2 * Longest prefix match list implementation
4 * Copyright (c) 2016,2017 Daniel Mack
5 * Copyright (c) 2016 David Herrmann
7 * This file is subject to the terms and conditions of version 2 of the GNU
8 * General Public License. See the file COPYING in the main directory of the
9 * Linux distribution for more details.
12 #include <linux/bpf.h>
13 #include <linux/err.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/vmalloc.h>
19 /* Intermediate node */
20 #define LPM_TREE_NODE_FLAG_IM BIT(0)
24 struct lpm_trie_node
{
26 struct lpm_trie_node __rcu
*child
[2];
34 struct lpm_trie_node __rcu
*root
;
41 /* This trie implements a longest prefix match algorithm that can be used to
42 * match IP addresses to a stored set of ranges.
44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
45 * interpreted as big endian, so data[0] stores the most significant byte.
47 * Match ranges are internally stored in instances of struct lpm_trie_node
48 * which each contain their prefix length as well as two pointers that may
49 * lead to more nodes containing more specific matches. Each node also stores
50 * a value that is defined by and returned to userspace via the update_elem
51 * and lookup functions.
53 * For instance, let's start with a trie that was created with a prefix length
54 * of 32, so it can be used for IPv4 addresses, and one single element that
55 * matches 192.168.0.0/16. The data array would hence contain
56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
57 * stick to IP-address notation for readability though.
59 * As the trie is empty initially, the new node (1) will be places as root
60 * node, denoted as (R) in the example below. As there are no other node, both
61 * child pointers are %NULL.
70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
71 * a node with the same data and a smaller prefix (ie, a less specific one),
72 * node (2) will become a child of (1). In child index depends on the next bit
73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
90 * The child[1] slot of (1) could be filled with another node which has bit #17
91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
101 * +----------------+ +------------------+
103 * | 192.168.0.0/24 | | 192.168.128.0/24 |
104 * | value: 2 | | value: 3 |
105 * | [0] [1] | | [0] [1] |
106 * +----------------+ +------------------+
108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109 * it, node (1) is looked at first, and because (4) of the semantics laid out
110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111 * However, that slot is already allocated, so a new node is needed in between.
112 * That node does not have a value attached to it and it will never be
113 * returned to users as result of a lookup. It is only there to differentiate
114 * the traversal further. It will get a prefix as wide as necessary to
115 * distinguish its two children:
124 * +----------------+ +------------------+
125 * | (4) (I) | | (3) |
126 * | 192.168.0.0/23 | | 192.168.128.0/24 |
127 * | value: --- | | value: 3 |
128 * | [0] [1] | | [0] [1] |
129 * +----------------+ +------------------+
131 * +----------------+ +----------------+
133 * | 192.168.0.0/24 | | 192.168.1.0/24 |
134 * | value: 2 | | value: 5 |
135 * | [0] [1] | | [0] [1] |
136 * +----------------+ +----------------+
138 * 192.168.1.1/32 would be a child of (5) etc.
140 * An intermediate node will be turned into a 'real' node on demand. In the
141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
143 * A fully populated trie would have a height of 32 nodes, as the trie was
144 * created with a prefix length of 32.
146 * The lookup starts at the root node. If the current node matches and if there
147 * is a child that can be used to become more specific, the trie is traversed
148 * downwards. The last node in the traversal that is a non-intermediate one is
152 static inline int extract_bit(const u8
*data
, size_t index
)
154 return !!(data
[index
/ 8] & (1 << (7 - (index
% 8))));
158 * longest_prefix_match() - determine the longest prefix
159 * @trie: The trie to get internal sizes from
160 * @node: The node to operate on
161 * @key: The key to compare to @node
163 * Determine the longest prefix of @node that matches the bits in @key.
165 static size_t longest_prefix_match(const struct lpm_trie
*trie
,
166 const struct lpm_trie_node
*node
,
167 const struct bpf_lpm_trie_key
*key
)
169 size_t prefixlen
= 0;
172 for (i
= 0; i
< trie
->data_size
; i
++) {
175 b
= 8 - fls(node
->data
[i
] ^ key
->data
[i
]);
178 if (prefixlen
>= node
->prefixlen
|| prefixlen
>= key
->prefixlen
)
179 return min(node
->prefixlen
, key
->prefixlen
);
188 /* Called from syscall or from eBPF program */
189 static void *trie_lookup_elem(struct bpf_map
*map
, void *_key
)
191 struct lpm_trie
*trie
= container_of(map
, struct lpm_trie
, map
);
192 struct lpm_trie_node
*node
, *found
= NULL
;
193 struct bpf_lpm_trie_key
*key
= _key
;
195 /* Start walking the trie from the root node ... */
197 for (node
= rcu_dereference(trie
->root
); node
;) {
198 unsigned int next_bit
;
201 /* Determine the longest prefix of @node that matches @key.
202 * If it's the maximum possible prefix for this trie, we have
203 * an exact match and can return it directly.
205 matchlen
= longest_prefix_match(trie
, node
, key
);
206 if (matchlen
== trie
->max_prefixlen
) {
211 /* If the number of bits that match is smaller than the prefix
212 * length of @node, bail out and return the node we have seen
213 * last in the traversal (ie, the parent).
215 if (matchlen
< node
->prefixlen
)
218 /* Consider this node as return candidate unless it is an
219 * artificially added intermediate one.
221 if (!(node
->flags
& LPM_TREE_NODE_FLAG_IM
))
224 /* If the node match is fully satisfied, let's see if we can
225 * become more specific. Determine the next bit in the key and
228 next_bit
= extract_bit(key
->data
, node
->prefixlen
);
229 node
= rcu_dereference(node
->child
[next_bit
]);
235 return found
->data
+ trie
->data_size
;
238 static struct lpm_trie_node
*lpm_trie_node_alloc(const struct lpm_trie
*trie
,
241 struct lpm_trie_node
*node
;
242 size_t size
= sizeof(struct lpm_trie_node
) + trie
->data_size
;
245 size
+= trie
->map
.value_size
;
247 node
= kmalloc(size
, GFP_ATOMIC
| __GFP_NOWARN
);
254 memcpy(node
->data
+ trie
->data_size
, value
,
255 trie
->map
.value_size
);
260 /* Called from syscall or from eBPF program */
261 static int trie_update_elem(struct bpf_map
*map
,
262 void *_key
, void *value
, u64 flags
)
264 struct lpm_trie
*trie
= container_of(map
, struct lpm_trie
, map
);
265 struct lpm_trie_node
*node
, *im_node
= NULL
, *new_node
= NULL
;
266 struct lpm_trie_node __rcu
**slot
;
267 struct bpf_lpm_trie_key
*key
= _key
;
268 unsigned long irq_flags
;
269 unsigned int next_bit
;
273 if (unlikely(flags
> BPF_EXIST
))
276 if (key
->prefixlen
> trie
->max_prefixlen
)
279 raw_spin_lock_irqsave(&trie
->lock
, irq_flags
);
281 /* Allocate and fill a new node */
283 if (trie
->n_entries
== trie
->map
.max_entries
) {
288 new_node
= lpm_trie_node_alloc(trie
, value
);
296 new_node
->prefixlen
= key
->prefixlen
;
297 RCU_INIT_POINTER(new_node
->child
[0], NULL
);
298 RCU_INIT_POINTER(new_node
->child
[1], NULL
);
299 memcpy(new_node
->data
, key
->data
, trie
->data_size
);
301 /* Now find a slot to attach the new node. To do that, walk the tree
302 * from the root and match as many bits as possible for each node until
303 * we either find an empty slot or a slot that needs to be replaced by
304 * an intermediate node.
308 while ((node
= rcu_dereference_protected(*slot
,
309 lockdep_is_held(&trie
->lock
)))) {
310 matchlen
= longest_prefix_match(trie
, node
, key
);
312 if (node
->prefixlen
!= matchlen
||
313 node
->prefixlen
== key
->prefixlen
||
314 node
->prefixlen
== trie
->max_prefixlen
)
317 next_bit
= extract_bit(key
->data
, node
->prefixlen
);
318 slot
= &node
->child
[next_bit
];
321 /* If the slot is empty (a free child pointer or an empty root),
322 * simply assign the @new_node to that slot and be done.
325 rcu_assign_pointer(*slot
, new_node
);
329 /* If the slot we picked already exists, replace it with @new_node
330 * which already has the correct data array set.
332 if (node
->prefixlen
== matchlen
) {
333 new_node
->child
[0] = node
->child
[0];
334 new_node
->child
[1] = node
->child
[1];
336 if (!(node
->flags
& LPM_TREE_NODE_FLAG_IM
))
339 rcu_assign_pointer(*slot
, new_node
);
340 kfree_rcu(node
, rcu
);
345 /* If the new node matches the prefix completely, it must be inserted
346 * as an ancestor. Simply insert it between @node and *@slot.
348 if (matchlen
== key
->prefixlen
) {
349 next_bit
= extract_bit(node
->data
, matchlen
);
350 rcu_assign_pointer(new_node
->child
[next_bit
], node
);
351 rcu_assign_pointer(*slot
, new_node
);
355 im_node
= lpm_trie_node_alloc(trie
, NULL
);
361 im_node
->prefixlen
= matchlen
;
362 im_node
->flags
|= LPM_TREE_NODE_FLAG_IM
;
363 memcpy(im_node
->data
, node
->data
, trie
->data_size
);
365 /* Now determine which child to install in which slot */
366 if (extract_bit(key
->data
, matchlen
)) {
367 rcu_assign_pointer(im_node
->child
[0], node
);
368 rcu_assign_pointer(im_node
->child
[1], new_node
);
370 rcu_assign_pointer(im_node
->child
[0], new_node
);
371 rcu_assign_pointer(im_node
->child
[1], node
);
374 /* Finally, assign the intermediate node to the determined spot */
375 rcu_assign_pointer(*slot
, im_node
);
386 raw_spin_unlock_irqrestore(&trie
->lock
, irq_flags
);
391 static int trie_delete_elem(struct bpf_map
*map
, void *key
)
397 #define LPM_DATA_SIZE_MAX 256
398 #define LPM_DATA_SIZE_MIN 1
400 #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
401 sizeof(struct lpm_trie_node))
402 #define LPM_VAL_SIZE_MIN 1
404 #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
405 #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
406 #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
408 static struct bpf_map
*trie_alloc(union bpf_attr
*attr
)
410 struct lpm_trie
*trie
;
411 u64 cost
= sizeof(*trie
), cost_per_node
;
414 if (!capable(CAP_SYS_ADMIN
))
415 return ERR_PTR(-EPERM
);
417 /* check sanity of attributes */
418 if (attr
->max_entries
== 0 ||
419 attr
->map_flags
!= BPF_F_NO_PREALLOC
||
420 attr
->key_size
< LPM_KEY_SIZE_MIN
||
421 attr
->key_size
> LPM_KEY_SIZE_MAX
||
422 attr
->value_size
< LPM_VAL_SIZE_MIN
||
423 attr
->value_size
> LPM_VAL_SIZE_MAX
)
424 return ERR_PTR(-EINVAL
);
426 trie
= kzalloc(sizeof(*trie
), GFP_USER
| __GFP_NOWARN
);
428 return ERR_PTR(-ENOMEM
);
430 /* copy mandatory map attributes */
431 trie
->map
.map_type
= attr
->map_type
;
432 trie
->map
.key_size
= attr
->key_size
;
433 trie
->map
.value_size
= attr
->value_size
;
434 trie
->map
.max_entries
= attr
->max_entries
;
435 trie
->map
.map_flags
= attr
->map_flags
;
436 trie
->data_size
= attr
->key_size
-
437 offsetof(struct bpf_lpm_trie_key
, data
);
438 trie
->max_prefixlen
= trie
->data_size
* 8;
440 cost_per_node
= sizeof(struct lpm_trie_node
) +
441 attr
->value_size
+ trie
->data_size
;
442 cost
+= (u64
) attr
->max_entries
* cost_per_node
;
443 if (cost
>= U32_MAX
- PAGE_SIZE
) {
448 trie
->map
.pages
= round_up(cost
, PAGE_SIZE
) >> PAGE_SHIFT
;
450 ret
= bpf_map_precharge_memlock(trie
->map
.pages
);
454 raw_spin_lock_init(&trie
->lock
);
462 static void trie_free(struct bpf_map
*map
)
464 struct lpm_trie
*trie
= container_of(map
, struct lpm_trie
, map
);
465 struct lpm_trie_node __rcu
**slot
;
466 struct lpm_trie_node
*node
;
468 raw_spin_lock(&trie
->lock
);
470 /* Always start at the root and walk down to a node that has no
471 * children. Then free that node, nullify its reference in the parent
479 node
= rcu_dereference_protected(*slot
,
480 lockdep_is_held(&trie
->lock
));
484 if (rcu_access_pointer(node
->child
[0])) {
485 slot
= &node
->child
[0];
489 if (rcu_access_pointer(node
->child
[1])) {
490 slot
= &node
->child
[1];
495 RCU_INIT_POINTER(*slot
, NULL
);
501 raw_spin_unlock(&trie
->lock
);
504 static int trie_get_next_key(struct bpf_map
*map
, void *key
, void *next_key
)
509 static const struct bpf_map_ops trie_ops
= {
510 .map_alloc
= trie_alloc
,
511 .map_free
= trie_free
,
512 .map_get_next_key
= trie_get_next_key
,
513 .map_lookup_elem
= trie_lookup_elem
,
514 .map_update_elem
= trie_update_elem
,
515 .map_delete_elem
= trie_delete_elem
,
518 static struct bpf_map_type_list trie_type __ro_after_init
= {
520 .type
= BPF_MAP_TYPE_LPM_TRIE
,
523 static int __init
register_trie_map(void)
525 bpf_register_map_type(&trie_type
);
528 late_initcall(register_trie_map
);