x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / kernel / rcu / tree.c
blob50fee7689e7125787cb3a02ffaa6e9837b1b05d2
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
61 #include "tree.h"
62 #include "rcu.h"
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
95 .call = cr, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 static struct rcu_state *const rcu_state_p;
113 LIST_HEAD(rcu_struct_flavors);
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree;
117 module_param(dump_tree, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 /* panic() on RCU Stall sysctl. */
129 int sysctl_panic_on_rcu_stall __read_mostly;
132 * The rcu_scheduler_active variable is initialized to the value
133 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
134 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
135 * RCU can assume that there is but one task, allowing RCU to (for example)
136 * optimize synchronize_rcu() to a simple barrier(). When this variable
137 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
138 * to detect real grace periods. This variable is also used to suppress
139 * boot-time false positives from lockdep-RCU error checking. Finally, it
140 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
141 * is fully initialized, including all of its kthreads having been spawned.
143 int rcu_scheduler_active __read_mostly;
144 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
147 * The rcu_scheduler_fully_active variable transitions from zero to one
148 * during the early_initcall() processing, which is after the scheduler
149 * is capable of creating new tasks. So RCU processing (for example,
150 * creating tasks for RCU priority boosting) must be delayed until after
151 * rcu_scheduler_fully_active transitions from zero to one. We also
152 * currently delay invocation of any RCU callbacks until after this point.
154 * It might later prove better for people registering RCU callbacks during
155 * early boot to take responsibility for these callbacks, but one step at
156 * a time.
158 static int rcu_scheduler_fully_active __read_mostly;
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 static void invoke_rcu_core(void);
164 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 static void rcu_report_exp_rdp(struct rcu_state *rsp,
166 struct rcu_data *rdp, bool wake);
167 static void sync_sched_exp_online_cleanup(int cpu);
169 /* rcuc/rcub kthread realtime priority */
170 #ifdef CONFIG_RCU_KTHREAD_PRIO
171 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
174 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 module_param(kthread_prio, int, 0644);
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
180 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
181 module_param(gp_preinit_delay, int, 0644);
182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 static const int gp_preinit_delay;
184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
187 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188 module_param(gp_init_delay, int, 0644);
189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 static const int gp_init_delay;
191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
193 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
194 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
195 module_param(gp_cleanup_delay, int, 0644);
196 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197 static const int gp_cleanup_delay;
198 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
201 * Number of grace periods between delays, normalized by the duration of
202 * the delay. The longer the the delay, the more the grace periods between
203 * each delay. The reason for this normalization is that it means that,
204 * for non-zero delays, the overall slowdown of grace periods is constant
205 * regardless of the duration of the delay. This arrangement balances
206 * the need for long delays to increase some race probabilities with the
207 * need for fast grace periods to increase other race probabilities.
209 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
212 * Track the rcutorture test sequence number and the update version
213 * number within a given test. The rcutorture_testseq is incremented
214 * on every rcutorture module load and unload, so has an odd value
215 * when a test is running. The rcutorture_vernum is set to zero
216 * when rcutorture starts and is incremented on each rcutorture update.
217 * These variables enable correlating rcutorture output with the
218 * RCU tracing information.
220 unsigned long rcutorture_testseq;
221 unsigned long rcutorture_vernum;
224 * Compute the mask of online CPUs for the specified rcu_node structure.
225 * This will not be stable unless the rcu_node structure's ->lock is
226 * held, but the bit corresponding to the current CPU will be stable
227 * in most contexts.
229 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231 return READ_ONCE(rnp->qsmaskinitnext);
235 * Return true if an RCU grace period is in progress. The READ_ONCE()s
236 * permit this function to be invoked without holding the root rcu_node
237 * structure's ->lock, but of course results can be subject to change.
239 static int rcu_gp_in_progress(struct rcu_state *rsp)
241 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
245 * Note a quiescent state. Because we do not need to know
246 * how many quiescent states passed, just if there was at least
247 * one since the start of the grace period, this just sets a flag.
248 * The caller must have disabled preemption.
250 void rcu_sched_qs(void)
252 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
253 return;
254 trace_rcu_grace_period(TPS("rcu_sched"),
255 __this_cpu_read(rcu_sched_data.gpnum),
256 TPS("cpuqs"));
257 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
258 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
259 return;
260 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 rcu_report_exp_rdp(&rcu_sched_state,
262 this_cpu_ptr(&rcu_sched_data), true);
265 void rcu_bh_qs(void)
267 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 trace_rcu_grace_period(TPS("rcu_bh"),
269 __this_cpu_read(rcu_bh_data.gpnum),
270 TPS("cpuqs"));
271 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
275 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
277 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
278 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
279 .dynticks = ATOMIC_INIT(1),
280 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
281 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
282 .dynticks_idle = ATOMIC_INIT(1),
283 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
287 * Record entry into an extended quiescent state. This is only to be
288 * called when not already in an extended quiescent state.
290 static void rcu_dynticks_eqs_enter(void)
292 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 int special;
296 * CPUs seeing atomic_inc_return() must see prior RCU read-side
297 * critical sections, and we also must force ordering with the
298 * next idle sojourn.
300 special = atomic_inc_return(&rdtp->dynticks);
301 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1);
305 * Record exit from an extended quiescent state. This is only to be
306 * called from an extended quiescent state.
308 static void rcu_dynticks_eqs_exit(void)
310 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
311 int special;
314 * CPUs seeing atomic_inc_return() must see prior idle sojourns,
315 * and we also must force ordering with the next RCU read-side
316 * critical section.
318 special = atomic_inc_return(&rdtp->dynticks);
319 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1));
323 * Reset the current CPU's ->dynticks counter to indicate that the
324 * newly onlined CPU is no longer in an extended quiescent state.
325 * This will either leave the counter unchanged, or increment it
326 * to the next non-quiescent value.
328 * The non-atomic test/increment sequence works because the upper bits
329 * of the ->dynticks counter are manipulated only by the corresponding CPU,
330 * or when the corresponding CPU is offline.
332 static void rcu_dynticks_eqs_online(void)
334 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
336 if (atomic_read(&rdtp->dynticks) & 0x1)
337 return;
338 atomic_add(0x1, &rdtp->dynticks);
342 * Is the current CPU in an extended quiescent state?
344 * No ordering, as we are sampling CPU-local information.
346 bool rcu_dynticks_curr_cpu_in_eqs(void)
348 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
350 return !(atomic_read(&rdtp->dynticks) & 0x1);
354 * Snapshot the ->dynticks counter with full ordering so as to allow
355 * stable comparison of this counter with past and future snapshots.
357 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
359 int snap = atomic_add_return(0, &rdtp->dynticks);
361 return snap;
365 * Return true if the snapshot returned from rcu_dynticks_snap()
366 * indicates that RCU is in an extended quiescent state.
368 static bool rcu_dynticks_in_eqs(int snap)
370 return !(snap & 0x1);
374 * Return true if the CPU corresponding to the specified rcu_dynticks
375 * structure has spent some time in an extended quiescent state since
376 * rcu_dynticks_snap() returned the specified snapshot.
378 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
380 return snap != rcu_dynticks_snap(rdtp);
384 * Do a double-increment of the ->dynticks counter to emulate a
385 * momentary idle-CPU quiescent state.
387 static void rcu_dynticks_momentary_idle(void)
389 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
390 int special = atomic_add_return(2, &rdtp->dynticks);
392 /* It is illegal to call this from idle state. */
393 WARN_ON_ONCE(!(special & 0x1));
396 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
397 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
400 * Let the RCU core know that this CPU has gone through the scheduler,
401 * which is a quiescent state. This is called when the need for a
402 * quiescent state is urgent, so we burn an atomic operation and full
403 * memory barriers to let the RCU core know about it, regardless of what
404 * this CPU might (or might not) do in the near future.
406 * We inform the RCU core by emulating a zero-duration dyntick-idle
407 * period, which we in turn do by incrementing the ->dynticks counter
408 * by two.
410 * The caller must have disabled interrupts.
412 static void rcu_momentary_dyntick_idle(void)
414 struct rcu_data *rdp;
415 int resched_mask;
416 struct rcu_state *rsp;
419 * Yes, we can lose flag-setting operations. This is OK, because
420 * the flag will be set again after some delay.
422 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
423 raw_cpu_write(rcu_sched_qs_mask, 0);
425 /* Find the flavor that needs a quiescent state. */
426 for_each_rcu_flavor(rsp) {
427 rdp = raw_cpu_ptr(rsp->rda);
428 if (!(resched_mask & rsp->flavor_mask))
429 continue;
430 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
431 if (READ_ONCE(rdp->mynode->completed) !=
432 READ_ONCE(rdp->cond_resched_completed))
433 continue;
436 * Pretend to be momentarily idle for the quiescent state.
437 * This allows the grace-period kthread to record the
438 * quiescent state, with no need for this CPU to do anything
439 * further.
441 rcu_dynticks_momentary_idle();
442 break;
447 * Note a context switch. This is a quiescent state for RCU-sched,
448 * and requires special handling for preemptible RCU.
449 * The caller must have disabled interrupts.
451 void rcu_note_context_switch(void)
453 barrier(); /* Avoid RCU read-side critical sections leaking down. */
454 trace_rcu_utilization(TPS("Start context switch"));
455 rcu_sched_qs();
456 rcu_preempt_note_context_switch();
457 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
458 rcu_momentary_dyntick_idle();
459 trace_rcu_utilization(TPS("End context switch"));
460 barrier(); /* Avoid RCU read-side critical sections leaking up. */
462 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
465 * Register a quiescent state for all RCU flavors. If there is an
466 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
467 * dyntick-idle quiescent state visible to other CPUs (but only for those
468 * RCU flavors in desperate need of a quiescent state, which will normally
469 * be none of them). Either way, do a lightweight quiescent state for
470 * all RCU flavors.
472 * The barrier() calls are redundant in the common case when this is
473 * called externally, but just in case this is called from within this
474 * file.
477 void rcu_all_qs(void)
479 unsigned long flags;
481 barrier(); /* Avoid RCU read-side critical sections leaking down. */
482 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
483 local_irq_save(flags);
484 rcu_momentary_dyntick_idle();
485 local_irq_restore(flags);
487 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
489 * Yes, we just checked a per-CPU variable with preemption
490 * enabled, so we might be migrated to some other CPU at
491 * this point. That is OK because in that case, the
492 * migration will supply the needed quiescent state.
493 * We might end up needlessly disabling preemption and
494 * invoking rcu_sched_qs() on the destination CPU, but
495 * the probability and cost are both quite low, so this
496 * should not be a problem in practice.
498 preempt_disable();
499 rcu_sched_qs();
500 preempt_enable();
502 this_cpu_inc(rcu_qs_ctr);
503 barrier(); /* Avoid RCU read-side critical sections leaking up. */
505 EXPORT_SYMBOL_GPL(rcu_all_qs);
507 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
508 static long qhimark = 10000; /* If this many pending, ignore blimit. */
509 static long qlowmark = 100; /* Once only this many pending, use blimit. */
511 module_param(blimit, long, 0444);
512 module_param(qhimark, long, 0444);
513 module_param(qlowmark, long, 0444);
515 static ulong jiffies_till_first_fqs = ULONG_MAX;
516 static ulong jiffies_till_next_fqs = ULONG_MAX;
517 static bool rcu_kick_kthreads;
519 module_param(jiffies_till_first_fqs, ulong, 0644);
520 module_param(jiffies_till_next_fqs, ulong, 0644);
521 module_param(rcu_kick_kthreads, bool, 0644);
524 * How long the grace period must be before we start recruiting
525 * quiescent-state help from rcu_note_context_switch().
527 static ulong jiffies_till_sched_qs = HZ / 20;
528 module_param(jiffies_till_sched_qs, ulong, 0644);
530 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
531 struct rcu_data *rdp);
532 static void force_qs_rnp(struct rcu_state *rsp,
533 int (*f)(struct rcu_data *rsp, bool *isidle,
534 unsigned long *maxj),
535 bool *isidle, unsigned long *maxj);
536 static void force_quiescent_state(struct rcu_state *rsp);
537 static int rcu_pending(void);
540 * Return the number of RCU batches started thus far for debug & stats.
542 unsigned long rcu_batches_started(void)
544 return rcu_state_p->gpnum;
546 EXPORT_SYMBOL_GPL(rcu_batches_started);
549 * Return the number of RCU-sched batches started thus far for debug & stats.
551 unsigned long rcu_batches_started_sched(void)
553 return rcu_sched_state.gpnum;
555 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
558 * Return the number of RCU BH batches started thus far for debug & stats.
560 unsigned long rcu_batches_started_bh(void)
562 return rcu_bh_state.gpnum;
564 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
567 * Return the number of RCU batches completed thus far for debug & stats.
569 unsigned long rcu_batches_completed(void)
571 return rcu_state_p->completed;
573 EXPORT_SYMBOL_GPL(rcu_batches_completed);
576 * Return the number of RCU-sched batches completed thus far for debug & stats.
578 unsigned long rcu_batches_completed_sched(void)
580 return rcu_sched_state.completed;
582 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
585 * Return the number of RCU BH batches completed thus far for debug & stats.
587 unsigned long rcu_batches_completed_bh(void)
589 return rcu_bh_state.completed;
591 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
594 * Return the number of RCU expedited batches completed thus far for
595 * debug & stats. Odd numbers mean that a batch is in progress, even
596 * numbers mean idle. The value returned will thus be roughly double
597 * the cumulative batches since boot.
599 unsigned long rcu_exp_batches_completed(void)
601 return rcu_state_p->expedited_sequence;
603 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
606 * Return the number of RCU-sched expedited batches completed thus far
607 * for debug & stats. Similar to rcu_exp_batches_completed().
609 unsigned long rcu_exp_batches_completed_sched(void)
611 return rcu_sched_state.expedited_sequence;
613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
616 * Force a quiescent state.
618 void rcu_force_quiescent_state(void)
620 force_quiescent_state(rcu_state_p);
622 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
625 * Force a quiescent state for RCU BH.
627 void rcu_bh_force_quiescent_state(void)
629 force_quiescent_state(&rcu_bh_state);
631 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
634 * Force a quiescent state for RCU-sched.
636 void rcu_sched_force_quiescent_state(void)
638 force_quiescent_state(&rcu_sched_state);
640 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
643 * Show the state of the grace-period kthreads.
645 void show_rcu_gp_kthreads(void)
647 struct rcu_state *rsp;
649 for_each_rcu_flavor(rsp) {
650 pr_info("%s: wait state: %d ->state: %#lx\n",
651 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
652 /* sched_show_task(rsp->gp_kthread); */
655 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
658 * Record the number of times rcutorture tests have been initiated and
659 * terminated. This information allows the debugfs tracing stats to be
660 * correlated to the rcutorture messages, even when the rcutorture module
661 * is being repeatedly loaded and unloaded. In other words, we cannot
662 * store this state in rcutorture itself.
664 void rcutorture_record_test_transition(void)
666 rcutorture_testseq++;
667 rcutorture_vernum = 0;
669 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
672 * Send along grace-period-related data for rcutorture diagnostics.
674 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
675 unsigned long *gpnum, unsigned long *completed)
677 struct rcu_state *rsp = NULL;
679 switch (test_type) {
680 case RCU_FLAVOR:
681 rsp = rcu_state_p;
682 break;
683 case RCU_BH_FLAVOR:
684 rsp = &rcu_bh_state;
685 break;
686 case RCU_SCHED_FLAVOR:
687 rsp = &rcu_sched_state;
688 break;
689 default:
690 break;
692 if (rsp != NULL) {
693 *flags = READ_ONCE(rsp->gp_flags);
694 *gpnum = READ_ONCE(rsp->gpnum);
695 *completed = READ_ONCE(rsp->completed);
696 return;
698 *flags = 0;
699 *gpnum = 0;
700 *completed = 0;
702 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
705 * Record the number of writer passes through the current rcutorture test.
706 * This is also used to correlate debugfs tracing stats with the rcutorture
707 * messages.
709 void rcutorture_record_progress(unsigned long vernum)
711 rcutorture_vernum++;
713 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
716 * Does the CPU have callbacks ready to be invoked?
718 static int
719 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
721 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
722 rdp->nxttail[RCU_NEXT_TAIL] != NULL;
726 * Return the root node of the specified rcu_state structure.
728 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
730 return &rsp->node[0];
734 * Is there any need for future grace periods?
735 * Interrupts must be disabled. If the caller does not hold the root
736 * rnp_node structure's ->lock, the results are advisory only.
738 static int rcu_future_needs_gp(struct rcu_state *rsp)
740 struct rcu_node *rnp = rcu_get_root(rsp);
741 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
742 int *fp = &rnp->need_future_gp[idx];
744 return READ_ONCE(*fp);
748 * Does the current CPU require a not-yet-started grace period?
749 * The caller must have disabled interrupts to prevent races with
750 * normal callback registry.
752 static bool
753 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
755 int i;
757 if (rcu_gp_in_progress(rsp))
758 return false; /* No, a grace period is already in progress. */
759 if (rcu_future_needs_gp(rsp))
760 return true; /* Yes, a no-CBs CPU needs one. */
761 if (!rdp->nxttail[RCU_NEXT_TAIL])
762 return false; /* No, this is a no-CBs (or offline) CPU. */
763 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
764 return true; /* Yes, CPU has newly registered callbacks. */
765 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
766 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
767 ULONG_CMP_LT(READ_ONCE(rsp->completed),
768 rdp->nxtcompleted[i]))
769 return true; /* Yes, CBs for future grace period. */
770 return false; /* No grace period needed. */
774 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
776 * If the new value of the ->dynticks_nesting counter now is zero,
777 * we really have entered idle, and must do the appropriate accounting.
778 * The caller must have disabled interrupts.
780 static void rcu_eqs_enter_common(long long oldval, bool user)
782 struct rcu_state *rsp;
783 struct rcu_data *rdp;
784 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
786 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
787 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
788 !user && !is_idle_task(current)) {
789 struct task_struct *idle __maybe_unused =
790 idle_task(smp_processor_id());
792 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
793 rcu_ftrace_dump(DUMP_ORIG);
794 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
795 current->pid, current->comm,
796 idle->pid, idle->comm); /* must be idle task! */
798 for_each_rcu_flavor(rsp) {
799 rdp = this_cpu_ptr(rsp->rda);
800 do_nocb_deferred_wakeup(rdp);
802 rcu_prepare_for_idle();
803 rcu_dynticks_eqs_enter();
804 rcu_dynticks_task_enter();
807 * It is illegal to enter an extended quiescent state while
808 * in an RCU read-side critical section.
810 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
811 "Illegal idle entry in RCU read-side critical section.");
812 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
813 "Illegal idle entry in RCU-bh read-side critical section.");
814 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
815 "Illegal idle entry in RCU-sched read-side critical section.");
819 * Enter an RCU extended quiescent state, which can be either the
820 * idle loop or adaptive-tickless usermode execution.
822 static void rcu_eqs_enter(bool user)
824 long long oldval;
825 struct rcu_dynticks *rdtp;
827 rdtp = this_cpu_ptr(&rcu_dynticks);
828 oldval = rdtp->dynticks_nesting;
829 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
830 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
831 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
832 rdtp->dynticks_nesting = 0;
833 rcu_eqs_enter_common(oldval, user);
834 } else {
835 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
840 * rcu_idle_enter - inform RCU that current CPU is entering idle
842 * Enter idle mode, in other words, -leave- the mode in which RCU
843 * read-side critical sections can occur. (Though RCU read-side
844 * critical sections can occur in irq handlers in idle, a possibility
845 * handled by irq_enter() and irq_exit().)
847 * We crowbar the ->dynticks_nesting field to zero to allow for
848 * the possibility of usermode upcalls having messed up our count
849 * of interrupt nesting level during the prior busy period.
851 void rcu_idle_enter(void)
853 unsigned long flags;
855 local_irq_save(flags);
856 rcu_eqs_enter(false);
857 rcu_sysidle_enter(0);
858 local_irq_restore(flags);
860 EXPORT_SYMBOL_GPL(rcu_idle_enter);
862 #ifdef CONFIG_NO_HZ_FULL
864 * rcu_user_enter - inform RCU that we are resuming userspace.
866 * Enter RCU idle mode right before resuming userspace. No use of RCU
867 * is permitted between this call and rcu_user_exit(). This way the
868 * CPU doesn't need to maintain the tick for RCU maintenance purposes
869 * when the CPU runs in userspace.
871 void rcu_user_enter(void)
873 rcu_eqs_enter(1);
875 #endif /* CONFIG_NO_HZ_FULL */
878 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
880 * Exit from an interrupt handler, which might possibly result in entering
881 * idle mode, in other words, leaving the mode in which read-side critical
882 * sections can occur. The caller must have disabled interrupts.
884 * This code assumes that the idle loop never does anything that might
885 * result in unbalanced calls to irq_enter() and irq_exit(). If your
886 * architecture violates this assumption, RCU will give you what you
887 * deserve, good and hard. But very infrequently and irreproducibly.
889 * Use things like work queues to work around this limitation.
891 * You have been warned.
893 void rcu_irq_exit(void)
895 long long oldval;
896 struct rcu_dynticks *rdtp;
898 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
899 rdtp = this_cpu_ptr(&rcu_dynticks);
900 oldval = rdtp->dynticks_nesting;
901 rdtp->dynticks_nesting--;
902 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
903 rdtp->dynticks_nesting < 0);
904 if (rdtp->dynticks_nesting)
905 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
906 else
907 rcu_eqs_enter_common(oldval, true);
908 rcu_sysidle_enter(1);
912 * Wrapper for rcu_irq_exit() where interrupts are enabled.
914 void rcu_irq_exit_irqson(void)
916 unsigned long flags;
918 local_irq_save(flags);
919 rcu_irq_exit();
920 local_irq_restore(flags);
924 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
926 * If the new value of the ->dynticks_nesting counter was previously zero,
927 * we really have exited idle, and must do the appropriate accounting.
928 * The caller must have disabled interrupts.
930 static void rcu_eqs_exit_common(long long oldval, int user)
932 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
934 rcu_dynticks_task_exit();
935 rcu_dynticks_eqs_exit();
936 rcu_cleanup_after_idle();
937 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
938 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
939 !user && !is_idle_task(current)) {
940 struct task_struct *idle __maybe_unused =
941 idle_task(smp_processor_id());
943 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
944 oldval, rdtp->dynticks_nesting);
945 rcu_ftrace_dump(DUMP_ORIG);
946 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
947 current->pid, current->comm,
948 idle->pid, idle->comm); /* must be idle task! */
953 * Exit an RCU extended quiescent state, which can be either the
954 * idle loop or adaptive-tickless usermode execution.
956 static void rcu_eqs_exit(bool user)
958 struct rcu_dynticks *rdtp;
959 long long oldval;
961 rdtp = this_cpu_ptr(&rcu_dynticks);
962 oldval = rdtp->dynticks_nesting;
963 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
964 if (oldval & DYNTICK_TASK_NEST_MASK) {
965 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
966 } else {
967 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
968 rcu_eqs_exit_common(oldval, user);
973 * rcu_idle_exit - inform RCU that current CPU is leaving idle
975 * Exit idle mode, in other words, -enter- the mode in which RCU
976 * read-side critical sections can occur.
978 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
979 * allow for the possibility of usermode upcalls messing up our count
980 * of interrupt nesting level during the busy period that is just
981 * now starting.
983 void rcu_idle_exit(void)
985 unsigned long flags;
987 local_irq_save(flags);
988 rcu_eqs_exit(false);
989 rcu_sysidle_exit(0);
990 local_irq_restore(flags);
992 EXPORT_SYMBOL_GPL(rcu_idle_exit);
994 #ifdef CONFIG_NO_HZ_FULL
996 * rcu_user_exit - inform RCU that we are exiting userspace.
998 * Exit RCU idle mode while entering the kernel because it can
999 * run a RCU read side critical section anytime.
1001 void rcu_user_exit(void)
1003 rcu_eqs_exit(1);
1005 #endif /* CONFIG_NO_HZ_FULL */
1008 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1010 * Enter an interrupt handler, which might possibly result in exiting
1011 * idle mode, in other words, entering the mode in which read-side critical
1012 * sections can occur. The caller must have disabled interrupts.
1014 * Note that the Linux kernel is fully capable of entering an interrupt
1015 * handler that it never exits, for example when doing upcalls to
1016 * user mode! This code assumes that the idle loop never does upcalls to
1017 * user mode. If your architecture does do upcalls from the idle loop (or
1018 * does anything else that results in unbalanced calls to the irq_enter()
1019 * and irq_exit() functions), RCU will give you what you deserve, good
1020 * and hard. But very infrequently and irreproducibly.
1022 * Use things like work queues to work around this limitation.
1024 * You have been warned.
1026 void rcu_irq_enter(void)
1028 struct rcu_dynticks *rdtp;
1029 long long oldval;
1031 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1032 rdtp = this_cpu_ptr(&rcu_dynticks);
1033 oldval = rdtp->dynticks_nesting;
1034 rdtp->dynticks_nesting++;
1035 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1036 rdtp->dynticks_nesting == 0);
1037 if (oldval)
1038 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1039 else
1040 rcu_eqs_exit_common(oldval, true);
1041 rcu_sysidle_exit(1);
1045 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1047 void rcu_irq_enter_irqson(void)
1049 unsigned long flags;
1051 local_irq_save(flags);
1052 rcu_irq_enter();
1053 local_irq_restore(flags);
1057 * rcu_nmi_enter - inform RCU of entry to NMI context
1059 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1060 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1061 * that the CPU is active. This implementation permits nested NMIs, as
1062 * long as the nesting level does not overflow an int. (You will probably
1063 * run out of stack space first.)
1065 void rcu_nmi_enter(void)
1067 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1068 int incby = 2;
1070 /* Complain about underflow. */
1071 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1074 * If idle from RCU viewpoint, atomically increment ->dynticks
1075 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1076 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1077 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1078 * to be in the outermost NMI handler that interrupted an RCU-idle
1079 * period (observation due to Andy Lutomirski).
1081 if (rcu_dynticks_curr_cpu_in_eqs()) {
1082 rcu_dynticks_eqs_exit();
1083 incby = 1;
1085 rdtp->dynticks_nmi_nesting += incby;
1086 barrier();
1090 * rcu_nmi_exit - inform RCU of exit from NMI context
1092 * If we are returning from the outermost NMI handler that interrupted an
1093 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1094 * to let the RCU grace-period handling know that the CPU is back to
1095 * being RCU-idle.
1097 void rcu_nmi_exit(void)
1099 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1102 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1103 * (We are exiting an NMI handler, so RCU better be paying attention
1104 * to us!)
1106 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1107 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1110 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1111 * leave it in non-RCU-idle state.
1113 if (rdtp->dynticks_nmi_nesting != 1) {
1114 rdtp->dynticks_nmi_nesting -= 2;
1115 return;
1118 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1119 rdtp->dynticks_nmi_nesting = 0;
1120 rcu_dynticks_eqs_enter();
1124 * __rcu_is_watching - are RCU read-side critical sections safe?
1126 * Return true if RCU is watching the running CPU, which means that
1127 * this CPU can safely enter RCU read-side critical sections. Unlike
1128 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1129 * least disabled preemption.
1131 bool notrace __rcu_is_watching(void)
1133 return !rcu_dynticks_curr_cpu_in_eqs();
1137 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1139 * If the current CPU is in its idle loop and is neither in an interrupt
1140 * or NMI handler, return true.
1142 bool notrace rcu_is_watching(void)
1144 bool ret;
1146 preempt_disable_notrace();
1147 ret = __rcu_is_watching();
1148 preempt_enable_notrace();
1149 return ret;
1151 EXPORT_SYMBOL_GPL(rcu_is_watching);
1153 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1156 * Is the current CPU online? Disable preemption to avoid false positives
1157 * that could otherwise happen due to the current CPU number being sampled,
1158 * this task being preempted, its old CPU being taken offline, resuming
1159 * on some other CPU, then determining that its old CPU is now offline.
1160 * It is OK to use RCU on an offline processor during initial boot, hence
1161 * the check for rcu_scheduler_fully_active. Note also that it is OK
1162 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1163 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1164 * offline to continue to use RCU for one jiffy after marking itself
1165 * offline in the cpu_online_mask. This leniency is necessary given the
1166 * non-atomic nature of the online and offline processing, for example,
1167 * the fact that a CPU enters the scheduler after completing the teardown
1168 * of the CPU.
1170 * This is also why RCU internally marks CPUs online during in the
1171 * preparation phase and offline after the CPU has been taken down.
1173 * Disable checking if in an NMI handler because we cannot safely report
1174 * errors from NMI handlers anyway.
1176 bool rcu_lockdep_current_cpu_online(void)
1178 struct rcu_data *rdp;
1179 struct rcu_node *rnp;
1180 bool ret;
1182 if (in_nmi())
1183 return true;
1184 preempt_disable();
1185 rdp = this_cpu_ptr(&rcu_sched_data);
1186 rnp = rdp->mynode;
1187 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1188 !rcu_scheduler_fully_active;
1189 preempt_enable();
1190 return ret;
1192 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1194 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1197 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1199 * If the current CPU is idle or running at a first-level (not nested)
1200 * interrupt from idle, return true. The caller must have at least
1201 * disabled preemption.
1203 static int rcu_is_cpu_rrupt_from_idle(void)
1205 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1209 * Snapshot the specified CPU's dynticks counter so that we can later
1210 * credit them with an implicit quiescent state. Return 1 if this CPU
1211 * is in dynticks idle mode, which is an extended quiescent state.
1213 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1214 bool *isidle, unsigned long *maxj)
1216 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1217 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1218 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1219 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1220 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1221 rdp->mynode->gpnum))
1222 WRITE_ONCE(rdp->gpwrap, true);
1223 return 1;
1225 return 0;
1229 * Return true if the specified CPU has passed through a quiescent
1230 * state by virtue of being in or having passed through an dynticks
1231 * idle state since the last call to dyntick_save_progress_counter()
1232 * for this same CPU, or by virtue of having been offline.
1234 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1235 bool *isidle, unsigned long *maxj)
1237 unsigned long jtsq;
1238 int *rcrmp;
1239 unsigned long rjtsc;
1240 struct rcu_node *rnp;
1243 * If the CPU passed through or entered a dynticks idle phase with
1244 * no active irq/NMI handlers, then we can safely pretend that the CPU
1245 * already acknowledged the request to pass through a quiescent
1246 * state. Either way, that CPU cannot possibly be in an RCU
1247 * read-side critical section that started before the beginning
1248 * of the current RCU grace period.
1250 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1251 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1252 rdp->dynticks_fqs++;
1253 return 1;
1256 /* Compute and saturate jiffies_till_sched_qs. */
1257 jtsq = jiffies_till_sched_qs;
1258 rjtsc = rcu_jiffies_till_stall_check();
1259 if (jtsq > rjtsc / 2) {
1260 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1261 jtsq = rjtsc / 2;
1262 } else if (jtsq < 1) {
1263 WRITE_ONCE(jiffies_till_sched_qs, 1);
1264 jtsq = 1;
1268 * Has this CPU encountered a cond_resched_rcu_qs() since the
1269 * beginning of the grace period? For this to be the case,
1270 * the CPU has to have noticed the current grace period. This
1271 * might not be the case for nohz_full CPUs looping in the kernel.
1273 rnp = rdp->mynode;
1274 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1275 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
1276 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1277 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1278 return 1;
1281 /* Check for the CPU being offline. */
1282 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1283 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1284 rdp->offline_fqs++;
1285 return 1;
1289 * A CPU running for an extended time within the kernel can
1290 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1291 * even context-switching back and forth between a pair of
1292 * in-kernel CPU-bound tasks cannot advance grace periods.
1293 * So if the grace period is old enough, make the CPU pay attention.
1294 * Note that the unsynchronized assignments to the per-CPU
1295 * rcu_sched_qs_mask variable are safe. Yes, setting of
1296 * bits can be lost, but they will be set again on the next
1297 * force-quiescent-state pass. So lost bit sets do not result
1298 * in incorrect behavior, merely in a grace period lasting
1299 * a few jiffies longer than it might otherwise. Because
1300 * there are at most four threads involved, and because the
1301 * updates are only once every few jiffies, the probability of
1302 * lossage (and thus of slight grace-period extension) is
1303 * quite low.
1305 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1306 * is set too high, we override with half of the RCU CPU stall
1307 * warning delay.
1309 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1310 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1311 time_after(jiffies, rdp->rsp->jiffies_resched)) {
1312 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1313 WRITE_ONCE(rdp->cond_resched_completed,
1314 READ_ONCE(rdp->mynode->completed));
1315 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1316 WRITE_ONCE(*rcrmp,
1317 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1319 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1323 * If more than halfway to RCU CPU stall-warning time, do
1324 * a resched_cpu() to try to loosen things up a bit.
1326 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1327 resched_cpu(rdp->cpu);
1329 return 0;
1332 static void record_gp_stall_check_time(struct rcu_state *rsp)
1334 unsigned long j = jiffies;
1335 unsigned long j1;
1337 rsp->gp_start = j;
1338 smp_wmb(); /* Record start time before stall time. */
1339 j1 = rcu_jiffies_till_stall_check();
1340 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1341 rsp->jiffies_resched = j + j1 / 2;
1342 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1346 * Convert a ->gp_state value to a character string.
1348 static const char *gp_state_getname(short gs)
1350 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1351 return "???";
1352 return gp_state_names[gs];
1356 * Complain about starvation of grace-period kthread.
1358 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1360 unsigned long gpa;
1361 unsigned long j;
1363 j = jiffies;
1364 gpa = READ_ONCE(rsp->gp_activity);
1365 if (j - gpa > 2 * HZ) {
1366 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1367 rsp->name, j - gpa,
1368 rsp->gpnum, rsp->completed,
1369 rsp->gp_flags,
1370 gp_state_getname(rsp->gp_state), rsp->gp_state,
1371 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1372 if (rsp->gp_kthread) {
1373 sched_show_task(rsp->gp_kthread);
1374 wake_up_process(rsp->gp_kthread);
1380 * Dump stacks of all tasks running on stalled CPUs. First try using
1381 * NMIs, but fall back to manual remote stack tracing on architectures
1382 * that don't support NMI-based stack dumps. The NMI-triggered stack
1383 * traces are more accurate because they are printed by the target CPU.
1385 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1387 int cpu;
1388 unsigned long flags;
1389 struct rcu_node *rnp;
1391 rcu_for_each_leaf_node(rsp, rnp) {
1392 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1393 for_each_leaf_node_possible_cpu(rnp, cpu)
1394 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1395 if (!trigger_single_cpu_backtrace(cpu))
1396 dump_cpu_task(cpu);
1397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1402 * If too much time has passed in the current grace period, and if
1403 * so configured, go kick the relevant kthreads.
1405 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1407 unsigned long j;
1409 if (!rcu_kick_kthreads)
1410 return;
1411 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1412 if (time_after(jiffies, j) && rsp->gp_kthread &&
1413 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1414 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1415 rcu_ftrace_dump(DUMP_ALL);
1416 wake_up_process(rsp->gp_kthread);
1417 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1421 static inline void panic_on_rcu_stall(void)
1423 if (sysctl_panic_on_rcu_stall)
1424 panic("RCU Stall\n");
1427 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1429 int cpu;
1430 long delta;
1431 unsigned long flags;
1432 unsigned long gpa;
1433 unsigned long j;
1434 int ndetected = 0;
1435 struct rcu_node *rnp = rcu_get_root(rsp);
1436 long totqlen = 0;
1438 /* Kick and suppress, if so configured. */
1439 rcu_stall_kick_kthreads(rsp);
1440 if (rcu_cpu_stall_suppress)
1441 return;
1443 /* Only let one CPU complain about others per time interval. */
1445 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1446 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1447 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1448 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1449 return;
1451 WRITE_ONCE(rsp->jiffies_stall,
1452 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1456 * OK, time to rat on our buddy...
1457 * See Documentation/RCU/stallwarn.txt for info on how to debug
1458 * RCU CPU stall warnings.
1460 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1461 rsp->name);
1462 print_cpu_stall_info_begin();
1463 rcu_for_each_leaf_node(rsp, rnp) {
1464 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1465 ndetected += rcu_print_task_stall(rnp);
1466 if (rnp->qsmask != 0) {
1467 for_each_leaf_node_possible_cpu(rnp, cpu)
1468 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1469 print_cpu_stall_info(rsp, cpu);
1470 ndetected++;
1473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1476 print_cpu_stall_info_end();
1477 for_each_possible_cpu(cpu)
1478 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1479 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1480 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1481 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1482 if (ndetected) {
1483 rcu_dump_cpu_stacks(rsp);
1485 /* Complain about tasks blocking the grace period. */
1486 rcu_print_detail_task_stall(rsp);
1487 } else {
1488 if (READ_ONCE(rsp->gpnum) != gpnum ||
1489 READ_ONCE(rsp->completed) == gpnum) {
1490 pr_err("INFO: Stall ended before state dump start\n");
1491 } else {
1492 j = jiffies;
1493 gpa = READ_ONCE(rsp->gp_activity);
1494 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1495 rsp->name, j - gpa, j, gpa,
1496 jiffies_till_next_fqs,
1497 rcu_get_root(rsp)->qsmask);
1498 /* In this case, the current CPU might be at fault. */
1499 sched_show_task(current);
1503 rcu_check_gp_kthread_starvation(rsp);
1505 panic_on_rcu_stall();
1507 force_quiescent_state(rsp); /* Kick them all. */
1510 static void print_cpu_stall(struct rcu_state *rsp)
1512 int cpu;
1513 unsigned long flags;
1514 struct rcu_node *rnp = rcu_get_root(rsp);
1515 long totqlen = 0;
1517 /* Kick and suppress, if so configured. */
1518 rcu_stall_kick_kthreads(rsp);
1519 if (rcu_cpu_stall_suppress)
1520 return;
1523 * OK, time to rat on ourselves...
1524 * See Documentation/RCU/stallwarn.txt for info on how to debug
1525 * RCU CPU stall warnings.
1527 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1528 print_cpu_stall_info_begin();
1529 print_cpu_stall_info(rsp, smp_processor_id());
1530 print_cpu_stall_info_end();
1531 for_each_possible_cpu(cpu)
1532 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1533 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1534 jiffies - rsp->gp_start,
1535 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1537 rcu_check_gp_kthread_starvation(rsp);
1539 rcu_dump_cpu_stacks(rsp);
1541 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1542 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1543 WRITE_ONCE(rsp->jiffies_stall,
1544 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1545 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1547 panic_on_rcu_stall();
1550 * Attempt to revive the RCU machinery by forcing a context switch.
1552 * A context switch would normally allow the RCU state machine to make
1553 * progress and it could be we're stuck in kernel space without context
1554 * switches for an entirely unreasonable amount of time.
1556 resched_cpu(smp_processor_id());
1559 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1561 unsigned long completed;
1562 unsigned long gpnum;
1563 unsigned long gps;
1564 unsigned long j;
1565 unsigned long js;
1566 struct rcu_node *rnp;
1568 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1569 !rcu_gp_in_progress(rsp))
1570 return;
1571 rcu_stall_kick_kthreads(rsp);
1572 j = jiffies;
1575 * Lots of memory barriers to reject false positives.
1577 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1578 * then rsp->gp_start, and finally rsp->completed. These values
1579 * are updated in the opposite order with memory barriers (or
1580 * equivalent) during grace-period initialization and cleanup.
1581 * Now, a false positive can occur if we get an new value of
1582 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1583 * the memory barriers, the only way that this can happen is if one
1584 * grace period ends and another starts between these two fetches.
1585 * Detect this by comparing rsp->completed with the previous fetch
1586 * from rsp->gpnum.
1588 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1589 * and rsp->gp_start suffice to forestall false positives.
1591 gpnum = READ_ONCE(rsp->gpnum);
1592 smp_rmb(); /* Pick up ->gpnum first... */
1593 js = READ_ONCE(rsp->jiffies_stall);
1594 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1595 gps = READ_ONCE(rsp->gp_start);
1596 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1597 completed = READ_ONCE(rsp->completed);
1598 if (ULONG_CMP_GE(completed, gpnum) ||
1599 ULONG_CMP_LT(j, js) ||
1600 ULONG_CMP_GE(gps, js))
1601 return; /* No stall or GP completed since entering function. */
1602 rnp = rdp->mynode;
1603 if (rcu_gp_in_progress(rsp) &&
1604 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1606 /* We haven't checked in, so go dump stack. */
1607 print_cpu_stall(rsp);
1609 } else if (rcu_gp_in_progress(rsp) &&
1610 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1612 /* They had a few time units to dump stack, so complain. */
1613 print_other_cpu_stall(rsp, gpnum);
1618 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1620 * Set the stall-warning timeout way off into the future, thus preventing
1621 * any RCU CPU stall-warning messages from appearing in the current set of
1622 * RCU grace periods.
1624 * The caller must disable hard irqs.
1626 void rcu_cpu_stall_reset(void)
1628 struct rcu_state *rsp;
1630 for_each_rcu_flavor(rsp)
1631 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1635 * Initialize the specified rcu_data structure's default callback list
1636 * to empty. The default callback list is the one that is not used by
1637 * no-callbacks CPUs.
1639 static void init_default_callback_list(struct rcu_data *rdp)
1641 int i;
1643 rdp->nxtlist = NULL;
1644 for (i = 0; i < RCU_NEXT_SIZE; i++)
1645 rdp->nxttail[i] = &rdp->nxtlist;
1649 * Initialize the specified rcu_data structure's callback list to empty.
1651 static void init_callback_list(struct rcu_data *rdp)
1653 if (init_nocb_callback_list(rdp))
1654 return;
1655 init_default_callback_list(rdp);
1659 * Determine the value that ->completed will have at the end of the
1660 * next subsequent grace period. This is used to tag callbacks so that
1661 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1662 * been dyntick-idle for an extended period with callbacks under the
1663 * influence of RCU_FAST_NO_HZ.
1665 * The caller must hold rnp->lock with interrupts disabled.
1667 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1668 struct rcu_node *rnp)
1671 * If RCU is idle, we just wait for the next grace period.
1672 * But we can only be sure that RCU is idle if we are looking
1673 * at the root rcu_node structure -- otherwise, a new grace
1674 * period might have started, but just not yet gotten around
1675 * to initializing the current non-root rcu_node structure.
1677 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1678 return rnp->completed + 1;
1681 * Otherwise, wait for a possible partial grace period and
1682 * then the subsequent full grace period.
1684 return rnp->completed + 2;
1688 * Trace-event helper function for rcu_start_future_gp() and
1689 * rcu_nocb_wait_gp().
1691 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1692 unsigned long c, const char *s)
1694 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1695 rnp->completed, c, rnp->level,
1696 rnp->grplo, rnp->grphi, s);
1700 * Start some future grace period, as needed to handle newly arrived
1701 * callbacks. The required future grace periods are recorded in each
1702 * rcu_node structure's ->need_future_gp field. Returns true if there
1703 * is reason to awaken the grace-period kthread.
1705 * The caller must hold the specified rcu_node structure's ->lock.
1707 static bool __maybe_unused
1708 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1709 unsigned long *c_out)
1711 unsigned long c;
1712 int i;
1713 bool ret = false;
1714 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1717 * Pick up grace-period number for new callbacks. If this
1718 * grace period is already marked as needed, return to the caller.
1720 c = rcu_cbs_completed(rdp->rsp, rnp);
1721 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1722 if (rnp->need_future_gp[c & 0x1]) {
1723 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1724 goto out;
1728 * If either this rcu_node structure or the root rcu_node structure
1729 * believe that a grace period is in progress, then we must wait
1730 * for the one following, which is in "c". Because our request
1731 * will be noticed at the end of the current grace period, we don't
1732 * need to explicitly start one. We only do the lockless check
1733 * of rnp_root's fields if the current rcu_node structure thinks
1734 * there is no grace period in flight, and because we hold rnp->lock,
1735 * the only possible change is when rnp_root's two fields are
1736 * equal, in which case rnp_root->gpnum might be concurrently
1737 * incremented. But that is OK, as it will just result in our
1738 * doing some extra useless work.
1740 if (rnp->gpnum != rnp->completed ||
1741 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1742 rnp->need_future_gp[c & 0x1]++;
1743 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1744 goto out;
1748 * There might be no grace period in progress. If we don't already
1749 * hold it, acquire the root rcu_node structure's lock in order to
1750 * start one (if needed).
1752 if (rnp != rnp_root)
1753 raw_spin_lock_rcu_node(rnp_root);
1756 * Get a new grace-period number. If there really is no grace
1757 * period in progress, it will be smaller than the one we obtained
1758 * earlier. Adjust callbacks as needed. Note that even no-CBs
1759 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1761 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1762 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1763 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1764 rdp->nxtcompleted[i] = c;
1767 * If the needed for the required grace period is already
1768 * recorded, trace and leave.
1770 if (rnp_root->need_future_gp[c & 0x1]) {
1771 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1772 goto unlock_out;
1775 /* Record the need for the future grace period. */
1776 rnp_root->need_future_gp[c & 0x1]++;
1778 /* If a grace period is not already in progress, start one. */
1779 if (rnp_root->gpnum != rnp_root->completed) {
1780 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1781 } else {
1782 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1783 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1785 unlock_out:
1786 if (rnp != rnp_root)
1787 raw_spin_unlock_rcu_node(rnp_root);
1788 out:
1789 if (c_out != NULL)
1790 *c_out = c;
1791 return ret;
1795 * Clean up any old requests for the just-ended grace period. Also return
1796 * whether any additional grace periods have been requested. Also invoke
1797 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1798 * waiting for this grace period to complete.
1800 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1802 int c = rnp->completed;
1803 int needmore;
1804 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1806 rnp->need_future_gp[c & 0x1] = 0;
1807 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1808 trace_rcu_future_gp(rnp, rdp, c,
1809 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1810 return needmore;
1814 * Awaken the grace-period kthread for the specified flavor of RCU.
1815 * Don't do a self-awaken, and don't bother awakening when there is
1816 * nothing for the grace-period kthread to do (as in several CPUs
1817 * raced to awaken, and we lost), and finally don't try to awaken
1818 * a kthread that has not yet been created.
1820 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1822 if (current == rsp->gp_kthread ||
1823 !READ_ONCE(rsp->gp_flags) ||
1824 !rsp->gp_kthread)
1825 return;
1826 swake_up(&rsp->gp_wq);
1830 * If there is room, assign a ->completed number to any callbacks on
1831 * this CPU that have not already been assigned. Also accelerate any
1832 * callbacks that were previously assigned a ->completed number that has
1833 * since proven to be too conservative, which can happen if callbacks get
1834 * assigned a ->completed number while RCU is idle, but with reference to
1835 * a non-root rcu_node structure. This function is idempotent, so it does
1836 * not hurt to call it repeatedly. Returns an flag saying that we should
1837 * awaken the RCU grace-period kthread.
1839 * The caller must hold rnp->lock with interrupts disabled.
1841 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1842 struct rcu_data *rdp)
1844 unsigned long c;
1845 int i;
1846 bool ret;
1848 /* If the CPU has no callbacks, nothing to do. */
1849 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1850 return false;
1853 * Starting from the sublist containing the callbacks most
1854 * recently assigned a ->completed number and working down, find the
1855 * first sublist that is not assignable to an upcoming grace period.
1856 * Such a sublist has something in it (first two tests) and has
1857 * a ->completed number assigned that will complete sooner than
1858 * the ->completed number for newly arrived callbacks (last test).
1860 * The key point is that any later sublist can be assigned the
1861 * same ->completed number as the newly arrived callbacks, which
1862 * means that the callbacks in any of these later sublist can be
1863 * grouped into a single sublist, whether or not they have already
1864 * been assigned a ->completed number.
1866 c = rcu_cbs_completed(rsp, rnp);
1867 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1868 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1869 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1870 break;
1873 * If there are no sublist for unassigned callbacks, leave.
1874 * At the same time, advance "i" one sublist, so that "i" will
1875 * index into the sublist where all the remaining callbacks should
1876 * be grouped into.
1878 if (++i >= RCU_NEXT_TAIL)
1879 return false;
1882 * Assign all subsequent callbacks' ->completed number to the next
1883 * full grace period and group them all in the sublist initially
1884 * indexed by "i".
1886 for (; i <= RCU_NEXT_TAIL; i++) {
1887 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1888 rdp->nxtcompleted[i] = c;
1890 /* Record any needed additional grace periods. */
1891 ret = rcu_start_future_gp(rnp, rdp, NULL);
1893 /* Trace depending on how much we were able to accelerate. */
1894 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1895 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1896 else
1897 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1898 return ret;
1902 * Move any callbacks whose grace period has completed to the
1903 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1904 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1905 * sublist. This function is idempotent, so it does not hurt to
1906 * invoke it repeatedly. As long as it is not invoked -too- often...
1907 * Returns true if the RCU grace-period kthread needs to be awakened.
1909 * The caller must hold rnp->lock with interrupts disabled.
1911 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1912 struct rcu_data *rdp)
1914 int i, j;
1916 /* If the CPU has no callbacks, nothing to do. */
1917 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1918 return false;
1921 * Find all callbacks whose ->completed numbers indicate that they
1922 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1924 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1925 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1926 break;
1927 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1929 /* Clean up any sublist tail pointers that were misordered above. */
1930 for (j = RCU_WAIT_TAIL; j < i; j++)
1931 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1933 /* Copy down callbacks to fill in empty sublists. */
1934 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1935 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1936 break;
1937 rdp->nxttail[j] = rdp->nxttail[i];
1938 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1941 /* Classify any remaining callbacks. */
1942 return rcu_accelerate_cbs(rsp, rnp, rdp);
1946 * Update CPU-local rcu_data state to record the beginnings and ends of
1947 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1948 * structure corresponding to the current CPU, and must have irqs disabled.
1949 * Returns true if the grace-period kthread needs to be awakened.
1951 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1952 struct rcu_data *rdp)
1954 bool ret;
1955 bool need_gp;
1957 /* Handle the ends of any preceding grace periods first. */
1958 if (rdp->completed == rnp->completed &&
1959 !unlikely(READ_ONCE(rdp->gpwrap))) {
1961 /* No grace period end, so just accelerate recent callbacks. */
1962 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1964 } else {
1966 /* Advance callbacks. */
1967 ret = rcu_advance_cbs(rsp, rnp, rdp);
1969 /* Remember that we saw this grace-period completion. */
1970 rdp->completed = rnp->completed;
1971 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1974 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1976 * If the current grace period is waiting for this CPU,
1977 * set up to detect a quiescent state, otherwise don't
1978 * go looking for one.
1980 rdp->gpnum = rnp->gpnum;
1981 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1982 need_gp = !!(rnp->qsmask & rdp->grpmask);
1983 rdp->cpu_no_qs.b.norm = need_gp;
1984 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1985 rdp->core_needs_qs = need_gp;
1986 zero_cpu_stall_ticks(rdp);
1987 WRITE_ONCE(rdp->gpwrap, false);
1989 return ret;
1992 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1994 unsigned long flags;
1995 bool needwake;
1996 struct rcu_node *rnp;
1998 local_irq_save(flags);
1999 rnp = rdp->mynode;
2000 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
2001 rdp->completed == READ_ONCE(rnp->completed) &&
2002 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2003 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2004 local_irq_restore(flags);
2005 return;
2007 needwake = __note_gp_changes(rsp, rnp, rdp);
2008 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2009 if (needwake)
2010 rcu_gp_kthread_wake(rsp);
2013 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2015 if (delay > 0 &&
2016 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2017 schedule_timeout_uninterruptible(delay);
2021 * Initialize a new grace period. Return false if no grace period required.
2023 static bool rcu_gp_init(struct rcu_state *rsp)
2025 unsigned long oldmask;
2026 struct rcu_data *rdp;
2027 struct rcu_node *rnp = rcu_get_root(rsp);
2029 WRITE_ONCE(rsp->gp_activity, jiffies);
2030 raw_spin_lock_irq_rcu_node(rnp);
2031 if (!READ_ONCE(rsp->gp_flags)) {
2032 /* Spurious wakeup, tell caller to go back to sleep. */
2033 raw_spin_unlock_irq_rcu_node(rnp);
2034 return false;
2036 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2038 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2040 * Grace period already in progress, don't start another.
2041 * Not supposed to be able to happen.
2043 raw_spin_unlock_irq_rcu_node(rnp);
2044 return false;
2047 /* Advance to a new grace period and initialize state. */
2048 record_gp_stall_check_time(rsp);
2049 /* Record GP times before starting GP, hence smp_store_release(). */
2050 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2051 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2052 raw_spin_unlock_irq_rcu_node(rnp);
2055 * Apply per-leaf buffered online and offline operations to the
2056 * rcu_node tree. Note that this new grace period need not wait
2057 * for subsequent online CPUs, and that quiescent-state forcing
2058 * will handle subsequent offline CPUs.
2060 rcu_for_each_leaf_node(rsp, rnp) {
2061 rcu_gp_slow(rsp, gp_preinit_delay);
2062 raw_spin_lock_irq_rcu_node(rnp);
2063 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2064 !rnp->wait_blkd_tasks) {
2065 /* Nothing to do on this leaf rcu_node structure. */
2066 raw_spin_unlock_irq_rcu_node(rnp);
2067 continue;
2070 /* Record old state, apply changes to ->qsmaskinit field. */
2071 oldmask = rnp->qsmaskinit;
2072 rnp->qsmaskinit = rnp->qsmaskinitnext;
2074 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2075 if (!oldmask != !rnp->qsmaskinit) {
2076 if (!oldmask) /* First online CPU for this rcu_node. */
2077 rcu_init_new_rnp(rnp);
2078 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2079 rnp->wait_blkd_tasks = true;
2080 else /* Last offline CPU and can propagate. */
2081 rcu_cleanup_dead_rnp(rnp);
2085 * If all waited-on tasks from prior grace period are
2086 * done, and if all this rcu_node structure's CPUs are
2087 * still offline, propagate up the rcu_node tree and
2088 * clear ->wait_blkd_tasks. Otherwise, if one of this
2089 * rcu_node structure's CPUs has since come back online,
2090 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2091 * checks for this, so just call it unconditionally).
2093 if (rnp->wait_blkd_tasks &&
2094 (!rcu_preempt_has_tasks(rnp) ||
2095 rnp->qsmaskinit)) {
2096 rnp->wait_blkd_tasks = false;
2097 rcu_cleanup_dead_rnp(rnp);
2100 raw_spin_unlock_irq_rcu_node(rnp);
2104 * Set the quiescent-state-needed bits in all the rcu_node
2105 * structures for all currently online CPUs in breadth-first order,
2106 * starting from the root rcu_node structure, relying on the layout
2107 * of the tree within the rsp->node[] array. Note that other CPUs
2108 * will access only the leaves of the hierarchy, thus seeing that no
2109 * grace period is in progress, at least until the corresponding
2110 * leaf node has been initialized.
2112 * The grace period cannot complete until the initialization
2113 * process finishes, because this kthread handles both.
2115 rcu_for_each_node_breadth_first(rsp, rnp) {
2116 rcu_gp_slow(rsp, gp_init_delay);
2117 raw_spin_lock_irq_rcu_node(rnp);
2118 rdp = this_cpu_ptr(rsp->rda);
2119 rcu_preempt_check_blocked_tasks(rnp);
2120 rnp->qsmask = rnp->qsmaskinit;
2121 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2122 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2123 WRITE_ONCE(rnp->completed, rsp->completed);
2124 if (rnp == rdp->mynode)
2125 (void)__note_gp_changes(rsp, rnp, rdp);
2126 rcu_preempt_boost_start_gp(rnp);
2127 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2128 rnp->level, rnp->grplo,
2129 rnp->grphi, rnp->qsmask);
2130 raw_spin_unlock_irq_rcu_node(rnp);
2131 cond_resched_rcu_qs();
2132 WRITE_ONCE(rsp->gp_activity, jiffies);
2135 return true;
2139 * Helper function for wait_event_interruptible_timeout() wakeup
2140 * at force-quiescent-state time.
2142 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2144 struct rcu_node *rnp = rcu_get_root(rsp);
2146 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2147 *gfp = READ_ONCE(rsp->gp_flags);
2148 if (*gfp & RCU_GP_FLAG_FQS)
2149 return true;
2151 /* The current grace period has completed. */
2152 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2153 return true;
2155 return false;
2159 * Do one round of quiescent-state forcing.
2161 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2163 bool isidle = false;
2164 unsigned long maxj;
2165 struct rcu_node *rnp = rcu_get_root(rsp);
2167 WRITE_ONCE(rsp->gp_activity, jiffies);
2168 rsp->n_force_qs++;
2169 if (first_time) {
2170 /* Collect dyntick-idle snapshots. */
2171 if (is_sysidle_rcu_state(rsp)) {
2172 isidle = true;
2173 maxj = jiffies - ULONG_MAX / 4;
2175 force_qs_rnp(rsp, dyntick_save_progress_counter,
2176 &isidle, &maxj);
2177 rcu_sysidle_report_gp(rsp, isidle, maxj);
2178 } else {
2179 /* Handle dyntick-idle and offline CPUs. */
2180 isidle = true;
2181 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2183 /* Clear flag to prevent immediate re-entry. */
2184 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2185 raw_spin_lock_irq_rcu_node(rnp);
2186 WRITE_ONCE(rsp->gp_flags,
2187 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2188 raw_spin_unlock_irq_rcu_node(rnp);
2193 * Clean up after the old grace period.
2195 static void rcu_gp_cleanup(struct rcu_state *rsp)
2197 unsigned long gp_duration;
2198 bool needgp = false;
2199 int nocb = 0;
2200 struct rcu_data *rdp;
2201 struct rcu_node *rnp = rcu_get_root(rsp);
2202 struct swait_queue_head *sq;
2204 WRITE_ONCE(rsp->gp_activity, jiffies);
2205 raw_spin_lock_irq_rcu_node(rnp);
2206 gp_duration = jiffies - rsp->gp_start;
2207 if (gp_duration > rsp->gp_max)
2208 rsp->gp_max = gp_duration;
2211 * We know the grace period is complete, but to everyone else
2212 * it appears to still be ongoing. But it is also the case
2213 * that to everyone else it looks like there is nothing that
2214 * they can do to advance the grace period. It is therefore
2215 * safe for us to drop the lock in order to mark the grace
2216 * period as completed in all of the rcu_node structures.
2218 raw_spin_unlock_irq_rcu_node(rnp);
2221 * Propagate new ->completed value to rcu_node structures so
2222 * that other CPUs don't have to wait until the start of the next
2223 * grace period to process their callbacks. This also avoids
2224 * some nasty RCU grace-period initialization races by forcing
2225 * the end of the current grace period to be completely recorded in
2226 * all of the rcu_node structures before the beginning of the next
2227 * grace period is recorded in any of the rcu_node structures.
2229 rcu_for_each_node_breadth_first(rsp, rnp) {
2230 raw_spin_lock_irq_rcu_node(rnp);
2231 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2232 WARN_ON_ONCE(rnp->qsmask);
2233 WRITE_ONCE(rnp->completed, rsp->gpnum);
2234 rdp = this_cpu_ptr(rsp->rda);
2235 if (rnp == rdp->mynode)
2236 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2237 /* smp_mb() provided by prior unlock-lock pair. */
2238 nocb += rcu_future_gp_cleanup(rsp, rnp);
2239 sq = rcu_nocb_gp_get(rnp);
2240 raw_spin_unlock_irq_rcu_node(rnp);
2241 rcu_nocb_gp_cleanup(sq);
2242 cond_resched_rcu_qs();
2243 WRITE_ONCE(rsp->gp_activity, jiffies);
2244 rcu_gp_slow(rsp, gp_cleanup_delay);
2246 rnp = rcu_get_root(rsp);
2247 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2248 rcu_nocb_gp_set(rnp, nocb);
2250 /* Declare grace period done. */
2251 WRITE_ONCE(rsp->completed, rsp->gpnum);
2252 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2253 rsp->gp_state = RCU_GP_IDLE;
2254 rdp = this_cpu_ptr(rsp->rda);
2255 /* Advance CBs to reduce false positives below. */
2256 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2257 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2258 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2259 trace_rcu_grace_period(rsp->name,
2260 READ_ONCE(rsp->gpnum),
2261 TPS("newreq"));
2263 raw_spin_unlock_irq_rcu_node(rnp);
2267 * Body of kthread that handles grace periods.
2269 static int __noreturn rcu_gp_kthread(void *arg)
2271 bool first_gp_fqs;
2272 int gf;
2273 unsigned long j;
2274 int ret;
2275 struct rcu_state *rsp = arg;
2276 struct rcu_node *rnp = rcu_get_root(rsp);
2278 rcu_bind_gp_kthread();
2279 for (;;) {
2281 /* Handle grace-period start. */
2282 for (;;) {
2283 trace_rcu_grace_period(rsp->name,
2284 READ_ONCE(rsp->gpnum),
2285 TPS("reqwait"));
2286 rsp->gp_state = RCU_GP_WAIT_GPS;
2287 swait_event_interruptible(rsp->gp_wq,
2288 READ_ONCE(rsp->gp_flags) &
2289 RCU_GP_FLAG_INIT);
2290 rsp->gp_state = RCU_GP_DONE_GPS;
2291 /* Locking provides needed memory barrier. */
2292 if (rcu_gp_init(rsp))
2293 break;
2294 cond_resched_rcu_qs();
2295 WRITE_ONCE(rsp->gp_activity, jiffies);
2296 WARN_ON(signal_pending(current));
2297 trace_rcu_grace_period(rsp->name,
2298 READ_ONCE(rsp->gpnum),
2299 TPS("reqwaitsig"));
2302 /* Handle quiescent-state forcing. */
2303 first_gp_fqs = true;
2304 j = jiffies_till_first_fqs;
2305 if (j > HZ) {
2306 j = HZ;
2307 jiffies_till_first_fqs = HZ;
2309 ret = 0;
2310 for (;;) {
2311 if (!ret) {
2312 rsp->jiffies_force_qs = jiffies + j;
2313 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2314 jiffies + 3 * j);
2316 trace_rcu_grace_period(rsp->name,
2317 READ_ONCE(rsp->gpnum),
2318 TPS("fqswait"));
2319 rsp->gp_state = RCU_GP_WAIT_FQS;
2320 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2321 rcu_gp_fqs_check_wake(rsp, &gf), j);
2322 rsp->gp_state = RCU_GP_DOING_FQS;
2323 /* Locking provides needed memory barriers. */
2324 /* If grace period done, leave loop. */
2325 if (!READ_ONCE(rnp->qsmask) &&
2326 !rcu_preempt_blocked_readers_cgp(rnp))
2327 break;
2328 /* If time for quiescent-state forcing, do it. */
2329 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2330 (gf & RCU_GP_FLAG_FQS)) {
2331 trace_rcu_grace_period(rsp->name,
2332 READ_ONCE(rsp->gpnum),
2333 TPS("fqsstart"));
2334 rcu_gp_fqs(rsp, first_gp_fqs);
2335 first_gp_fqs = false;
2336 trace_rcu_grace_period(rsp->name,
2337 READ_ONCE(rsp->gpnum),
2338 TPS("fqsend"));
2339 cond_resched_rcu_qs();
2340 WRITE_ONCE(rsp->gp_activity, jiffies);
2341 ret = 0; /* Force full wait till next FQS. */
2342 j = jiffies_till_next_fqs;
2343 if (j > HZ) {
2344 j = HZ;
2345 jiffies_till_next_fqs = HZ;
2346 } else if (j < 1) {
2347 j = 1;
2348 jiffies_till_next_fqs = 1;
2350 } else {
2351 /* Deal with stray signal. */
2352 cond_resched_rcu_qs();
2353 WRITE_ONCE(rsp->gp_activity, jiffies);
2354 WARN_ON(signal_pending(current));
2355 trace_rcu_grace_period(rsp->name,
2356 READ_ONCE(rsp->gpnum),
2357 TPS("fqswaitsig"));
2358 ret = 1; /* Keep old FQS timing. */
2359 j = jiffies;
2360 if (time_after(jiffies, rsp->jiffies_force_qs))
2361 j = 1;
2362 else
2363 j = rsp->jiffies_force_qs - j;
2367 /* Handle grace-period end. */
2368 rsp->gp_state = RCU_GP_CLEANUP;
2369 rcu_gp_cleanup(rsp);
2370 rsp->gp_state = RCU_GP_CLEANED;
2375 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2376 * in preparation for detecting the next grace period. The caller must hold
2377 * the root node's ->lock and hard irqs must be disabled.
2379 * Note that it is legal for a dying CPU (which is marked as offline) to
2380 * invoke this function. This can happen when the dying CPU reports its
2381 * quiescent state.
2383 * Returns true if the grace-period kthread must be awakened.
2385 static bool
2386 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2387 struct rcu_data *rdp)
2389 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2391 * Either we have not yet spawned the grace-period
2392 * task, this CPU does not need another grace period,
2393 * or a grace period is already in progress.
2394 * Either way, don't start a new grace period.
2396 return false;
2398 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2399 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2400 TPS("newreq"));
2403 * We can't do wakeups while holding the rnp->lock, as that
2404 * could cause possible deadlocks with the rq->lock. Defer
2405 * the wakeup to our caller.
2407 return true;
2411 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2412 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2413 * is invoked indirectly from rcu_advance_cbs(), which would result in
2414 * endless recursion -- or would do so if it wasn't for the self-deadlock
2415 * that is encountered beforehand.
2417 * Returns true if the grace-period kthread needs to be awakened.
2419 static bool rcu_start_gp(struct rcu_state *rsp)
2421 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2422 struct rcu_node *rnp = rcu_get_root(rsp);
2423 bool ret = false;
2426 * If there is no grace period in progress right now, any
2427 * callbacks we have up to this point will be satisfied by the
2428 * next grace period. Also, advancing the callbacks reduces the
2429 * probability of false positives from cpu_needs_another_gp()
2430 * resulting in pointless grace periods. So, advance callbacks
2431 * then start the grace period!
2433 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2434 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2435 return ret;
2439 * Report a full set of quiescent states to the specified rcu_state data
2440 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2441 * kthread if another grace period is required. Whether we wake
2442 * the grace-period kthread or it awakens itself for the next round
2443 * of quiescent-state forcing, that kthread will clean up after the
2444 * just-completed grace period. Note that the caller must hold rnp->lock,
2445 * which is released before return.
2447 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2448 __releases(rcu_get_root(rsp)->lock)
2450 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2451 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2452 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2453 rcu_gp_kthread_wake(rsp);
2457 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2458 * Allows quiescent states for a group of CPUs to be reported at one go
2459 * to the specified rcu_node structure, though all the CPUs in the group
2460 * must be represented by the same rcu_node structure (which need not be a
2461 * leaf rcu_node structure, though it often will be). The gps parameter
2462 * is the grace-period snapshot, which means that the quiescent states
2463 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2464 * must be held upon entry, and it is released before return.
2466 static void
2467 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2468 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2469 __releases(rnp->lock)
2471 unsigned long oldmask = 0;
2472 struct rcu_node *rnp_c;
2474 /* Walk up the rcu_node hierarchy. */
2475 for (;;) {
2476 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2479 * Our bit has already been cleared, or the
2480 * relevant grace period is already over, so done.
2482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2483 return;
2485 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2486 rnp->qsmask &= ~mask;
2487 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2488 mask, rnp->qsmask, rnp->level,
2489 rnp->grplo, rnp->grphi,
2490 !!rnp->gp_tasks);
2491 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2493 /* Other bits still set at this level, so done. */
2494 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2495 return;
2497 mask = rnp->grpmask;
2498 if (rnp->parent == NULL) {
2500 /* No more levels. Exit loop holding root lock. */
2502 break;
2504 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2505 rnp_c = rnp;
2506 rnp = rnp->parent;
2507 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2508 oldmask = rnp_c->qsmask;
2512 * Get here if we are the last CPU to pass through a quiescent
2513 * state for this grace period. Invoke rcu_report_qs_rsp()
2514 * to clean up and start the next grace period if one is needed.
2516 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2520 * Record a quiescent state for all tasks that were previously queued
2521 * on the specified rcu_node structure and that were blocking the current
2522 * RCU grace period. The caller must hold the specified rnp->lock with
2523 * irqs disabled, and this lock is released upon return, but irqs remain
2524 * disabled.
2526 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2527 struct rcu_node *rnp, unsigned long flags)
2528 __releases(rnp->lock)
2530 unsigned long gps;
2531 unsigned long mask;
2532 struct rcu_node *rnp_p;
2534 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2535 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2536 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2537 return; /* Still need more quiescent states! */
2540 rnp_p = rnp->parent;
2541 if (rnp_p == NULL) {
2543 * Only one rcu_node structure in the tree, so don't
2544 * try to report up to its nonexistent parent!
2546 rcu_report_qs_rsp(rsp, flags);
2547 return;
2550 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2551 gps = rnp->gpnum;
2552 mask = rnp->grpmask;
2553 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2554 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2555 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2559 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2560 * structure. This must be called from the specified CPU.
2562 static void
2563 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2565 unsigned long flags;
2566 unsigned long mask;
2567 bool needwake;
2568 struct rcu_node *rnp;
2570 rnp = rdp->mynode;
2571 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2572 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2573 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2576 * The grace period in which this quiescent state was
2577 * recorded has ended, so don't report it upwards.
2578 * We will instead need a new quiescent state that lies
2579 * within the current grace period.
2581 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2582 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2583 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2584 return;
2586 mask = rdp->grpmask;
2587 if ((rnp->qsmask & mask) == 0) {
2588 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2589 } else {
2590 rdp->core_needs_qs = false;
2593 * This GP can't end until cpu checks in, so all of our
2594 * callbacks can be processed during the next GP.
2596 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2598 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2599 /* ^^^ Released rnp->lock */
2600 if (needwake)
2601 rcu_gp_kthread_wake(rsp);
2606 * Check to see if there is a new grace period of which this CPU
2607 * is not yet aware, and if so, set up local rcu_data state for it.
2608 * Otherwise, see if this CPU has just passed through its first
2609 * quiescent state for this grace period, and record that fact if so.
2611 static void
2612 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2614 /* Check for grace-period ends and beginnings. */
2615 note_gp_changes(rsp, rdp);
2618 * Does this CPU still need to do its part for current grace period?
2619 * If no, return and let the other CPUs do their part as well.
2621 if (!rdp->core_needs_qs)
2622 return;
2625 * Was there a quiescent state since the beginning of the grace
2626 * period? If no, then exit and wait for the next call.
2628 if (rdp->cpu_no_qs.b.norm)
2629 return;
2632 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2633 * judge of that).
2635 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2639 * Send the specified CPU's RCU callbacks to the orphanage. The
2640 * specified CPU must be offline, and the caller must hold the
2641 * ->orphan_lock.
2643 static void
2644 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2645 struct rcu_node *rnp, struct rcu_data *rdp)
2647 /* No-CBs CPUs do not have orphanable callbacks. */
2648 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2649 return;
2652 * Orphan the callbacks. First adjust the counts. This is safe
2653 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2654 * cannot be running now. Thus no memory barrier is required.
2656 if (rdp->nxtlist != NULL) {
2657 rsp->qlen_lazy += rdp->qlen_lazy;
2658 rsp->qlen += rdp->qlen;
2659 rdp->n_cbs_orphaned += rdp->qlen;
2660 rdp->qlen_lazy = 0;
2661 WRITE_ONCE(rdp->qlen, 0);
2665 * Next, move those callbacks still needing a grace period to
2666 * the orphanage, where some other CPU will pick them up.
2667 * Some of the callbacks might have gone partway through a grace
2668 * period, but that is too bad. They get to start over because we
2669 * cannot assume that grace periods are synchronized across CPUs.
2670 * We don't bother updating the ->nxttail[] array yet, instead
2671 * we just reset the whole thing later on.
2673 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2674 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2675 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2676 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2680 * Then move the ready-to-invoke callbacks to the orphanage,
2681 * where some other CPU will pick them up. These will not be
2682 * required to pass though another grace period: They are done.
2684 if (rdp->nxtlist != NULL) {
2685 *rsp->orphan_donetail = rdp->nxtlist;
2686 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2690 * Finally, initialize the rcu_data structure's list to empty and
2691 * disallow further callbacks on this CPU.
2693 init_callback_list(rdp);
2694 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2698 * Adopt the RCU callbacks from the specified rcu_state structure's
2699 * orphanage. The caller must hold the ->orphan_lock.
2701 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2703 int i;
2704 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2706 /* No-CBs CPUs are handled specially. */
2707 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2708 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2709 return;
2711 /* Do the accounting first. */
2712 rdp->qlen_lazy += rsp->qlen_lazy;
2713 rdp->qlen += rsp->qlen;
2714 rdp->n_cbs_adopted += rsp->qlen;
2715 if (rsp->qlen_lazy != rsp->qlen)
2716 rcu_idle_count_callbacks_posted();
2717 rsp->qlen_lazy = 0;
2718 rsp->qlen = 0;
2721 * We do not need a memory barrier here because the only way we
2722 * can get here if there is an rcu_barrier() in flight is if
2723 * we are the task doing the rcu_barrier().
2726 /* First adopt the ready-to-invoke callbacks. */
2727 if (rsp->orphan_donelist != NULL) {
2728 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2729 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2730 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2731 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2732 rdp->nxttail[i] = rsp->orphan_donetail;
2733 rsp->orphan_donelist = NULL;
2734 rsp->orphan_donetail = &rsp->orphan_donelist;
2737 /* And then adopt the callbacks that still need a grace period. */
2738 if (rsp->orphan_nxtlist != NULL) {
2739 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2740 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2741 rsp->orphan_nxtlist = NULL;
2742 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2747 * Trace the fact that this CPU is going offline.
2749 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2751 RCU_TRACE(unsigned long mask);
2752 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2753 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2755 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2756 return;
2758 RCU_TRACE(mask = rdp->grpmask);
2759 trace_rcu_grace_period(rsp->name,
2760 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2761 TPS("cpuofl"));
2765 * All CPUs for the specified rcu_node structure have gone offline,
2766 * and all tasks that were preempted within an RCU read-side critical
2767 * section while running on one of those CPUs have since exited their RCU
2768 * read-side critical section. Some other CPU is reporting this fact with
2769 * the specified rcu_node structure's ->lock held and interrupts disabled.
2770 * This function therefore goes up the tree of rcu_node structures,
2771 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2772 * the leaf rcu_node structure's ->qsmaskinit field has already been
2773 * updated
2775 * This function does check that the specified rcu_node structure has
2776 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2777 * prematurely. That said, invoking it after the fact will cost you
2778 * a needless lock acquisition. So once it has done its work, don't
2779 * invoke it again.
2781 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2783 long mask;
2784 struct rcu_node *rnp = rnp_leaf;
2786 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2787 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2788 return;
2789 for (;;) {
2790 mask = rnp->grpmask;
2791 rnp = rnp->parent;
2792 if (!rnp)
2793 break;
2794 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2795 rnp->qsmaskinit &= ~mask;
2796 rnp->qsmask &= ~mask;
2797 if (rnp->qsmaskinit) {
2798 raw_spin_unlock_rcu_node(rnp);
2799 /* irqs remain disabled. */
2800 return;
2802 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2807 * The CPU has been completely removed, and some other CPU is reporting
2808 * this fact from process context. Do the remainder of the cleanup,
2809 * including orphaning the outgoing CPU's RCU callbacks, and also
2810 * adopting them. There can only be one CPU hotplug operation at a time,
2811 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2813 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2815 unsigned long flags;
2816 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2817 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2819 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2820 return;
2822 /* Adjust any no-longer-needed kthreads. */
2823 rcu_boost_kthread_setaffinity(rnp, -1);
2825 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2826 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2827 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2828 rcu_adopt_orphan_cbs(rsp, flags);
2829 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2831 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2832 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2833 cpu, rdp->qlen, rdp->nxtlist);
2837 * Invoke any RCU callbacks that have made it to the end of their grace
2838 * period. Thottle as specified by rdp->blimit.
2840 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2842 unsigned long flags;
2843 struct rcu_head *next, *list, **tail;
2844 long bl, count, count_lazy;
2845 int i;
2847 /* If no callbacks are ready, just return. */
2848 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2849 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2850 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2851 need_resched(), is_idle_task(current),
2852 rcu_is_callbacks_kthread());
2853 return;
2857 * Extract the list of ready callbacks, disabling to prevent
2858 * races with call_rcu() from interrupt handlers.
2860 local_irq_save(flags);
2861 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2862 bl = rdp->blimit;
2863 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2864 list = rdp->nxtlist;
2865 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2866 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2867 tail = rdp->nxttail[RCU_DONE_TAIL];
2868 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2869 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2870 rdp->nxttail[i] = &rdp->nxtlist;
2871 local_irq_restore(flags);
2873 /* Invoke callbacks. */
2874 count = count_lazy = 0;
2875 while (list) {
2876 next = list->next;
2877 prefetch(next);
2878 debug_rcu_head_unqueue(list);
2879 if (__rcu_reclaim(rsp->name, list))
2880 count_lazy++;
2881 list = next;
2882 /* Stop only if limit reached and CPU has something to do. */
2883 if (++count >= bl &&
2884 (need_resched() ||
2885 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2886 break;
2889 local_irq_save(flags);
2890 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2891 is_idle_task(current),
2892 rcu_is_callbacks_kthread());
2894 /* Update count, and requeue any remaining callbacks. */
2895 if (list != NULL) {
2896 *tail = rdp->nxtlist;
2897 rdp->nxtlist = list;
2898 for (i = 0; i < RCU_NEXT_SIZE; i++)
2899 if (&rdp->nxtlist == rdp->nxttail[i])
2900 rdp->nxttail[i] = tail;
2901 else
2902 break;
2904 smp_mb(); /* List handling before counting for rcu_barrier(). */
2905 rdp->qlen_lazy -= count_lazy;
2906 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2907 rdp->n_cbs_invoked += count;
2909 /* Reinstate batch limit if we have worked down the excess. */
2910 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2911 rdp->blimit = blimit;
2913 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2914 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2915 rdp->qlen_last_fqs_check = 0;
2916 rdp->n_force_qs_snap = rsp->n_force_qs;
2917 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2918 rdp->qlen_last_fqs_check = rdp->qlen;
2919 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2921 local_irq_restore(flags);
2923 /* Re-invoke RCU core processing if there are callbacks remaining. */
2924 if (cpu_has_callbacks_ready_to_invoke(rdp))
2925 invoke_rcu_core();
2929 * Check to see if this CPU is in a non-context-switch quiescent state
2930 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2931 * Also schedule RCU core processing.
2933 * This function must be called from hardirq context. It is normally
2934 * invoked from the scheduling-clock interrupt.
2936 void rcu_check_callbacks(int user)
2938 trace_rcu_utilization(TPS("Start scheduler-tick"));
2939 increment_cpu_stall_ticks();
2940 if (user || rcu_is_cpu_rrupt_from_idle()) {
2943 * Get here if this CPU took its interrupt from user
2944 * mode or from the idle loop, and if this is not a
2945 * nested interrupt. In this case, the CPU is in
2946 * a quiescent state, so note it.
2948 * No memory barrier is required here because both
2949 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2950 * variables that other CPUs neither access nor modify,
2951 * at least not while the corresponding CPU is online.
2954 rcu_sched_qs();
2955 rcu_bh_qs();
2957 } else if (!in_softirq()) {
2960 * Get here if this CPU did not take its interrupt from
2961 * softirq, in other words, if it is not interrupting
2962 * a rcu_bh read-side critical section. This is an _bh
2963 * critical section, so note it.
2966 rcu_bh_qs();
2968 rcu_preempt_check_callbacks();
2969 if (rcu_pending())
2970 invoke_rcu_core();
2971 if (user)
2972 rcu_note_voluntary_context_switch(current);
2973 trace_rcu_utilization(TPS("End scheduler-tick"));
2977 * Scan the leaf rcu_node structures, processing dyntick state for any that
2978 * have not yet encountered a quiescent state, using the function specified.
2979 * Also initiate boosting for any threads blocked on the root rcu_node.
2981 * The caller must have suppressed start of new grace periods.
2983 static void force_qs_rnp(struct rcu_state *rsp,
2984 int (*f)(struct rcu_data *rsp, bool *isidle,
2985 unsigned long *maxj),
2986 bool *isidle, unsigned long *maxj)
2988 int cpu;
2989 unsigned long flags;
2990 unsigned long mask;
2991 struct rcu_node *rnp;
2993 rcu_for_each_leaf_node(rsp, rnp) {
2994 cond_resched_rcu_qs();
2995 mask = 0;
2996 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2997 if (rnp->qsmask == 0) {
2998 if (rcu_state_p == &rcu_sched_state ||
2999 rsp != rcu_state_p ||
3000 rcu_preempt_blocked_readers_cgp(rnp)) {
3002 * No point in scanning bits because they
3003 * are all zero. But we might need to
3004 * priority-boost blocked readers.
3006 rcu_initiate_boost(rnp, flags);
3007 /* rcu_initiate_boost() releases rnp->lock */
3008 continue;
3010 if (rnp->parent &&
3011 (rnp->parent->qsmask & rnp->grpmask)) {
3013 * Race between grace-period
3014 * initialization and task exiting RCU
3015 * read-side critical section: Report.
3017 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
3018 /* rcu_report_unblock_qs_rnp() rlses ->lock */
3019 continue;
3022 for_each_leaf_node_possible_cpu(rnp, cpu) {
3023 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3024 if ((rnp->qsmask & bit) != 0) {
3025 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
3026 mask |= bit;
3029 if (mask != 0) {
3030 /* Idle/offline CPUs, report (releases rnp->lock. */
3031 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3032 } else {
3033 /* Nothing to do here, so just drop the lock. */
3034 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3040 * Force quiescent states on reluctant CPUs, and also detect which
3041 * CPUs are in dyntick-idle mode.
3043 static void force_quiescent_state(struct rcu_state *rsp)
3045 unsigned long flags;
3046 bool ret;
3047 struct rcu_node *rnp;
3048 struct rcu_node *rnp_old = NULL;
3050 /* Funnel through hierarchy to reduce memory contention. */
3051 rnp = __this_cpu_read(rsp->rda->mynode);
3052 for (; rnp != NULL; rnp = rnp->parent) {
3053 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3054 !raw_spin_trylock(&rnp->fqslock);
3055 if (rnp_old != NULL)
3056 raw_spin_unlock(&rnp_old->fqslock);
3057 if (ret) {
3058 rsp->n_force_qs_lh++;
3059 return;
3061 rnp_old = rnp;
3063 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3065 /* Reached the root of the rcu_node tree, acquire lock. */
3066 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3067 raw_spin_unlock(&rnp_old->fqslock);
3068 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3069 rsp->n_force_qs_lh++;
3070 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3071 return; /* Someone beat us to it. */
3073 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
3074 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3075 rcu_gp_kthread_wake(rsp);
3079 * This does the RCU core processing work for the specified rcu_state
3080 * and rcu_data structures. This may be called only from the CPU to
3081 * whom the rdp belongs.
3083 static void
3084 __rcu_process_callbacks(struct rcu_state *rsp)
3086 unsigned long flags;
3087 bool needwake;
3088 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3090 WARN_ON_ONCE(rdp->beenonline == 0);
3092 /* Update RCU state based on any recent quiescent states. */
3093 rcu_check_quiescent_state(rsp, rdp);
3095 /* Does this CPU require a not-yet-started grace period? */
3096 local_irq_save(flags);
3097 if (cpu_needs_another_gp(rsp, rdp)) {
3098 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3099 needwake = rcu_start_gp(rsp);
3100 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3101 if (needwake)
3102 rcu_gp_kthread_wake(rsp);
3103 } else {
3104 local_irq_restore(flags);
3107 /* If there are callbacks ready, invoke them. */
3108 if (cpu_has_callbacks_ready_to_invoke(rdp))
3109 invoke_rcu_callbacks(rsp, rdp);
3111 /* Do any needed deferred wakeups of rcuo kthreads. */
3112 do_nocb_deferred_wakeup(rdp);
3116 * Do RCU core processing for the current CPU.
3118 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3120 struct rcu_state *rsp;
3122 if (cpu_is_offline(smp_processor_id()))
3123 return;
3124 trace_rcu_utilization(TPS("Start RCU core"));
3125 for_each_rcu_flavor(rsp)
3126 __rcu_process_callbacks(rsp);
3127 trace_rcu_utilization(TPS("End RCU core"));
3131 * Schedule RCU callback invocation. If the specified type of RCU
3132 * does not support RCU priority boosting, just do a direct call,
3133 * otherwise wake up the per-CPU kernel kthread. Note that because we
3134 * are running on the current CPU with softirqs disabled, the
3135 * rcu_cpu_kthread_task cannot disappear out from under us.
3137 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3139 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3140 return;
3141 if (likely(!rsp->boost)) {
3142 rcu_do_batch(rsp, rdp);
3143 return;
3145 invoke_rcu_callbacks_kthread();
3148 static void invoke_rcu_core(void)
3150 if (cpu_online(smp_processor_id()))
3151 raise_softirq(RCU_SOFTIRQ);
3155 * Handle any core-RCU processing required by a call_rcu() invocation.
3157 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3158 struct rcu_head *head, unsigned long flags)
3160 bool needwake;
3163 * If called from an extended quiescent state, invoke the RCU
3164 * core in order to force a re-evaluation of RCU's idleness.
3166 if (!rcu_is_watching())
3167 invoke_rcu_core();
3169 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3170 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3171 return;
3174 * Force the grace period if too many callbacks or too long waiting.
3175 * Enforce hysteresis, and don't invoke force_quiescent_state()
3176 * if some other CPU has recently done so. Also, don't bother
3177 * invoking force_quiescent_state() if the newly enqueued callback
3178 * is the only one waiting for a grace period to complete.
3180 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3182 /* Are we ignoring a completed grace period? */
3183 note_gp_changes(rsp, rdp);
3185 /* Start a new grace period if one not already started. */
3186 if (!rcu_gp_in_progress(rsp)) {
3187 struct rcu_node *rnp_root = rcu_get_root(rsp);
3189 raw_spin_lock_rcu_node(rnp_root);
3190 needwake = rcu_start_gp(rsp);
3191 raw_spin_unlock_rcu_node(rnp_root);
3192 if (needwake)
3193 rcu_gp_kthread_wake(rsp);
3194 } else {
3195 /* Give the grace period a kick. */
3196 rdp->blimit = LONG_MAX;
3197 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3198 *rdp->nxttail[RCU_DONE_TAIL] != head)
3199 force_quiescent_state(rsp);
3200 rdp->n_force_qs_snap = rsp->n_force_qs;
3201 rdp->qlen_last_fqs_check = rdp->qlen;
3207 * RCU callback function to leak a callback.
3209 static void rcu_leak_callback(struct rcu_head *rhp)
3214 * Helper function for call_rcu() and friends. The cpu argument will
3215 * normally be -1, indicating "currently running CPU". It may specify
3216 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3217 * is expected to specify a CPU.
3219 static void
3220 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3221 struct rcu_state *rsp, int cpu, bool lazy)
3223 unsigned long flags;
3224 struct rcu_data *rdp;
3226 /* Misaligned rcu_head! */
3227 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3229 if (debug_rcu_head_queue(head)) {
3230 /* Probable double call_rcu(), so leak the callback. */
3231 WRITE_ONCE(head->func, rcu_leak_callback);
3232 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3233 return;
3235 head->func = func;
3236 head->next = NULL;
3237 local_irq_save(flags);
3238 rdp = this_cpu_ptr(rsp->rda);
3240 /* Add the callback to our list. */
3241 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3242 int offline;
3244 if (cpu != -1)
3245 rdp = per_cpu_ptr(rsp->rda, cpu);
3246 if (likely(rdp->mynode)) {
3247 /* Post-boot, so this should be for a no-CBs CPU. */
3248 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3249 WARN_ON_ONCE(offline);
3250 /* Offline CPU, _call_rcu() illegal, leak callback. */
3251 local_irq_restore(flags);
3252 return;
3255 * Very early boot, before rcu_init(). Initialize if needed
3256 * and then drop through to queue the callback.
3258 BUG_ON(cpu != -1);
3259 WARN_ON_ONCE(!rcu_is_watching());
3260 if (!likely(rdp->nxtlist))
3261 init_default_callback_list(rdp);
3263 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3264 if (lazy)
3265 rdp->qlen_lazy++;
3266 else
3267 rcu_idle_count_callbacks_posted();
3268 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3269 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3270 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3272 if (__is_kfree_rcu_offset((unsigned long)func))
3273 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3274 rdp->qlen_lazy, rdp->qlen);
3275 else
3276 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3278 /* Go handle any RCU core processing required. */
3279 __call_rcu_core(rsp, rdp, head, flags);
3280 local_irq_restore(flags);
3284 * Queue an RCU-sched callback for invocation after a grace period.
3286 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3288 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3290 EXPORT_SYMBOL_GPL(call_rcu_sched);
3293 * Queue an RCU callback for invocation after a quicker grace period.
3295 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3297 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3299 EXPORT_SYMBOL_GPL(call_rcu_bh);
3302 * Queue an RCU callback for lazy invocation after a grace period.
3303 * This will likely be later named something like "call_rcu_lazy()",
3304 * but this change will require some way of tagging the lazy RCU
3305 * callbacks in the list of pending callbacks. Until then, this
3306 * function may only be called from __kfree_rcu().
3308 void kfree_call_rcu(struct rcu_head *head,
3309 rcu_callback_t func)
3311 __call_rcu(head, func, rcu_state_p, -1, 1);
3313 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3316 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3317 * any blocking grace-period wait automatically implies a grace period
3318 * if there is only one CPU online at any point time during execution
3319 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3320 * occasionally incorrectly indicate that there are multiple CPUs online
3321 * when there was in fact only one the whole time, as this just adds
3322 * some overhead: RCU still operates correctly.
3324 static inline int rcu_blocking_is_gp(void)
3326 int ret;
3328 might_sleep(); /* Check for RCU read-side critical section. */
3329 preempt_disable();
3330 ret = num_online_cpus() <= 1;
3331 preempt_enable();
3332 return ret;
3336 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3338 * Control will return to the caller some time after a full rcu-sched
3339 * grace period has elapsed, in other words after all currently executing
3340 * rcu-sched read-side critical sections have completed. These read-side
3341 * critical sections are delimited by rcu_read_lock_sched() and
3342 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3343 * local_irq_disable(), and so on may be used in place of
3344 * rcu_read_lock_sched().
3346 * This means that all preempt_disable code sequences, including NMI and
3347 * non-threaded hardware-interrupt handlers, in progress on entry will
3348 * have completed before this primitive returns. However, this does not
3349 * guarantee that softirq handlers will have completed, since in some
3350 * kernels, these handlers can run in process context, and can block.
3352 * Note that this guarantee implies further memory-ordering guarantees.
3353 * On systems with more than one CPU, when synchronize_sched() returns,
3354 * each CPU is guaranteed to have executed a full memory barrier since the
3355 * end of its last RCU-sched read-side critical section whose beginning
3356 * preceded the call to synchronize_sched(). In addition, each CPU having
3357 * an RCU read-side critical section that extends beyond the return from
3358 * synchronize_sched() is guaranteed to have executed a full memory barrier
3359 * after the beginning of synchronize_sched() and before the beginning of
3360 * that RCU read-side critical section. Note that these guarantees include
3361 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3362 * that are executing in the kernel.
3364 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3365 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3366 * to have executed a full memory barrier during the execution of
3367 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3368 * again only if the system has more than one CPU).
3370 * This primitive provides the guarantees made by the (now removed)
3371 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3372 * guarantees that rcu_read_lock() sections will have completed.
3373 * In "classic RCU", these two guarantees happen to be one and
3374 * the same, but can differ in realtime RCU implementations.
3376 void synchronize_sched(void)
3378 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3379 lock_is_held(&rcu_lock_map) ||
3380 lock_is_held(&rcu_sched_lock_map),
3381 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3382 if (rcu_blocking_is_gp())
3383 return;
3384 if (rcu_gp_is_expedited())
3385 synchronize_sched_expedited();
3386 else
3387 wait_rcu_gp(call_rcu_sched);
3389 EXPORT_SYMBOL_GPL(synchronize_sched);
3392 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3394 * Control will return to the caller some time after a full rcu_bh grace
3395 * period has elapsed, in other words after all currently executing rcu_bh
3396 * read-side critical sections have completed. RCU read-side critical
3397 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3398 * and may be nested.
3400 * See the description of synchronize_sched() for more detailed information
3401 * on memory ordering guarantees.
3403 void synchronize_rcu_bh(void)
3405 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3406 lock_is_held(&rcu_lock_map) ||
3407 lock_is_held(&rcu_sched_lock_map),
3408 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3409 if (rcu_blocking_is_gp())
3410 return;
3411 if (rcu_gp_is_expedited())
3412 synchronize_rcu_bh_expedited();
3413 else
3414 wait_rcu_gp(call_rcu_bh);
3416 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3419 * get_state_synchronize_rcu - Snapshot current RCU state
3421 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3422 * to determine whether or not a full grace period has elapsed in the
3423 * meantime.
3425 unsigned long get_state_synchronize_rcu(void)
3428 * Any prior manipulation of RCU-protected data must happen
3429 * before the load from ->gpnum.
3431 smp_mb(); /* ^^^ */
3434 * Make sure this load happens before the purportedly
3435 * time-consuming work between get_state_synchronize_rcu()
3436 * and cond_synchronize_rcu().
3438 return smp_load_acquire(&rcu_state_p->gpnum);
3440 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3443 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3445 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3447 * If a full RCU grace period has elapsed since the earlier call to
3448 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3449 * synchronize_rcu() to wait for a full grace period.
3451 * Yes, this function does not take counter wrap into account. But
3452 * counter wrap is harmless. If the counter wraps, we have waited for
3453 * more than 2 billion grace periods (and way more on a 64-bit system!),
3454 * so waiting for one additional grace period should be just fine.
3456 void cond_synchronize_rcu(unsigned long oldstate)
3458 unsigned long newstate;
3461 * Ensure that this load happens before any RCU-destructive
3462 * actions the caller might carry out after we return.
3464 newstate = smp_load_acquire(&rcu_state_p->completed);
3465 if (ULONG_CMP_GE(oldstate, newstate))
3466 synchronize_rcu();
3468 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3471 * get_state_synchronize_sched - Snapshot current RCU-sched state
3473 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3474 * to determine whether or not a full grace period has elapsed in the
3475 * meantime.
3477 unsigned long get_state_synchronize_sched(void)
3480 * Any prior manipulation of RCU-protected data must happen
3481 * before the load from ->gpnum.
3483 smp_mb(); /* ^^^ */
3486 * Make sure this load happens before the purportedly
3487 * time-consuming work between get_state_synchronize_sched()
3488 * and cond_synchronize_sched().
3490 return smp_load_acquire(&rcu_sched_state.gpnum);
3492 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3495 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3497 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3499 * If a full RCU-sched grace period has elapsed since the earlier call to
3500 * get_state_synchronize_sched(), just return. Otherwise, invoke
3501 * synchronize_sched() to wait for a full grace period.
3503 * Yes, this function does not take counter wrap into account. But
3504 * counter wrap is harmless. If the counter wraps, we have waited for
3505 * more than 2 billion grace periods (and way more on a 64-bit system!),
3506 * so waiting for one additional grace period should be just fine.
3508 void cond_synchronize_sched(unsigned long oldstate)
3510 unsigned long newstate;
3513 * Ensure that this load happens before any RCU-destructive
3514 * actions the caller might carry out after we return.
3516 newstate = smp_load_acquire(&rcu_sched_state.completed);
3517 if (ULONG_CMP_GE(oldstate, newstate))
3518 synchronize_sched();
3520 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3522 /* Adjust sequence number for start of update-side operation. */
3523 static void rcu_seq_start(unsigned long *sp)
3525 WRITE_ONCE(*sp, *sp + 1);
3526 smp_mb(); /* Ensure update-side operation after counter increment. */
3527 WARN_ON_ONCE(!(*sp & 0x1));
3530 /* Adjust sequence number for end of update-side operation. */
3531 static void rcu_seq_end(unsigned long *sp)
3533 smp_mb(); /* Ensure update-side operation before counter increment. */
3534 WRITE_ONCE(*sp, *sp + 1);
3535 WARN_ON_ONCE(*sp & 0x1);
3538 /* Take a snapshot of the update side's sequence number. */
3539 static unsigned long rcu_seq_snap(unsigned long *sp)
3541 unsigned long s;
3543 s = (READ_ONCE(*sp) + 3) & ~0x1;
3544 smp_mb(); /* Above access must not bleed into critical section. */
3545 return s;
3549 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3550 * full update-side operation has occurred.
3552 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3554 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3558 * Check to see if there is any immediate RCU-related work to be done
3559 * by the current CPU, for the specified type of RCU, returning 1 if so.
3560 * The checks are in order of increasing expense: checks that can be
3561 * carried out against CPU-local state are performed first. However,
3562 * we must check for CPU stalls first, else we might not get a chance.
3564 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3566 struct rcu_node *rnp = rdp->mynode;
3568 rdp->n_rcu_pending++;
3570 /* Check for CPU stalls, if enabled. */
3571 check_cpu_stall(rsp, rdp);
3573 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3574 if (rcu_nohz_full_cpu(rsp))
3575 return 0;
3577 /* Is the RCU core waiting for a quiescent state from this CPU? */
3578 if (rcu_scheduler_fully_active &&
3579 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3580 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3581 rdp->n_rp_core_needs_qs++;
3582 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3583 rdp->n_rp_report_qs++;
3584 return 1;
3587 /* Does this CPU have callbacks ready to invoke? */
3588 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3589 rdp->n_rp_cb_ready++;
3590 return 1;
3593 /* Has RCU gone idle with this CPU needing another grace period? */
3594 if (cpu_needs_another_gp(rsp, rdp)) {
3595 rdp->n_rp_cpu_needs_gp++;
3596 return 1;
3599 /* Has another RCU grace period completed? */
3600 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3601 rdp->n_rp_gp_completed++;
3602 return 1;
3605 /* Has a new RCU grace period started? */
3606 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3607 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3608 rdp->n_rp_gp_started++;
3609 return 1;
3612 /* Does this CPU need a deferred NOCB wakeup? */
3613 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3614 rdp->n_rp_nocb_defer_wakeup++;
3615 return 1;
3618 /* nothing to do */
3619 rdp->n_rp_need_nothing++;
3620 return 0;
3624 * Check to see if there is any immediate RCU-related work to be done
3625 * by the current CPU, returning 1 if so. This function is part of the
3626 * RCU implementation; it is -not- an exported member of the RCU API.
3628 static int rcu_pending(void)
3630 struct rcu_state *rsp;
3632 for_each_rcu_flavor(rsp)
3633 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3634 return 1;
3635 return 0;
3639 * Return true if the specified CPU has any callback. If all_lazy is
3640 * non-NULL, store an indication of whether all callbacks are lazy.
3641 * (If there are no callbacks, all of them are deemed to be lazy.)
3643 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3645 bool al = true;
3646 bool hc = false;
3647 struct rcu_data *rdp;
3648 struct rcu_state *rsp;
3650 for_each_rcu_flavor(rsp) {
3651 rdp = this_cpu_ptr(rsp->rda);
3652 if (!rdp->nxtlist)
3653 continue;
3654 hc = true;
3655 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3656 al = false;
3657 break;
3660 if (all_lazy)
3661 *all_lazy = al;
3662 return hc;
3666 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3667 * the compiler is expected to optimize this away.
3669 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3670 int cpu, unsigned long done)
3672 trace_rcu_barrier(rsp->name, s, cpu,
3673 atomic_read(&rsp->barrier_cpu_count), done);
3677 * RCU callback function for _rcu_barrier(). If we are last, wake
3678 * up the task executing _rcu_barrier().
3680 static void rcu_barrier_callback(struct rcu_head *rhp)
3682 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3683 struct rcu_state *rsp = rdp->rsp;
3685 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3686 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3687 complete(&rsp->barrier_completion);
3688 } else {
3689 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3694 * Called with preemption disabled, and from cross-cpu IRQ context.
3696 static void rcu_barrier_func(void *type)
3698 struct rcu_state *rsp = type;
3699 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3701 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3702 atomic_inc(&rsp->barrier_cpu_count);
3703 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3707 * Orchestrate the specified type of RCU barrier, waiting for all
3708 * RCU callbacks of the specified type to complete.
3710 static void _rcu_barrier(struct rcu_state *rsp)
3712 int cpu;
3713 struct rcu_data *rdp;
3714 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3716 _rcu_barrier_trace(rsp, "Begin", -1, s);
3718 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3719 mutex_lock(&rsp->barrier_mutex);
3721 /* Did someone else do our work for us? */
3722 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3723 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3724 smp_mb(); /* caller's subsequent code after above check. */
3725 mutex_unlock(&rsp->barrier_mutex);
3726 return;
3729 /* Mark the start of the barrier operation. */
3730 rcu_seq_start(&rsp->barrier_sequence);
3731 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3734 * Initialize the count to one rather than to zero in order to
3735 * avoid a too-soon return to zero in case of a short grace period
3736 * (or preemption of this task). Exclude CPU-hotplug operations
3737 * to ensure that no offline CPU has callbacks queued.
3739 init_completion(&rsp->barrier_completion);
3740 atomic_set(&rsp->barrier_cpu_count, 1);
3741 get_online_cpus();
3744 * Force each CPU with callbacks to register a new callback.
3745 * When that callback is invoked, we will know that all of the
3746 * corresponding CPU's preceding callbacks have been invoked.
3748 for_each_possible_cpu(cpu) {
3749 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3750 continue;
3751 rdp = per_cpu_ptr(rsp->rda, cpu);
3752 if (rcu_is_nocb_cpu(cpu)) {
3753 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3754 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3755 rsp->barrier_sequence);
3756 } else {
3757 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3758 rsp->barrier_sequence);
3759 smp_mb__before_atomic();
3760 atomic_inc(&rsp->barrier_cpu_count);
3761 __call_rcu(&rdp->barrier_head,
3762 rcu_barrier_callback, rsp, cpu, 0);
3764 } else if (READ_ONCE(rdp->qlen)) {
3765 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3766 rsp->barrier_sequence);
3767 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3768 } else {
3769 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3770 rsp->barrier_sequence);
3773 put_online_cpus();
3776 * Now that we have an rcu_barrier_callback() callback on each
3777 * CPU, and thus each counted, remove the initial count.
3779 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3780 complete(&rsp->barrier_completion);
3782 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3783 wait_for_completion(&rsp->barrier_completion);
3785 /* Mark the end of the barrier operation. */
3786 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3787 rcu_seq_end(&rsp->barrier_sequence);
3789 /* Other rcu_barrier() invocations can now safely proceed. */
3790 mutex_unlock(&rsp->barrier_mutex);
3794 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3796 void rcu_barrier_bh(void)
3798 _rcu_barrier(&rcu_bh_state);
3800 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3803 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3805 void rcu_barrier_sched(void)
3807 _rcu_barrier(&rcu_sched_state);
3809 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3812 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3813 * first CPU in a given leaf rcu_node structure coming online. The caller
3814 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3815 * disabled.
3817 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3819 long mask;
3820 struct rcu_node *rnp = rnp_leaf;
3822 for (;;) {
3823 mask = rnp->grpmask;
3824 rnp = rnp->parent;
3825 if (rnp == NULL)
3826 return;
3827 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3828 rnp->qsmaskinit |= mask;
3829 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3834 * Do boot-time initialization of a CPU's per-CPU RCU data.
3836 static void __init
3837 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3839 unsigned long flags;
3840 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3841 struct rcu_node *rnp = rcu_get_root(rsp);
3843 /* Set up local state, ensuring consistent view of global state. */
3844 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3845 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3846 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3847 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3848 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3849 rdp->cpu = cpu;
3850 rdp->rsp = rsp;
3851 rcu_boot_init_nocb_percpu_data(rdp);
3852 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3856 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3857 * offline event can be happening at a given time. Note also that we
3858 * can accept some slop in the rsp->completed access due to the fact
3859 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3861 static void
3862 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3864 unsigned long flags;
3865 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3866 struct rcu_node *rnp = rcu_get_root(rsp);
3868 /* Set up local state, ensuring consistent view of global state. */
3869 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3870 rdp->qlen_last_fqs_check = 0;
3871 rdp->n_force_qs_snap = rsp->n_force_qs;
3872 rdp->blimit = blimit;
3873 if (!rdp->nxtlist)
3874 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3875 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3876 rcu_sysidle_init_percpu_data(rdp->dynticks);
3877 rcu_dynticks_eqs_online();
3878 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3881 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3882 * propagation up the rcu_node tree will happen at the beginning
3883 * of the next grace period.
3885 rnp = rdp->mynode;
3886 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3887 if (!rdp->beenonline)
3888 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3889 rdp->beenonline = true; /* We have now been online. */
3890 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3891 rdp->completed = rnp->completed;
3892 rdp->cpu_no_qs.b.norm = true;
3893 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3894 rdp->core_needs_qs = false;
3895 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3899 int rcutree_prepare_cpu(unsigned int cpu)
3901 struct rcu_state *rsp;
3903 for_each_rcu_flavor(rsp)
3904 rcu_init_percpu_data(cpu, rsp);
3906 rcu_prepare_kthreads(cpu);
3907 rcu_spawn_all_nocb_kthreads(cpu);
3909 return 0;
3912 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3914 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3916 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3919 int rcutree_online_cpu(unsigned int cpu)
3921 sync_sched_exp_online_cleanup(cpu);
3922 rcutree_affinity_setting(cpu, -1);
3923 return 0;
3926 int rcutree_offline_cpu(unsigned int cpu)
3928 rcutree_affinity_setting(cpu, cpu);
3929 return 0;
3933 int rcutree_dying_cpu(unsigned int cpu)
3935 struct rcu_state *rsp;
3937 for_each_rcu_flavor(rsp)
3938 rcu_cleanup_dying_cpu(rsp);
3939 return 0;
3942 int rcutree_dead_cpu(unsigned int cpu)
3944 struct rcu_state *rsp;
3946 for_each_rcu_flavor(rsp) {
3947 rcu_cleanup_dead_cpu(cpu, rsp);
3948 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3950 return 0;
3954 * Mark the specified CPU as being online so that subsequent grace periods
3955 * (both expedited and normal) will wait on it. Note that this means that
3956 * incoming CPUs are not allowed to use RCU read-side critical sections
3957 * until this function is called. Failing to observe this restriction
3958 * will result in lockdep splats.
3960 void rcu_cpu_starting(unsigned int cpu)
3962 unsigned long flags;
3963 unsigned long mask;
3964 struct rcu_data *rdp;
3965 struct rcu_node *rnp;
3966 struct rcu_state *rsp;
3968 for_each_rcu_flavor(rsp) {
3969 rdp = per_cpu_ptr(rsp->rda, cpu);
3970 rnp = rdp->mynode;
3971 mask = rdp->grpmask;
3972 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3973 rnp->qsmaskinitnext |= mask;
3974 rnp->expmaskinitnext |= mask;
3975 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3979 #ifdef CONFIG_HOTPLUG_CPU
3981 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3982 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3983 * bit masks.
3984 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3985 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3986 * bit masks.
3988 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3990 unsigned long flags;
3991 unsigned long mask;
3992 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3993 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3995 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3996 mask = rdp->grpmask;
3997 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3998 rnp->qsmaskinitnext &= ~mask;
3999 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4002 void rcu_report_dead(unsigned int cpu)
4004 struct rcu_state *rsp;
4006 /* QS for any half-done expedited RCU-sched GP. */
4007 preempt_disable();
4008 rcu_report_exp_rdp(&rcu_sched_state,
4009 this_cpu_ptr(rcu_sched_state.rda), true);
4010 preempt_enable();
4011 for_each_rcu_flavor(rsp)
4012 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4014 #endif
4016 static int rcu_pm_notify(struct notifier_block *self,
4017 unsigned long action, void *hcpu)
4019 switch (action) {
4020 case PM_HIBERNATION_PREPARE:
4021 case PM_SUSPEND_PREPARE:
4022 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4023 rcu_expedite_gp();
4024 break;
4025 case PM_POST_HIBERNATION:
4026 case PM_POST_SUSPEND:
4027 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4028 rcu_unexpedite_gp();
4029 break;
4030 default:
4031 break;
4033 return NOTIFY_OK;
4037 * Spawn the kthreads that handle each RCU flavor's grace periods.
4039 static int __init rcu_spawn_gp_kthread(void)
4041 unsigned long flags;
4042 int kthread_prio_in = kthread_prio;
4043 struct rcu_node *rnp;
4044 struct rcu_state *rsp;
4045 struct sched_param sp;
4046 struct task_struct *t;
4048 /* Force priority into range. */
4049 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4050 kthread_prio = 1;
4051 else if (kthread_prio < 0)
4052 kthread_prio = 0;
4053 else if (kthread_prio > 99)
4054 kthread_prio = 99;
4055 if (kthread_prio != kthread_prio_in)
4056 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4057 kthread_prio, kthread_prio_in);
4059 rcu_scheduler_fully_active = 1;
4060 for_each_rcu_flavor(rsp) {
4061 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4062 BUG_ON(IS_ERR(t));
4063 rnp = rcu_get_root(rsp);
4064 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4065 rsp->gp_kthread = t;
4066 if (kthread_prio) {
4067 sp.sched_priority = kthread_prio;
4068 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4070 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4071 wake_up_process(t);
4073 rcu_spawn_nocb_kthreads();
4074 rcu_spawn_boost_kthreads();
4075 return 0;
4077 early_initcall(rcu_spawn_gp_kthread);
4080 * This function is invoked towards the end of the scheduler's
4081 * initialization process. Before this is called, the idle task might
4082 * contain synchronous grace-period primitives (during which time, this idle
4083 * task is booting the system, and such primitives are no-ops). After this
4084 * function is called, any synchronous grace-period primitives are run as
4085 * expedited, with the requesting task driving the grace period forward.
4086 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4087 * runtime RCU functionality.
4089 void rcu_scheduler_starting(void)
4091 WARN_ON(num_online_cpus() != 1);
4092 WARN_ON(nr_context_switches() > 0);
4093 rcu_test_sync_prims();
4094 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4095 rcu_test_sync_prims();
4099 * Compute the per-level fanout, either using the exact fanout specified
4100 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4102 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4104 int i;
4106 if (rcu_fanout_exact) {
4107 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4108 for (i = rcu_num_lvls - 2; i >= 0; i--)
4109 levelspread[i] = RCU_FANOUT;
4110 } else {
4111 int ccur;
4112 int cprv;
4114 cprv = nr_cpu_ids;
4115 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4116 ccur = levelcnt[i];
4117 levelspread[i] = (cprv + ccur - 1) / ccur;
4118 cprv = ccur;
4124 * Helper function for rcu_init() that initializes one rcu_state structure.
4126 static void __init rcu_init_one(struct rcu_state *rsp)
4128 static const char * const buf[] = RCU_NODE_NAME_INIT;
4129 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4130 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4131 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4132 static u8 fl_mask = 0x1;
4134 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4135 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4136 int cpustride = 1;
4137 int i;
4138 int j;
4139 struct rcu_node *rnp;
4141 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4143 /* Silence gcc 4.8 false positive about array index out of range. */
4144 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4145 panic("rcu_init_one: rcu_num_lvls out of range");
4147 /* Initialize the level-tracking arrays. */
4149 for (i = 0; i < rcu_num_lvls; i++)
4150 levelcnt[i] = num_rcu_lvl[i];
4151 for (i = 1; i < rcu_num_lvls; i++)
4152 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4153 rcu_init_levelspread(levelspread, levelcnt);
4154 rsp->flavor_mask = fl_mask;
4155 fl_mask <<= 1;
4157 /* Initialize the elements themselves, starting from the leaves. */
4159 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4160 cpustride *= levelspread[i];
4161 rnp = rsp->level[i];
4162 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4163 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4164 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4165 &rcu_node_class[i], buf[i]);
4166 raw_spin_lock_init(&rnp->fqslock);
4167 lockdep_set_class_and_name(&rnp->fqslock,
4168 &rcu_fqs_class[i], fqs[i]);
4169 rnp->gpnum = rsp->gpnum;
4170 rnp->completed = rsp->completed;
4171 rnp->qsmask = 0;
4172 rnp->qsmaskinit = 0;
4173 rnp->grplo = j * cpustride;
4174 rnp->grphi = (j + 1) * cpustride - 1;
4175 if (rnp->grphi >= nr_cpu_ids)
4176 rnp->grphi = nr_cpu_ids - 1;
4177 if (i == 0) {
4178 rnp->grpnum = 0;
4179 rnp->grpmask = 0;
4180 rnp->parent = NULL;
4181 } else {
4182 rnp->grpnum = j % levelspread[i - 1];
4183 rnp->grpmask = 1UL << rnp->grpnum;
4184 rnp->parent = rsp->level[i - 1] +
4185 j / levelspread[i - 1];
4187 rnp->level = i;
4188 INIT_LIST_HEAD(&rnp->blkd_tasks);
4189 rcu_init_one_nocb(rnp);
4190 init_waitqueue_head(&rnp->exp_wq[0]);
4191 init_waitqueue_head(&rnp->exp_wq[1]);
4192 init_waitqueue_head(&rnp->exp_wq[2]);
4193 init_waitqueue_head(&rnp->exp_wq[3]);
4194 spin_lock_init(&rnp->exp_lock);
4198 init_swait_queue_head(&rsp->gp_wq);
4199 init_swait_queue_head(&rsp->expedited_wq);
4200 rnp = rsp->level[rcu_num_lvls - 1];
4201 for_each_possible_cpu(i) {
4202 while (i > rnp->grphi)
4203 rnp++;
4204 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4205 rcu_boot_init_percpu_data(i, rsp);
4207 list_add(&rsp->flavors, &rcu_struct_flavors);
4211 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4212 * replace the definitions in tree.h because those are needed to size
4213 * the ->node array in the rcu_state structure.
4215 static void __init rcu_init_geometry(void)
4217 ulong d;
4218 int i;
4219 int rcu_capacity[RCU_NUM_LVLS];
4222 * Initialize any unspecified boot parameters.
4223 * The default values of jiffies_till_first_fqs and
4224 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4225 * value, which is a function of HZ, then adding one for each
4226 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4228 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4229 if (jiffies_till_first_fqs == ULONG_MAX)
4230 jiffies_till_first_fqs = d;
4231 if (jiffies_till_next_fqs == ULONG_MAX)
4232 jiffies_till_next_fqs = d;
4234 /* If the compile-time values are accurate, just leave. */
4235 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4236 nr_cpu_ids == NR_CPUS)
4237 return;
4238 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4239 rcu_fanout_leaf, nr_cpu_ids);
4242 * The boot-time rcu_fanout_leaf parameter must be at least two
4243 * and cannot exceed the number of bits in the rcu_node masks.
4244 * Complain and fall back to the compile-time values if this
4245 * limit is exceeded.
4247 if (rcu_fanout_leaf < 2 ||
4248 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4249 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4250 WARN_ON(1);
4251 return;
4255 * Compute number of nodes that can be handled an rcu_node tree
4256 * with the given number of levels.
4258 rcu_capacity[0] = rcu_fanout_leaf;
4259 for (i = 1; i < RCU_NUM_LVLS; i++)
4260 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4263 * The tree must be able to accommodate the configured number of CPUs.
4264 * If this limit is exceeded, fall back to the compile-time values.
4266 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4267 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4268 WARN_ON(1);
4269 return;
4272 /* Calculate the number of levels in the tree. */
4273 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4275 rcu_num_lvls = i + 1;
4277 /* Calculate the number of rcu_nodes at each level of the tree. */
4278 for (i = 0; i < rcu_num_lvls; i++) {
4279 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4280 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4283 /* Calculate the total number of rcu_node structures. */
4284 rcu_num_nodes = 0;
4285 for (i = 0; i < rcu_num_lvls; i++)
4286 rcu_num_nodes += num_rcu_lvl[i];
4290 * Dump out the structure of the rcu_node combining tree associated
4291 * with the rcu_state structure referenced by rsp.
4293 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4295 int level = 0;
4296 struct rcu_node *rnp;
4298 pr_info("rcu_node tree layout dump\n");
4299 pr_info(" ");
4300 rcu_for_each_node_breadth_first(rsp, rnp) {
4301 if (rnp->level != level) {
4302 pr_cont("\n");
4303 pr_info(" ");
4304 level = rnp->level;
4306 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4308 pr_cont("\n");
4311 void __init rcu_init(void)
4313 int cpu;
4315 rcu_early_boot_tests();
4317 rcu_bootup_announce();
4318 rcu_init_geometry();
4319 rcu_init_one(&rcu_bh_state);
4320 rcu_init_one(&rcu_sched_state);
4321 if (dump_tree)
4322 rcu_dump_rcu_node_tree(&rcu_sched_state);
4323 __rcu_init_preempt();
4324 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4327 * We don't need protection against CPU-hotplug here because
4328 * this is called early in boot, before either interrupts
4329 * or the scheduler are operational.
4331 pm_notifier(rcu_pm_notify, 0);
4332 for_each_online_cpu(cpu) {
4333 rcutree_prepare_cpu(cpu);
4334 rcu_cpu_starting(cpu);
4338 #include "tree_exp.h"
4339 #include "tree_plugin.h"