4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
50 #include <linux/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/sched/autogroup.h>
89 #include <linux/sched/mm.h>
90 #include <linux/sched/coredump.h>
91 #include <linux/sched/debug.h>
92 #include <linux/sched/stat.h>
93 #include <linux/flex_array.h>
94 #include <linux/posix-timers.h>
95 #ifdef CONFIG_HARDWALL
96 #include <asm/hardwall.h>
98 #include <trace/events/oom.h>
103 * Implementing inode permission operations in /proc is almost
104 * certainly an error. Permission checks need to happen during
105 * each system call not at open time. The reason is that most of
106 * what we wish to check for permissions in /proc varies at runtime.
108 * The classic example of a problem is opening file descriptors
109 * in /proc for a task before it execs a suid executable.
113 static u8 nlink_tgid
;
119 const struct inode_operations
*iop
;
120 const struct file_operations
*fop
;
124 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .len = sizeof(NAME) - 1, \
133 #define DIR(NAME, MODE, iops, fops) \
134 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
135 #define LNK(NAME, get_link) \
136 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
137 &proc_pid_link_inode_operations, NULL, \
138 { .proc_get_link = get_link } )
139 #define REG(NAME, MODE, fops) \
140 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
141 #define ONE(NAME, MODE, show) \
142 NOD(NAME, (S_IFREG|(MODE)), \
143 NULL, &proc_single_file_operations, \
144 { .proc_show = show } )
147 * Count the number of hardlinks for the pid_entry table, excluding the .
150 static unsigned int __init
pid_entry_nlink(const struct pid_entry
*entries
,
157 for (i
= 0; i
< n
; ++i
) {
158 if (S_ISDIR(entries
[i
].mode
))
165 static int get_task_root(struct task_struct
*task
, struct path
*root
)
167 int result
= -ENOENT
;
171 get_fs_root(task
->fs
, root
);
178 static int proc_cwd_link(struct dentry
*dentry
, struct path
*path
)
180 struct task_struct
*task
= get_proc_task(d_inode(dentry
));
181 int result
= -ENOENT
;
186 get_fs_pwd(task
->fs
, path
);
190 put_task_struct(task
);
195 static int proc_root_link(struct dentry
*dentry
, struct path
*path
)
197 struct task_struct
*task
= get_proc_task(d_inode(dentry
));
198 int result
= -ENOENT
;
201 result
= get_task_root(task
, path
);
202 put_task_struct(task
);
207 static ssize_t
proc_pid_cmdline_read(struct file
*file
, char __user
*buf
,
208 size_t _count
, loff_t
*pos
)
210 struct task_struct
*tsk
;
211 struct mm_struct
*mm
;
213 unsigned long count
= _count
;
214 unsigned long arg_start
, arg_end
, env_start
, env_end
;
215 unsigned long len1
, len2
, len
;
222 tsk
= get_proc_task(file_inode(file
));
225 mm
= get_task_mm(tsk
);
226 put_task_struct(tsk
);
229 /* Check if process spawned far enough to have cmdline. */
235 page
= (char *)__get_free_page(GFP_TEMPORARY
);
241 down_read(&mm
->mmap_sem
);
242 arg_start
= mm
->arg_start
;
243 arg_end
= mm
->arg_end
;
244 env_start
= mm
->env_start
;
245 env_end
= mm
->env_end
;
246 up_read(&mm
->mmap_sem
);
248 BUG_ON(arg_start
> arg_end
);
249 BUG_ON(env_start
> env_end
);
251 len1
= arg_end
- arg_start
;
252 len2
= env_end
- env_start
;
260 * Inherently racy -- command line shares address space
261 * with code and data.
263 rv
= access_remote_vm(mm
, arg_end
- 1, &c
, 1, 0);
270 /* Command line (set of strings) occupies whole ARGV. */
274 p
= arg_start
+ *pos
;
276 while (count
> 0 && len
> 0) {
280 _count
= min3(count
, len
, PAGE_SIZE
);
281 nr_read
= access_remote_vm(mm
, p
, page
, _count
, 0);
287 if (copy_to_user(buf
, page
, nr_read
)) {
300 * Command line (1 string) occupies ARGV and
307 { .p
= arg_start
, .len
= len1
},
308 { .p
= env_start
, .len
= len2
},
314 while (i
< 2 && pos1
>= cmdline
[i
].len
) {
315 pos1
-= cmdline
[i
].len
;
319 p
= cmdline
[i
].p
+ pos1
;
320 len
= cmdline
[i
].len
- pos1
;
321 while (count
> 0 && len
> 0) {
322 unsigned int _count
, l
;
326 _count
= min3(count
, len
, PAGE_SIZE
);
327 nr_read
= access_remote_vm(mm
, p
, page
, _count
, 0);
334 * Command line can be shorter than whole ARGV
335 * even if last "marker" byte says it is not.
338 l
= strnlen(page
, nr_read
);
344 if (copy_to_user(buf
, page
, nr_read
)) {
359 /* Only first chunk can be read partially. */
366 free_page((unsigned long)page
);
374 static const struct file_operations proc_pid_cmdline_ops
= {
375 .read
= proc_pid_cmdline_read
,
376 .llseek
= generic_file_llseek
,
379 #ifdef CONFIG_KALLSYMS
381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
382 * Returns the resolved symbol. If that fails, simply return the address.
384 static int proc_pid_wchan(struct seq_file
*m
, struct pid_namespace
*ns
,
385 struct pid
*pid
, struct task_struct
*task
)
388 char symname
[KSYM_NAME_LEN
];
390 wchan
= get_wchan(task
);
392 if (wchan
&& ptrace_may_access(task
, PTRACE_MODE_READ_FSCREDS
)
393 && !lookup_symbol_name(wchan
, symname
))
394 seq_printf(m
, "%s", symname
);
400 #endif /* CONFIG_KALLSYMS */
402 static int lock_trace(struct task_struct
*task
)
404 int err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
407 if (!ptrace_may_access(task
, PTRACE_MODE_ATTACH_FSCREDS
)) {
408 mutex_unlock(&task
->signal
->cred_guard_mutex
);
414 static void unlock_trace(struct task_struct
*task
)
416 mutex_unlock(&task
->signal
->cred_guard_mutex
);
419 #ifdef CONFIG_STACKTRACE
421 #define MAX_STACK_TRACE_DEPTH 64
423 static int proc_pid_stack(struct seq_file
*m
, struct pid_namespace
*ns
,
424 struct pid
*pid
, struct task_struct
*task
)
426 struct stack_trace trace
;
427 unsigned long *entries
;
431 entries
= kmalloc(MAX_STACK_TRACE_DEPTH
* sizeof(*entries
), GFP_KERNEL
);
435 trace
.nr_entries
= 0;
436 trace
.max_entries
= MAX_STACK_TRACE_DEPTH
;
437 trace
.entries
= entries
;
440 err
= lock_trace(task
);
442 save_stack_trace_tsk(task
, &trace
);
444 for (i
= 0; i
< trace
.nr_entries
; i
++) {
445 seq_printf(m
, "[<%pK>] %pB\n",
446 (void *)entries
[i
], (void *)entries
[i
]);
456 #ifdef CONFIG_SCHED_INFO
458 * Provides /proc/PID/schedstat
460 static int proc_pid_schedstat(struct seq_file
*m
, struct pid_namespace
*ns
,
461 struct pid
*pid
, struct task_struct
*task
)
463 if (unlikely(!sched_info_on()))
464 seq_printf(m
, "0 0 0\n");
466 seq_printf(m
, "%llu %llu %lu\n",
467 (unsigned long long)task
->se
.sum_exec_runtime
,
468 (unsigned long long)task
->sched_info
.run_delay
,
469 task
->sched_info
.pcount
);
475 #ifdef CONFIG_LATENCYTOP
476 static int lstats_show_proc(struct seq_file
*m
, void *v
)
479 struct inode
*inode
= m
->private;
480 struct task_struct
*task
= get_proc_task(inode
);
484 seq_puts(m
, "Latency Top version : v0.1\n");
485 for (i
= 0; i
< 32; i
++) {
486 struct latency_record
*lr
= &task
->latency_record
[i
];
487 if (lr
->backtrace
[0]) {
489 seq_printf(m
, "%i %li %li",
490 lr
->count
, lr
->time
, lr
->max
);
491 for (q
= 0; q
< LT_BACKTRACEDEPTH
; q
++) {
492 unsigned long bt
= lr
->backtrace
[q
];
497 seq_printf(m
, " %ps", (void *)bt
);
503 put_task_struct(task
);
507 static int lstats_open(struct inode
*inode
, struct file
*file
)
509 return single_open(file
, lstats_show_proc
, inode
);
512 static ssize_t
lstats_write(struct file
*file
, const char __user
*buf
,
513 size_t count
, loff_t
*offs
)
515 struct task_struct
*task
= get_proc_task(file_inode(file
));
519 clear_all_latency_tracing(task
);
520 put_task_struct(task
);
525 static const struct file_operations proc_lstats_operations
= {
528 .write
= lstats_write
,
530 .release
= single_release
,
535 static int proc_oom_score(struct seq_file
*m
, struct pid_namespace
*ns
,
536 struct pid
*pid
, struct task_struct
*task
)
538 unsigned long totalpages
= totalram_pages
+ total_swap_pages
;
539 unsigned long points
= 0;
541 points
= oom_badness(task
, NULL
, NULL
, totalpages
) *
543 seq_printf(m
, "%lu\n", points
);
553 static const struct limit_names lnames
[RLIM_NLIMITS
] = {
554 [RLIMIT_CPU
] = {"Max cpu time", "seconds"},
555 [RLIMIT_FSIZE
] = {"Max file size", "bytes"},
556 [RLIMIT_DATA
] = {"Max data size", "bytes"},
557 [RLIMIT_STACK
] = {"Max stack size", "bytes"},
558 [RLIMIT_CORE
] = {"Max core file size", "bytes"},
559 [RLIMIT_RSS
] = {"Max resident set", "bytes"},
560 [RLIMIT_NPROC
] = {"Max processes", "processes"},
561 [RLIMIT_NOFILE
] = {"Max open files", "files"},
562 [RLIMIT_MEMLOCK
] = {"Max locked memory", "bytes"},
563 [RLIMIT_AS
] = {"Max address space", "bytes"},
564 [RLIMIT_LOCKS
] = {"Max file locks", "locks"},
565 [RLIMIT_SIGPENDING
] = {"Max pending signals", "signals"},
566 [RLIMIT_MSGQUEUE
] = {"Max msgqueue size", "bytes"},
567 [RLIMIT_NICE
] = {"Max nice priority", NULL
},
568 [RLIMIT_RTPRIO
] = {"Max realtime priority", NULL
},
569 [RLIMIT_RTTIME
] = {"Max realtime timeout", "us"},
572 /* Display limits for a process */
573 static int proc_pid_limits(struct seq_file
*m
, struct pid_namespace
*ns
,
574 struct pid
*pid
, struct task_struct
*task
)
579 struct rlimit rlim
[RLIM_NLIMITS
];
581 if (!lock_task_sighand(task
, &flags
))
583 memcpy(rlim
, task
->signal
->rlim
, sizeof(struct rlimit
) * RLIM_NLIMITS
);
584 unlock_task_sighand(task
, &flags
);
587 * print the file header
589 seq_printf(m
, "%-25s %-20s %-20s %-10s\n",
590 "Limit", "Soft Limit", "Hard Limit", "Units");
592 for (i
= 0; i
< RLIM_NLIMITS
; i
++) {
593 if (rlim
[i
].rlim_cur
== RLIM_INFINITY
)
594 seq_printf(m
, "%-25s %-20s ",
595 lnames
[i
].name
, "unlimited");
597 seq_printf(m
, "%-25s %-20lu ",
598 lnames
[i
].name
, rlim
[i
].rlim_cur
);
600 if (rlim
[i
].rlim_max
== RLIM_INFINITY
)
601 seq_printf(m
, "%-20s ", "unlimited");
603 seq_printf(m
, "%-20lu ", rlim
[i
].rlim_max
);
606 seq_printf(m
, "%-10s\n", lnames
[i
].unit
);
614 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
615 static int proc_pid_syscall(struct seq_file
*m
, struct pid_namespace
*ns
,
616 struct pid
*pid
, struct task_struct
*task
)
619 unsigned long args
[6], sp
, pc
;
622 res
= lock_trace(task
);
626 if (task_current_syscall(task
, &nr
, args
, 6, &sp
, &pc
))
627 seq_puts(m
, "running\n");
629 seq_printf(m
, "%ld 0x%lx 0x%lx\n", nr
, sp
, pc
);
632 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
634 args
[0], args
[1], args
[2], args
[3], args
[4], args
[5],
640 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
642 /************************************************************************/
643 /* Here the fs part begins */
644 /************************************************************************/
646 /* permission checks */
647 static int proc_fd_access_allowed(struct inode
*inode
)
649 struct task_struct
*task
;
651 /* Allow access to a task's file descriptors if it is us or we
652 * may use ptrace attach to the process and find out that
655 task
= get_proc_task(inode
);
657 allowed
= ptrace_may_access(task
, PTRACE_MODE_READ_FSCREDS
);
658 put_task_struct(task
);
663 int proc_setattr(struct dentry
*dentry
, struct iattr
*attr
)
666 struct inode
*inode
= d_inode(dentry
);
668 if (attr
->ia_valid
& ATTR_MODE
)
671 error
= setattr_prepare(dentry
, attr
);
675 setattr_copy(inode
, attr
);
676 mark_inode_dirty(inode
);
681 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
682 * or euid/egid (for hide_pid_min=2)?
684 static bool has_pid_permissions(struct pid_namespace
*pid
,
685 struct task_struct
*task
,
688 if (pid
->hide_pid
< hide_pid_min
)
690 if (in_group_p(pid
->pid_gid
))
692 return ptrace_may_access(task
, PTRACE_MODE_READ_FSCREDS
);
696 static int proc_pid_permission(struct inode
*inode
, int mask
)
698 struct pid_namespace
*pid
= inode
->i_sb
->s_fs_info
;
699 struct task_struct
*task
;
702 task
= get_proc_task(inode
);
705 has_perms
= has_pid_permissions(pid
, task
, HIDEPID_NO_ACCESS
);
706 put_task_struct(task
);
709 if (pid
->hide_pid
== HIDEPID_INVISIBLE
) {
711 * Let's make getdents(), stat(), and open()
712 * consistent with each other. If a process
713 * may not stat() a file, it shouldn't be seen
721 return generic_permission(inode
, mask
);
726 static const struct inode_operations proc_def_inode_operations
= {
727 .setattr
= proc_setattr
,
730 static int proc_single_show(struct seq_file
*m
, void *v
)
732 struct inode
*inode
= m
->private;
733 struct pid_namespace
*ns
;
735 struct task_struct
*task
;
738 ns
= inode
->i_sb
->s_fs_info
;
739 pid
= proc_pid(inode
);
740 task
= get_pid_task(pid
, PIDTYPE_PID
);
744 ret
= PROC_I(inode
)->op
.proc_show(m
, ns
, pid
, task
);
746 put_task_struct(task
);
750 static int proc_single_open(struct inode
*inode
, struct file
*filp
)
752 return single_open(filp
, proc_single_show
, inode
);
755 static const struct file_operations proc_single_file_operations
= {
756 .open
= proc_single_open
,
759 .release
= single_release
,
763 struct mm_struct
*proc_mem_open(struct inode
*inode
, unsigned int mode
)
765 struct task_struct
*task
= get_proc_task(inode
);
766 struct mm_struct
*mm
= ERR_PTR(-ESRCH
);
769 mm
= mm_access(task
, mode
| PTRACE_MODE_FSCREDS
);
770 put_task_struct(task
);
772 if (!IS_ERR_OR_NULL(mm
)) {
773 /* ensure this mm_struct can't be freed */
775 /* but do not pin its memory */
783 static int __mem_open(struct inode
*inode
, struct file
*file
, unsigned int mode
)
785 struct mm_struct
*mm
= proc_mem_open(inode
, mode
);
790 file
->private_data
= mm
;
794 static int mem_open(struct inode
*inode
, struct file
*file
)
796 int ret
= __mem_open(inode
, file
, PTRACE_MODE_ATTACH
);
798 /* OK to pass negative loff_t, we can catch out-of-range */
799 file
->f_mode
|= FMODE_UNSIGNED_OFFSET
;
804 static ssize_t
mem_rw(struct file
*file
, char __user
*buf
,
805 size_t count
, loff_t
*ppos
, int write
)
807 struct mm_struct
*mm
= file
->private_data
;
808 unsigned long addr
= *ppos
;
816 page
= (char *)__get_free_page(GFP_TEMPORARY
);
821 if (!mmget_not_zero(mm
))
824 /* Maybe we should limit FOLL_FORCE to actual ptrace users? */
830 int this_len
= min_t(int, count
, PAGE_SIZE
);
832 if (write
&& copy_from_user(page
, buf
, this_len
)) {
837 this_len
= access_remote_vm(mm
, addr
, page
, this_len
, flags
);
844 if (!write
&& copy_to_user(buf
, page
, this_len
)) {
858 free_page((unsigned long) page
);
862 static ssize_t
mem_read(struct file
*file
, char __user
*buf
,
863 size_t count
, loff_t
*ppos
)
865 return mem_rw(file
, buf
, count
, ppos
, 0);
868 static ssize_t
mem_write(struct file
*file
, const char __user
*buf
,
869 size_t count
, loff_t
*ppos
)
871 return mem_rw(file
, (char __user
*)buf
, count
, ppos
, 1);
874 loff_t
mem_lseek(struct file
*file
, loff_t offset
, int orig
)
878 file
->f_pos
= offset
;
881 file
->f_pos
+= offset
;
886 force_successful_syscall_return();
890 static int mem_release(struct inode
*inode
, struct file
*file
)
892 struct mm_struct
*mm
= file
->private_data
;
898 static const struct file_operations proc_mem_operations
= {
903 .release
= mem_release
,
906 static int environ_open(struct inode
*inode
, struct file
*file
)
908 return __mem_open(inode
, file
, PTRACE_MODE_READ
);
911 static ssize_t
environ_read(struct file
*file
, char __user
*buf
,
912 size_t count
, loff_t
*ppos
)
915 unsigned long src
= *ppos
;
917 struct mm_struct
*mm
= file
->private_data
;
918 unsigned long env_start
, env_end
;
920 /* Ensure the process spawned far enough to have an environment. */
921 if (!mm
|| !mm
->env_end
)
924 page
= (char *)__get_free_page(GFP_TEMPORARY
);
929 if (!mmget_not_zero(mm
))
932 down_read(&mm
->mmap_sem
);
933 env_start
= mm
->env_start
;
934 env_end
= mm
->env_end
;
935 up_read(&mm
->mmap_sem
);
938 size_t this_len
, max_len
;
941 if (src
>= (env_end
- env_start
))
944 this_len
= env_end
- (env_start
+ src
);
946 max_len
= min_t(size_t, PAGE_SIZE
, count
);
947 this_len
= min(max_len
, this_len
);
949 retval
= access_remote_vm(mm
, (env_start
+ src
), page
, this_len
, 0);
956 if (copy_to_user(buf
, page
, retval
)) {
970 free_page((unsigned long) page
);
974 static const struct file_operations proc_environ_operations
= {
975 .open
= environ_open
,
976 .read
= environ_read
,
977 .llseek
= generic_file_llseek
,
978 .release
= mem_release
,
981 static int auxv_open(struct inode
*inode
, struct file
*file
)
983 return __mem_open(inode
, file
, PTRACE_MODE_READ_FSCREDS
);
986 static ssize_t
auxv_read(struct file
*file
, char __user
*buf
,
987 size_t count
, loff_t
*ppos
)
989 struct mm_struct
*mm
= file
->private_data
;
990 unsigned int nwords
= 0;
996 } while (mm
->saved_auxv
[nwords
- 2] != 0); /* AT_NULL */
997 return simple_read_from_buffer(buf
, count
, ppos
, mm
->saved_auxv
,
998 nwords
* sizeof(mm
->saved_auxv
[0]));
1001 static const struct file_operations proc_auxv_operations
= {
1004 .llseek
= generic_file_llseek
,
1005 .release
= mem_release
,
1008 static ssize_t
oom_adj_read(struct file
*file
, char __user
*buf
, size_t count
,
1011 struct task_struct
*task
= get_proc_task(file_inode(file
));
1012 char buffer
[PROC_NUMBUF
];
1013 int oom_adj
= OOM_ADJUST_MIN
;
1018 if (task
->signal
->oom_score_adj
== OOM_SCORE_ADJ_MAX
)
1019 oom_adj
= OOM_ADJUST_MAX
;
1021 oom_adj
= (task
->signal
->oom_score_adj
* -OOM_DISABLE
) /
1023 put_task_struct(task
);
1024 len
= snprintf(buffer
, sizeof(buffer
), "%d\n", oom_adj
);
1025 return simple_read_from_buffer(buf
, count
, ppos
, buffer
, len
);
1028 static int __set_oom_adj(struct file
*file
, int oom_adj
, bool legacy
)
1030 static DEFINE_MUTEX(oom_adj_mutex
);
1031 struct mm_struct
*mm
= NULL
;
1032 struct task_struct
*task
;
1035 task
= get_proc_task(file_inode(file
));
1039 mutex_lock(&oom_adj_mutex
);
1041 if (oom_adj
< task
->signal
->oom_score_adj
&&
1042 !capable(CAP_SYS_RESOURCE
)) {
1047 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1048 * /proc/pid/oom_score_adj instead.
1050 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1051 current
->comm
, task_pid_nr(current
), task_pid_nr(task
),
1054 if ((short)oom_adj
< task
->signal
->oom_score_adj_min
&&
1055 !capable(CAP_SYS_RESOURCE
)) {
1062 * Make sure we will check other processes sharing the mm if this is
1063 * not vfrok which wants its own oom_score_adj.
1064 * pin the mm so it doesn't go away and get reused after task_unlock
1066 if (!task
->vfork_done
) {
1067 struct task_struct
*p
= find_lock_task_mm(task
);
1070 if (atomic_read(&p
->mm
->mm_users
) > 1) {
1078 task
->signal
->oom_score_adj
= oom_adj
;
1079 if (!legacy
&& has_capability_noaudit(current
, CAP_SYS_RESOURCE
))
1080 task
->signal
->oom_score_adj_min
= (short)oom_adj
;
1081 trace_oom_score_adj_update(task
);
1084 struct task_struct
*p
;
1087 for_each_process(p
) {
1088 if (same_thread_group(task
, p
))
1091 /* do not touch kernel threads or the global init */
1092 if (p
->flags
& PF_KTHREAD
|| is_global_init(p
))
1096 if (!p
->vfork_done
&& process_shares_mm(p
, mm
)) {
1097 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1098 task_pid_nr(p
), p
->comm
,
1099 p
->signal
->oom_score_adj
, oom_adj
,
1100 task_pid_nr(task
), task
->comm
);
1101 p
->signal
->oom_score_adj
= oom_adj
;
1102 if (!legacy
&& has_capability_noaudit(current
, CAP_SYS_RESOURCE
))
1103 p
->signal
->oom_score_adj_min
= (short)oom_adj
;
1111 mutex_unlock(&oom_adj_mutex
);
1112 put_task_struct(task
);
1117 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1118 * kernels. The effective policy is defined by oom_score_adj, which has a
1119 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1120 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1121 * Processes that become oom disabled via oom_adj will still be oom disabled
1122 * with this implementation.
1124 * oom_adj cannot be removed since existing userspace binaries use it.
1126 static ssize_t
oom_adj_write(struct file
*file
, const char __user
*buf
,
1127 size_t count
, loff_t
*ppos
)
1129 char buffer
[PROC_NUMBUF
];
1133 memset(buffer
, 0, sizeof(buffer
));
1134 if (count
> sizeof(buffer
) - 1)
1135 count
= sizeof(buffer
) - 1;
1136 if (copy_from_user(buffer
, buf
, count
)) {
1141 err
= kstrtoint(strstrip(buffer
), 0, &oom_adj
);
1144 if ((oom_adj
< OOM_ADJUST_MIN
|| oom_adj
> OOM_ADJUST_MAX
) &&
1145 oom_adj
!= OOM_DISABLE
) {
1151 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1152 * value is always attainable.
1154 if (oom_adj
== OOM_ADJUST_MAX
)
1155 oom_adj
= OOM_SCORE_ADJ_MAX
;
1157 oom_adj
= (oom_adj
* OOM_SCORE_ADJ_MAX
) / -OOM_DISABLE
;
1159 err
= __set_oom_adj(file
, oom_adj
, true);
1161 return err
< 0 ? err
: count
;
1164 static const struct file_operations proc_oom_adj_operations
= {
1165 .read
= oom_adj_read
,
1166 .write
= oom_adj_write
,
1167 .llseek
= generic_file_llseek
,
1170 static ssize_t
oom_score_adj_read(struct file
*file
, char __user
*buf
,
1171 size_t count
, loff_t
*ppos
)
1173 struct task_struct
*task
= get_proc_task(file_inode(file
));
1174 char buffer
[PROC_NUMBUF
];
1175 short oom_score_adj
= OOM_SCORE_ADJ_MIN
;
1180 oom_score_adj
= task
->signal
->oom_score_adj
;
1181 put_task_struct(task
);
1182 len
= snprintf(buffer
, sizeof(buffer
), "%hd\n", oom_score_adj
);
1183 return simple_read_from_buffer(buf
, count
, ppos
, buffer
, len
);
1186 static ssize_t
oom_score_adj_write(struct file
*file
, const char __user
*buf
,
1187 size_t count
, loff_t
*ppos
)
1189 char buffer
[PROC_NUMBUF
];
1193 memset(buffer
, 0, sizeof(buffer
));
1194 if (count
> sizeof(buffer
) - 1)
1195 count
= sizeof(buffer
) - 1;
1196 if (copy_from_user(buffer
, buf
, count
)) {
1201 err
= kstrtoint(strstrip(buffer
), 0, &oom_score_adj
);
1204 if (oom_score_adj
< OOM_SCORE_ADJ_MIN
||
1205 oom_score_adj
> OOM_SCORE_ADJ_MAX
) {
1210 err
= __set_oom_adj(file
, oom_score_adj
, false);
1212 return err
< 0 ? err
: count
;
1215 static const struct file_operations proc_oom_score_adj_operations
= {
1216 .read
= oom_score_adj_read
,
1217 .write
= oom_score_adj_write
,
1218 .llseek
= default_llseek
,
1221 #ifdef CONFIG_AUDITSYSCALL
1222 #define TMPBUFLEN 11
1223 static ssize_t
proc_loginuid_read(struct file
* file
, char __user
* buf
,
1224 size_t count
, loff_t
*ppos
)
1226 struct inode
* inode
= file_inode(file
);
1227 struct task_struct
*task
= get_proc_task(inode
);
1229 char tmpbuf
[TMPBUFLEN
];
1233 length
= scnprintf(tmpbuf
, TMPBUFLEN
, "%u",
1234 from_kuid(file
->f_cred
->user_ns
,
1235 audit_get_loginuid(task
)));
1236 put_task_struct(task
);
1237 return simple_read_from_buffer(buf
, count
, ppos
, tmpbuf
, length
);
1240 static ssize_t
proc_loginuid_write(struct file
* file
, const char __user
* buf
,
1241 size_t count
, loff_t
*ppos
)
1243 struct inode
* inode
= file_inode(file
);
1249 if (current
!= pid_task(proc_pid(inode
), PIDTYPE_PID
)) {
1256 /* No partial writes. */
1260 rv
= kstrtou32_from_user(buf
, count
, 10, &loginuid
);
1264 /* is userspace tring to explicitly UNSET the loginuid? */
1265 if (loginuid
== AUDIT_UID_UNSET
) {
1266 kloginuid
= INVALID_UID
;
1268 kloginuid
= make_kuid(file
->f_cred
->user_ns
, loginuid
);
1269 if (!uid_valid(kloginuid
))
1273 rv
= audit_set_loginuid(kloginuid
);
1279 static const struct file_operations proc_loginuid_operations
= {
1280 .read
= proc_loginuid_read
,
1281 .write
= proc_loginuid_write
,
1282 .llseek
= generic_file_llseek
,
1285 static ssize_t
proc_sessionid_read(struct file
* file
, char __user
* buf
,
1286 size_t count
, loff_t
*ppos
)
1288 struct inode
* inode
= file_inode(file
);
1289 struct task_struct
*task
= get_proc_task(inode
);
1291 char tmpbuf
[TMPBUFLEN
];
1295 length
= scnprintf(tmpbuf
, TMPBUFLEN
, "%u",
1296 audit_get_sessionid(task
));
1297 put_task_struct(task
);
1298 return simple_read_from_buffer(buf
, count
, ppos
, tmpbuf
, length
);
1301 static const struct file_operations proc_sessionid_operations
= {
1302 .read
= proc_sessionid_read
,
1303 .llseek
= generic_file_llseek
,
1307 #ifdef CONFIG_FAULT_INJECTION
1308 static ssize_t
proc_fault_inject_read(struct file
* file
, char __user
* buf
,
1309 size_t count
, loff_t
*ppos
)
1311 struct task_struct
*task
= get_proc_task(file_inode(file
));
1312 char buffer
[PROC_NUMBUF
];
1318 make_it_fail
= task
->make_it_fail
;
1319 put_task_struct(task
);
1321 len
= snprintf(buffer
, sizeof(buffer
), "%i\n", make_it_fail
);
1323 return simple_read_from_buffer(buf
, count
, ppos
, buffer
, len
);
1326 static ssize_t
proc_fault_inject_write(struct file
* file
,
1327 const char __user
* buf
, size_t count
, loff_t
*ppos
)
1329 struct task_struct
*task
;
1330 char buffer
[PROC_NUMBUF
];
1334 if (!capable(CAP_SYS_RESOURCE
))
1336 memset(buffer
, 0, sizeof(buffer
));
1337 if (count
> sizeof(buffer
) - 1)
1338 count
= sizeof(buffer
) - 1;
1339 if (copy_from_user(buffer
, buf
, count
))
1341 rv
= kstrtoint(strstrip(buffer
), 0, &make_it_fail
);
1344 if (make_it_fail
< 0 || make_it_fail
> 1)
1347 task
= get_proc_task(file_inode(file
));
1350 task
->make_it_fail
= make_it_fail
;
1351 put_task_struct(task
);
1356 static const struct file_operations proc_fault_inject_operations
= {
1357 .read
= proc_fault_inject_read
,
1358 .write
= proc_fault_inject_write
,
1359 .llseek
= generic_file_llseek
,
1364 #ifdef CONFIG_SCHED_DEBUG
1366 * Print out various scheduling related per-task fields:
1368 static int sched_show(struct seq_file
*m
, void *v
)
1370 struct inode
*inode
= m
->private;
1371 struct task_struct
*p
;
1373 p
= get_proc_task(inode
);
1376 proc_sched_show_task(p
, m
);
1384 sched_write(struct file
*file
, const char __user
*buf
,
1385 size_t count
, loff_t
*offset
)
1387 struct inode
*inode
= file_inode(file
);
1388 struct task_struct
*p
;
1390 p
= get_proc_task(inode
);
1393 proc_sched_set_task(p
);
1400 static int sched_open(struct inode
*inode
, struct file
*filp
)
1402 return single_open(filp
, sched_show
, inode
);
1405 static const struct file_operations proc_pid_sched_operations
= {
1408 .write
= sched_write
,
1409 .llseek
= seq_lseek
,
1410 .release
= single_release
,
1415 #ifdef CONFIG_SCHED_AUTOGROUP
1417 * Print out autogroup related information:
1419 static int sched_autogroup_show(struct seq_file
*m
, void *v
)
1421 struct inode
*inode
= m
->private;
1422 struct task_struct
*p
;
1424 p
= get_proc_task(inode
);
1427 proc_sched_autogroup_show_task(p
, m
);
1435 sched_autogroup_write(struct file
*file
, const char __user
*buf
,
1436 size_t count
, loff_t
*offset
)
1438 struct inode
*inode
= file_inode(file
);
1439 struct task_struct
*p
;
1440 char buffer
[PROC_NUMBUF
];
1444 memset(buffer
, 0, sizeof(buffer
));
1445 if (count
> sizeof(buffer
) - 1)
1446 count
= sizeof(buffer
) - 1;
1447 if (copy_from_user(buffer
, buf
, count
))
1450 err
= kstrtoint(strstrip(buffer
), 0, &nice
);
1454 p
= get_proc_task(inode
);
1458 err
= proc_sched_autogroup_set_nice(p
, nice
);
1467 static int sched_autogroup_open(struct inode
*inode
, struct file
*filp
)
1471 ret
= single_open(filp
, sched_autogroup_show
, NULL
);
1473 struct seq_file
*m
= filp
->private_data
;
1480 static const struct file_operations proc_pid_sched_autogroup_operations
= {
1481 .open
= sched_autogroup_open
,
1483 .write
= sched_autogroup_write
,
1484 .llseek
= seq_lseek
,
1485 .release
= single_release
,
1488 #endif /* CONFIG_SCHED_AUTOGROUP */
1490 static ssize_t
comm_write(struct file
*file
, const char __user
*buf
,
1491 size_t count
, loff_t
*offset
)
1493 struct inode
*inode
= file_inode(file
);
1494 struct task_struct
*p
;
1495 char buffer
[TASK_COMM_LEN
];
1496 const size_t maxlen
= sizeof(buffer
) - 1;
1498 memset(buffer
, 0, sizeof(buffer
));
1499 if (copy_from_user(buffer
, buf
, count
> maxlen
? maxlen
: count
))
1502 p
= get_proc_task(inode
);
1506 if (same_thread_group(current
, p
))
1507 set_task_comm(p
, buffer
);
1516 static int comm_show(struct seq_file
*m
, void *v
)
1518 struct inode
*inode
= m
->private;
1519 struct task_struct
*p
;
1521 p
= get_proc_task(inode
);
1526 seq_printf(m
, "%s\n", p
->comm
);
1534 static int comm_open(struct inode
*inode
, struct file
*filp
)
1536 return single_open(filp
, comm_show
, inode
);
1539 static const struct file_operations proc_pid_set_comm_operations
= {
1542 .write
= comm_write
,
1543 .llseek
= seq_lseek
,
1544 .release
= single_release
,
1547 static int proc_exe_link(struct dentry
*dentry
, struct path
*exe_path
)
1549 struct task_struct
*task
;
1550 struct file
*exe_file
;
1552 task
= get_proc_task(d_inode(dentry
));
1555 exe_file
= get_task_exe_file(task
);
1556 put_task_struct(task
);
1558 *exe_path
= exe_file
->f_path
;
1559 path_get(&exe_file
->f_path
);
1566 static const char *proc_pid_get_link(struct dentry
*dentry
,
1567 struct inode
*inode
,
1568 struct delayed_call
*done
)
1571 int error
= -EACCES
;
1574 return ERR_PTR(-ECHILD
);
1576 /* Are we allowed to snoop on the tasks file descriptors? */
1577 if (!proc_fd_access_allowed(inode
))
1580 error
= PROC_I(inode
)->op
.proc_get_link(dentry
, &path
);
1584 nd_jump_link(&path
);
1587 return ERR_PTR(error
);
1590 static int do_proc_readlink(struct path
*path
, char __user
*buffer
, int buflen
)
1592 char *tmp
= (char*)__get_free_page(GFP_TEMPORARY
);
1599 pathname
= d_path(path
, tmp
, PAGE_SIZE
);
1600 len
= PTR_ERR(pathname
);
1601 if (IS_ERR(pathname
))
1603 len
= tmp
+ PAGE_SIZE
- 1 - pathname
;
1607 if (copy_to_user(buffer
, pathname
, len
))
1610 free_page((unsigned long)tmp
);
1614 static int proc_pid_readlink(struct dentry
* dentry
, char __user
* buffer
, int buflen
)
1616 int error
= -EACCES
;
1617 struct inode
*inode
= d_inode(dentry
);
1620 /* Are we allowed to snoop on the tasks file descriptors? */
1621 if (!proc_fd_access_allowed(inode
))
1624 error
= PROC_I(inode
)->op
.proc_get_link(dentry
, &path
);
1628 error
= do_proc_readlink(&path
, buffer
, buflen
);
1634 const struct inode_operations proc_pid_link_inode_operations
= {
1635 .readlink
= proc_pid_readlink
,
1636 .get_link
= proc_pid_get_link
,
1637 .setattr
= proc_setattr
,
1641 /* building an inode */
1643 void task_dump_owner(struct task_struct
*task
, mode_t mode
,
1644 kuid_t
*ruid
, kgid_t
*rgid
)
1646 /* Depending on the state of dumpable compute who should own a
1647 * proc file for a task.
1649 const struct cred
*cred
;
1653 /* Default to the tasks effective ownership */
1655 cred
= __task_cred(task
);
1661 * Before the /proc/pid/status file was created the only way to read
1662 * the effective uid of a /process was to stat /proc/pid. Reading
1663 * /proc/pid/status is slow enough that procps and other packages
1664 * kept stating /proc/pid. To keep the rules in /proc simple I have
1665 * made this apply to all per process world readable and executable
1668 if (mode
!= (S_IFDIR
|S_IRUGO
|S_IXUGO
)) {
1669 struct mm_struct
*mm
;
1672 /* Make non-dumpable tasks owned by some root */
1674 if (get_dumpable(mm
) != SUID_DUMP_USER
) {
1675 struct user_namespace
*user_ns
= mm
->user_ns
;
1677 uid
= make_kuid(user_ns
, 0);
1678 if (!uid_valid(uid
))
1679 uid
= GLOBAL_ROOT_UID
;
1681 gid
= make_kgid(user_ns
, 0);
1682 if (!gid_valid(gid
))
1683 gid
= GLOBAL_ROOT_GID
;
1686 uid
= GLOBAL_ROOT_UID
;
1687 gid
= GLOBAL_ROOT_GID
;
1695 struct inode
*proc_pid_make_inode(struct super_block
* sb
,
1696 struct task_struct
*task
, umode_t mode
)
1698 struct inode
* inode
;
1699 struct proc_inode
*ei
;
1701 /* We need a new inode */
1703 inode
= new_inode(sb
);
1709 inode
->i_mode
= mode
;
1710 inode
->i_ino
= get_next_ino();
1711 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= current_time(inode
);
1712 inode
->i_op
= &proc_def_inode_operations
;
1715 * grab the reference to task.
1717 ei
->pid
= get_task_pid(task
, PIDTYPE_PID
);
1721 task_dump_owner(task
, 0, &inode
->i_uid
, &inode
->i_gid
);
1722 security_task_to_inode(task
, inode
);
1732 int pid_getattr(const struct path
*path
, struct kstat
*stat
,
1733 u32 request_mask
, unsigned int query_flags
)
1735 struct inode
*inode
= d_inode(path
->dentry
);
1736 struct task_struct
*task
;
1737 struct pid_namespace
*pid
= path
->dentry
->d_sb
->s_fs_info
;
1739 generic_fillattr(inode
, stat
);
1742 stat
->uid
= GLOBAL_ROOT_UID
;
1743 stat
->gid
= GLOBAL_ROOT_GID
;
1744 task
= pid_task(proc_pid(inode
), PIDTYPE_PID
);
1746 if (!has_pid_permissions(pid
, task
, HIDEPID_INVISIBLE
)) {
1749 * This doesn't prevent learning whether PID exists,
1750 * it only makes getattr() consistent with readdir().
1754 task_dump_owner(task
, inode
->i_mode
, &stat
->uid
, &stat
->gid
);
1763 * Exceptional case: normally we are not allowed to unhash a busy
1764 * directory. In this case, however, we can do it - no aliasing problems
1765 * due to the way we treat inodes.
1767 * Rewrite the inode's ownerships here because the owning task may have
1768 * performed a setuid(), etc.
1771 int pid_revalidate(struct dentry
*dentry
, unsigned int flags
)
1773 struct inode
*inode
;
1774 struct task_struct
*task
;
1776 if (flags
& LOOKUP_RCU
)
1779 inode
= d_inode(dentry
);
1780 task
= get_proc_task(inode
);
1783 task_dump_owner(task
, inode
->i_mode
, &inode
->i_uid
, &inode
->i_gid
);
1785 inode
->i_mode
&= ~(S_ISUID
| S_ISGID
);
1786 security_task_to_inode(task
, inode
);
1787 put_task_struct(task
);
1793 static inline bool proc_inode_is_dead(struct inode
*inode
)
1795 return !proc_pid(inode
)->tasks
[PIDTYPE_PID
].first
;
1798 int pid_delete_dentry(const struct dentry
*dentry
)
1800 /* Is the task we represent dead?
1801 * If so, then don't put the dentry on the lru list,
1802 * kill it immediately.
1804 return proc_inode_is_dead(d_inode(dentry
));
1807 const struct dentry_operations pid_dentry_operations
=
1809 .d_revalidate
= pid_revalidate
,
1810 .d_delete
= pid_delete_dentry
,
1816 * Fill a directory entry.
1818 * If possible create the dcache entry and derive our inode number and
1819 * file type from dcache entry.
1821 * Since all of the proc inode numbers are dynamically generated, the inode
1822 * numbers do not exist until the inode is cache. This means creating the
1823 * the dcache entry in readdir is necessary to keep the inode numbers
1824 * reported by readdir in sync with the inode numbers reported
1827 bool proc_fill_cache(struct file
*file
, struct dir_context
*ctx
,
1828 const char *name
, int len
,
1829 instantiate_t instantiate
, struct task_struct
*task
, const void *ptr
)
1831 struct dentry
*child
, *dir
= file
->f_path
.dentry
;
1832 struct qstr qname
= QSTR_INIT(name
, len
);
1833 struct inode
*inode
;
1837 child
= d_hash_and_lookup(dir
, &qname
);
1839 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1840 child
= d_alloc_parallel(dir
, &qname
, &wq
);
1842 goto end_instantiate
;
1843 if (d_in_lookup(child
)) {
1844 int err
= instantiate(d_inode(dir
), child
, task
, ptr
);
1845 d_lookup_done(child
);
1848 goto end_instantiate
;
1852 inode
= d_inode(child
);
1854 type
= inode
->i_mode
>> 12;
1856 return dir_emit(ctx
, name
, len
, ino
, type
);
1859 return dir_emit(ctx
, name
, len
, 1, DT_UNKNOWN
);
1863 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1864 * which represent vma start and end addresses.
1866 static int dname_to_vma_addr(struct dentry
*dentry
,
1867 unsigned long *start
, unsigned long *end
)
1869 if (sscanf(dentry
->d_name
.name
, "%lx-%lx", start
, end
) != 2)
1875 static int map_files_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
1877 unsigned long vm_start
, vm_end
;
1878 bool exact_vma_exists
= false;
1879 struct mm_struct
*mm
= NULL
;
1880 struct task_struct
*task
;
1881 struct inode
*inode
;
1884 if (flags
& LOOKUP_RCU
)
1887 inode
= d_inode(dentry
);
1888 task
= get_proc_task(inode
);
1892 mm
= mm_access(task
, PTRACE_MODE_READ_FSCREDS
);
1893 if (IS_ERR_OR_NULL(mm
))
1896 if (!dname_to_vma_addr(dentry
, &vm_start
, &vm_end
)) {
1897 down_read(&mm
->mmap_sem
);
1898 exact_vma_exists
= !!find_exact_vma(mm
, vm_start
, vm_end
);
1899 up_read(&mm
->mmap_sem
);
1904 if (exact_vma_exists
) {
1905 task_dump_owner(task
, 0, &inode
->i_uid
, &inode
->i_gid
);
1907 security_task_to_inode(task
, inode
);
1912 put_task_struct(task
);
1918 static const struct dentry_operations tid_map_files_dentry_operations
= {
1919 .d_revalidate
= map_files_d_revalidate
,
1920 .d_delete
= pid_delete_dentry
,
1923 static int map_files_get_link(struct dentry
*dentry
, struct path
*path
)
1925 unsigned long vm_start
, vm_end
;
1926 struct vm_area_struct
*vma
;
1927 struct task_struct
*task
;
1928 struct mm_struct
*mm
;
1932 task
= get_proc_task(d_inode(dentry
));
1936 mm
= get_task_mm(task
);
1937 put_task_struct(task
);
1941 rc
= dname_to_vma_addr(dentry
, &vm_start
, &vm_end
);
1946 down_read(&mm
->mmap_sem
);
1947 vma
= find_exact_vma(mm
, vm_start
, vm_end
);
1948 if (vma
&& vma
->vm_file
) {
1949 *path
= vma
->vm_file
->f_path
;
1953 up_read(&mm
->mmap_sem
);
1961 struct map_files_info
{
1964 unsigned char name
[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1968 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1969 * symlinks may be used to bypass permissions on ancestor directories in the
1970 * path to the file in question.
1973 proc_map_files_get_link(struct dentry
*dentry
,
1974 struct inode
*inode
,
1975 struct delayed_call
*done
)
1977 if (!capable(CAP_SYS_ADMIN
))
1978 return ERR_PTR(-EPERM
);
1980 return proc_pid_get_link(dentry
, inode
, done
);
1984 * Identical to proc_pid_link_inode_operations except for get_link()
1986 static const struct inode_operations proc_map_files_link_inode_operations
= {
1987 .readlink
= proc_pid_readlink
,
1988 .get_link
= proc_map_files_get_link
,
1989 .setattr
= proc_setattr
,
1993 proc_map_files_instantiate(struct inode
*dir
, struct dentry
*dentry
,
1994 struct task_struct
*task
, const void *ptr
)
1996 fmode_t mode
= (fmode_t
)(unsigned long)ptr
;
1997 struct proc_inode
*ei
;
1998 struct inode
*inode
;
2000 inode
= proc_pid_make_inode(dir
->i_sb
, task
, S_IFLNK
|
2001 ((mode
& FMODE_READ
) ? S_IRUSR
: 0) |
2002 ((mode
& FMODE_WRITE
) ? S_IWUSR
: 0));
2007 ei
->op
.proc_get_link
= map_files_get_link
;
2009 inode
->i_op
= &proc_map_files_link_inode_operations
;
2012 d_set_d_op(dentry
, &tid_map_files_dentry_operations
);
2013 d_add(dentry
, inode
);
2018 static struct dentry
*proc_map_files_lookup(struct inode
*dir
,
2019 struct dentry
*dentry
, unsigned int flags
)
2021 unsigned long vm_start
, vm_end
;
2022 struct vm_area_struct
*vma
;
2023 struct task_struct
*task
;
2025 struct mm_struct
*mm
;
2028 task
= get_proc_task(dir
);
2033 if (!ptrace_may_access(task
, PTRACE_MODE_READ_FSCREDS
))
2037 if (dname_to_vma_addr(dentry
, &vm_start
, &vm_end
))
2040 mm
= get_task_mm(task
);
2044 down_read(&mm
->mmap_sem
);
2045 vma
= find_exact_vma(mm
, vm_start
, vm_end
);
2050 result
= proc_map_files_instantiate(dir
, dentry
, task
,
2051 (void *)(unsigned long)vma
->vm_file
->f_mode
);
2054 up_read(&mm
->mmap_sem
);
2057 put_task_struct(task
);
2059 return ERR_PTR(result
);
2062 static const struct inode_operations proc_map_files_inode_operations
= {
2063 .lookup
= proc_map_files_lookup
,
2064 .permission
= proc_fd_permission
,
2065 .setattr
= proc_setattr
,
2069 proc_map_files_readdir(struct file
*file
, struct dir_context
*ctx
)
2071 struct vm_area_struct
*vma
;
2072 struct task_struct
*task
;
2073 struct mm_struct
*mm
;
2074 unsigned long nr_files
, pos
, i
;
2075 struct flex_array
*fa
= NULL
;
2076 struct map_files_info info
;
2077 struct map_files_info
*p
;
2081 task
= get_proc_task(file_inode(file
));
2086 if (!ptrace_may_access(task
, PTRACE_MODE_READ_FSCREDS
))
2090 if (!dir_emit_dots(file
, ctx
))
2093 mm
= get_task_mm(task
);
2096 down_read(&mm
->mmap_sem
);
2101 * We need two passes here:
2103 * 1) Collect vmas of mapped files with mmap_sem taken
2104 * 2) Release mmap_sem and instantiate entries
2106 * otherwise we get lockdep complained, since filldir()
2107 * routine might require mmap_sem taken in might_fault().
2110 for (vma
= mm
->mmap
, pos
= 2; vma
; vma
= vma
->vm_next
) {
2111 if (vma
->vm_file
&& ++pos
> ctx
->pos
)
2116 fa
= flex_array_alloc(sizeof(info
), nr_files
,
2118 if (!fa
|| flex_array_prealloc(fa
, 0, nr_files
,
2122 flex_array_free(fa
);
2123 up_read(&mm
->mmap_sem
);
2127 for (i
= 0, vma
= mm
->mmap
, pos
= 2; vma
;
2128 vma
= vma
->vm_next
) {
2131 if (++pos
<= ctx
->pos
)
2134 info
.mode
= vma
->vm_file
->f_mode
;
2135 info
.len
= snprintf(info
.name
,
2136 sizeof(info
.name
), "%lx-%lx",
2137 vma
->vm_start
, vma
->vm_end
);
2138 if (flex_array_put(fa
, i
++, &info
, GFP_KERNEL
))
2142 up_read(&mm
->mmap_sem
);
2144 for (i
= 0; i
< nr_files
; i
++) {
2145 p
= flex_array_get(fa
, i
);
2146 if (!proc_fill_cache(file
, ctx
,
2148 proc_map_files_instantiate
,
2150 (void *)(unsigned long)p
->mode
))
2155 flex_array_free(fa
);
2159 put_task_struct(task
);
2164 static const struct file_operations proc_map_files_operations
= {
2165 .read
= generic_read_dir
,
2166 .iterate_shared
= proc_map_files_readdir
,
2167 .llseek
= generic_file_llseek
,
2170 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2171 struct timers_private
{
2173 struct task_struct
*task
;
2174 struct sighand_struct
*sighand
;
2175 struct pid_namespace
*ns
;
2176 unsigned long flags
;
2179 static void *timers_start(struct seq_file
*m
, loff_t
*pos
)
2181 struct timers_private
*tp
= m
->private;
2183 tp
->task
= get_pid_task(tp
->pid
, PIDTYPE_PID
);
2185 return ERR_PTR(-ESRCH
);
2187 tp
->sighand
= lock_task_sighand(tp
->task
, &tp
->flags
);
2189 return ERR_PTR(-ESRCH
);
2191 return seq_list_start(&tp
->task
->signal
->posix_timers
, *pos
);
2194 static void *timers_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
2196 struct timers_private
*tp
= m
->private;
2197 return seq_list_next(v
, &tp
->task
->signal
->posix_timers
, pos
);
2200 static void timers_stop(struct seq_file
*m
, void *v
)
2202 struct timers_private
*tp
= m
->private;
2205 unlock_task_sighand(tp
->task
, &tp
->flags
);
2210 put_task_struct(tp
->task
);
2215 static int show_timer(struct seq_file
*m
, void *v
)
2217 struct k_itimer
*timer
;
2218 struct timers_private
*tp
= m
->private;
2220 static const char * const nstr
[] = {
2221 [SIGEV_SIGNAL
] = "signal",
2222 [SIGEV_NONE
] = "none",
2223 [SIGEV_THREAD
] = "thread",
2226 timer
= list_entry((struct list_head
*)v
, struct k_itimer
, list
);
2227 notify
= timer
->it_sigev_notify
;
2229 seq_printf(m
, "ID: %d\n", timer
->it_id
);
2230 seq_printf(m
, "signal: %d/%p\n",
2231 timer
->sigq
->info
.si_signo
,
2232 timer
->sigq
->info
.si_value
.sival_ptr
);
2233 seq_printf(m
, "notify: %s/%s.%d\n",
2234 nstr
[notify
& ~SIGEV_THREAD_ID
],
2235 (notify
& SIGEV_THREAD_ID
) ? "tid" : "pid",
2236 pid_nr_ns(timer
->it_pid
, tp
->ns
));
2237 seq_printf(m
, "ClockID: %d\n", timer
->it_clock
);
2242 static const struct seq_operations proc_timers_seq_ops
= {
2243 .start
= timers_start
,
2244 .next
= timers_next
,
2245 .stop
= timers_stop
,
2249 static int proc_timers_open(struct inode
*inode
, struct file
*file
)
2251 struct timers_private
*tp
;
2253 tp
= __seq_open_private(file
, &proc_timers_seq_ops
,
2254 sizeof(struct timers_private
));
2258 tp
->pid
= proc_pid(inode
);
2259 tp
->ns
= inode
->i_sb
->s_fs_info
;
2263 static const struct file_operations proc_timers_operations
= {
2264 .open
= proc_timers_open
,
2266 .llseek
= seq_lseek
,
2267 .release
= seq_release_private
,
2271 static ssize_t
timerslack_ns_write(struct file
*file
, const char __user
*buf
,
2272 size_t count
, loff_t
*offset
)
2274 struct inode
*inode
= file_inode(file
);
2275 struct task_struct
*p
;
2279 err
= kstrtoull_from_user(buf
, count
, 10, &slack_ns
);
2283 p
= get_proc_task(inode
);
2288 if (!capable(CAP_SYS_NICE
)) {
2293 err
= security_task_setscheduler(p
);
2302 p
->timer_slack_ns
= p
->default_timer_slack_ns
;
2304 p
->timer_slack_ns
= slack_ns
;
2313 static int timerslack_ns_show(struct seq_file
*m
, void *v
)
2315 struct inode
*inode
= m
->private;
2316 struct task_struct
*p
;
2319 p
= get_proc_task(inode
);
2325 if (!capable(CAP_SYS_NICE
)) {
2329 err
= security_task_getscheduler(p
);
2335 seq_printf(m
, "%llu\n", p
->timer_slack_ns
);
2344 static int timerslack_ns_open(struct inode
*inode
, struct file
*filp
)
2346 return single_open(filp
, timerslack_ns_show
, inode
);
2349 static const struct file_operations proc_pid_set_timerslack_ns_operations
= {
2350 .open
= timerslack_ns_open
,
2352 .write
= timerslack_ns_write
,
2353 .llseek
= seq_lseek
,
2354 .release
= single_release
,
2357 static int proc_pident_instantiate(struct inode
*dir
,
2358 struct dentry
*dentry
, struct task_struct
*task
, const void *ptr
)
2360 const struct pid_entry
*p
= ptr
;
2361 struct inode
*inode
;
2362 struct proc_inode
*ei
;
2364 inode
= proc_pid_make_inode(dir
->i_sb
, task
, p
->mode
);
2369 if (S_ISDIR(inode
->i_mode
))
2370 set_nlink(inode
, 2); /* Use getattr to fix if necessary */
2372 inode
->i_op
= p
->iop
;
2374 inode
->i_fop
= p
->fop
;
2376 d_set_d_op(dentry
, &pid_dentry_operations
);
2377 d_add(dentry
, inode
);
2378 /* Close the race of the process dying before we return the dentry */
2379 if (pid_revalidate(dentry
, 0))
2385 static struct dentry
*proc_pident_lookup(struct inode
*dir
,
2386 struct dentry
*dentry
,
2387 const struct pid_entry
*ents
,
2391 struct task_struct
*task
= get_proc_task(dir
);
2392 const struct pid_entry
*p
, *last
;
2400 * Yes, it does not scale. And it should not. Don't add
2401 * new entries into /proc/<tgid>/ without very good reasons.
2403 last
= &ents
[nents
];
2404 for (p
= ents
; p
< last
; p
++) {
2405 if (p
->len
!= dentry
->d_name
.len
)
2407 if (!memcmp(dentry
->d_name
.name
, p
->name
, p
->len
))
2413 error
= proc_pident_instantiate(dir
, dentry
, task
, p
);
2415 put_task_struct(task
);
2417 return ERR_PTR(error
);
2420 static int proc_pident_readdir(struct file
*file
, struct dir_context
*ctx
,
2421 const struct pid_entry
*ents
, unsigned int nents
)
2423 struct task_struct
*task
= get_proc_task(file_inode(file
));
2424 const struct pid_entry
*p
;
2429 if (!dir_emit_dots(file
, ctx
))
2432 if (ctx
->pos
>= nents
+ 2)
2435 for (p
= ents
+ (ctx
->pos
- 2); p
< ents
+ nents
; p
++) {
2436 if (!proc_fill_cache(file
, ctx
, p
->name
, p
->len
,
2437 proc_pident_instantiate
, task
, p
))
2442 put_task_struct(task
);
2446 #ifdef CONFIG_SECURITY
2447 static ssize_t
proc_pid_attr_read(struct file
* file
, char __user
* buf
,
2448 size_t count
, loff_t
*ppos
)
2450 struct inode
* inode
= file_inode(file
);
2453 struct task_struct
*task
= get_proc_task(inode
);
2458 length
= security_getprocattr(task
,
2459 (char*)file
->f_path
.dentry
->d_name
.name
,
2461 put_task_struct(task
);
2463 length
= simple_read_from_buffer(buf
, count
, ppos
, p
, length
);
2468 static ssize_t
proc_pid_attr_write(struct file
* file
, const char __user
* buf
,
2469 size_t count
, loff_t
*ppos
)
2471 struct inode
* inode
= file_inode(file
);
2474 struct task_struct
*task
= get_proc_task(inode
);
2480 /* A task may only write its own attributes. */
2482 if (current
!= task
)
2485 if (count
> PAGE_SIZE
)
2488 /* No partial writes. */
2493 page
= memdup_user(buf
, count
);
2495 length
= PTR_ERR(page
);
2499 /* Guard against adverse ptrace interaction */
2500 length
= mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
);
2504 length
= security_setprocattr(file
->f_path
.dentry
->d_name
.name
,
2506 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
2510 put_task_struct(task
);
2515 static const struct file_operations proc_pid_attr_operations
= {
2516 .read
= proc_pid_attr_read
,
2517 .write
= proc_pid_attr_write
,
2518 .llseek
= generic_file_llseek
,
2521 static const struct pid_entry attr_dir_stuff
[] = {
2522 REG("current", S_IRUGO
|S_IWUGO
, proc_pid_attr_operations
),
2523 REG("prev", S_IRUGO
, proc_pid_attr_operations
),
2524 REG("exec", S_IRUGO
|S_IWUGO
, proc_pid_attr_operations
),
2525 REG("fscreate", S_IRUGO
|S_IWUGO
, proc_pid_attr_operations
),
2526 REG("keycreate", S_IRUGO
|S_IWUGO
, proc_pid_attr_operations
),
2527 REG("sockcreate", S_IRUGO
|S_IWUGO
, proc_pid_attr_operations
),
2530 static int proc_attr_dir_readdir(struct file
*file
, struct dir_context
*ctx
)
2532 return proc_pident_readdir(file
, ctx
,
2533 attr_dir_stuff
, ARRAY_SIZE(attr_dir_stuff
));
2536 static const struct file_operations proc_attr_dir_operations
= {
2537 .read
= generic_read_dir
,
2538 .iterate_shared
= proc_attr_dir_readdir
,
2539 .llseek
= generic_file_llseek
,
2542 static struct dentry
*proc_attr_dir_lookup(struct inode
*dir
,
2543 struct dentry
*dentry
, unsigned int flags
)
2545 return proc_pident_lookup(dir
, dentry
,
2546 attr_dir_stuff
, ARRAY_SIZE(attr_dir_stuff
));
2549 static const struct inode_operations proc_attr_dir_inode_operations
= {
2550 .lookup
= proc_attr_dir_lookup
,
2551 .getattr
= pid_getattr
,
2552 .setattr
= proc_setattr
,
2557 #ifdef CONFIG_ELF_CORE
2558 static ssize_t
proc_coredump_filter_read(struct file
*file
, char __user
*buf
,
2559 size_t count
, loff_t
*ppos
)
2561 struct task_struct
*task
= get_proc_task(file_inode(file
));
2562 struct mm_struct
*mm
;
2563 char buffer
[PROC_NUMBUF
];
2571 mm
= get_task_mm(task
);
2573 len
= snprintf(buffer
, sizeof(buffer
), "%08lx\n",
2574 ((mm
->flags
& MMF_DUMP_FILTER_MASK
) >>
2575 MMF_DUMP_FILTER_SHIFT
));
2577 ret
= simple_read_from_buffer(buf
, count
, ppos
, buffer
, len
);
2580 put_task_struct(task
);
2585 static ssize_t
proc_coredump_filter_write(struct file
*file
,
2586 const char __user
*buf
,
2590 struct task_struct
*task
;
2591 struct mm_struct
*mm
;
2597 ret
= kstrtouint_from_user(buf
, count
, 0, &val
);
2602 task
= get_proc_task(file_inode(file
));
2606 mm
= get_task_mm(task
);
2611 for (i
= 0, mask
= 1; i
< MMF_DUMP_FILTER_BITS
; i
++, mask
<<= 1) {
2613 set_bit(i
+ MMF_DUMP_FILTER_SHIFT
, &mm
->flags
);
2615 clear_bit(i
+ MMF_DUMP_FILTER_SHIFT
, &mm
->flags
);
2620 put_task_struct(task
);
2627 static const struct file_operations proc_coredump_filter_operations
= {
2628 .read
= proc_coredump_filter_read
,
2629 .write
= proc_coredump_filter_write
,
2630 .llseek
= generic_file_llseek
,
2634 #ifdef CONFIG_TASK_IO_ACCOUNTING
2635 static int do_io_accounting(struct task_struct
*task
, struct seq_file
*m
, int whole
)
2637 struct task_io_accounting acct
= task
->ioac
;
2638 unsigned long flags
;
2641 result
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
2645 if (!ptrace_may_access(task
, PTRACE_MODE_READ_FSCREDS
)) {
2650 if (whole
&& lock_task_sighand(task
, &flags
)) {
2651 struct task_struct
*t
= task
;
2653 task_io_accounting_add(&acct
, &task
->signal
->ioac
);
2654 while_each_thread(task
, t
)
2655 task_io_accounting_add(&acct
, &t
->ioac
);
2657 unlock_task_sighand(task
, &flags
);
2664 "read_bytes: %llu\n"
2665 "write_bytes: %llu\n"
2666 "cancelled_write_bytes: %llu\n",
2667 (unsigned long long)acct
.rchar
,
2668 (unsigned long long)acct
.wchar
,
2669 (unsigned long long)acct
.syscr
,
2670 (unsigned long long)acct
.syscw
,
2671 (unsigned long long)acct
.read_bytes
,
2672 (unsigned long long)acct
.write_bytes
,
2673 (unsigned long long)acct
.cancelled_write_bytes
);
2677 mutex_unlock(&task
->signal
->cred_guard_mutex
);
2681 static int proc_tid_io_accounting(struct seq_file
*m
, struct pid_namespace
*ns
,
2682 struct pid
*pid
, struct task_struct
*task
)
2684 return do_io_accounting(task
, m
, 0);
2687 static int proc_tgid_io_accounting(struct seq_file
*m
, struct pid_namespace
*ns
,
2688 struct pid
*pid
, struct task_struct
*task
)
2690 return do_io_accounting(task
, m
, 1);
2692 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2694 #ifdef CONFIG_USER_NS
2695 static int proc_id_map_open(struct inode
*inode
, struct file
*file
,
2696 const struct seq_operations
*seq_ops
)
2698 struct user_namespace
*ns
= NULL
;
2699 struct task_struct
*task
;
2700 struct seq_file
*seq
;
2703 task
= get_proc_task(inode
);
2706 ns
= get_user_ns(task_cred_xxx(task
, user_ns
));
2708 put_task_struct(task
);
2713 ret
= seq_open(file
, seq_ops
);
2717 seq
= file
->private_data
;
2727 static int proc_id_map_release(struct inode
*inode
, struct file
*file
)
2729 struct seq_file
*seq
= file
->private_data
;
2730 struct user_namespace
*ns
= seq
->private;
2732 return seq_release(inode
, file
);
2735 static int proc_uid_map_open(struct inode
*inode
, struct file
*file
)
2737 return proc_id_map_open(inode
, file
, &proc_uid_seq_operations
);
2740 static int proc_gid_map_open(struct inode
*inode
, struct file
*file
)
2742 return proc_id_map_open(inode
, file
, &proc_gid_seq_operations
);
2745 static int proc_projid_map_open(struct inode
*inode
, struct file
*file
)
2747 return proc_id_map_open(inode
, file
, &proc_projid_seq_operations
);
2750 static const struct file_operations proc_uid_map_operations
= {
2751 .open
= proc_uid_map_open
,
2752 .write
= proc_uid_map_write
,
2754 .llseek
= seq_lseek
,
2755 .release
= proc_id_map_release
,
2758 static const struct file_operations proc_gid_map_operations
= {
2759 .open
= proc_gid_map_open
,
2760 .write
= proc_gid_map_write
,
2762 .llseek
= seq_lseek
,
2763 .release
= proc_id_map_release
,
2766 static const struct file_operations proc_projid_map_operations
= {
2767 .open
= proc_projid_map_open
,
2768 .write
= proc_projid_map_write
,
2770 .llseek
= seq_lseek
,
2771 .release
= proc_id_map_release
,
2774 static int proc_setgroups_open(struct inode
*inode
, struct file
*file
)
2776 struct user_namespace
*ns
= NULL
;
2777 struct task_struct
*task
;
2781 task
= get_proc_task(inode
);
2784 ns
= get_user_ns(task_cred_xxx(task
, user_ns
));
2786 put_task_struct(task
);
2791 if (file
->f_mode
& FMODE_WRITE
) {
2793 if (!ns_capable(ns
, CAP_SYS_ADMIN
))
2797 ret
= single_open(file
, &proc_setgroups_show
, ns
);
2808 static int proc_setgroups_release(struct inode
*inode
, struct file
*file
)
2810 struct seq_file
*seq
= file
->private_data
;
2811 struct user_namespace
*ns
= seq
->private;
2812 int ret
= single_release(inode
, file
);
2817 static const struct file_operations proc_setgroups_operations
= {
2818 .open
= proc_setgroups_open
,
2819 .write
= proc_setgroups_write
,
2821 .llseek
= seq_lseek
,
2822 .release
= proc_setgroups_release
,
2824 #endif /* CONFIG_USER_NS */
2826 static int proc_pid_personality(struct seq_file
*m
, struct pid_namespace
*ns
,
2827 struct pid
*pid
, struct task_struct
*task
)
2829 int err
= lock_trace(task
);
2831 seq_printf(m
, "%08x\n", task
->personality
);
2840 static const struct file_operations proc_task_operations
;
2841 static const struct inode_operations proc_task_inode_operations
;
2843 static const struct pid_entry tgid_base_stuff
[] = {
2844 DIR("task", S_IRUGO
|S_IXUGO
, proc_task_inode_operations
, proc_task_operations
),
2845 DIR("fd", S_IRUSR
|S_IXUSR
, proc_fd_inode_operations
, proc_fd_operations
),
2846 DIR("map_files", S_IRUSR
|S_IXUSR
, proc_map_files_inode_operations
, proc_map_files_operations
),
2847 DIR("fdinfo", S_IRUSR
|S_IXUSR
, proc_fdinfo_inode_operations
, proc_fdinfo_operations
),
2848 DIR("ns", S_IRUSR
|S_IXUGO
, proc_ns_dir_inode_operations
, proc_ns_dir_operations
),
2850 DIR("net", S_IRUGO
|S_IXUGO
, proc_net_inode_operations
, proc_net_operations
),
2852 REG("environ", S_IRUSR
, proc_environ_operations
),
2853 REG("auxv", S_IRUSR
, proc_auxv_operations
),
2854 ONE("status", S_IRUGO
, proc_pid_status
),
2855 ONE("personality", S_IRUSR
, proc_pid_personality
),
2856 ONE("limits", S_IRUGO
, proc_pid_limits
),
2857 #ifdef CONFIG_SCHED_DEBUG
2858 REG("sched", S_IRUGO
|S_IWUSR
, proc_pid_sched_operations
),
2860 #ifdef CONFIG_SCHED_AUTOGROUP
2861 REG("autogroup", S_IRUGO
|S_IWUSR
, proc_pid_sched_autogroup_operations
),
2863 REG("comm", S_IRUGO
|S_IWUSR
, proc_pid_set_comm_operations
),
2864 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2865 ONE("syscall", S_IRUSR
, proc_pid_syscall
),
2867 REG("cmdline", S_IRUGO
, proc_pid_cmdline_ops
),
2868 ONE("stat", S_IRUGO
, proc_tgid_stat
),
2869 ONE("statm", S_IRUGO
, proc_pid_statm
),
2870 REG("maps", S_IRUGO
, proc_pid_maps_operations
),
2872 REG("numa_maps", S_IRUGO
, proc_pid_numa_maps_operations
),
2874 REG("mem", S_IRUSR
|S_IWUSR
, proc_mem_operations
),
2875 LNK("cwd", proc_cwd_link
),
2876 LNK("root", proc_root_link
),
2877 LNK("exe", proc_exe_link
),
2878 REG("mounts", S_IRUGO
, proc_mounts_operations
),
2879 REG("mountinfo", S_IRUGO
, proc_mountinfo_operations
),
2880 REG("mountstats", S_IRUSR
, proc_mountstats_operations
),
2881 #ifdef CONFIG_PROC_PAGE_MONITOR
2882 REG("clear_refs", S_IWUSR
, proc_clear_refs_operations
),
2883 REG("smaps", S_IRUGO
, proc_pid_smaps_operations
),
2884 REG("pagemap", S_IRUSR
, proc_pagemap_operations
),
2886 #ifdef CONFIG_SECURITY
2887 DIR("attr", S_IRUGO
|S_IXUGO
, proc_attr_dir_inode_operations
, proc_attr_dir_operations
),
2889 #ifdef CONFIG_KALLSYMS
2890 ONE("wchan", S_IRUGO
, proc_pid_wchan
),
2892 #ifdef CONFIG_STACKTRACE
2893 ONE("stack", S_IRUSR
, proc_pid_stack
),
2895 #ifdef CONFIG_SCHED_INFO
2896 ONE("schedstat", S_IRUGO
, proc_pid_schedstat
),
2898 #ifdef CONFIG_LATENCYTOP
2899 REG("latency", S_IRUGO
, proc_lstats_operations
),
2901 #ifdef CONFIG_PROC_PID_CPUSET
2902 ONE("cpuset", S_IRUGO
, proc_cpuset_show
),
2904 #ifdef CONFIG_CGROUPS
2905 ONE("cgroup", S_IRUGO
, proc_cgroup_show
),
2907 ONE("oom_score", S_IRUGO
, proc_oom_score
),
2908 REG("oom_adj", S_IRUGO
|S_IWUSR
, proc_oom_adj_operations
),
2909 REG("oom_score_adj", S_IRUGO
|S_IWUSR
, proc_oom_score_adj_operations
),
2910 #ifdef CONFIG_AUDITSYSCALL
2911 REG("loginuid", S_IWUSR
|S_IRUGO
, proc_loginuid_operations
),
2912 REG("sessionid", S_IRUGO
, proc_sessionid_operations
),
2914 #ifdef CONFIG_FAULT_INJECTION
2915 REG("make-it-fail", S_IRUGO
|S_IWUSR
, proc_fault_inject_operations
),
2917 #ifdef CONFIG_ELF_CORE
2918 REG("coredump_filter", S_IRUGO
|S_IWUSR
, proc_coredump_filter_operations
),
2920 #ifdef CONFIG_TASK_IO_ACCOUNTING
2921 ONE("io", S_IRUSR
, proc_tgid_io_accounting
),
2923 #ifdef CONFIG_HARDWALL
2924 ONE("hardwall", S_IRUGO
, proc_pid_hardwall
),
2926 #ifdef CONFIG_USER_NS
2927 REG("uid_map", S_IRUGO
|S_IWUSR
, proc_uid_map_operations
),
2928 REG("gid_map", S_IRUGO
|S_IWUSR
, proc_gid_map_operations
),
2929 REG("projid_map", S_IRUGO
|S_IWUSR
, proc_projid_map_operations
),
2930 REG("setgroups", S_IRUGO
|S_IWUSR
, proc_setgroups_operations
),
2932 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2933 REG("timers", S_IRUGO
, proc_timers_operations
),
2935 REG("timerslack_ns", S_IRUGO
|S_IWUGO
, proc_pid_set_timerslack_ns_operations
),
2938 static int proc_tgid_base_readdir(struct file
*file
, struct dir_context
*ctx
)
2940 return proc_pident_readdir(file
, ctx
,
2941 tgid_base_stuff
, ARRAY_SIZE(tgid_base_stuff
));
2944 static const struct file_operations proc_tgid_base_operations
= {
2945 .read
= generic_read_dir
,
2946 .iterate_shared
= proc_tgid_base_readdir
,
2947 .llseek
= generic_file_llseek
,
2950 static struct dentry
*proc_tgid_base_lookup(struct inode
*dir
, struct dentry
*dentry
, unsigned int flags
)
2952 return proc_pident_lookup(dir
, dentry
,
2953 tgid_base_stuff
, ARRAY_SIZE(tgid_base_stuff
));
2956 static const struct inode_operations proc_tgid_base_inode_operations
= {
2957 .lookup
= proc_tgid_base_lookup
,
2958 .getattr
= pid_getattr
,
2959 .setattr
= proc_setattr
,
2960 .permission
= proc_pid_permission
,
2963 static void proc_flush_task_mnt(struct vfsmount
*mnt
, pid_t pid
, pid_t tgid
)
2965 struct dentry
*dentry
, *leader
, *dir
;
2966 char buf
[PROC_NUMBUF
];
2970 name
.len
= snprintf(buf
, sizeof(buf
), "%d", pid
);
2971 /* no ->d_hash() rejects on procfs */
2972 dentry
= d_hash_and_lookup(mnt
->mnt_root
, &name
);
2974 d_invalidate(dentry
);
2982 name
.len
= snprintf(buf
, sizeof(buf
), "%d", tgid
);
2983 leader
= d_hash_and_lookup(mnt
->mnt_root
, &name
);
2988 name
.len
= strlen(name
.name
);
2989 dir
= d_hash_and_lookup(leader
, &name
);
2991 goto out_put_leader
;
2994 name
.len
= snprintf(buf
, sizeof(buf
), "%d", pid
);
2995 dentry
= d_hash_and_lookup(dir
, &name
);
2997 d_invalidate(dentry
);
3009 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3010 * @task: task that should be flushed.
3012 * When flushing dentries from proc, one needs to flush them from global
3013 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3014 * in. This call is supposed to do all of this job.
3016 * Looks in the dcache for
3018 * /proc/@tgid/task/@pid
3019 * if either directory is present flushes it and all of it'ts children
3022 * It is safe and reasonable to cache /proc entries for a task until
3023 * that task exits. After that they just clog up the dcache with
3024 * useless entries, possibly causing useful dcache entries to be
3025 * flushed instead. This routine is proved to flush those useless
3026 * dcache entries at process exit time.
3028 * NOTE: This routine is just an optimization so it does not guarantee
3029 * that no dcache entries will exist at process exit time it
3030 * just makes it very unlikely that any will persist.
3033 void proc_flush_task(struct task_struct
*task
)
3036 struct pid
*pid
, *tgid
;
3039 pid
= task_pid(task
);
3040 tgid
= task_tgid(task
);
3042 for (i
= 0; i
<= pid
->level
; i
++) {
3043 upid
= &pid
->numbers
[i
];
3044 proc_flush_task_mnt(upid
->ns
->proc_mnt
, upid
->nr
,
3045 tgid
->numbers
[i
].nr
);
3049 static int proc_pid_instantiate(struct inode
*dir
,
3050 struct dentry
* dentry
,
3051 struct task_struct
*task
, const void *ptr
)
3053 struct inode
*inode
;
3055 inode
= proc_pid_make_inode(dir
->i_sb
, task
, S_IFDIR
| S_IRUGO
| S_IXUGO
);
3059 inode
->i_op
= &proc_tgid_base_inode_operations
;
3060 inode
->i_fop
= &proc_tgid_base_operations
;
3061 inode
->i_flags
|=S_IMMUTABLE
;
3063 set_nlink(inode
, nlink_tgid
);
3065 d_set_d_op(dentry
, &pid_dentry_operations
);
3067 d_add(dentry
, inode
);
3068 /* Close the race of the process dying before we return the dentry */
3069 if (pid_revalidate(dentry
, 0))
3075 struct dentry
*proc_pid_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
3077 int result
= -ENOENT
;
3078 struct task_struct
*task
;
3080 struct pid_namespace
*ns
;
3082 tgid
= name_to_int(&dentry
->d_name
);
3086 ns
= dentry
->d_sb
->s_fs_info
;
3088 task
= find_task_by_pid_ns(tgid
, ns
);
3090 get_task_struct(task
);
3095 result
= proc_pid_instantiate(dir
, dentry
, task
, NULL
);
3096 put_task_struct(task
);
3098 return ERR_PTR(result
);
3102 * Find the first task with tgid >= tgid
3107 struct task_struct
*task
;
3109 static struct tgid_iter
next_tgid(struct pid_namespace
*ns
, struct tgid_iter iter
)
3114 put_task_struct(iter
.task
);
3118 pid
= find_ge_pid(iter
.tgid
, ns
);
3120 iter
.tgid
= pid_nr_ns(pid
, ns
);
3121 iter
.task
= pid_task(pid
, PIDTYPE_PID
);
3122 /* What we to know is if the pid we have find is the
3123 * pid of a thread_group_leader. Testing for task
3124 * being a thread_group_leader is the obvious thing
3125 * todo but there is a window when it fails, due to
3126 * the pid transfer logic in de_thread.
3128 * So we perform the straight forward test of seeing
3129 * if the pid we have found is the pid of a thread
3130 * group leader, and don't worry if the task we have
3131 * found doesn't happen to be a thread group leader.
3132 * As we don't care in the case of readdir.
3134 if (!iter
.task
|| !has_group_leader_pid(iter
.task
)) {
3138 get_task_struct(iter
.task
);
3144 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3146 /* for the /proc/ directory itself, after non-process stuff has been done */
3147 int proc_pid_readdir(struct file
*file
, struct dir_context
*ctx
)
3149 struct tgid_iter iter
;
3150 struct pid_namespace
*ns
= file_inode(file
)->i_sb
->s_fs_info
;
3151 loff_t pos
= ctx
->pos
;
3153 if (pos
>= PID_MAX_LIMIT
+ TGID_OFFSET
)
3156 if (pos
== TGID_OFFSET
- 2) {
3157 struct inode
*inode
= d_inode(ns
->proc_self
);
3158 if (!dir_emit(ctx
, "self", 4, inode
->i_ino
, DT_LNK
))
3160 ctx
->pos
= pos
= pos
+ 1;
3162 if (pos
== TGID_OFFSET
- 1) {
3163 struct inode
*inode
= d_inode(ns
->proc_thread_self
);
3164 if (!dir_emit(ctx
, "thread-self", 11, inode
->i_ino
, DT_LNK
))
3166 ctx
->pos
= pos
= pos
+ 1;
3168 iter
.tgid
= pos
- TGID_OFFSET
;
3170 for (iter
= next_tgid(ns
, iter
);
3172 iter
.tgid
+= 1, iter
= next_tgid(ns
, iter
)) {
3173 char name
[PROC_NUMBUF
];
3177 if (!has_pid_permissions(ns
, iter
.task
, HIDEPID_INVISIBLE
))
3180 len
= snprintf(name
, sizeof(name
), "%d", iter
.tgid
);
3181 ctx
->pos
= iter
.tgid
+ TGID_OFFSET
;
3182 if (!proc_fill_cache(file
, ctx
, name
, len
,
3183 proc_pid_instantiate
, iter
.task
, NULL
)) {
3184 put_task_struct(iter
.task
);
3188 ctx
->pos
= PID_MAX_LIMIT
+ TGID_OFFSET
;
3193 * proc_tid_comm_permission is a special permission function exclusively
3194 * used for the node /proc/<pid>/task/<tid>/comm.
3195 * It bypasses generic permission checks in the case where a task of the same
3196 * task group attempts to access the node.
3197 * The rationale behind this is that glibc and bionic access this node for
3198 * cross thread naming (pthread_set/getname_np(!self)). However, if
3199 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3200 * which locks out the cross thread naming implementation.
3201 * This function makes sure that the node is always accessible for members of
3202 * same thread group.
3204 static int proc_tid_comm_permission(struct inode
*inode
, int mask
)
3206 bool is_same_tgroup
;
3207 struct task_struct
*task
;
3209 task
= get_proc_task(inode
);
3212 is_same_tgroup
= same_thread_group(current
, task
);
3213 put_task_struct(task
);
3215 if (likely(is_same_tgroup
&& !(mask
& MAY_EXEC
))) {
3216 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3217 * read or written by the members of the corresponding
3223 return generic_permission(inode
, mask
);
3226 static const struct inode_operations proc_tid_comm_inode_operations
= {
3227 .permission
= proc_tid_comm_permission
,
3233 static const struct pid_entry tid_base_stuff
[] = {
3234 DIR("fd", S_IRUSR
|S_IXUSR
, proc_fd_inode_operations
, proc_fd_operations
),
3235 DIR("fdinfo", S_IRUSR
|S_IXUSR
, proc_fdinfo_inode_operations
, proc_fdinfo_operations
),
3236 DIR("ns", S_IRUSR
|S_IXUGO
, proc_ns_dir_inode_operations
, proc_ns_dir_operations
),
3238 DIR("net", S_IRUGO
|S_IXUGO
, proc_net_inode_operations
, proc_net_operations
),
3240 REG("environ", S_IRUSR
, proc_environ_operations
),
3241 REG("auxv", S_IRUSR
, proc_auxv_operations
),
3242 ONE("status", S_IRUGO
, proc_pid_status
),
3243 ONE("personality", S_IRUSR
, proc_pid_personality
),
3244 ONE("limits", S_IRUGO
, proc_pid_limits
),
3245 #ifdef CONFIG_SCHED_DEBUG
3246 REG("sched", S_IRUGO
|S_IWUSR
, proc_pid_sched_operations
),
3248 NOD("comm", S_IFREG
|S_IRUGO
|S_IWUSR
,
3249 &proc_tid_comm_inode_operations
,
3250 &proc_pid_set_comm_operations
, {}),
3251 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3252 ONE("syscall", S_IRUSR
, proc_pid_syscall
),
3254 REG("cmdline", S_IRUGO
, proc_pid_cmdline_ops
),
3255 ONE("stat", S_IRUGO
, proc_tid_stat
),
3256 ONE("statm", S_IRUGO
, proc_pid_statm
),
3257 REG("maps", S_IRUGO
, proc_tid_maps_operations
),
3258 #ifdef CONFIG_PROC_CHILDREN
3259 REG("children", S_IRUGO
, proc_tid_children_operations
),
3262 REG("numa_maps", S_IRUGO
, proc_tid_numa_maps_operations
),
3264 REG("mem", S_IRUSR
|S_IWUSR
, proc_mem_operations
),
3265 LNK("cwd", proc_cwd_link
),
3266 LNK("root", proc_root_link
),
3267 LNK("exe", proc_exe_link
),
3268 REG("mounts", S_IRUGO
, proc_mounts_operations
),
3269 REG("mountinfo", S_IRUGO
, proc_mountinfo_operations
),
3270 #ifdef CONFIG_PROC_PAGE_MONITOR
3271 REG("clear_refs", S_IWUSR
, proc_clear_refs_operations
),
3272 REG("smaps", S_IRUGO
, proc_tid_smaps_operations
),
3273 REG("pagemap", S_IRUSR
, proc_pagemap_operations
),
3275 #ifdef CONFIG_SECURITY
3276 DIR("attr", S_IRUGO
|S_IXUGO
, proc_attr_dir_inode_operations
, proc_attr_dir_operations
),
3278 #ifdef CONFIG_KALLSYMS
3279 ONE("wchan", S_IRUGO
, proc_pid_wchan
),
3281 #ifdef CONFIG_STACKTRACE
3282 ONE("stack", S_IRUSR
, proc_pid_stack
),
3284 #ifdef CONFIG_SCHED_INFO
3285 ONE("schedstat", S_IRUGO
, proc_pid_schedstat
),
3287 #ifdef CONFIG_LATENCYTOP
3288 REG("latency", S_IRUGO
, proc_lstats_operations
),
3290 #ifdef CONFIG_PROC_PID_CPUSET
3291 ONE("cpuset", S_IRUGO
, proc_cpuset_show
),
3293 #ifdef CONFIG_CGROUPS
3294 ONE("cgroup", S_IRUGO
, proc_cgroup_show
),
3296 ONE("oom_score", S_IRUGO
, proc_oom_score
),
3297 REG("oom_adj", S_IRUGO
|S_IWUSR
, proc_oom_adj_operations
),
3298 REG("oom_score_adj", S_IRUGO
|S_IWUSR
, proc_oom_score_adj_operations
),
3299 #ifdef CONFIG_AUDITSYSCALL
3300 REG("loginuid", S_IWUSR
|S_IRUGO
, proc_loginuid_operations
),
3301 REG("sessionid", S_IRUGO
, proc_sessionid_operations
),
3303 #ifdef CONFIG_FAULT_INJECTION
3304 REG("make-it-fail", S_IRUGO
|S_IWUSR
, proc_fault_inject_operations
),
3306 #ifdef CONFIG_TASK_IO_ACCOUNTING
3307 ONE("io", S_IRUSR
, proc_tid_io_accounting
),
3309 #ifdef CONFIG_HARDWALL
3310 ONE("hardwall", S_IRUGO
, proc_pid_hardwall
),
3312 #ifdef CONFIG_USER_NS
3313 REG("uid_map", S_IRUGO
|S_IWUSR
, proc_uid_map_operations
),
3314 REG("gid_map", S_IRUGO
|S_IWUSR
, proc_gid_map_operations
),
3315 REG("projid_map", S_IRUGO
|S_IWUSR
, proc_projid_map_operations
),
3316 REG("setgroups", S_IRUGO
|S_IWUSR
, proc_setgroups_operations
),
3320 static int proc_tid_base_readdir(struct file
*file
, struct dir_context
*ctx
)
3322 return proc_pident_readdir(file
, ctx
,
3323 tid_base_stuff
, ARRAY_SIZE(tid_base_stuff
));
3326 static struct dentry
*proc_tid_base_lookup(struct inode
*dir
, struct dentry
*dentry
, unsigned int flags
)
3328 return proc_pident_lookup(dir
, dentry
,
3329 tid_base_stuff
, ARRAY_SIZE(tid_base_stuff
));
3332 static const struct file_operations proc_tid_base_operations
= {
3333 .read
= generic_read_dir
,
3334 .iterate_shared
= proc_tid_base_readdir
,
3335 .llseek
= generic_file_llseek
,
3338 static const struct inode_operations proc_tid_base_inode_operations
= {
3339 .lookup
= proc_tid_base_lookup
,
3340 .getattr
= pid_getattr
,
3341 .setattr
= proc_setattr
,
3344 static int proc_task_instantiate(struct inode
*dir
,
3345 struct dentry
*dentry
, struct task_struct
*task
, const void *ptr
)
3347 struct inode
*inode
;
3348 inode
= proc_pid_make_inode(dir
->i_sb
, task
, S_IFDIR
| S_IRUGO
| S_IXUGO
);
3352 inode
->i_op
= &proc_tid_base_inode_operations
;
3353 inode
->i_fop
= &proc_tid_base_operations
;
3354 inode
->i_flags
|=S_IMMUTABLE
;
3356 set_nlink(inode
, nlink_tid
);
3358 d_set_d_op(dentry
, &pid_dentry_operations
);
3360 d_add(dentry
, inode
);
3361 /* Close the race of the process dying before we return the dentry */
3362 if (pid_revalidate(dentry
, 0))
3368 static struct dentry
*proc_task_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
3370 int result
= -ENOENT
;
3371 struct task_struct
*task
;
3372 struct task_struct
*leader
= get_proc_task(dir
);
3374 struct pid_namespace
*ns
;
3379 tid
= name_to_int(&dentry
->d_name
);
3383 ns
= dentry
->d_sb
->s_fs_info
;
3385 task
= find_task_by_pid_ns(tid
, ns
);
3387 get_task_struct(task
);
3391 if (!same_thread_group(leader
, task
))
3394 result
= proc_task_instantiate(dir
, dentry
, task
, NULL
);
3396 put_task_struct(task
);
3398 put_task_struct(leader
);
3400 return ERR_PTR(result
);
3404 * Find the first tid of a thread group to return to user space.
3406 * Usually this is just the thread group leader, but if the users
3407 * buffer was too small or there was a seek into the middle of the
3408 * directory we have more work todo.
3410 * In the case of a short read we start with find_task_by_pid.
3412 * In the case of a seek we start with the leader and walk nr
3415 static struct task_struct
*first_tid(struct pid
*pid
, int tid
, loff_t f_pos
,
3416 struct pid_namespace
*ns
)
3418 struct task_struct
*pos
, *task
;
3419 unsigned long nr
= f_pos
;
3421 if (nr
!= f_pos
) /* 32bit overflow? */
3425 task
= pid_task(pid
, PIDTYPE_PID
);
3429 /* Attempt to start with the tid of a thread */
3431 pos
= find_task_by_pid_ns(tid
, ns
);
3432 if (pos
&& same_thread_group(pos
, task
))
3436 /* If nr exceeds the number of threads there is nothing todo */
3437 if (nr
>= get_nr_threads(task
))
3440 /* If we haven't found our starting place yet start
3441 * with the leader and walk nr threads forward.
3443 pos
= task
= task
->group_leader
;
3447 } while_each_thread(task
, pos
);
3452 get_task_struct(pos
);
3459 * Find the next thread in the thread list.
3460 * Return NULL if there is an error or no next thread.
3462 * The reference to the input task_struct is released.
3464 static struct task_struct
*next_tid(struct task_struct
*start
)
3466 struct task_struct
*pos
= NULL
;
3468 if (pid_alive(start
)) {
3469 pos
= next_thread(start
);
3470 if (thread_group_leader(pos
))
3473 get_task_struct(pos
);
3476 put_task_struct(start
);
3480 /* for the /proc/TGID/task/ directories */
3481 static int proc_task_readdir(struct file
*file
, struct dir_context
*ctx
)
3483 struct inode
*inode
= file_inode(file
);
3484 struct task_struct
*task
;
3485 struct pid_namespace
*ns
;
3488 if (proc_inode_is_dead(inode
))
3491 if (!dir_emit_dots(file
, ctx
))
3494 /* f_version caches the tgid value that the last readdir call couldn't
3495 * return. lseek aka telldir automagically resets f_version to 0.
3497 ns
= inode
->i_sb
->s_fs_info
;
3498 tid
= (int)file
->f_version
;
3499 file
->f_version
= 0;
3500 for (task
= first_tid(proc_pid(inode
), tid
, ctx
->pos
- 2, ns
);
3502 task
= next_tid(task
), ctx
->pos
++) {
3503 char name
[PROC_NUMBUF
];
3505 tid
= task_pid_nr_ns(task
, ns
);
3506 len
= snprintf(name
, sizeof(name
), "%d", tid
);
3507 if (!proc_fill_cache(file
, ctx
, name
, len
,
3508 proc_task_instantiate
, task
, NULL
)) {
3509 /* returning this tgid failed, save it as the first
3510 * pid for the next readir call */
3511 file
->f_version
= (u64
)tid
;
3512 put_task_struct(task
);
3520 static int proc_task_getattr(const struct path
*path
, struct kstat
*stat
,
3521 u32 request_mask
, unsigned int query_flags
)
3523 struct inode
*inode
= d_inode(path
->dentry
);
3524 struct task_struct
*p
= get_proc_task(inode
);
3525 generic_fillattr(inode
, stat
);
3528 stat
->nlink
+= get_nr_threads(p
);
3535 static const struct inode_operations proc_task_inode_operations
= {
3536 .lookup
= proc_task_lookup
,
3537 .getattr
= proc_task_getattr
,
3538 .setattr
= proc_setattr
,
3539 .permission
= proc_pid_permission
,
3542 static const struct file_operations proc_task_operations
= {
3543 .read
= generic_read_dir
,
3544 .iterate_shared
= proc_task_readdir
,
3545 .llseek
= generic_file_llseek
,
3548 void __init
set_proc_pid_nlink(void)
3550 nlink_tid
= pid_entry_nlink(tid_base_stuff
, ARRAY_SIZE(tid_base_stuff
));
3551 nlink_tgid
= pid_entry_nlink(tgid_base_stuff
, ARRAY_SIZE(tgid_base_stuff
));