
2479 * Unlike lookup_one_len, it should be called without the parent
2480 * i_mutex held, and will take the i_mutex itself if necessary.
2482 struct dentry *lookup_one_len_unlocked(const char *name,
2483 struct dentry *base, int len)
2485 struct qstr this;
2486 unsigned int c;
2487 int err;
2488 struct dentry *ret;
2490 this.name = name;
2491 this.len = len;
2492 this.hash = full_name_hash(base, name, len);
2493 if (!len)
2494 return ERR_PTR(-EACCES);
2496 if (unlikely(name[0] == '.')) {
2497 if (len < 2 || (len == 2 && name[1] == '.'))
2498 return ERR_PTR(-EACCES);
2501 while (len--) {
2502 c = *(const unsigned char *)name++;
2503 if (c == '/' || c == '\0')
2504 return ERR_PTR(-EACCES);
2507 * See if the low-level filesystem might want
2508 * to use its own hash..
2510 if (base->d_flags & DCACHE_OP_HASH) {
2511 int err = base->d_op->d_hash(base, &this);
2512 if (err < 0)
2513 return ERR_PTR(err);
2516 err = inode_permission(base->d_inode, MAY_EXEC);
2517 if (err)
2518 return ERR_PTR(err);
2520 ret = lookup_dcache(&this, base, 0);
2521 if (!ret)
2522 ret = lookup_slow(&this, base, 0);
2523 return ret;
2525 EXPORT_SYMBOL(lookup_one_len_unlocked);
2527 #ifdef CONFIG_UNIX98_PTYS
2528 int path_pts(struct path *path)
2530 /* Find something mounted on "pts" in the same directory as
2531 * the input path.
2533 struct dentry *child, *parent;
2534 struct qstr this;
2535 int ret;
2537 ret = path_parent_directory(path);
2538 if (ret)
2539 return ret;
2541 parent = path->dentry;
2542 this.name = "pts";
2543 this.len = 3;
2544 child = d_hash_and_lookup(parent, &this);
2545 if (!child)
2546 return -ENOENT;
2548 path->dentry = child;
2549 dput(parent);
2550 follow_mount(path);
2551 return 0;
2553 #endif
2555 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2556 struct path *path, int *empty)
2558 return filename_lookup(dfd, getname_flags(name, flags, empty),
2559 flags, path, NULL);
2561 EXPORT_SYMBOL(user_path_at_empty);
2564 * mountpoint_last - look up last component for umount
2565 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2567 * This is a special lookup_last function just for umount. In this case, we
2568 * need to resolve the path without doing any revalidation.
2570 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2571 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2572 * in almost all cases, this lookup will be served out of the dcache. The only
2573 * cases where it won't are if nd->last refers to a symlink or the path is
2574 * bogus and it doesn't exist.
2576 * Returns:
2577 * -error: if there was an error during lookup. This includes -ENOENT if the
2578 * lookup found a negative dentry.
2580 * 0: if we successfully resolved nd->last and found it to not to be a
2581 * symlink that needs to be followed.
2583 * 1: if we successfully resolved nd->last and found it to be a symlink
2584 * that needs to be followed.
2586 static int
2587 mountpoint_last(struct nameidata *nd)
2589 int error = 0;
2590 struct dentry *dir = nd->path.dentry;
2591 struct path path;
2593 /* If we're in rcuwalk, drop out of it to handle last component */
2594 if (nd->flags & LOOKUP_RCU) {
2595 if (unlazy_walk(nd))
2596 return -ECHILD;
2599 nd->flags &= ~LOOKUP_PARENT;
2601 if (unlikely(nd->last_type != LAST_NORM)) {
2602 error = handle_dots(nd, nd->last_type);
2603 if (error)
2604 return error;
2605 path.dentry = dget(nd->path.dentry);
2606 } else {
2607 path.dentry = d_lookup(dir, &nd->last);
2608 if (!path.dentry) {
2610 * No cached dentry. Mounted dentries are pinned in the
2611 * cache, so that means that this dentry is probably
2612 * a symlink or the path doesn't actually point
2613 * to a mounted dentry.
2615 path.dentry = lookup_slow(&nd->last, dir,
2616 nd->flags | LOOKUP_NO_REVAL);
2617 if (IS_ERR(path.dentry))
2618 return PTR_ERR(path.dentry);
2621 if (d_is_negative(path.dentry)) {
2622 dput(path.dentry);
2623 return -ENOENT;
2625 path.mnt = nd->path.mnt;
2626 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2630 * path_mountpoint - look up a path to be umounted
2631 * @nd: lookup context
2632 * @flags: lookup flags
2633 * @path: pointer to container for result
2635 * Look up the given name, but don't attempt to revalidate the last component.
2636 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2638 static int
2639 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2641 const char *s = path_init(nd, flags);
2642 int err;
2643 if (IS_ERR(s))
2644 return PTR_ERR(s);
2645 while (!(err = link_path_walk(s, nd)) &&
2646 (err = mountpoint_last(nd)) > 0) {
2647 s = trailing_symlink(nd);
2648 if (IS_ERR(s)) {
2649 err = PTR_ERR(s);
2650 break;
2653 if (!err) {
2654 *path = nd->path;
2655 nd->path.mnt = NULL;
2656 nd->path.dentry = NULL;
2657 follow_mount(path);
2659 terminate_walk(nd);
2660 return err;
2663 static int
2664 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2665 unsigned int flags)
2667 struct nameidata nd;
2668 int error;
2669 if (IS_ERR(name))
2670 return PTR_ERR(name);
2671 set_nameidata(&nd, dfd, name);
2672 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2673 if (unlikely(error == -ECHILD))
2674 error = path_mountpoint(&nd, flags, path);
2675 if (unlikely(error == -ESTALE))
2676 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2677 if (likely(!error))
2678 audit_inode(name, path->dentry, 0);
2679 restore_nameidata();
2680 putname(name);
2681 return error;
2685 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2686 * @dfd: directory file descriptor
2687 * @name: pathname from userland
2688 * @flags: lookup flags
2689 * @path: pointer to container to hold result
2691 * A umount is a special case for path walking. We're not actually interested
2692 * in the inode in this situation, and ESTALE errors can be a problem. We
2693 * simply want track down the dentry and vfsmount attached at the mountpoint
2694 * and avoid revalidating the last component.
2696 * Returns 0 and populates "path" on success.
2699 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2700 struct path *path)
2702 return filename_mountpoint(dfd, getname(name), path, flags);
2706 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2707 unsigned int flags)
2709 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2711 EXPORT_SYMBOL(kern_path_mountpoint);
2713 int __check_sticky(struct inode *dir, struct inode *inode)
2715 kuid_t fsuid = current_fsuid();
2717 if (uid_eq(inode->i_uid, fsuid))
2718 return 0;
2719 if (uid_eq(dir->i_uid, fsuid))
2720 return 0;
2721 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2723 EXPORT_SYMBOL(__check_sticky);
2726 * Check whether we can remove a link victim from directory dir, check
2727 * whether the type of victim is right.
2728 * 1. We can't do it if dir is read-only (done in permission())
2729 * 2. We should have write and exec permissions on dir
2730 * 3. We can't remove anything from append-only dir
2731 * 4. We can't do anything with immutable dir (done in permission())
2732 * 5. If the sticky bit on dir is set we should either
2733 * a. be owner of dir, or
2734 * b. be owner of victim, or
2735 * c. have CAP_FOWNER capability
2736 * 6. If the victim is append-only or immutable we can't do antyhing with
2737 * links pointing to it.
2738 * 7. If the victim has an unknown uid or gid we can't change the inode.
2739 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2740 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2741 * 10. We can't remove a root or mountpoint.
2742 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2743 * nfs_async_unlink().
2745 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2747 struct inode *inode = d_backing_inode(victim);
2748 int error;
2750 if (d_is_negative(victim))
2751 return -ENOENT;
2752 BUG_ON(!inode);
2754 BUG_ON(victim->d_parent->d_inode != dir);
2755 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2757 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2758 if (error)
2759 return error;
2760 if (IS_APPEND(dir))
2761 return -EPERM;
2763 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2764 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2765 return -EPERM;
2766 if (isdir) {
2767 if (!d_is_dir(victim))
2768 return -ENOTDIR;
2769 if (IS_ROOT(victim))
2770 return -EBUSY;
2771 } else if (d_is_dir(victim))
2772 return -EISDIR;
2773 if (IS_DEADDIR(dir))
2774 return -ENOENT;
2775 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2776 return -EBUSY;
2777 return 0;
2780 /* Check whether we can create an object with dentry child in directory
2781 * dir.
2782 * 1. We can't do it if child already exists (open has special treatment for
2783 * this case, but since we are inlined it's OK)
2784 * 2. We can't do it if dir is read-only (done in permission())
2785 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2786 * 4. We should have write and exec permissions on dir
2787 * 5. We can't do it if dir is immutable (done in permission())
2789 static inline int may_create(struct inode *dir, struct dentry *child)
2791 struct user_namespace *s_user_ns;
2792 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2793 if (child->d_inode)
2794 return -EEXIST;
2795 if (IS_DEADDIR(dir))
2796 return -ENOENT;
2797 s_user_ns = dir->i_sb->s_user_ns;
2798 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2799 !kgid_has_mapping(s_user_ns, current_fsgid()))
2800 return -EOVERFLOW;
2801 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2805 * p1 and p2 should be directories on the same fs.
2807 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2809 struct dentry *p;
2811 if (p1 == p2) {
2812 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2813 return NULL;
2816 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2818 p = d_ancestor(p2, p1);
2819 if (p) {
2820 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2821 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2822 return p;
2825 p = d_ancestor(p1, p2);
2826 if (p) {
2827 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2828 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2829 return p;
2832 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2833 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2834 return NULL;
2836 EXPORT_SYMBOL(lock_rename);
2838 void unlock_rename(struct dentry *p1, struct dentry *p2)
2840 inode_unlock(p1->d_inode);
2841 if (p1 != p2) {
2842 inode_unlock(p2->d_inode);
2843 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2846 EXPORT_SYMBOL(unlock_rename);
2848 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2849 bool want_excl)
2851 int error = may_create(dir, dentry);
2852 if (error)
2853 return error;
2855 if (!dir->i_op->create)
2856 return -EACCES; /* shouldn't it be ENOSYS? */
2857 mode &= S_IALLUGO;
2858 mode |= S_IFREG;
2859 error = security_inode_create(dir, dentry, mode);
2860 if (error)
2861 return error;
2862 error = dir->i_op->create(dir, dentry, mode, want_excl);
2863 if (!error)
2864 fsnotify_create(dir, dentry);
2865 return error;
2867 EXPORT_SYMBOL(vfs_create);
2869 bool may_open_dev(const struct path *path)
2871 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2872 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2875 static int may_open(const struct path *path, int acc_mode, int flag)
2877 struct dentry *dentry = path->dentry;
2878 struct inode *inode = dentry->d_inode;
2879 int error;
2881 if (!inode)
2882 return -ENOENT;
2884 switch (inode->i_mode & S_IFMT) {
2885 case S_IFLNK:
2886 return -ELOOP;
2887 case S_IFDIR:
2888 if (acc_mode & MAY_WRITE)
2889 return -EISDIR;
2890 break;
2891 case S_IFBLK:
2892 case S_IFCHR:
2893 if (!may_open_dev(path))
2894 return -EACCES;
2895 /*FALLTHRU*/
2896 case S_IFIFO:
2897 case S_IFSOCK:
2898 flag &= ~O_TRUNC;
2899 break;
2902 error = inode_permission(inode, MAY_OPEN | acc_mode);
2903 if (error)
2904 return error;
2907 * An append-only file must be opened in append mode for writing.
2909 if (IS_APPEND(inode)) {
2910 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2911 return -EPERM;
2912 if (flag & O_TRUNC)
2913 return -EPERM;
2916 /* O_NOATIME can only be set by the owner or superuser */
2917 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2918 return -EPERM;
2920 return 0;
2923 static int handle_truncate(struct file *filp)
2925 const struct path *path = &filp->f_path;
2926 struct inode *inode = path->dentry->d_inode;
2927 int error = get_write_access(inode);
2928 if (error)
2929 return error;
2931 * Refuse to truncate files with mandatory locks held on them.
2933 error = locks_verify_locked(filp);
2934 if (!error)
2935 error = security_path_truncate(path);
2936 if (!error) {
2937 error = do_truncate(path->dentry, 0,
2938 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2939 filp);
2941 put_write_access(inode);
2942 return error;
2945 static inline int open_to_namei_flags(int flag)
2947 if ((flag & O_ACCMODE) == 3)
2948 flag--;
2949 return flag;
2952 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2954 struct user_namespace *s_user_ns;
2955 int error = security_path_mknod(dir, dentry, mode, 0);
2956 if (error)
2957 return error;
2959 s_user_ns = dir->dentry->d_sb->s_user_ns;
2960 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2961 !kgid_has_mapping(s_user_ns, current_fsgid()))
2962 return -EOVERFLOW;
2964 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2965 if (error)
2966 return error;
2968 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2972 * Attempt to atomically look up, create and open a file from a negative
2973 * dentry.
2975 * Returns 0 if successful. The file will have been created and attached to
2976 * @file by the filesystem calling finish_open().
2978 * Returns 1 if the file was looked up only or didn't need creating. The
2979 * caller will need to perform the open themselves. @path will have been
2980 * updated to point to the new dentry. This may be negative.
2982 * Returns an error code otherwise.
2984 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2985 struct path *path, struct file *file,
2986 const struct open_flags *op,
2987 int open_flag, umode_t mode,
2988 int *opened)
2990 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2991 struct inode *dir = nd->path.dentry->d_inode;
2992 int error;
2994 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2995 open_flag &= ~O_TRUNC;
2997 if (nd->flags & LOOKUP_DIRECTORY)
2998 open_flag |= O_DIRECTORY;
3000 file->f_path.dentry = DENTRY_NOT_SET;
3001 file->f_path.mnt = nd->path.mnt;
3002 error = dir->i_op->atomic_open(dir, dentry, file,
3003 open_to_namei_flags(open_flag),
3004 mode, opened);
3005 d_lookup_done(dentry);
3006 if (!error) {
3008 * We didn't have the inode before the open, so check open
3009 * permission here.
3011 int acc_mode = op->acc_mode;
3012 if (*opened & FILE_CREATED) {
3013 WARN_ON(!(open_flag & O_CREAT));
3014 fsnotify_create(dir, dentry);
3015 acc_mode = 0;
3017 error = may_open(&file->f_path, acc_mode, open_flag);
3018 if (WARN_ON(error > 0))
3019 error = -EINVAL;
3020 } else if (error > 0) {
3021 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3022 error = -EIO;
3023 } else {
3024 if (file->f_path.dentry) {
3025 dput(dentry);
3026 dentry = file->f_path.dentry;
3028 if (*opened & FILE_CREATED)
3029 fsnotify_create(dir, dentry);
3030 if (unlikely(d_is_negative(dentry))) {
3031 error = -ENOENT;
3032 } else {
3033 path->dentry = dentry;
3034 path->mnt = nd->path.mnt;
3035 return 1;
3039 dput(dentry);
3040 return error;
3044 * Look up and maybe create and open the last component.
3046 * Must be called with i_mutex held on parent.
3048 * Returns 0 if the file was successfully atomically created (if necessary) and
3049 * opened. In this case the file will be returned attached to @file.
3051 * Returns 1 if the file was not completely opened at this time, though lookups
3052 * and creations will have been performed and the dentry returned in @path will
3053 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3054 * specified then a negative dentry may be returned.
3056 * An error code is returned otherwise.
3058 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3059 * cleared otherwise prior to returning.
3061 static int lookup_open(struct nameidata *nd, struct path *path,
3062 struct file *file,
3063 const struct open_flags *op,
3064 bool got_write, int *opened)
3066 struct dentry *dir = nd->path.dentry;
3067 struct inode *dir_inode = dir->d_inode;
3068 int open_flag = op->open_flag;
3069 struct dentry *dentry;
3070 int error, create_error = 0;
3071 umode_t mode = op->mode;
3072 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3074 if (unlikely(IS_DEADDIR(dir_inode)))
3075 return -ENOENT;
3077 *opened &= ~FILE_CREATED;
3078 dentry = d_lookup(dir, &nd->last);
3079 for (;;) {
3080 if (!dentry) {
3081 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3082 if (IS_ERR(dentry))
3083 return PTR_ERR(dentry);
3085 if (d_in_lookup(dentry))
3086 break;
3088 error = d_revalidate(dentry, nd->flags);
3089 if (likely(error > 0))
3090 break;
3091 if (error)
3092 goto out_dput;
3093 d_invalidate(dentry);
3094 dput(dentry);
3095 dentry = NULL;
3097 if (dentry->d_inode) {
3098 /* Cached positive dentry: will open in f_op->open */
3099 goto out_no_open;
3103 * Checking write permission is tricky, bacuse we don't know if we are
3104 * going to actually need it: O_CREAT opens should work as long as the
3105 * file exists. But checking existence breaks atomicity. The trick is
3106 * to check access and if not granted clear O_CREAT from the flags.
3108 * Another problem is returing the "right" error value (e.g. for an
3109 * O_EXCL open we want to return EEXIST not EROFS).
3111 if (open_flag & O_CREAT) {
3112 if (!IS_POSIXACL(dir->d_inode))
3113 mode &= ~current_umask();
3114 if (unlikely(!got_write)) {
3115 create_error = -EROFS;
3116 open_flag &= ~O_CREAT;
3117 if (open_flag & (O_EXCL | O_TRUNC))
3118 goto no_open;
3119 /* No side effects, safe to clear O_CREAT */
3120 } else {
3121 create_error = may_o_create(&nd->path, dentry, mode);
3122 if (create_error) {
3123 open_flag &= ~O_CREAT;
3124 if (open_flag & O_EXCL)
3125 goto no_open;
3128 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3129 unlikely(!got_write)) {
3131 * No O_CREATE -> atomicity not a requirement -> fall
3132 * back to lookup + open
3134 goto no_open;
3137 if (dir_inode->i_op->atomic_open) {
3138 error = atomic_open(nd, dentry, path, file, op, open_flag,
3139 mode, opened);
3140 if (unlikely(error == -ENOENT) && create_error)
3141 error = create_error;
3142 return error;
3145 no_open:
3146 if (d_in_lookup(dentry)) {
3147 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3148 nd->flags);
3149 d_lookup_done(dentry);
3150 if (unlikely(res)) {
3151 if (IS_ERR(res)) {
3152 error = PTR_ERR(res);
3153 goto out_dput;
3155 dput(dentry);
3156 dentry = res;
3160 /* Negative dentry, just create the file */
3161 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3162 *opened |= FILE_CREATED;
3163 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3164 if (!dir_inode->i_op->create) {
3165 error = -EACCES;
3166 goto out_dput;
3168 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3169 open_flag & O_EXCL);
3170 if (error)
3171 goto out_dput;
3172 fsnotify_create(dir_inode, dentry);
3174 if (unlikely(create_error) && !dentry->d_inode) {
3175 error = create_error;
3176 goto out_dput;
3178 out_no_open:
3179 path->dentry = dentry;
3180 path->mnt = nd->path.mnt;
3181 return 1;
3183 out_dput:
3184 dput(dentry);
3185 return error;
3189 * Handle the last step of open()
3191 static int do_last(struct nameidata *nd,
3192 struct file *file, const struct open_flags *op,
3193 int *opened)
3195 struct dentry *dir = nd->path.dentry;
3196 int open_flag = op->open_flag;
3197 bool will_truncate = (open_flag & O_TRUNC) != 0;
3198 bool got_write = false;
3199 int acc_mode = op->acc_mode;
3200 unsigned seq;
3201 struct inode *inode;
3202 struct path path;
3203 int error;
3205 nd->flags &= ~LOOKUP_PARENT;
3206 nd->flags |= op->intent;
3208 if (nd->last_type != LAST_NORM) {
3209 error = handle_dots(nd, nd->last_type);
3210 if (unlikely(error))
3211 return error;
3212 goto finish_open;
3215 if (!(open_flag & O_CREAT)) {
3216 if (nd->last.name[nd->last.len])
3217 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3218 /* we _can_ be in RCU mode here */
3219 error = lookup_fast(nd, &path, &inode, &seq);
3220 if (likely(error > 0))
3221 goto finish_lookup;
3223 if (error < 0)
3224 return error;
3226 BUG_ON(nd->inode != dir->d_inode);
3227 BUG_ON(nd->flags & LOOKUP_RCU);
3228 } else {
3229 /* create side of things */
3231 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3232 * has been cleared when we got to the last component we are
3233 * about to look up
3235 error = complete_walk(nd);
3236 if (error)
3237 return error;
3239 audit_inode(nd->name, dir, LOOKUP_PARENT);
3240 /* trailing slashes? */
3241 if (unlikely(nd->last.name[nd->last.len]))
3242 return -EISDIR;
3245 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3246 error = mnt_want_write(nd->path.mnt);
3247 if (!error)
3248 got_write = true;
3250 * do _not_ fail yet - we might not need that or fail with
3251 * a different error; let lookup_open() decide; we'll be
3252 * dropping this one anyway.
3255 if (open_flag & O_CREAT)
3256 inode_lock(dir->d_inode);
3257 else
3258 inode_lock_shared(dir->d_inode);
3259 error = lookup_open(nd, &path, file, op, got_write, opened);
3260 if (open_flag & O_CREAT)
3261 inode_unlock(dir->d_inode);
3262 else
3263 inode_unlock_shared(dir->d_inode);
3265 if (error <= 0) {
3266 if (error)
3267 goto out;
3269 if ((*opened & FILE_CREATED) ||
3270 !S_ISREG(file_inode(file)->i_mode))
3271 will_truncate = false;
3273 audit_inode(nd->name, file->f_path.dentry, 0);
3274 goto opened;
3277 if (*opened & FILE_CREATED) {
3278 /* Don't check for write permission, don't truncate */
3279 open_flag &= ~O_TRUNC;
3280 will_truncate = false;
3281 acc_mode = 0;
3282 path_to_nameidata(&path, nd);
3283 goto finish_open_created;
3287 * If atomic_open() acquired write access it is dropped now due to
3288 * possible mount and symlink following (this might be optimized away if
3289 * necessary...)
3291 if (got_write) {
3292 mnt_drop_write(nd->path.mnt);
3293 got_write = false;
3296 error = follow_managed(&path, nd);
3297 if (unlikely(error < 0))
3298 return error;
3300 if (unlikely(d_is_negative(path.dentry))) {
3301 path_to_nameidata(&path, nd);
3302 return -ENOENT;
3306 * create/update audit record if it already exists.
3308 audit_inode(nd->name, path.dentry, 0);
3310 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3311 path_to_nameidata(&path, nd);
3312 return -EEXIST;
3315 seq = 0; /* out of RCU mode, so the value doesn't matter */
3316 inode = d_backing_inode(path.dentry);
3317 finish_lookup:
3318 error = step_into(nd, &path, 0, inode, seq);
3319 if (unlikely(error))
3320 return error;
3321 finish_open:
3322 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3323 error = complete_walk(nd);
3324 if (error)
3325 return error;
3326 audit_inode(nd->name, nd->path.dentry, 0);
3327 error = -EISDIR;
3328 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3329 goto out;
3330 error = -ENOTDIR;
3331 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3332 goto out;
3333 if (!d_is_reg(nd->path.dentry))
3334 will_truncate = false;
3336 if (will_truncate) {
3337 error = mnt_want_write(nd->path.mnt);
3338 if (error)
3339 goto out;
3340 got_write = true;
3342 finish_open_created:
3343 error = may_open(&nd->path, acc_mode, open_flag);
3344 if (error)
3345 goto out;
3346 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3347 error = vfs_open(&nd->path, file, current_cred());
3348 if (error)
3349 goto out;
3350 *opened |= FILE_OPENED;
3351 opened:
3352 error = open_check_o_direct(file);
3353 if (!error)
3354 error = ima_file_check(file, op->acc_mode, *opened);
3355 if (!error && will_truncate)
3356 error = handle_truncate(file);
3357 out:
3358 if (unlikely(error) && (*opened & FILE_OPENED))
3359 fput(file);
3360 if (unlikely(error > 0)) {
3361 WARN_ON(1);
3362 error = -EINVAL;
3364 if (got_write)
3365 mnt_drop_write(nd->path.mnt);
3366 return error;
3369 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3371 static const struct qstr name = QSTR_INIT("/", 1);
3372 struct dentry *child = NULL;
3373 struct inode *dir = dentry->d_inode;
3374 struct inode *inode;
3375 int error;
3377 /* we want directory to be writable */
3378 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3379 if (error)
3380 goto out_err;
3381 error = -EOPNOTSUPP;
3382 if (!dir->i_op->tmpfile)
3383 goto out_err;
3384 error = -ENOMEM;
3385 child = d_alloc(dentry, &name);
3386 if (unlikely(!child))
3387 goto out_err;
3388 error = dir->i_op->tmpfile(dir, child, mode);
3389 if (error)
3390 goto out_err;
3391 error = -ENOENT;
3392 inode = child->d_inode;
3393 if (unlikely(!inode))
3394 goto out_err;
3395 if (!(open_flag & O_EXCL)) {
3396 spin_lock(&inode->i_lock);
3397 inode->i_state |= I_LINKABLE;
3398 spin_unlock(&inode->i_lock);
3400 return child;
3402 out_err:
3403 dput(child);
3404 return ERR_PTR(error);
3406 EXPORT_SYMBOL(vfs_tmpfile);
3408 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3409 const struct open_flags *op,
3410 struct file *file, int *opened)
3412 struct dentry *child;
3413 struct path path;
3414 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3415 if (unlikely(error))
3416 return error;
3417 error = mnt_want_write(path.mnt);
3418 if (unlikely(error))
3419 goto out;
3420 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3421 error = PTR_ERR(child);
3422 if (unlikely(IS_ERR(child)))
3423 goto out2;
3424 dput(path.dentry);
3425 path.dentry = child;
3426 audit_inode(nd->name, child, 0);
3427 /* Don't check for other permissions, the inode was just created */
3428 error = may_open(&path, 0, op->open_flag);
3429 if (error)
3430 goto out2;
3431 file->f_path.mnt = path.mnt;
3432 error = finish_open(file, child, NULL, opened);
3433 if (error)
3434 goto out2;
3435 error = open_check_o_direct(file);
3436 if (error)
3437 fput(file);
3438 out2:
3439 mnt_drop_write(path.mnt);
3440 out:
3441 path_put(&path);
3442 return error;
3445 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3447 struct path path;
3448 int error = path_lookupat(nd, flags, &path);
3449 if (!error) {
3450 audit_inode(nd->name, path.dentry, 0);
3451 error = vfs_open(&path, file, current_cred());
3452 path_put(&path);
3454 return error;
3457 static struct file *path_openat(struct nameidata *nd,
3458 const struct open_flags *op, unsigned flags)
3460 const char *s;
3461 struct file *file;
3462 int opened = 0;
3463 int error;
3465 file = get_empty_filp();
3466 if (IS_ERR(file))
3467 return file;
3469 file->f_flags = op->open_flag;
3471 if (unlikely(file->f_flags & __O_TMPFILE)) {
3472 error = do_tmpfile(nd, flags, op, file, &opened);
3473 goto out2;
3476 if (unlikely(file->f_flags & O_PATH)) {
3477 error = do_o_path(nd, flags, file);
3478 if (!error)
3479 opened |= FILE_OPENED;
3480 goto out2;
3483 s = path_init(nd, flags);
3484 if (IS_ERR(s)) {
3485 put_filp(file);
3486 return ERR_CAST(s);
3488 while (!(error = link_path_walk(s, nd)) &&
3489 (error = do_last(nd, file, op, &opened)) > 0) {
3490 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3491 s = trailing_symlink(nd);
3492 if (IS_ERR(s)) {
3493 error = PTR_ERR(s);
3494 break;
3497 terminate_walk(nd);
3498 out2:
3499 if (!(opened & FILE_OPENED)) {
3500 BUG_ON(!error);
3501 put_filp(file);
3503 if (unlikely(error)) {
3504 if (error == -EOPENSTALE) {
3505 if (flags & LOOKUP_RCU)
3506 error = -ECHILD;
3507 else
3508 error = -ESTALE;
3510 file = ERR_PTR(error);
3512 return file;
3515 struct file *do_filp_open(int dfd, struct filename *pathname,
3516 const struct open_flags *op)
3518 struct nameidata nd;
3519 int flags = op->lookup_flags;
3520 struct file *filp;
3522 set_nameidata(&nd, dfd, pathname);
3523 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3524 if (unlikely(filp == ERR_PTR(-ECHILD)))
3525 filp = path_openat(&nd, op, flags);
3526 if (unlikely(filp == ERR_PTR(-ESTALE)))
3527 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3528 restore_nameidata();
3529 return filp;
3532 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3533 const char *name, const struct open_flags *op)
3535 struct nameidata nd;
3536 struct file *file;
3537 struct filename *filename;
3538 int flags = op->lookup_flags | LOOKUP_ROOT;
3540 nd.root.mnt = mnt;
3541 nd.root.dentry = dentry;
3543 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3544 return ERR_PTR(-ELOOP);
3546 filename = getname_kernel(name);
3547 if (IS_ERR(filename))
3548 return ERR_CAST(filename);
3550 set_nameidata(&nd, -1, filename);
3551 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3552 if (unlikely(file == ERR_PTR(-ECHILD)))
3553 file = path_openat(&nd, op, flags);
3554 if (unlikely(file == ERR_PTR(-ESTALE)))
3555 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3556 restore_nameidata();
3557 putname(filename);
3558 return file;
3561 static struct dentry *filename_create(int dfd, struct filename *name,
3562 struct path *path, unsigned int lookup_flags)
3564 struct dentry *dentry = ERR_PTR(-EEXIST);
3565 struct qstr last;
3566 int type;
3567 int err2;
3568 int error;
3569 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3572 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3573 * other flags passed in are ignored!
3575 lookup_flags &= LOOKUP_REVAL;
3577 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3578 if (IS_ERR(name))
3579 return ERR_CAST(name);
3582 * Yucky last component or no last component at all?
3583 * (foo/., foo/.., /////)
3585 if (unlikely(type != LAST_NORM))
3586 goto out;
3588 /* don't fail immediately if it's r/o, at least try to report other errors */
3589 err2 = mnt_want_write(path->mnt);
3591 * Do the final lookup.
3593 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3594 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3595 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3596 if (IS_ERR(dentry))
3597 goto unlock;
3599 error = -EEXIST;
3600 if (d_is_positive(dentry))
3601 goto fail;
3604 * Special case - lookup gave negative, but... we had foo/bar/
3605 * From the vfs_mknod() POV we just have a negative dentry -
3606 * all is fine. Let's be bastards - you had / on the end, you've
3607 * been asking for (non-existent) directory. -ENOENT for you.
3609 if (unlikely(!is_dir && last.name[last.len])) {
3610 error = -ENOENT;
3611 goto fail;
3613 if (unlikely(err2)) {
3614 error = err2;
3615 goto fail;
3617 putname(name);
3618 return dentry;
3619 fail:
3620 dput(dentry);
3621 dentry = ERR_PTR(error);
3622 unlock:
3623 inode_unlock(path->dentry->d_inode);
3624 if (!err2)
3625 mnt_drop_write(path->mnt);
3626 out:
3627 path_put(path);
3628 putname(name);
3629 return dentry;
3632 struct dentry *kern_path_create(int dfd, const char *pathname,
3633 struct path *path, unsigned int lookup_flags)
3635 return filename_create(dfd, getname_kernel(pathname),
3636 path, lookup_flags);
3638 EXPORT_SYMBOL(kern_path_create);
3640 void done_path_create(struct path *path, struct dentry *dentry)
3642 dput(dentry);
3643 inode_unlock(path->dentry->d_inode);
3644 mnt_drop_write(path->mnt);
3645 path_put(path);
3647 EXPORT_SYMBOL(done_path_create);
3649 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3650 struct path *path, unsigned int lookup_flags)
3652 return filename_create(dfd, getname(pathname), path, lookup_flags);
3654 EXPORT_SYMBOL(user_path_create);
3656 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3658 int error = may_create(dir, dentry);
3660 if (error)
3661 return error;
3663 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3664 return -EPERM;
3666 if (!dir->i_op->mknod)
3667 return -EPERM;
3669 error = devcgroup_inode_mknod(mode, dev);
3670 if (error)
3671 return error;
3673 error = security_inode_mknod(dir, dentry, mode, dev);
3674 if (error)
3675 return error;
3677 error = dir->i_op->mknod(dir, dentry, mode, dev);
3678 if (!error)
3679 fsnotify_create(dir, dentry);
3680 return error;
3682 EXPORT_SYMBOL(vfs_mknod);
3684 static int may_mknod(umode_t mode)
3686 switch (mode & S_IFMT) {
3687 case S_IFREG:
3688 case S_IFCHR:
3689 case S_IFBLK:
3690 case S_IFIFO:
3691 case S_IFSOCK:
3692 case 0: /* zero mode translates to S_IFREG */
3693 return 0;
3694 case S_IFDIR:
3695 return -EPERM;
3696 default:
3697 return -EINVAL;
3701 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3702 unsigned, dev)
3704 struct dentry *dentry;
3705 struct path path;
3706 int error;
3707 unsigned int lookup_flags = 0;
3709 error = may_mknod(mode);
3710 if (error)
3711 return error;
3712 retry:
3713 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3714 if (IS_ERR(dentry))
3715 return PTR_ERR(dentry);
3717 if (!IS_POSIXACL(path.dentry->d_inode))
3718 mode &= ~current_umask();
3719 error = security_path_mknod(&path, dentry, mode, dev);
3720 if (error)
3721 goto out;
3722 switch (mode & S_IFMT) {
3723 case 0: case S_IFREG:
3724 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3725 if (!error)
3726 ima_post_path_mknod(dentry);
3727 break;
3728 case S_IFCHR: case S_IFBLK:
3729 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3730 new_decode_dev(dev));
3731 break;
3732 case S_IFIFO: case S_IFSOCK:
3733 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3734 break;
3736 out:
3737 done_path_create(&path, dentry);
3738 if (retry_estale(error, lookup_flags)) {
3739 lookup_flags |= LOOKUP_REVAL;
3740 goto retry;
3742 return error;
3745 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3747 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3750 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3752 int error = may_create(dir, dentry);
3753 unsigned max_links = dir->i_sb->s_max_links;
3755 if (error)
3756 return error;
3758 if (!dir->i_op->mkdir)
3759 return -EPERM;
3761 mode &= (S_IRWXUGO|S_ISVTX);
3762 error = security_inode_mkdir(dir, dentry, mode);
3763 if (error)
3764 return error;
3766 if (max_links && dir->i_nlink >= max_links)
3767 return -EMLINK;
3769 error = dir->i_op->mkdir(dir, dentry, mode);
3770 if (!error)
3771 fsnotify_mkdir(dir, dentry);
3772 return error;
3774 EXPORT_SYMBOL(vfs_mkdir);
3776 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3778 struct dentry *dentry;
3779 struct path path;
3780 int error;
3781 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3783 retry:
3784 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3785 if (IS_ERR(dentry))
3786 return PTR_ERR(dentry);
3788 if (!IS_POSIXACL(path.dentry->d_inode))
3789 mode &= ~current_umask();
3790 error = security_path_mkdir(&path, dentry, mode);
3791 if (!error)
3792 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3793 done_path_create(&path, dentry);
3794 if (retry_estale(error, lookup_flags)) {
3795 lookup_flags |= LOOKUP_REVAL;
3796 goto retry;
3798 return error;
3801 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3803 return sys_mkdirat(AT_FDCWD, pathname, mode);
3806 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3808 int error = may_delete(dir, dentry, 1);
3810 if (error)
3811 return error;
3813 if (!dir->i_op->rmdir)
3814 return -EPERM;
3816 dget(dentry);
3817 inode_lock(dentry->d_inode);
3819 error = -EBUSY;
3820 if (is_local_mountpoint(dentry))
3821 goto out;
3823 error = security_inode_rmdir(dir, dentry);
3824 if (error)
3825 goto out;
3827 shrink_dcache_parent(dentry);
3828 error = dir->i_op->rmdir(dir, dentry);
3829 if (error)
3830 goto out;
3832 dentry->d_inode->i_flags |= S_DEAD;
3833 dont_mount(dentry);
3834 detach_mounts(dentry);
3836 out:
3837 inode_unlock(dentry->d_inode);
3838 dput(dentry);
3839 if (!error)
3840 d_delete(dentry);
3841 return error;
3843 EXPORT_SYMBOL(vfs_rmdir);
3845 static long do_rmdir(int dfd, const char __user *pathname)
3847 int error = 0;
3848 struct filename *name;
3849 struct dentry *dentry;
3850 struct path path;
3851 struct qstr last;
3852 int type;
3853 unsigned int lookup_flags = 0;
3854 retry:
3855 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3856 &path, &last, &type);
3857 if (IS_ERR(name))
3858 return PTR_ERR(name);
3860 switch (type) {
3861 case LAST_DOTDOT:
3862 error = -ENOTEMPTY;
3863 goto exit1;
3864 case LAST_DOT:
3865 error = -EINVAL;
3866 goto exit1;
3867 case LAST_ROOT:
3868 error = -EBUSY;
3869 goto exit1;
3872 error = mnt_want_write(path.mnt);
3873 if (error)
3874 goto exit1;
3876 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3877 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3878 error = PTR_ERR(dentry);
3879 if (IS_ERR(dentry))
3880 goto exit2;
3881 if (!dentry->d_inode) {
3882 error = -ENOENT;
3883 goto exit3;
3885 error = security_path_rmdir(&path, dentry);
3886 if (error)
3887 goto exit3;
3888 error = vfs_rmdir(path.dentry->d_inode, dentry);
3889 exit3:
3890 dput(dentry);
3891 exit2:
3892 inode_unlock(path.dentry->d_inode);
3893 mnt_drop_write(path.mnt);
3894 exit1:
3895 path_put(&path);
3896 putname(name);
3897 if (retry_estale(error, lookup_flags)) {
3898 lookup_flags |= LOOKUP_REVAL;
3899 goto retry;
3901 return error;
3904 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3906 return do_rmdir(AT_FDCWD, pathname);
3910 * vfs_unlink - unlink a filesystem object
3911 * @dir: parent directory
3912 * @dentry: victim
3913 * @delegated_inode: returns victim inode, if the inode is delegated.
3915 * The caller must hold dir->i_mutex.
3917 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3918 * return a reference to the inode in delegated_inode. The caller
3919 * should then break the delegation on that inode and retry. Because
3920 * breaking a delegation may take a long time, the caller should drop
3921 * dir->i_mutex before doing so.
3923 * Alternatively, a caller may pass NULL for delegated_inode. This may
3924 * be appropriate for callers that expect the underlying filesystem not
3925 * to be NFS exported.
3927 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3929 struct inode *target = dentry->d_inode;
3930 int error = may_delete(dir, dentry, 0);
3932 if (error)
3933 return error;
3935 if (!dir->i_op->unlink)
3936 return -EPERM;
3938 inode_lock(target);
3939 if (is_local_mountpoint(dentry))
3940 error = -EBUSY;
3941 else {
3942 error = security_inode_unlink(dir, dentry);
3943 if (!error) {
3944 error = try_break_deleg(target, delegated_inode);
3945 if (error)
3946 goto out;
3947 error = dir->i_op->unlink(dir, dentry);
3948 if (!error) {
3949 dont_mount(dentry);
3950 detach_mounts(dentry);
3954 out:
3955 inode_unlock(target);
3957 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3958 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3959 fsnotify_link_count(target);
3960 d_delete(dentry);
3963 return error;
3965 EXPORT_SYMBOL(vfs_unlink);
3968 * Make sure that the actual truncation of the file will occur outside its
3969 * directory's i_mutex. Truncate can take a long time if there is a lot of
3970 * writeout happening, and we don't want to prevent access to the directory
3971 * while waiting on the I/O.
3973 static long do_unlinkat(int dfd, const char __user *pathname)
3975 int error;
3976 struct filename *name;
3977 struct dentry *dentry;
3978 struct path path;
3979 struct qstr last;
3980 int type;
3981 struct inode *inode = NULL;
3982 struct inode *delegated_inode = NULL;
3983 unsigned int lookup_flags = 0;
3984 retry:
3985 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3986 &path, &last, &type);
3987 if (IS_ERR(name))
3988 return PTR_ERR(name);
3990 error = -EISDIR;
3991 if (type != LAST_NORM)
3992 goto exit1;
3994 error = mnt_want_write(path.mnt);
3995 if (error)
3996 goto exit1;
3997 retry_deleg:
3998 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3999 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4000 error = PTR_ERR(dentry);
4001 if (!IS_ERR(dentry)) {
4002 /* Why not before? Because we want correct error value */
4003 if (last.name[last.len])
4004 goto slashes;
4005 inode = dentry->d_inode;
4006 if (d_is_negative(dentry))
4007 goto slashes;
4008 ihold(inode);
4009 error = security_path_unlink(&path, dentry);
4010 if (error)
4011 goto exit2;
4012 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4013 exit2:
4014 dput(dentry);
4016 inode_unlock(path.dentry->d_inode);
4017 if (inode)
4018 iput(inode); /* truncate the inode here */
4019 inode = NULL;
4020 if (delegated_inode) {
4021 error = break_deleg_wait(&delegated_inode);
4022 if (!error)
4023 goto retry_deleg;
4025 mnt_drop_write(path.mnt);
4026 exit1:
4027 path_put(&path);
4028 putname(name);
4029 if (retry_estale(error, lookup_flags)) {
4030 lookup_flags |= LOOKUP_REVAL;
4031 inode = NULL;
4032 goto retry;
4034 return error;
4036 slashes:
4037 if (d_is_negative(dentry))
4038 error = -ENOENT;
4039 else if (d_is_dir(dentry))
4040 error = -EISDIR;
4041 else
4042 error = -ENOTDIR;
4043 goto exit2;
4046 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4048 if ((flag & ~AT_REMOVEDIR) != 0)
4049 return -EINVAL;
4051 if (flag & AT_REMOVEDIR)
4052 return do_rmdir(dfd, pathname);
4054 return do_unlinkat(dfd, pathname);
4057 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4059 return do_unlinkat(AT_FDCWD, pathname);
4062 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4064 int error = may_create(dir, dentry);
4066 if (error)
4067 return error;
4069 if (!dir->i_op->symlink)
4070 return -EPERM;
4072 error = security_inode_symlink(dir, dentry, oldname);
4073 if (error)
4074 return error;
4076 error = dir->i_op->symlink(dir, dentry, oldname);
4077 if (!error)
4078 fsnotify_create(dir, dentry);
4079 return error;
4081 EXPORT_SYMBOL(vfs_symlink);
4083 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4084 int, newdfd, const char __user *, newname)
4086 int error;
4087 struct filename *from;
4088 struct dentry *dentry;
4089 struct path path;
4090 unsigned int lookup_flags = 0;
4092 from = getname(oldname);
4093 if (IS_ERR(from))
4094 return PTR_ERR(from);
4095 retry:
4096 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4097 error = PTR_ERR(dentry);
4098 if (IS_ERR(dentry))
4099 goto out_putname;
4101 error = security_path_symlink(&path, dentry, from->name);
4102 if (!error)
4103 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4104 done_path_create(&path, dentry);
4105 if (retry_estale(error, lookup_flags)) {
4106 lookup_flags |= LOOKUP_REVAL;
4107 goto retry;
4109 out_putname:
4110 putname(from);
4111 return error;
4114 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4116 return sys_symlinkat(oldname, AT_FDCWD, newname);
4120 * vfs_link - create a new link
4121 * @old_dentry: object to be linked
4122 * @dir: new parent
4123 * @new_dentry: where to create the new link
4124 * @delegated_inode: returns inode needing a delegation break
4126 * The caller must hold dir->i_mutex
4128 * If vfs_link discovers a delegation on the to-be-linked file in need
4129 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4130 * inode in delegated_inode. The caller should then break the delegation
4131 * and retry. Because breaking a delegation may take a long time, the
4132 * caller should drop the i_mutex before doing so.
4134 * Alternatively, a caller may pass NULL for delegated_inode. This may
4135 * be appropriate for callers that expect the underlying filesystem not
4136 * to be NFS exported.
4138 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4140 struct inode *inode = old_dentry->d_inode;
4141 unsigned max_links = dir->i_sb->s_max_links;
4142 int error;
4144 if (!inode)
4145 return -ENOENT;
4147 error = may_create(dir, new_dentry);
4148 if (error)
4149 return error;
4151 if (dir->i_sb != inode->i_sb)
4152 return -EXDEV;
4155 * A link to an append-only or immutable file cannot be created.
4157 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4158 return -EPERM;
4160 * Updating the link count will likely cause i_uid and i_gid to
4161 * be writen back improperly if their true value is unknown to
4162 * the vfs.
4164 if (HAS_UNMAPPED_ID(inode))
4165 return -EPERM;
4166 if (!dir->i_op->link)
4167 return -EPERM;
4168 if (S_ISDIR(inode->i_mode))
4169 return -EPERM;
4171 error = security_inode_link(old_dentry, dir, new_dentry);
4172 if (error)
4173 return error;
4175 inode_lock(inode);
4176 /* Make sure we don't allow creating hardlink to an unlinked file */
4177 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4178 error = -ENOENT;
4179 else if (max_links && inode->i_nlink >= max_links)
4180 error = -EMLINK;
4181 else {
4182 error = try_break_deleg(inode, delegated_inode);
4183 if (!error)
4184 error = dir->i_op->link(old_dentry, dir, new_dentry);
4187 if (!error && (inode->i_state & I_LINKABLE)) {
4188 spin_lock(&inode->i_lock);
4189 inode->i_state &= ~I_LINKABLE;
4190 spin_unlock(&inode->i_lock);
4192 inode_unlock(inode);
4193 if (!error)
4194 fsnotify_link(dir, inode, new_dentry);
4195 return error;
4197 EXPORT_SYMBOL(vfs_link);
4200 * Hardlinks are often used in delicate situations. We avoid
4201 * security-related surprises by not following symlinks on the
4202 * newname. --KAB
4204 * We don't follow them on the oldname either to be compatible
4205 * with linux 2.0, and to avoid hard-linking to directories
4206 * and other special files. --ADM
4208 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4209 int, newdfd, const char __user *, newname, int, flags)
4211 struct dentry *new_dentry;
4212 struct path old_path, new_path;
4213 struct inode *delegated_inode = NULL;
4214 int how = 0;
4215 int error;
4217 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4218 return -EINVAL;
4220 * To use null names we require CAP_DAC_READ_SEARCH
4221 * This ensures that not everyone will be able to create
4222 * handlink using the passed filedescriptor.
4224 if (flags & AT_EMPTY_PATH) {
4225 if (!capable(CAP_DAC_READ_SEARCH))
4226 return -ENOENT;
4227 how = LOOKUP_EMPTY;
4230 if (flags & AT_SYMLINK_FOLLOW)
4231 how |= LOOKUP_FOLLOW;
4232 retry:
4233 error = user_path_at(olddfd, oldname, how, &old_path);
4234 if (error)
4235 return error;
4237 new_dentry = user_path_create(newdfd, newname, &new_path,
4238 (how & LOOKUP_REVAL));
4239 error = PTR_ERR(new_dentry);
4240 if (IS_ERR(new_dentry))
4241 goto out;
4243 error = -EXDEV;
4244 if (old_path.mnt != new_path.mnt)
4245 goto out_dput;
4246 error = may_linkat(&old_path);
4247 if (unlikely(error))
4248 goto out_dput;
4249 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4250 if (error)
4251 goto out_dput;
4252 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4253 out_dput:
4254 done_path_create(&new_path, new_dentry);
4255 if (delegated_inode) {
4256 error = break_deleg_wait(&delegated_inode);
4257 if (!error) {
4258 path_put(&old_path);
4259 goto retry;
4262 if (retry_estale(error, how)) {
4263 path_put(&old_path);
4264 how |= LOOKUP_REVAL;
4265 goto retry;
4267 out:
4268 path_put(&old_path);
4270 return error;
4273 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4275 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4279 * vfs_rename - rename a filesystem object
4280 * @old_dir: parent of source
4281 * @old_dentry: source
4282 * @new_dir: parent of destination
4283 * @new_dentry: destination
4284 * @delegated_inode: returns an inode needing a delegation break
4285 * @flags: rename flags
4287 * The caller must hold multiple mutexes--see lock_rename()).
4289 * If vfs_rename discovers a delegation in need of breaking at either
4290 * the source or destination, it will return -EWOULDBLOCK and return a
4291 * reference to the inode in delegated_inode. The caller should then
4292 * break the delegation and retry. Because breaking a delegation may
4293 * take a long time, the caller should drop all locks before doing
4294 * so.
4296 * Alternatively, a caller may pass NULL for delegated_inode. This may
4297 * be appropriate for callers that expect the underlying filesystem not
4298 * to be NFS exported.
4300 * The worst of all namespace operations - renaming directory. "Perverted"
4301 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4302 * Problems:
4303 * a) we can get into loop creation.
4304 * b) race potential - two innocent renames can create a loop together.
4305 * That's where 4.4 screws up. Current fix: serialization on
4306 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4307 * story.
4308 * c) we have to lock _four_ objects - parents and victim (if it exists),
4309 * and source (if it is not a directory).
4310 * And that - after we got ->i_mutex on parents (until then we don't know
4311 * whether the target exists). Solution: try to be smart with locking
4312 * order for inodes. We rely on the fact that tree topology may change
4313 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4314 * move will be locked. Thus we can rank directories by the tree
4315 * (ancestors first) and rank all non-directories after them.
4316 * That works since everybody except rename does "lock parent, lookup,
4317 * lock child" and rename is under ->s_vfs_rename_mutex.
4318 * HOWEVER, it relies on the assumption that any object with ->lookup()
4319 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4320 * we'd better make sure that there's no link(2) for them.
4321 * d) conversion from fhandle to dentry may come in the wrong moment - when
4322 * we are removing the target. Solution: we will have to grab ->i_mutex
4323 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4324 * ->i_mutex on parents, which works but leads to some truly excessive
4325 * locking].
4327 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4328 struct inode *new_dir, struct dentry *new_dentry,
4329 struct inode **delegated_inode, unsigned int flags)
4331 int error;
4332 bool is_dir = d_is_dir(old_dentry);
4333 const unsigned char *old_name;
4334 struct inode *source = old_dentry->d_inode;
4335 struct inode *target = new_dentry->d_inode;
4336 bool new_is_dir = false;
4337 unsigned max_links = new_dir->i_sb->s_max_links;
4339 if (source == target)
4340 return 0;
4342 error = may_delete(old_dir, old_dentry, is_dir);
4343 if (error)
4344 return error;
4346 if (!target) {
4347 error = may_create(new_dir, new_dentry);
4348 } else {
4349 new_is_dir = d_is_dir(new_dentry);
4351 if (!(flags & RENAME_EXCHANGE))
4352 error = may_delete(new_dir, new_dentry, is_dir);
4353 else
4354 error = may_delete(new_dir, new_dentry, new_is_dir);
4356 if (error)
4357 return error;
4359 if (!old_dir->i_op->rename)
4360 return -EPERM;
4363 * If we are going to change the parent - check write permissions,
4364 * we'll need to flip '..'.
4366 if (new_dir != old_dir) {
4367 if (is_dir) {
4368 error = inode_permission(source, MAY_WRITE);
4369 if (error)
4370 return error;
4372 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4373 error = inode_permission(target, MAY_WRITE);
4374 if (error)
4375 return error;
4379 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4380 flags);
4381 if (error)
4382 return error;
4384 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4385 dget(new_dentry);
4386 if (!is_dir || (flags & RENAME_EXCHANGE))
4387 lock_two_nondirectories(source, target);
4388 else if (target)
4389 inode_lock(target);
4391 error = -EBUSY;
4392 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4393 goto out;
4395 if (max_links && new_dir != old_dir) {
4396 error = -EMLINK;
4397 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4398 goto out;
4399 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4400 old_dir->i_nlink >= max_links)
4401 goto out;
4403 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4404 shrink_dcache_parent(new_dentry);
4405 if (!is_dir) {
4406 error = try_break_deleg(source, delegated_inode);
4407 if (error)
4408 goto out;
4410 if (target && !new_is_dir) {
4411 error = try_break_deleg(target, delegated_inode);
4412 if (error)
4413 goto out;
4415 error = old_dir->i_op->rename(old_dir, old_dentry,
4416 new_dir, new_dentry, flags);
4417 if (error)
4418 goto out;
4420 if (!(flags & RENAME_EXCHANGE) && target) {
4421 if (is_dir)
4422 target->i_flags |= S_DEAD;
4423 dont_mount(new_dentry);
4424 detach_mounts(new_dentry);
4426 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4427 if (!(flags & RENAME_EXCHANGE))
4428 d_move(old_dentry, new_dentry);
4429 else
4430 d_exchange(old_dentry, new_dentry);
4432 out:
4433 if (!is_dir || (flags & RENAME_EXCHANGE))
4434 unlock_two_nondirectories(source, target);
4435 else if (target)
4436 inode_unlock(target);
4437 dput(new_dentry);
4438 if (!error) {
4439 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4440 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4441 if (flags & RENAME_EXCHANGE) {
4442 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4443 new_is_dir, NULL, new_dentry);
4446 fsnotify_oldname_free(old_name);
4448 return error;
4450 EXPORT_SYMBOL(vfs_rename);
4452 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4453 int, newdfd, const char __user *, newname, unsigned int, flags)
4455 struct dentry *old_dentry, *new_dentry;
4456 struct dentry *trap;
4457 struct path old_path, new_path;
4458 struct qstr old_last, new_last;
4459 int old_type, new_type;
4460 struct inode *delegated_inode = NULL;
4461 struct filename *from;
4462 struct filename *to;
4463 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4464 bool should_retry = false;
4465 int error;
4467 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4468 return -EINVAL;
4470 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4471 (flags & RENAME_EXCHANGE))
4472 return -EINVAL;
4474 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4475 return -EPERM;
4477 if (flags & RENAME_EXCHANGE)
4478 target_flags = 0;
4480 retry:
4481 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4482 &old_path, &old_last, &old_type);
4483 if (IS_ERR(from)) {
4484 error = PTR_ERR(from);
4485 goto exit;
4488 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4489 &new_path, &new_last, &new_type);
4490 if (IS_ERR(to)) {
4491 error = PTR_ERR(to);
4492 goto exit1;
4495 error = -EXDEV;
4496 if (old_path.mnt != new_path.mnt)
4497 goto exit2;
4499 error = -EBUSY;
4500 if (old_type != LAST_NORM)
4501 goto exit2;
4503 if (flags & RENAME_NOREPLACE)
4504 error = -EEXIST;
4505 if (new_type != LAST_NORM)
4506 goto exit2;
4508 error = mnt_want_write(old_path.mnt);
4509 if (error)
4510 goto exit2;
4512 retry_deleg:
4513 trap = lock_rename(new_path.dentry, old_path.dentry);
4515 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4516 error = PTR_ERR(old_dentry);
4517 if (IS_ERR(old_dentry))
4518 goto exit3;
4519 /* source must exist */
4520 error = -ENOENT;
4521 if (d_is_negative(old_dentry))
4522 goto exit4;
4523 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4524 error = PTR_ERR(new_dentry);
4525 if (IS_ERR(new_dentry))
4526 goto exit4;
4527 error = -EEXIST;
4528 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4529 goto exit5;
4530 if (flags & RENAME_EXCHANGE) {
4531 error = -ENOENT;
4532 if (d_is_negative(new_dentry))
4533 goto exit5;
4535 if (!d_is_dir(new_dentry)) {
4536 error = -ENOTDIR;
4537 if (new_last.name[new_last.len])
4538 goto exit5;
4541 /* unless the source is a directory trailing slashes give -ENOTDIR */
4542 if (!d_is_dir(old_dentry)) {
4543 error = -ENOTDIR;
4544 if (old_last.name[old_last.len])
4545 goto exit5;
4546 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4547 goto exit5;
4549 /* source should not be ancestor of target */
4550 error = -EINVAL;
4551 if (old_dentry == trap)
4552 goto exit5;
4553 /* target should not be an ancestor of source */
4554 if (!(flags & RENAME_EXCHANGE))
4555 error = -ENOTEMPTY;
4556 if (new_dentry == trap)
4557 goto exit5;
4559 error = security_path_rename(&old_path, old_dentry,
4560 &new_path, new_dentry, flags);
4561 if (error)
4562 goto exit5;
4563 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4564 new_path.dentry->d_inode, new_dentry,
4565 &delegated_inode, flags);
4566 exit5:
4567 dput(new_dentry);
4568 exit4:
4569 dput(old_dentry);
4570 exit3:
4571 unlock_rename(new_path.dentry, old_path.dentry);
4572 if (delegated_inode) {
4573 error = break_deleg_wait(&delegated_inode);
4574 if (!error)
4575 goto retry_deleg;
4577 mnt_drop_write(old_path.mnt);
4578 exit2:
4579 if (retry_estale(error, lookup_flags))
4580 should_retry = true;
4581 path_put(&new_path);
4582 putname(to);
4583 exit1:
4584 path_put(&old_path);
4585 putname(from);
4586 if (should_retry) {
4587 should_retry = false;
4588 lookup_flags |= LOOKUP_REVAL;
4589 goto retry;
4591 exit:
4592 return error;
4595 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4596 int, newdfd, const char __user *, newname)
4598 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4601 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4603 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4606 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4608 int error = may_create(dir, dentry);
4609 if (error)
4610 return error;
4612 if (!dir->i_op->mknod)
4613 return -EPERM;
4615 return dir->i_op->mknod(dir, dentry,
4616 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4618 EXPORT_SYMBOL(vfs_whiteout);
4620 int readlink_copy(char __user *buffer, int buflen, const char *link)
4622 int len = PTR_ERR(link);
4623 if (IS_ERR(link))
4624 goto out;
4626 len = strlen(link);
4627 if (len > (unsigned) buflen)
4628 len = buflen;
4629 if (copy_to_user(buffer, link, len))
4630 len = -EFAULT;
4631 out:
4632 return len;
4636 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4637 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4638 * for any given inode is up to filesystem.
4640 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4641 int buflen)
4643 DEFINE_DELAYED_CALL(done);
4644 struct inode *inode = d_inode(dentry);
4645 const char *link = inode->i_link;
4646 int res;
4648 if (!link) {
4649 link = inode->i_op->get_link(dentry, inode, &done);
4650 if (IS_ERR(link))
4651 return PTR_ERR(link);
4653 res = readlink_copy(buffer, buflen, link);
4654 do_delayed_call(&done);
4655 return res;
4659 * vfs_readlink - copy symlink body into userspace buffer
4660 * @dentry: dentry on which to get symbolic link
4661 * @buffer: user memory pointer
4662 * @buflen: size of buffer
4664 * Does not touch atime. That's up to the caller if necessary
4666 * Does not call security hook.
4668 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4670 struct inode *inode = d_inode(dentry);
4672 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4673 if (unlikely(inode->i_op->readlink))
4674 return inode->i_op->readlink(dentry, buffer, buflen);
4676 if (!d_is_symlink(dentry))
4677 return -EINVAL;
4679 spin_lock(&inode->i_lock);
4680 inode->i_opflags |= IOP_DEFAULT_READLINK;
4681 spin_unlock(&inode->i_lock);
4684 return generic_readlink(dentry, buffer, buflen);
4686 EXPORT_SYMBOL(vfs_readlink);
4689 * vfs_get_link - get symlink body
4690 * @dentry: dentry on which to get symbolic link
4691 * @done: caller needs to free returned data with this
4693 * Calls security hook and i_op->get_link() on the supplied inode.
4695 * It does not touch atime. That's up to the caller if necessary.
4697 * Does not work on "special" symlinks like /proc/$$/fd/N
4699 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4701 const char *res = ERR_PTR(-EINVAL);
4702 struct inode *inode = d_inode(dentry);
4704 if (d_is_symlink(dentry)) {
4705 res = ERR_PTR(security_inode_readlink(dentry));
4706 if (!res)
4707 res = inode->i_op->get_link(dentry, inode, done);
4709 return res;
4711 EXPORT_SYMBOL(vfs_get_link);
4713 /* get the link contents into pagecache */
4714 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4715 struct delayed_call *callback)
4717 char *kaddr;
4718 struct page *page;
4719 struct address_space *mapping = inode->i_mapping;
4721 if (!dentry) {
4722 page = find_get_page(mapping, 0);
4723 if (!page)
4724 return ERR_PTR(-ECHILD);
4725 if (!PageUptodate(page)) {
4726 put_page(page);
4727 return ERR_PTR(-ECHILD);
4729 } else {
4730 page = read_mapping_page(mapping, 0, NULL);
4731 if (IS_ERR(page))
4732 return (char*)page;
4734 set_delayed_call(callback, page_put_link, page);
4735 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4736 kaddr = page_address(page);
4737 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4738 return kaddr;
4741 EXPORT_SYMBOL(page_get_link);
4743 void page_put_link(void *arg)
4745 put_page(arg);
4747 EXPORT_SYMBOL(page_put_link);
4749 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4751 DEFINE_DELAYED_CALL(done);
4752 int res = readlink_copy(buffer, buflen,
4753 page_get_link(dentry, d_inode(dentry),
4754 &done));
4755 do_delayed_call(&done);
4756 return res;
4758 EXPORT_SYMBOL(page_readlink);
4761 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4763 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4765 struct address_space *mapping = inode->i_mapping;
4766 struct page *page;
4767 void *fsdata;
4768 int err;
4769 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4770 if (nofs)
4771 flags |= AOP_FLAG_NOFS;
4773 retry:
4774 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4775 flags, &page, &fsdata);
4776 if (err)
4777 goto fail;
4779 memcpy(page_address(page), symname, len-1);
4781 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4782 page, fsdata);
4783 if (err < 0)
4784 goto fail;
4785 if (err < len-1)
4786 goto retry;
4788 mark_inode_dirty(inode);
4789 return 0;
4790 fail:
4791 return err;
4793 EXPORT_SYMBOL(__page_symlink);
4795 int page_symlink(struct inode *inode, const char *symname, int len)
4797 return __page_symlink(inode, symname, len,
4798 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4800 EXPORT_SYMBOL(page_symlink);
4802 const struct inode_operations page_symlink_inode_operations = {
4803 .get_link = page_get_link,
4805 EXPORT_SYMBOL(page_symlink_inode_operations);