x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / sound / soc / intel / skylake / skl-messages.c
blobe66870474f1061f2cbe14b5c1014197a033acad6
1 /*
2 * skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3 * configurations
5 * Copyright (C) 2015 Intel Corp
6 * Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7 * Jeeja KP <jeeja.kp@intel.com>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
32 static int skl_alloc_dma_buf(struct device *dev,
33 struct snd_dma_buffer *dmab, size_t size)
35 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 struct hdac_bus *bus = ebus_to_hbus(ebus);
38 if (!bus)
39 return -ENODEV;
41 return bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
46 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 struct hdac_bus *bus = ebus_to_hbus(ebus);
49 if (!bus)
50 return -ENODEV;
52 bus->io_ops->dma_free_pages(bus, dmab);
54 return 0;
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
63 struct notification_mask mask;
64 struct skl_ipc_large_config_msg msg = {0};
66 mask.notify = NOTIFICATION_MASK;
67 mask.enable = enable;
69 msg.large_param_id = NOTIFICATION_PARAM_ID;
70 msg.param_data_size = sizeof(mask);
72 skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 int stream_tag, int enable)
78 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 struct hdac_bus *bus = ebus_to_hbus(ebus);
80 struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 struct hdac_ext_stream *estream;
84 if (!stream)
85 return -EINVAL;
87 estream = stream_to_hdac_ext_stream(stream);
88 /* enable/disable SPIB for this hdac stream */
89 snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
91 /* set the spib value */
92 snd_hdac_ext_stream_set_spib(ebus, estream, size);
94 return 0;
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 unsigned int size, struct snd_dma_buffer *dmab)
100 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 struct hdac_bus *bus = ebus_to_hbus(ebus);
102 struct hdac_ext_stream *estream;
103 struct hdac_stream *stream;
104 struct snd_pcm_substream substream;
105 int ret;
107 if (!bus)
108 return -ENODEV;
110 memset(&substream, 0, sizeof(substream));
111 substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
113 estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 HDAC_EXT_STREAM_TYPE_HOST);
115 if (!estream)
116 return -ENODEV;
118 stream = hdac_stream(estream);
120 /* assign decouple host dma channel */
121 ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 if (ret < 0)
123 return ret;
125 skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
127 return stream->stream_tag;
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
132 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 struct hdac_stream *stream;
134 struct hdac_bus *bus = ebus_to_hbus(ebus);
136 if (!bus)
137 return -ENODEV;
139 stream = snd_hdac_get_stream(bus,
140 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 if (!stream)
142 return -EINVAL;
144 snd_hdac_dsp_trigger(stream, start);
146 return 0;
149 static int skl_dsp_cleanup(struct device *dev,
150 struct snd_dma_buffer *dmab, int stream_tag)
152 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 struct hdac_stream *stream;
154 struct hdac_ext_stream *estream;
155 struct hdac_bus *bus = ebus_to_hbus(ebus);
157 if (!bus)
158 return -ENODEV;
160 stream = snd_hdac_get_stream(bus,
161 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 if (!stream)
163 return -EINVAL;
165 estream = stream_to_hdac_ext_stream(stream);
166 skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
169 snd_hdac_dsp_cleanup(stream, dmab);
171 return 0;
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
176 struct skl_dsp_loader_ops loader_ops;
178 memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
180 loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 loader_ops.free_dma_buf = skl_free_dma_buf;
183 return loader_ops;
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
188 struct skl_dsp_loader_ops loader_ops;
190 memset(&loader_ops, 0, sizeof(loader_ops));
192 loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 loader_ops.free_dma_buf = skl_free_dma_buf;
194 loader_ops.prepare = skl_dsp_prepare;
195 loader_ops.trigger = skl_dsp_trigger;
196 loader_ops.cleanup = skl_dsp_cleanup;
198 return loader_ops;
201 static const struct skl_dsp_ops dsp_ops[] = {
203 .id = 0x9d70,
204 .loader_ops = skl_get_loader_ops,
205 .init = skl_sst_dsp_init,
206 .init_fw = skl_sst_init_fw,
207 .cleanup = skl_sst_dsp_cleanup
210 .id = 0x9d71,
211 .loader_ops = skl_get_loader_ops,
212 .init = skl_sst_dsp_init,
213 .init_fw = skl_sst_init_fw,
214 .cleanup = skl_sst_dsp_cleanup
217 .id = 0x5a98,
218 .loader_ops = bxt_get_loader_ops,
219 .init = bxt_sst_dsp_init,
220 .init_fw = bxt_sst_init_fw,
221 .cleanup = bxt_sst_dsp_cleanup
224 .id = 0x3198,
225 .loader_ops = bxt_get_loader_ops,
226 .init = bxt_sst_dsp_init,
227 .init_fw = bxt_sst_init_fw,
228 .cleanup = bxt_sst_dsp_cleanup
232 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
234 int i;
236 for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
237 if (dsp_ops[i].id == pci_id)
238 return &dsp_ops[i];
241 return NULL;
244 int skl_init_dsp(struct skl *skl)
246 void __iomem *mmio_base;
247 struct hdac_ext_bus *ebus = &skl->ebus;
248 struct hdac_bus *bus = ebus_to_hbus(ebus);
249 struct skl_dsp_loader_ops loader_ops;
250 int irq = bus->irq;
251 const struct skl_dsp_ops *ops;
252 int ret;
254 /* enable ppcap interrupt */
255 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
256 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
258 /* read the BAR of the ADSP MMIO */
259 mmio_base = pci_ioremap_bar(skl->pci, 4);
260 if (mmio_base == NULL) {
261 dev_err(bus->dev, "ioremap error\n");
262 return -ENXIO;
265 ops = skl_get_dsp_ops(skl->pci->device);
266 if (!ops)
267 return -EIO;
269 loader_ops = ops->loader_ops();
270 ret = ops->init(bus->dev, mmio_base, irq,
271 skl->fw_name, loader_ops,
272 &skl->skl_sst);
274 if (ret < 0)
275 return ret;
277 dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
279 return ret;
282 int skl_free_dsp(struct skl *skl)
284 struct hdac_ext_bus *ebus = &skl->ebus;
285 struct hdac_bus *bus = ebus_to_hbus(ebus);
286 struct skl_sst *ctx = skl->skl_sst;
287 const struct skl_dsp_ops *ops;
289 /* disable ppcap interrupt */
290 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
292 ops = skl_get_dsp_ops(skl->pci->device);
293 if (!ops)
294 return -EIO;
296 ops->cleanup(bus->dev, ctx);
298 if (ctx->dsp->addr.lpe)
299 iounmap(ctx->dsp->addr.lpe);
301 return 0;
305 * In the case of "suspend_active" i.e, the Audio IP being active
306 * during system suspend, immediately excecute any pending D0i3 work
307 * before suspending. This is needed for the IP to work in low power
308 * mode during system suspend. In the case of normal suspend, cancel
309 * any pending D0i3 work.
311 int skl_suspend_late_dsp(struct skl *skl)
313 struct skl_sst *ctx = skl->skl_sst;
314 struct delayed_work *dwork;
316 if (!ctx)
317 return 0;
319 dwork = &ctx->d0i3.work;
321 if (dwork->work.func) {
322 if (skl->supend_active)
323 flush_delayed_work(dwork);
324 else
325 cancel_delayed_work_sync(dwork);
328 return 0;
331 int skl_suspend_dsp(struct skl *skl)
333 struct skl_sst *ctx = skl->skl_sst;
334 int ret;
336 /* if ppcap is not supported return 0 */
337 if (!skl->ebus.bus.ppcap)
338 return 0;
340 ret = skl_dsp_sleep(ctx->dsp);
341 if (ret < 0)
342 return ret;
344 /* disable ppcap interrupt */
345 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
346 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
348 return 0;
351 int skl_resume_dsp(struct skl *skl)
353 struct skl_sst *ctx = skl->skl_sst;
354 int ret;
356 /* if ppcap is not supported return 0 */
357 if (!skl->ebus.bus.ppcap)
358 return 0;
360 /* enable ppcap interrupt */
361 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
362 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
364 /* check if DSP 1st boot is done */
365 if (skl->skl_sst->is_first_boot == true)
366 return 0;
368 ret = skl_dsp_wake(ctx->dsp);
369 if (ret < 0)
370 return ret;
372 skl_dsp_enable_notification(skl->skl_sst, false);
373 return ret;
376 enum skl_bitdepth skl_get_bit_depth(int params)
378 switch (params) {
379 case 8:
380 return SKL_DEPTH_8BIT;
382 case 16:
383 return SKL_DEPTH_16BIT;
385 case 24:
386 return SKL_DEPTH_24BIT;
388 case 32:
389 return SKL_DEPTH_32BIT;
391 default:
392 return SKL_DEPTH_INVALID;
398 * Each module in DSP expects a base module configuration, which consists of
399 * PCM format information, which we calculate in driver and resource values
400 * which are read from widget information passed through topology binary
401 * This is send when we create a module with INIT_INSTANCE IPC msg
403 static void skl_set_base_module_format(struct skl_sst *ctx,
404 struct skl_module_cfg *mconfig,
405 struct skl_base_cfg *base_cfg)
407 struct skl_module_fmt *format = &mconfig->in_fmt[0];
409 base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
411 base_cfg->audio_fmt.s_freq = format->s_freq;
412 base_cfg->audio_fmt.bit_depth = format->bit_depth;
413 base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
414 base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
416 dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
417 format->bit_depth, format->valid_bit_depth,
418 format->ch_cfg);
420 base_cfg->audio_fmt.channel_map = format->ch_map;
422 base_cfg->audio_fmt.interleaving = format->interleaving_style;
424 base_cfg->cps = mconfig->mcps;
425 base_cfg->ibs = mconfig->ibs;
426 base_cfg->obs = mconfig->obs;
427 base_cfg->is_pages = mconfig->mem_pages;
431 * Copies copier capabilities into copier module and updates copier module
432 * config size.
434 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
435 struct skl_cpr_cfg *cpr_mconfig)
437 if (mconfig->formats_config.caps_size == 0)
438 return;
440 memcpy(cpr_mconfig->gtw_cfg.config_data,
441 mconfig->formats_config.caps,
442 mconfig->formats_config.caps_size);
444 cpr_mconfig->gtw_cfg.config_length =
445 (mconfig->formats_config.caps_size) / 4;
448 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
450 * Calculate the gatewat settings required for copier module, type of
451 * gateway and index of gateway to use
453 static u32 skl_get_node_id(struct skl_sst *ctx,
454 struct skl_module_cfg *mconfig)
456 union skl_connector_node_id node_id = {0};
457 union skl_ssp_dma_node ssp_node = {0};
458 struct skl_pipe_params *params = mconfig->pipe->p_params;
460 switch (mconfig->dev_type) {
461 case SKL_DEVICE_BT:
462 node_id.node.dma_type =
463 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
464 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
465 SKL_DMA_I2S_LINK_INPUT_CLASS;
466 node_id.node.vindex = params->host_dma_id +
467 (mconfig->vbus_id << 3);
468 break;
470 case SKL_DEVICE_I2S:
471 node_id.node.dma_type =
472 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
473 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
474 SKL_DMA_I2S_LINK_INPUT_CLASS;
475 ssp_node.dma_node.time_slot_index = mconfig->time_slot;
476 ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
477 node_id.node.vindex = ssp_node.val;
478 break;
480 case SKL_DEVICE_DMIC:
481 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
482 node_id.node.vindex = mconfig->vbus_id +
483 (mconfig->time_slot);
484 break;
486 case SKL_DEVICE_HDALINK:
487 node_id.node.dma_type =
488 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
489 SKL_DMA_HDA_LINK_OUTPUT_CLASS :
490 SKL_DMA_HDA_LINK_INPUT_CLASS;
491 node_id.node.vindex = params->link_dma_id;
492 break;
494 case SKL_DEVICE_HDAHOST:
495 node_id.node.dma_type =
496 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
497 SKL_DMA_HDA_HOST_OUTPUT_CLASS :
498 SKL_DMA_HDA_HOST_INPUT_CLASS;
499 node_id.node.vindex = params->host_dma_id;
500 break;
502 default:
503 node_id.val = 0xFFFFFFFF;
504 break;
507 return node_id.val;
510 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
511 struct skl_module_cfg *mconfig,
512 struct skl_cpr_cfg *cpr_mconfig)
514 cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
516 if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
517 cpr_mconfig->cpr_feature_mask = 0;
518 return;
521 if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
522 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
523 else
524 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
526 cpr_mconfig->cpr_feature_mask = 0;
527 cpr_mconfig->gtw_cfg.config_length = 0;
529 skl_copy_copier_caps(mconfig, cpr_mconfig);
532 #define DMA_CONTROL_ID 5
534 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
536 struct skl_dma_control *dma_ctrl;
537 struct skl_ipc_large_config_msg msg = {0};
538 int err = 0;
542 * if blob size zero, then return
544 if (mconfig->formats_config.caps_size == 0)
545 return 0;
547 msg.large_param_id = DMA_CONTROL_ID;
548 msg.param_data_size = sizeof(struct skl_dma_control) +
549 mconfig->formats_config.caps_size;
551 dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
552 if (dma_ctrl == NULL)
553 return -ENOMEM;
555 dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
557 /* size in dwords */
558 dma_ctrl->config_length = mconfig->formats_config.caps_size / 4;
560 memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
561 mconfig->formats_config.caps_size);
563 err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
565 kfree(dma_ctrl);
566 return err;
569 static void skl_setup_out_format(struct skl_sst *ctx,
570 struct skl_module_cfg *mconfig,
571 struct skl_audio_data_format *out_fmt)
573 struct skl_module_fmt *format = &mconfig->out_fmt[0];
575 out_fmt->number_of_channels = (u8)format->channels;
576 out_fmt->s_freq = format->s_freq;
577 out_fmt->bit_depth = format->bit_depth;
578 out_fmt->valid_bit_depth = format->valid_bit_depth;
579 out_fmt->ch_cfg = format->ch_cfg;
581 out_fmt->channel_map = format->ch_map;
582 out_fmt->interleaving = format->interleaving_style;
583 out_fmt->sample_type = format->sample_type;
585 dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
586 out_fmt->number_of_channels, format->s_freq, format->bit_depth);
590 * DSP needs SRC module for frequency conversion, SRC takes base module
591 * configuration and the target frequency as extra parameter passed as src
592 * config
594 static void skl_set_src_format(struct skl_sst *ctx,
595 struct skl_module_cfg *mconfig,
596 struct skl_src_module_cfg *src_mconfig)
598 struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
600 skl_set_base_module_format(ctx, mconfig,
601 (struct skl_base_cfg *)src_mconfig);
603 src_mconfig->src_cfg = fmt->s_freq;
607 * DSP needs updown module to do channel conversion. updown module take base
608 * module configuration and channel configuration
609 * It also take coefficients and now we have defaults applied here
611 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
612 struct skl_module_cfg *mconfig,
613 struct skl_up_down_mixer_cfg *mixer_mconfig)
615 struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
616 int i = 0;
618 skl_set_base_module_format(ctx, mconfig,
619 (struct skl_base_cfg *)mixer_mconfig);
620 mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
622 /* Select F/W default coefficient */
623 mixer_mconfig->coeff_sel = 0x0;
625 /* User coeff, don't care since we are selecting F/W defaults */
626 for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
627 mixer_mconfig->coeff[i] = 0xDEADBEEF;
631 * 'copier' is DSP internal module which copies data from Host DMA (HDA host
632 * dma) or link (hda link, SSP, PDM)
633 * Here we calculate the copier module parameters, like PCM format, output
634 * format, gateway settings
635 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
637 static void skl_set_copier_format(struct skl_sst *ctx,
638 struct skl_module_cfg *mconfig,
639 struct skl_cpr_cfg *cpr_mconfig)
641 struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
642 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
644 skl_set_base_module_format(ctx, mconfig, base_cfg);
646 skl_setup_out_format(ctx, mconfig, out_fmt);
647 skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
651 * Algo module are DSP pre processing modules. Algo module take base module
652 * configuration and params
655 static void skl_set_algo_format(struct skl_sst *ctx,
656 struct skl_module_cfg *mconfig,
657 struct skl_algo_cfg *algo_mcfg)
659 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
661 skl_set_base_module_format(ctx, mconfig, base_cfg);
663 if (mconfig->formats_config.caps_size == 0)
664 return;
666 memcpy(algo_mcfg->params,
667 mconfig->formats_config.caps,
668 mconfig->formats_config.caps_size);
673 * Mic select module allows selecting one or many input channels, thus
674 * acting as a demux.
676 * Mic select module take base module configuration and out-format
677 * configuration
679 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
680 struct skl_module_cfg *mconfig,
681 struct skl_base_outfmt_cfg *base_outfmt_mcfg)
683 struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
684 struct skl_base_cfg *base_cfg =
685 (struct skl_base_cfg *)base_outfmt_mcfg;
687 skl_set_base_module_format(ctx, mconfig, base_cfg);
688 skl_setup_out_format(ctx, mconfig, out_fmt);
691 static u16 skl_get_module_param_size(struct skl_sst *ctx,
692 struct skl_module_cfg *mconfig)
694 u16 param_size;
696 switch (mconfig->m_type) {
697 case SKL_MODULE_TYPE_COPIER:
698 param_size = sizeof(struct skl_cpr_cfg);
699 param_size += mconfig->formats_config.caps_size;
700 return param_size;
702 case SKL_MODULE_TYPE_SRCINT:
703 return sizeof(struct skl_src_module_cfg);
705 case SKL_MODULE_TYPE_UPDWMIX:
706 return sizeof(struct skl_up_down_mixer_cfg);
708 case SKL_MODULE_TYPE_ALGO:
709 param_size = sizeof(struct skl_base_cfg);
710 param_size += mconfig->formats_config.caps_size;
711 return param_size;
713 case SKL_MODULE_TYPE_BASE_OUTFMT:
714 case SKL_MODULE_TYPE_KPB:
715 return sizeof(struct skl_base_outfmt_cfg);
717 default:
719 * return only base cfg when no specific module type is
720 * specified
722 return sizeof(struct skl_base_cfg);
725 return 0;
729 * DSP firmware supports various modules like copier, SRC, updown etc.
730 * These modules required various parameters to be calculated and sent for
731 * the module initialization to DSP. By default a generic module needs only
732 * base module format configuration
735 static int skl_set_module_format(struct skl_sst *ctx,
736 struct skl_module_cfg *module_config,
737 u16 *module_config_size,
738 void **param_data)
740 u16 param_size;
742 param_size = skl_get_module_param_size(ctx, module_config);
744 *param_data = kzalloc(param_size, GFP_KERNEL);
745 if (NULL == *param_data)
746 return -ENOMEM;
748 *module_config_size = param_size;
750 switch (module_config->m_type) {
751 case SKL_MODULE_TYPE_COPIER:
752 skl_set_copier_format(ctx, module_config, *param_data);
753 break;
755 case SKL_MODULE_TYPE_SRCINT:
756 skl_set_src_format(ctx, module_config, *param_data);
757 break;
759 case SKL_MODULE_TYPE_UPDWMIX:
760 skl_set_updown_mixer_format(ctx, module_config, *param_data);
761 break;
763 case SKL_MODULE_TYPE_ALGO:
764 skl_set_algo_format(ctx, module_config, *param_data);
765 break;
767 case SKL_MODULE_TYPE_BASE_OUTFMT:
768 case SKL_MODULE_TYPE_KPB:
769 skl_set_base_outfmt_format(ctx, module_config, *param_data);
770 break;
772 default:
773 skl_set_base_module_format(ctx, module_config, *param_data);
774 break;
778 dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
779 module_config->id.module_id, param_size);
780 print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
781 *param_data, param_size, false);
782 return 0;
785 static int skl_get_queue_index(struct skl_module_pin *mpin,
786 struct skl_module_inst_id id, int max)
788 int i;
790 for (i = 0; i < max; i++) {
791 if (mpin[i].id.module_id == id.module_id &&
792 mpin[i].id.instance_id == id.instance_id)
793 return i;
796 return -EINVAL;
800 * Allocates queue for each module.
801 * if dynamic, the pin_index is allocated 0 to max_pin.
802 * In static, the pin_index is fixed based on module_id and instance id
804 static int skl_alloc_queue(struct skl_module_pin *mpin,
805 struct skl_module_cfg *tgt_cfg, int max)
807 int i;
808 struct skl_module_inst_id id = tgt_cfg->id;
810 * if pin in dynamic, find first free pin
811 * otherwise find match module and instance id pin as topology will
812 * ensure a unique pin is assigned to this so no need to
813 * allocate/free
815 for (i = 0; i < max; i++) {
816 if (mpin[i].is_dynamic) {
817 if (!mpin[i].in_use &&
818 mpin[i].pin_state == SKL_PIN_UNBIND) {
820 mpin[i].in_use = true;
821 mpin[i].id.module_id = id.module_id;
822 mpin[i].id.instance_id = id.instance_id;
823 mpin[i].id.pvt_id = id.pvt_id;
824 mpin[i].tgt_mcfg = tgt_cfg;
825 return i;
827 } else {
828 if (mpin[i].id.module_id == id.module_id &&
829 mpin[i].id.instance_id == id.instance_id &&
830 mpin[i].pin_state == SKL_PIN_UNBIND) {
832 mpin[i].tgt_mcfg = tgt_cfg;
833 return i;
838 return -EINVAL;
841 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
843 if (mpin[q_index].is_dynamic) {
844 mpin[q_index].in_use = false;
845 mpin[q_index].id.module_id = 0;
846 mpin[q_index].id.instance_id = 0;
847 mpin[q_index].id.pvt_id = 0;
849 mpin[q_index].pin_state = SKL_PIN_UNBIND;
850 mpin[q_index].tgt_mcfg = NULL;
853 /* Module state will be set to unint, if all the out pin state is UNBIND */
855 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
856 struct skl_module_cfg *mcfg)
858 int i;
859 bool found = false;
861 for (i = 0; i < max; i++) {
862 if (mpin[i].pin_state == SKL_PIN_UNBIND)
863 continue;
864 found = true;
865 break;
868 if (!found)
869 mcfg->m_state = SKL_MODULE_UNINIT;
870 return;
874 * A module needs to be instanataited in DSP. A mdoule is present in a
875 * collection of module referred as a PIPE.
876 * We first calculate the module format, based on module type and then
877 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
879 int skl_init_module(struct skl_sst *ctx,
880 struct skl_module_cfg *mconfig)
882 u16 module_config_size = 0;
883 void *param_data = NULL;
884 int ret;
885 struct skl_ipc_init_instance_msg msg;
887 dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
888 mconfig->id.module_id, mconfig->id.pvt_id);
890 if (mconfig->pipe->state != SKL_PIPE_CREATED) {
891 dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
892 mconfig->pipe->state, mconfig->pipe->ppl_id);
893 return -EIO;
896 ret = skl_set_module_format(ctx, mconfig,
897 &module_config_size, &param_data);
898 if (ret < 0) {
899 dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
900 return ret;
903 msg.module_id = mconfig->id.module_id;
904 msg.instance_id = mconfig->id.pvt_id;
905 msg.ppl_instance_id = mconfig->pipe->ppl_id;
906 msg.param_data_size = module_config_size;
907 msg.core_id = mconfig->core_id;
908 msg.domain = mconfig->domain;
910 ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
911 if (ret < 0) {
912 dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
913 kfree(param_data);
914 return ret;
916 mconfig->m_state = SKL_MODULE_INIT_DONE;
917 kfree(param_data);
918 return ret;
921 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
922 *src_module, struct skl_module_cfg *dst_module)
924 dev_dbg(ctx->dev, "%s: src module_id = %d src_instance=%d\n",
925 __func__, src_module->id.module_id, src_module->id.pvt_id);
926 dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
927 dst_module->id.module_id, dst_module->id.pvt_id);
929 dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
930 src_module->m_state, dst_module->m_state);
934 * On module freeup, we need to unbind the module with modules
935 * it is already bind.
936 * Find the pin allocated and unbind then using bind_unbind IPC
938 int skl_unbind_modules(struct skl_sst *ctx,
939 struct skl_module_cfg *src_mcfg,
940 struct skl_module_cfg *dst_mcfg)
942 int ret;
943 struct skl_ipc_bind_unbind_msg msg;
944 struct skl_module_inst_id src_id = src_mcfg->id;
945 struct skl_module_inst_id dst_id = dst_mcfg->id;
946 int in_max = dst_mcfg->max_in_queue;
947 int out_max = src_mcfg->max_out_queue;
948 int src_index, dst_index, src_pin_state, dst_pin_state;
950 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
952 /* get src queue index */
953 src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
954 if (src_index < 0)
955 return 0;
957 msg.src_queue = src_index;
959 /* get dst queue index */
960 dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
961 if (dst_index < 0)
962 return 0;
964 msg.dst_queue = dst_index;
966 src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
967 dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
969 if (src_pin_state != SKL_PIN_BIND_DONE ||
970 dst_pin_state != SKL_PIN_BIND_DONE)
971 return 0;
973 msg.module_id = src_mcfg->id.module_id;
974 msg.instance_id = src_mcfg->id.pvt_id;
975 msg.dst_module_id = dst_mcfg->id.module_id;
976 msg.dst_instance_id = dst_mcfg->id.pvt_id;
977 msg.bind = false;
979 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
980 if (!ret) {
981 /* free queue only if unbind is success */
982 skl_free_queue(src_mcfg->m_out_pin, src_index);
983 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
986 * check only if src module bind state, bind is
987 * always from src -> sink
989 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
992 return ret;
996 * Once a module is instantiated it need to be 'bind' with other modules in
997 * the pipeline. For binding we need to find the module pins which are bind
998 * together
999 * This function finds the pins and then sends bund_unbind IPC message to
1000 * DSP using IPC helper
1002 int skl_bind_modules(struct skl_sst *ctx,
1003 struct skl_module_cfg *src_mcfg,
1004 struct skl_module_cfg *dst_mcfg)
1006 int ret;
1007 struct skl_ipc_bind_unbind_msg msg;
1008 int in_max = dst_mcfg->max_in_queue;
1009 int out_max = src_mcfg->max_out_queue;
1010 int src_index, dst_index;
1012 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1014 if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1015 dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1016 return 0;
1018 src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1019 if (src_index < 0)
1020 return -EINVAL;
1022 msg.src_queue = src_index;
1023 dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1024 if (dst_index < 0) {
1025 skl_free_queue(src_mcfg->m_out_pin, src_index);
1026 return -EINVAL;
1029 msg.dst_queue = dst_index;
1031 dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1032 msg.src_queue, msg.dst_queue);
1034 msg.module_id = src_mcfg->id.module_id;
1035 msg.instance_id = src_mcfg->id.pvt_id;
1036 msg.dst_module_id = dst_mcfg->id.module_id;
1037 msg.dst_instance_id = dst_mcfg->id.pvt_id;
1038 msg.bind = true;
1040 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1042 if (!ret) {
1043 src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1044 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1045 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1046 } else {
1047 /* error case , if IPC fails, clear the queue index */
1048 skl_free_queue(src_mcfg->m_out_pin, src_index);
1049 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1052 return ret;
1055 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1056 enum skl_ipc_pipeline_state state)
1058 dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1060 return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1064 * A pipeline is a collection of modules. Before a module in instantiated a
1065 * pipeline needs to be created for it.
1066 * This function creates pipeline, by sending create pipeline IPC messages
1067 * to FW
1069 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1071 int ret;
1073 dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1075 ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1076 pipe->pipe_priority, pipe->ppl_id,
1077 pipe->lp_mode);
1078 if (ret < 0) {
1079 dev_err(ctx->dev, "Failed to create pipeline\n");
1080 return ret;
1083 pipe->state = SKL_PIPE_CREATED;
1085 return 0;
1089 * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1090 * pause the pipeline first and then delete it
1091 * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1092 * DMA engines and releases resources
1094 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1096 int ret;
1098 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1100 /* If pipe is started, do stop the pipe in FW. */
1101 if (pipe->state > SKL_PIPE_STARTED) {
1102 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1103 if (ret < 0) {
1104 dev_err(ctx->dev, "Failed to stop pipeline\n");
1105 return ret;
1108 pipe->state = SKL_PIPE_PAUSED;
1111 /* If pipe was not created in FW, do not try to delete it */
1112 if (pipe->state < SKL_PIPE_CREATED)
1113 return 0;
1115 ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1116 if (ret < 0) {
1117 dev_err(ctx->dev, "Failed to delete pipeline\n");
1118 return ret;
1121 pipe->state = SKL_PIPE_INVALID;
1123 return ret;
1127 * A pipeline is also a scheduling entity in DSP which can be run, stopped
1128 * For processing data the pipe need to be run by sending IPC set pipe state
1129 * to DSP
1131 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1133 int ret;
1135 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1137 /* If pipe was not created in FW, do not try to pause or delete */
1138 if (pipe->state < SKL_PIPE_CREATED)
1139 return 0;
1141 /* Pipe has to be paused before it is started */
1142 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1143 if (ret < 0) {
1144 dev_err(ctx->dev, "Failed to pause pipe\n");
1145 return ret;
1148 pipe->state = SKL_PIPE_PAUSED;
1150 ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1151 if (ret < 0) {
1152 dev_err(ctx->dev, "Failed to start pipe\n");
1153 return ret;
1156 pipe->state = SKL_PIPE_STARTED;
1158 return 0;
1162 * Stop the pipeline by sending set pipe state IPC
1163 * DSP doesnt implement stop so we always send pause message
1165 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1167 int ret;
1169 dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1171 /* If pipe was not created in FW, do not try to pause or delete */
1172 if (pipe->state < SKL_PIPE_PAUSED)
1173 return 0;
1175 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1176 if (ret < 0) {
1177 dev_dbg(ctx->dev, "Failed to stop pipe\n");
1178 return ret;
1181 pipe->state = SKL_PIPE_PAUSED;
1183 return 0;
1187 * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1188 * from the DSP side
1190 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1192 int ret;
1194 /* If pipe was not created in FW, do not try to pause or delete */
1195 if (pipe->state < SKL_PIPE_PAUSED)
1196 return 0;
1198 ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1199 if (ret < 0) {
1200 dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1201 return ret;
1204 pipe->state = SKL_PIPE_RESET;
1206 return 0;
1209 /* Algo parameter set helper function */
1210 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1211 u32 param_id, struct skl_module_cfg *mcfg)
1213 struct skl_ipc_large_config_msg msg;
1215 msg.module_id = mcfg->id.module_id;
1216 msg.instance_id = mcfg->id.pvt_id;
1217 msg.param_data_size = size;
1218 msg.large_param_id = param_id;
1220 return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1223 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1224 u32 param_id, struct skl_module_cfg *mcfg)
1226 struct skl_ipc_large_config_msg msg;
1228 msg.module_id = mcfg->id.module_id;
1229 msg.instance_id = mcfg->id.pvt_id;
1230 msg.param_data_size = size;
1231 msg.large_param_id = param_id;
1233 return skl_ipc_get_large_config(&ctx->ipc, &msg, params);