amd64_edac: unify MCGCTL ECC switching
[linux/fpc-iii.git] / drivers / edac / amd64_edac.c
blob70c7d5f5ba5e1e28aced348b18177d16bca23eb6
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22 * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
23 * for DDR2 DRAM mapping.
25 u32 revf_quad_ddr2_shift[] = {
26 0, /* 0000b NULL DIMM (128mb) */
27 28, /* 0001b 256mb */
28 29, /* 0010b 512mb */
29 29, /* 0011b 512mb */
30 29, /* 0100b 512mb */
31 30, /* 0101b 1gb */
32 30, /* 0110b 1gb */
33 31, /* 0111b 2gb */
34 31, /* 1000b 2gb */
35 32, /* 1001b 4gb */
36 32, /* 1010b 4gb */
37 33, /* 1011b 8gb */
38 0, /* 1100b future */
39 0, /* 1101b future */
40 0, /* 1110b future */
41 0 /* 1111b future */
45 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
46 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
47 * or higher value'.
49 *FIXME: Produce a better mapping/linearisation.
52 struct scrubrate scrubrates[] = {
53 { 0x01, 1600000000UL},
54 { 0x02, 800000000UL},
55 { 0x03, 400000000UL},
56 { 0x04, 200000000UL},
57 { 0x05, 100000000UL},
58 { 0x06, 50000000UL},
59 { 0x07, 25000000UL},
60 { 0x08, 12284069UL},
61 { 0x09, 6274509UL},
62 { 0x0A, 3121951UL},
63 { 0x0B, 1560975UL},
64 { 0x0C, 781440UL},
65 { 0x0D, 390720UL},
66 { 0x0E, 195300UL},
67 { 0x0F, 97650UL},
68 { 0x10, 48854UL},
69 { 0x11, 24427UL},
70 { 0x12, 12213UL},
71 { 0x13, 6101UL},
72 { 0x14, 3051UL},
73 { 0x15, 1523UL},
74 { 0x16, 761UL},
75 { 0x00, 0UL}, /* scrubbing off */
79 * Memory scrubber control interface. For K8, memory scrubbing is handled by
80 * hardware and can involve L2 cache, dcache as well as the main memory. With
81 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
82 * functionality.
84 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
85 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
86 * bytes/sec for the setting.
88 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
89 * other archs, we might not have access to the caches directly.
93 * scan the scrub rate mapping table for a close or matching bandwidth value to
94 * issue. If requested is too big, then use last maximum value found.
96 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
97 u32 min_scrubrate)
99 u32 scrubval;
100 int i;
103 * map the configured rate (new_bw) to a value specific to the AMD64
104 * memory controller and apply to register. Search for the first
105 * bandwidth entry that is greater or equal than the setting requested
106 * and program that. If at last entry, turn off DRAM scrubbing.
108 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
110 * skip scrub rates which aren't recommended
111 * (see F10 BKDG, F3x58)
113 if (scrubrates[i].scrubval < min_scrubrate)
114 continue;
116 if (scrubrates[i].bandwidth <= new_bw)
117 break;
120 * if no suitable bandwidth found, turn off DRAM scrubbing
121 * entirely by falling back to the last element in the
122 * scrubrates array.
126 scrubval = scrubrates[i].scrubval;
127 if (scrubval)
128 edac_printk(KERN_DEBUG, EDAC_MC,
129 "Setting scrub rate bandwidth: %u\n",
130 scrubrates[i].bandwidth);
131 else
132 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
134 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
136 return 0;
139 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
141 struct amd64_pvt *pvt = mci->pvt_info;
142 u32 min_scrubrate = 0x0;
144 switch (boot_cpu_data.x86) {
145 case 0xf:
146 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
147 break;
148 case 0x10:
149 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
150 break;
151 case 0x11:
152 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
153 break;
155 default:
156 amd64_printk(KERN_ERR, "Unsupported family!\n");
157 break;
159 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
160 min_scrubrate);
163 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 scrubval = 0;
167 int status = -1, i, ret = 0;
169 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
170 if (ret)
171 debugf0("Reading K8_SCRCTRL failed\n");
173 scrubval = scrubval & 0x001F;
175 edac_printk(KERN_DEBUG, EDAC_MC,
176 "pci-read, sdram scrub control value: %d \n", scrubval);
178 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
179 if (scrubrates[i].scrubval == scrubval) {
180 *bw = scrubrates[i].bandwidth;
181 status = 0;
182 break;
186 return status;
189 /* Map from a CSROW entry to the mask entry that operates on it */
190 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
192 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
193 return csrow;
194 else
195 return csrow >> 1;
198 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
199 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
201 if (dct == 0)
202 return pvt->dcsb0[csrow];
203 else
204 return pvt->dcsb1[csrow];
208 * Return the 'mask' address the i'th CS entry. This function is needed because
209 * there number of DCSM registers on Rev E and prior vs Rev F and later is
210 * different.
212 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
214 if (dct == 0)
215 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
216 else
217 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
222 * In *base and *limit, pass back the full 40-bit base and limit physical
223 * addresses for the node given by node_id. This information is obtained from
224 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
225 * base and limit addresses are of type SysAddr, as defined at the start of
226 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
227 * in the address range they represent.
229 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
230 u64 *base, u64 *limit)
232 *base = pvt->dram_base[node_id];
233 *limit = pvt->dram_limit[node_id];
237 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
238 * with node_id
240 static int amd64_base_limit_match(struct amd64_pvt *pvt,
241 u64 sys_addr, int node_id)
243 u64 base, limit, addr;
245 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
253 addr = sys_addr & 0x000000ffffffffffull;
255 return (addr >= base) && (addr <= limit);
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
262 * On failure, return NULL.
264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
267 struct amd64_pvt *pvt;
268 int node_id;
269 u32 intlv_en, bits;
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 pvt = mci->pvt_info;
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
282 intlv_en = pvt->dram_IntlvEn[0];
284 if (intlv_en == 0) {
285 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 goto found;
289 goto err_no_match;
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
295 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
296 "IntlvEn field of DRAM Base Register for node 0: "
297 "this probably indicates a BIOS bug.\n", intlv_en);
298 return NULL;
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
303 for (node_id = 0; ; ) {
304 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
305 break; /* intlv_sel field matches */
307 if (++node_id >= DRAM_REG_COUNT)
308 goto err_no_match;
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
313 amd64_printk(KERN_WARNING,
314 "%s(): sys_addr 0x%llx falls outside base/limit "
315 "address range for node %d with node interleaving "
316 "enabled.\n",
317 __func__, sys_addr, node_id);
318 return NULL;
321 found:
322 return edac_mc_find(node_id);
324 err_no_match:
325 debugf2("sys_addr 0x%lx doesn't match any node\n",
326 (unsigned long)sys_addr);
328 return NULL;
332 * Extract the DRAM CS base address from selected csrow register.
334 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
336 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
337 pvt->dcs_shift;
341 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
343 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
345 u64 dcsm_bits, other_bits;
346 u64 mask;
348 /* Extract bits from DRAM CS Mask. */
349 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
351 other_bits = pvt->dcsm_mask;
352 other_bits = ~(other_bits << pvt->dcs_shift);
355 * The extracted bits from DCSM belong in the spaces represented by
356 * the cleared bits in other_bits.
358 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
360 return mask;
364 * @input_addr is an InputAddr associated with the node given by mci. Return the
365 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
367 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
369 struct amd64_pvt *pvt;
370 int csrow;
371 u64 base, mask;
373 pvt = mci->pvt_info;
376 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
377 * base/mask register pair, test the condition shown near the start of
378 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
380 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
382 /* This DRAM chip select is disabled on this node */
383 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
384 continue;
386 base = base_from_dct_base(pvt, csrow);
387 mask = ~mask_from_dct_mask(pvt, csrow);
389 if ((input_addr & mask) == (base & mask)) {
390 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
391 (unsigned long)input_addr, csrow,
392 pvt->mc_node_id);
394 return csrow;
398 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
399 (unsigned long)input_addr, pvt->mc_node_id);
401 return -1;
405 * Return the base value defined by the DRAM Base register for the node
406 * represented by mci. This function returns the full 40-bit value despite the
407 * fact that the register only stores bits 39-24 of the value. See section
408 * 3.4.4.1 (BKDG #26094, K8, revA-E)
410 static inline u64 get_dram_base(struct mem_ctl_info *mci)
412 struct amd64_pvt *pvt = mci->pvt_info;
414 return pvt->dram_base[pvt->mc_node_id];
418 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
419 * for the node represented by mci. Info is passed back in *hole_base,
420 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
421 * info is invalid. Info may be invalid for either of the following reasons:
423 * - The revision of the node is not E or greater. In this case, the DRAM Hole
424 * Address Register does not exist.
426 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
427 * indicating that its contents are not valid.
429 * The values passed back in *hole_base, *hole_offset, and *hole_size are
430 * complete 32-bit values despite the fact that the bitfields in the DHAR
431 * only represent bits 31-24 of the base and offset values.
433 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
434 u64 *hole_offset, u64 *hole_size)
436 struct amd64_pvt *pvt = mci->pvt_info;
437 u64 base;
439 /* only revE and later have the DRAM Hole Address Register */
440 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
441 debugf1(" revision %d for node %d does not support DHAR\n",
442 pvt->ext_model, pvt->mc_node_id);
443 return 1;
446 /* only valid for Fam10h */
447 if (boot_cpu_data.x86 == 0x10 &&
448 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
449 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
450 return 1;
453 if ((pvt->dhar & DHAR_VALID) == 0) {
454 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
455 pvt->mc_node_id);
456 return 1;
459 /* This node has Memory Hoisting */
461 /* +------------------+--------------------+--------------------+-----
462 * | memory | DRAM hole | relocated |
463 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
464 * | | | DRAM hole |
465 * | | | [0x100000000, |
466 * | | | (0x100000000+ |
467 * | | | (0xffffffff-x))] |
468 * +------------------+--------------------+--------------------+-----
470 * Above is a diagram of physical memory showing the DRAM hole and the
471 * relocated addresses from the DRAM hole. As shown, the DRAM hole
472 * starts at address x (the base address) and extends through address
473 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
474 * addresses in the hole so that they start at 0x100000000.
477 base = dhar_base(pvt->dhar);
479 *hole_base = base;
480 *hole_size = (0x1ull << 32) - base;
482 if (boot_cpu_data.x86 > 0xf)
483 *hole_offset = f10_dhar_offset(pvt->dhar);
484 else
485 *hole_offset = k8_dhar_offset(pvt->dhar);
487 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
488 pvt->mc_node_id, (unsigned long)*hole_base,
489 (unsigned long)*hole_offset, (unsigned long)*hole_size);
491 return 0;
493 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
496 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
497 * assumed that sys_addr maps to the node given by mci.
499 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
500 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
501 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
502 * then it is also involved in translating a SysAddr to a DramAddr. Sections
503 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
504 * These parts of the documentation are unclear. I interpret them as follows:
506 * When node n receives a SysAddr, it processes the SysAddr as follows:
508 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
509 * Limit registers for node n. If the SysAddr is not within the range
510 * specified by the base and limit values, then node n ignores the Sysaddr
511 * (since it does not map to node n). Otherwise continue to step 2 below.
513 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
514 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
515 * the range of relocated addresses (starting at 0x100000000) from the DRAM
516 * hole. If not, skip to step 3 below. Else get the value of the
517 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
518 * offset defined by this value from the SysAddr.
520 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
521 * Base register for node n. To obtain the DramAddr, subtract the base
522 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
524 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
526 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
527 int ret = 0;
529 dram_base = get_dram_base(mci);
531 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
532 &hole_size);
533 if (!ret) {
534 if ((sys_addr >= (1ull << 32)) &&
535 (sys_addr < ((1ull << 32) + hole_size))) {
536 /* use DHAR to translate SysAddr to DramAddr */
537 dram_addr = sys_addr - hole_offset;
539 debugf2("using DHAR to translate SysAddr 0x%lx to "
540 "DramAddr 0x%lx\n",
541 (unsigned long)sys_addr,
542 (unsigned long)dram_addr);
544 return dram_addr;
549 * Translate the SysAddr to a DramAddr as shown near the start of
550 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
551 * only deals with 40-bit values. Therefore we discard bits 63-40 of
552 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
553 * discard are all 1s. Otherwise the bits we discard are all 0s. See
554 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
555 * Programmer's Manual Volume 1 Application Programming.
557 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
559 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
560 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
561 (unsigned long)dram_addr);
562 return dram_addr;
566 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
567 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
568 * for node interleaving.
570 static int num_node_interleave_bits(unsigned intlv_en)
572 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
573 int n;
575 BUG_ON(intlv_en > 7);
576 n = intlv_shift_table[intlv_en];
577 return n;
580 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
581 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
583 struct amd64_pvt *pvt;
584 int intlv_shift;
585 u64 input_addr;
587 pvt = mci->pvt_info;
590 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
591 * concerning translating a DramAddr to an InputAddr.
593 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
594 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
595 (dram_addr & 0xfff);
597 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
598 intlv_shift, (unsigned long)dram_addr,
599 (unsigned long)input_addr);
601 return input_addr;
605 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
606 * assumed that @sys_addr maps to the node given by mci.
608 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
610 u64 input_addr;
612 input_addr =
613 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
615 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
616 (unsigned long)sys_addr, (unsigned long)input_addr);
618 return input_addr;
623 * @input_addr is an InputAddr associated with the node represented by mci.
624 * Translate @input_addr to a DramAddr and return the result.
626 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
628 struct amd64_pvt *pvt;
629 int node_id, intlv_shift;
630 u64 bits, dram_addr;
631 u32 intlv_sel;
634 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
635 * shows how to translate a DramAddr to an InputAddr. Here we reverse
636 * this procedure. When translating from a DramAddr to an InputAddr, the
637 * bits used for node interleaving are discarded. Here we recover these
638 * bits from the IntlvSel field of the DRAM Limit register (section
639 * 3.4.4.2) for the node that input_addr is associated with.
641 pvt = mci->pvt_info;
642 node_id = pvt->mc_node_id;
643 BUG_ON((node_id < 0) || (node_id > 7));
645 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
647 if (intlv_shift == 0) {
648 debugf1(" InputAddr 0x%lx translates to DramAddr of "
649 "same value\n", (unsigned long)input_addr);
651 return input_addr;
654 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
655 (input_addr & 0xfff);
657 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
658 dram_addr = bits + (intlv_sel << 12);
660 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
661 "(%d node interleave bits)\n", (unsigned long)input_addr,
662 (unsigned long)dram_addr, intlv_shift);
664 return dram_addr;
668 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
669 * @dram_addr to a SysAddr.
671 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
673 struct amd64_pvt *pvt = mci->pvt_info;
674 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
675 int ret = 0;
677 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
678 &hole_size);
679 if (!ret) {
680 if ((dram_addr >= hole_base) &&
681 (dram_addr < (hole_base + hole_size))) {
682 sys_addr = dram_addr + hole_offset;
684 debugf1("using DHAR to translate DramAddr 0x%lx to "
685 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
686 (unsigned long)sys_addr);
688 return sys_addr;
692 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
693 sys_addr = dram_addr + base;
696 * The sys_addr we have computed up to this point is a 40-bit value
697 * because the k8 deals with 40-bit values. However, the value we are
698 * supposed to return is a full 64-bit physical address. The AMD
699 * x86-64 architecture specifies that the most significant implemented
700 * address bit through bit 63 of a physical address must be either all
701 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
702 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
703 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
704 * Programming.
706 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
708 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
709 pvt->mc_node_id, (unsigned long)dram_addr,
710 (unsigned long)sys_addr);
712 return sys_addr;
716 * @input_addr is an InputAddr associated with the node given by mci. Translate
717 * @input_addr to a SysAddr.
719 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
720 u64 input_addr)
722 return dram_addr_to_sys_addr(mci,
723 input_addr_to_dram_addr(mci, input_addr));
727 * Find the minimum and maximum InputAddr values that map to the given @csrow.
728 * Pass back these values in *input_addr_min and *input_addr_max.
730 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
731 u64 *input_addr_min, u64 *input_addr_max)
733 struct amd64_pvt *pvt;
734 u64 base, mask;
736 pvt = mci->pvt_info;
737 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
739 base = base_from_dct_base(pvt, csrow);
740 mask = mask_from_dct_mask(pvt, csrow);
742 *input_addr_min = base & ~mask;
743 *input_addr_max = base | mask | pvt->dcs_mask_notused;
747 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
748 * Address High (section 3.6.4.6) register values and return the result. Address
749 * is located in the info structure (nbeah and nbeal), the encoding is device
750 * specific.
752 static u64 extract_error_address(struct mem_ctl_info *mci,
753 struct err_regs *info)
755 struct amd64_pvt *pvt = mci->pvt_info;
757 return pvt->ops->get_error_address(mci, info);
761 /* Map the Error address to a PAGE and PAGE OFFSET. */
762 static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
777 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
779 int csrow;
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
783 if (csrow == -1)
784 amd64_mc_printk(mci, KERN_ERR,
785 "Failed to translate InputAddr to csrow for "
786 "address 0x%lx\n", (unsigned long)sys_addr);
787 return csrow;
790 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
792 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
794 if (boot_cpu_data.x86 == 0x11)
795 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
796 else if (boot_cpu_data.x86 == 0x10)
797 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
798 else if (boot_cpu_data.x86 == 0xf)
799 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
800 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
801 "Rev F or later" : "Rev E or earlier");
802 else
803 /* we'll hardly ever ever get here */
804 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
808 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
809 * are ECC capable.
811 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
813 int bit;
814 enum dev_type edac_cap = EDAC_FLAG_NONE;
816 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
817 ? 19
818 : 17;
820 if (pvt->dclr0 & BIT(bit))
821 edac_cap = EDAC_FLAG_SECDED;
823 return edac_cap;
827 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
828 int ganged);
830 /* Display and decode various NB registers for debug purposes. */
831 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
833 int ganged;
835 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
836 pvt->nbcap,
837 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
838 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
839 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
840 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
841 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
842 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
843 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
844 pvt->dclr0,
845 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
846 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
847 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
848 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
849 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
850 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
851 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
852 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
853 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
856 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
858 if (boot_cpu_data.x86 == 0xf) {
859 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
860 pvt->dhar, dhar_base(pvt->dhar),
861 k8_dhar_offset(pvt->dhar));
862 debugf1(" DramHoleValid=%s\n",
863 (pvt->dhar & DHAR_VALID) ? "True" : "False");
865 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
867 /* everything below this point is Fam10h and above */
868 return;
870 } else {
871 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
872 pvt->dhar, dhar_base(pvt->dhar),
873 f10_dhar_offset(pvt->dhar));
874 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
875 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
876 "True" : "False",
877 (pvt->dhar & DHAR_VALID) ?
878 "True" : "False");
881 /* Only if NOT ganged does dcl1 have valid info */
882 if (!dct_ganging_enabled(pvt)) {
883 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
884 "Width=%s\n", pvt->dclr1,
885 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
886 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
887 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
888 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
889 "DIMM Type=%s\n",
890 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
891 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
892 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
893 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
894 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
898 * Determine if ganged and then dump memory sizes for first controller,
899 * and if NOT ganged dump info for 2nd controller.
901 ganged = dct_ganging_enabled(pvt);
903 f10_debug_display_dimm_sizes(0, pvt, ganged);
905 if (!ganged)
906 f10_debug_display_dimm_sizes(1, pvt, ganged);
909 /* Read in both of DBAM registers */
910 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
912 int err = 0;
913 unsigned int reg;
915 reg = DBAM0;
916 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
917 if (err)
918 goto err_reg;
920 if (boot_cpu_data.x86 >= 0x10) {
921 reg = DBAM1;
922 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
924 if (err)
925 goto err_reg;
928 return;
930 err_reg:
931 debugf0("Error reading F2x%03x.\n", reg);
935 * NOTE: CPU Revision Dependent code: Rev E and Rev F
937 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
938 * set the shift factor for the DCSB and DCSM values.
940 * ->dcs_mask_notused, RevE:
942 * To find the max InputAddr for the csrow, start with the base address and set
943 * all bits that are "don't care" bits in the test at the start of section
944 * 3.5.4 (p. 84).
946 * The "don't care" bits are all set bits in the mask and all bits in the gaps
947 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
948 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
949 * gaps.
951 * ->dcs_mask_notused, RevF and later:
953 * To find the max InputAddr for the csrow, start with the base address and set
954 * all bits that are "don't care" bits in the test at the start of NPT section
955 * 4.5.4 (p. 87).
957 * The "don't care" bits are all set bits in the mask and all bits in the gaps
958 * between bit ranges [36:27] and [21:13].
960 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
961 * which are all bits in the above-mentioned gaps.
963 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
966 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
967 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
968 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
969 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
970 pvt->dcs_shift = REV_E_DCS_SHIFT;
971 pvt->cs_count = 8;
972 pvt->num_dcsm = 8;
973 } else {
974 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
975 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
976 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
977 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
979 if (boot_cpu_data.x86 == 0x11) {
980 pvt->cs_count = 4;
981 pvt->num_dcsm = 2;
982 } else {
983 pvt->cs_count = 8;
984 pvt->num_dcsm = 4;
990 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
992 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
994 int cs, reg, err = 0;
996 amd64_set_dct_base_and_mask(pvt);
998 for (cs = 0; cs < pvt->cs_count; cs++) {
999 reg = K8_DCSB0 + (cs * 4);
1000 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1001 &pvt->dcsb0[cs]);
1002 if (unlikely(err))
1003 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
1004 else
1005 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
1006 cs, pvt->dcsb0[cs], reg);
1008 /* If DCT are NOT ganged, then read in DCT1's base */
1009 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1010 reg = F10_DCSB1 + (cs * 4);
1011 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1012 &pvt->dcsb1[cs]);
1013 if (unlikely(err))
1014 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
1015 else
1016 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1017 cs, pvt->dcsb1[cs], reg);
1018 } else {
1019 pvt->dcsb1[cs] = 0;
1023 for (cs = 0; cs < pvt->num_dcsm; cs++) {
1024 reg = K8_DCSM0 + (cs * 4);
1025 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1026 &pvt->dcsm0[cs]);
1027 if (unlikely(err))
1028 debugf0("Reading K8_DCSM0 failed\n");
1029 else
1030 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1031 cs, pvt->dcsm0[cs], reg);
1033 /* If DCT are NOT ganged, then read in DCT1's mask */
1034 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1035 reg = F10_DCSM1 + (cs * 4);
1036 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1037 &pvt->dcsm1[cs]);
1038 if (unlikely(err))
1039 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
1040 else
1041 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1042 cs, pvt->dcsm1[cs], reg);
1043 } else
1044 pvt->dcsm1[cs] = 0;
1048 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1050 enum mem_type type;
1052 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1053 /* Rev F and later */
1054 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1055 } else {
1056 /* Rev E and earlier */
1057 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1060 debugf1(" Memory type is: %s\n",
1061 (type == MEM_DDR2) ? "MEM_DDR2" :
1062 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1063 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1065 return type;
1069 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1070 * and the later RevF memory controllers (DDR vs DDR2)
1072 * Return:
1073 * number of memory channels in operation
1074 * Pass back:
1075 * contents of the DCL0_LOW register
1077 static int k8_early_channel_count(struct amd64_pvt *pvt)
1079 int flag, err = 0;
1081 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1082 if (err)
1083 return err;
1085 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1086 /* RevF (NPT) and later */
1087 flag = pvt->dclr0 & F10_WIDTH_128;
1088 } else {
1089 /* RevE and earlier */
1090 flag = pvt->dclr0 & REVE_WIDTH_128;
1093 /* not used */
1094 pvt->dclr1 = 0;
1096 return (flag) ? 2 : 1;
1099 /* extract the ERROR ADDRESS for the K8 CPUs */
1100 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1101 struct err_regs *info)
1103 return (((u64) (info->nbeah & 0xff)) << 32) +
1104 (info->nbeal & ~0x03);
1108 * Read the Base and Limit registers for K8 based Memory controllers; extract
1109 * fields from the 'raw' reg into separate data fields
1111 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1113 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1115 u32 low;
1116 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1117 int err;
1119 err = pci_read_config_dword(pvt->addr_f1_ctl,
1120 K8_DRAM_BASE_LOW + off, &low);
1121 if (err)
1122 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1124 /* Extract parts into separate data entries */
1125 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1126 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1127 pvt->dram_rw_en[dram] = (low & 0x3);
1129 err = pci_read_config_dword(pvt->addr_f1_ctl,
1130 K8_DRAM_LIMIT_LOW + off, &low);
1131 if (err)
1132 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1135 * Extract parts into separate data entries. Limit is the HIGHEST memory
1136 * location of the region, so lower 24 bits need to be all ones
1138 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1139 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1140 pvt->dram_DstNode[dram] = (low & 0x7);
1143 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1144 struct err_regs *info,
1145 u64 SystemAddress)
1147 struct mem_ctl_info *src_mci;
1148 unsigned short syndrome;
1149 int channel, csrow;
1150 u32 page, offset;
1152 /* Extract the syndrome parts and form a 16-bit syndrome */
1153 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1154 syndrome |= LOW_SYNDROME(info->nbsh);
1156 /* CHIPKILL enabled */
1157 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1158 channel = get_channel_from_ecc_syndrome(syndrome);
1159 if (channel < 0) {
1161 * Syndrome didn't map, so we don't know which of the
1162 * 2 DIMMs is in error. So we need to ID 'both' of them
1163 * as suspect.
1165 amd64_mc_printk(mci, KERN_WARNING,
1166 "unknown syndrome 0x%x - possible error "
1167 "reporting race\n", syndrome);
1168 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1169 return;
1171 } else {
1173 * non-chipkill ecc mode
1175 * The k8 documentation is unclear about how to determine the
1176 * channel number when using non-chipkill memory. This method
1177 * was obtained from email communication with someone at AMD.
1178 * (Wish the email was placed in this comment - norsk)
1180 channel = ((SystemAddress & BIT(3)) != 0);
1184 * Find out which node the error address belongs to. This may be
1185 * different from the node that detected the error.
1187 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1188 if (!src_mci) {
1189 amd64_mc_printk(mci, KERN_ERR,
1190 "failed to map error address 0x%lx to a node\n",
1191 (unsigned long)SystemAddress);
1192 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1193 return;
1196 /* Now map the SystemAddress to a CSROW */
1197 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1198 if (csrow < 0) {
1199 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1200 } else {
1201 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1203 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1204 channel, EDAC_MOD_STR);
1209 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1210 * Address Mapping.
1212 * First step is to calc the number of bits to shift a value of 1 left to
1213 * indicate show many pages. Start with the DBAM value as the starting bits,
1214 * then proceed to adjust those shift bits, based on CPU rev and the table.
1215 * See BKDG on the DBAM
1217 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1219 int nr_pages;
1221 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1222 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1223 } else {
1225 * RevE and less section; this line is tricky. It collapses the
1226 * table used by RevD and later to one that matches revisions CG
1227 * and earlier.
1229 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1230 (dram_map > 8 ? 4 : (dram_map > 5 ?
1231 3 : (dram_map > 2 ? 1 : 0))) : 0;
1233 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1234 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1237 return nr_pages;
1241 * Get the number of DCT channels in use.
1243 * Return:
1244 * number of Memory Channels in operation
1245 * Pass back:
1246 * contents of the DCL0_LOW register
1248 static int f10_early_channel_count(struct amd64_pvt *pvt)
1250 int dbams[] = { DBAM0, DBAM1 };
1251 int err = 0, channels = 0;
1252 int i, j;
1253 u32 dbam;
1255 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1256 if (err)
1257 goto err_reg;
1259 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1260 if (err)
1261 goto err_reg;
1263 /* If we are in 128 bit mode, then we are using 2 channels */
1264 if (pvt->dclr0 & F10_WIDTH_128) {
1265 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1266 channels = 2;
1267 return channels;
1271 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1272 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1273 * will be OFF.
1275 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1276 * their CSEnable bit on. If so, then SINGLE DIMM case.
1278 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1281 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1282 * is more than just one DIMM present in unganged mode. Need to check
1283 * both controllers since DIMMs can be placed in either one.
1285 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1286 err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
1287 if (err)
1288 goto err_reg;
1290 for (j = 0; j < 4; j++) {
1291 if (DBAM_DIMM(j, dbam) > 0) {
1292 channels++;
1293 break;
1298 debugf0("MCT channel count: %d\n", channels);
1300 return channels;
1302 err_reg:
1303 return -1;
1307 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1309 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1312 /* Enable extended configuration access via 0xCF8 feature */
1313 static void amd64_setup(struct amd64_pvt *pvt)
1315 u32 reg;
1317 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1319 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1320 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1321 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1324 /* Restore the extended configuration access via 0xCF8 feature */
1325 static void amd64_teardown(struct amd64_pvt *pvt)
1327 u32 reg;
1329 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1331 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1332 if (pvt->flags.cf8_extcfg)
1333 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1334 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1337 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1338 struct err_regs *info)
1340 return (((u64) (info->nbeah & 0xffff)) << 32) +
1341 (info->nbeal & ~0x01);
1345 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1346 * fields from the 'raw' reg into separate data fields.
1348 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1350 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1352 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1354 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1355 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1357 /* read the 'raw' DRAM BASE Address register */
1358 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1360 /* Read from the ECS data register */
1361 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1363 /* Extract parts into separate data entries */
1364 pvt->dram_rw_en[dram] = (low_base & 0x3);
1366 if (pvt->dram_rw_en[dram] == 0)
1367 return;
1369 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1371 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1372 (((u64)low_base & 0xFFFF0000) << 8);
1374 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1375 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1377 /* read the 'raw' LIMIT registers */
1378 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1380 /* Read from the ECS data register for the HIGH portion */
1381 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1383 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1384 high_base, low_base, high_limit, low_limit);
1386 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1387 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1390 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1391 * memory location of the region, so low 24 bits need to be all ones.
1393 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1394 (((u64) low_limit & 0xFFFF0000) << 8) |
1395 0x00FFFFFF;
1398 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1400 int err = 0;
1402 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1403 &pvt->dram_ctl_select_low);
1404 if (err) {
1405 debugf0("Reading F2x110 (DCTL Sel. Low) failed\n");
1406 } else {
1407 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1408 "High range addresses at: 0x%x\n",
1409 pvt->dram_ctl_select_low,
1410 dct_sel_baseaddr(pvt));
1412 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1413 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1414 (dct_dram_enabled(pvt) ? "yes" : "no"));
1416 if (!dct_ganging_enabled(pvt))
1417 debugf0(" Address range split per DCT: %s\n",
1418 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1420 debugf0(" DCT data interleave for ECC: %s, "
1421 "DRAM cleared since last warm reset: %s\n",
1422 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1423 (dct_memory_cleared(pvt) ? "yes" : "no"));
1425 debugf0(" DCT channel interleave: %s, "
1426 "DCT interleave bits selector: 0x%x\n",
1427 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1428 dct_sel_interleave_addr(pvt));
1431 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1432 &pvt->dram_ctl_select_high);
1433 if (err)
1434 debugf0("Reading F2x114 (DCT Sel. High) failed\n");
1438 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1439 * Interleaving Modes.
1441 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1442 int hi_range_sel, u32 intlv_en)
1444 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1446 if (dct_ganging_enabled(pvt))
1447 cs = 0;
1448 else if (hi_range_sel)
1449 cs = dct_sel_high;
1450 else if (dct_interleave_enabled(pvt)) {
1452 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1454 if (dct_sel_interleave_addr(pvt) == 0)
1455 cs = sys_addr >> 6 & 1;
1456 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1457 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1459 if (dct_sel_interleave_addr(pvt) & 1)
1460 cs = (sys_addr >> 9 & 1) ^ temp;
1461 else
1462 cs = (sys_addr >> 6 & 1) ^ temp;
1463 } else if (intlv_en & 4)
1464 cs = sys_addr >> 15 & 1;
1465 else if (intlv_en & 2)
1466 cs = sys_addr >> 14 & 1;
1467 else if (intlv_en & 1)
1468 cs = sys_addr >> 13 & 1;
1469 else
1470 cs = sys_addr >> 12 & 1;
1471 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1472 cs = ~dct_sel_high & 1;
1473 else
1474 cs = 0;
1476 return cs;
1479 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1481 if (intlv_en == 1)
1482 return 1;
1483 else if (intlv_en == 3)
1484 return 2;
1485 else if (intlv_en == 7)
1486 return 3;
1488 return 0;
1491 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1492 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1493 u32 dct_sel_base_addr,
1494 u64 dct_sel_base_off,
1495 u32 hole_valid, u32 hole_off,
1496 u64 dram_base)
1498 u64 chan_off;
1500 if (hi_range_sel) {
1501 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1502 hole_valid && (sys_addr >= 0x100000000ULL))
1503 chan_off = hole_off << 16;
1504 else
1505 chan_off = dct_sel_base_off;
1506 } else {
1507 if (hole_valid && (sys_addr >= 0x100000000ULL))
1508 chan_off = hole_off << 16;
1509 else
1510 chan_off = dram_base & 0xFFFFF8000000ULL;
1513 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1514 (chan_off & 0x0000FFFFFF800000ULL);
1517 /* Hack for the time being - Can we get this from BIOS?? */
1518 #define CH0SPARE_RANK 0
1519 #define CH1SPARE_RANK 1
1522 * checks if the csrow passed in is marked as SPARED, if so returns the new
1523 * spare row
1525 static inline int f10_process_possible_spare(int csrow,
1526 u32 cs, struct amd64_pvt *pvt)
1528 u32 swap_done;
1529 u32 bad_dram_cs;
1531 /* Depending on channel, isolate respective SPARING info */
1532 if (cs) {
1533 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1534 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1535 if (swap_done && (csrow == bad_dram_cs))
1536 csrow = CH1SPARE_RANK;
1537 } else {
1538 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1539 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1540 if (swap_done && (csrow == bad_dram_cs))
1541 csrow = CH0SPARE_RANK;
1543 return csrow;
1547 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1548 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1550 * Return:
1551 * -EINVAL: NOT FOUND
1552 * 0..csrow = Chip-Select Row
1554 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1556 struct mem_ctl_info *mci;
1557 struct amd64_pvt *pvt;
1558 u32 cs_base, cs_mask;
1559 int cs_found = -EINVAL;
1560 int csrow;
1562 mci = mci_lookup[nid];
1563 if (!mci)
1564 return cs_found;
1566 pvt = mci->pvt_info;
1568 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1570 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1572 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1573 if (!(cs_base & K8_DCSB_CS_ENABLE))
1574 continue;
1577 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1578 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1579 * of the actual address.
1581 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1584 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1585 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1587 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1589 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1590 csrow, cs_base, cs_mask);
1592 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1594 debugf1(" Final CSMask=0x%x\n", cs_mask);
1595 debugf1(" (InputAddr & ~CSMask)=0x%x "
1596 "(CSBase & ~CSMask)=0x%x\n",
1597 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1599 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1600 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1602 debugf1(" MATCH csrow=%d\n", cs_found);
1603 break;
1606 return cs_found;
1609 /* For a given @dram_range, check if @sys_addr falls within it. */
1610 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1611 u64 sys_addr, int *nid, int *chan_sel)
1613 int node_id, cs_found = -EINVAL, high_range = 0;
1614 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1615 u32 hole_valid, tmp, dct_sel_base, channel;
1616 u64 dram_base, chan_addr, dct_sel_base_off;
1618 dram_base = pvt->dram_base[dram_range];
1619 intlv_en = pvt->dram_IntlvEn[dram_range];
1621 node_id = pvt->dram_DstNode[dram_range];
1622 intlv_sel = pvt->dram_IntlvSel[dram_range];
1624 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1625 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1628 * This assumes that one node's DHAR is the same as all the other
1629 * nodes' DHAR.
1631 hole_off = (pvt->dhar & 0x0000FF80);
1632 hole_valid = (pvt->dhar & 0x1);
1633 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1635 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1636 hole_off, hole_valid, intlv_sel);
1638 if (intlv_en ||
1639 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1640 return -EINVAL;
1642 dct_sel_base = dct_sel_baseaddr(pvt);
1645 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1646 * select between DCT0 and DCT1.
1648 if (dct_high_range_enabled(pvt) &&
1649 !dct_ganging_enabled(pvt) &&
1650 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1651 high_range = 1;
1653 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1655 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1656 dct_sel_base_off, hole_valid,
1657 hole_off, dram_base);
1659 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1661 /* remove Node ID (in case of memory interleaving) */
1662 tmp = chan_addr & 0xFC0;
1664 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1666 /* remove channel interleave and hash */
1667 if (dct_interleave_enabled(pvt) &&
1668 !dct_high_range_enabled(pvt) &&
1669 !dct_ganging_enabled(pvt)) {
1670 if (dct_sel_interleave_addr(pvt) != 1)
1671 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1672 else {
1673 tmp = chan_addr & 0xFC0;
1674 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1675 | tmp;
1679 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1680 chan_addr, (u32)(chan_addr >> 8));
1682 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1684 if (cs_found >= 0) {
1685 *nid = node_id;
1686 *chan_sel = channel;
1688 return cs_found;
1691 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1692 int *node, int *chan_sel)
1694 int dram_range, cs_found = -EINVAL;
1695 u64 dram_base, dram_limit;
1697 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1699 if (!pvt->dram_rw_en[dram_range])
1700 continue;
1702 dram_base = pvt->dram_base[dram_range];
1703 dram_limit = pvt->dram_limit[dram_range];
1705 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1707 cs_found = f10_match_to_this_node(pvt, dram_range,
1708 sys_addr, node,
1709 chan_sel);
1710 if (cs_found >= 0)
1711 break;
1714 return cs_found;
1718 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1719 * CSROW, Channel.
1721 * The @sys_addr is usually an error address received from the hardware.
1723 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1724 struct err_regs *info,
1725 u64 sys_addr)
1727 struct amd64_pvt *pvt = mci->pvt_info;
1728 u32 page, offset;
1729 unsigned short syndrome;
1730 int nid, csrow, chan = 0;
1732 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1734 if (csrow >= 0) {
1735 error_address_to_page_and_offset(sys_addr, &page, &offset);
1737 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1738 syndrome |= LOW_SYNDROME(info->nbsh);
1741 * Is CHIPKILL on? If so, then we can attempt to use the
1742 * syndrome to isolate which channel the error was on.
1744 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1745 chan = get_channel_from_ecc_syndrome(syndrome);
1747 if (chan >= 0) {
1748 edac_mc_handle_ce(mci, page, offset, syndrome,
1749 csrow, chan, EDAC_MOD_STR);
1750 } else {
1752 * Channel unknown, report all channels on this
1753 * CSROW as failed.
1755 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1756 chan++) {
1757 edac_mc_handle_ce(mci, page, offset,
1758 syndrome,
1759 csrow, chan,
1760 EDAC_MOD_STR);
1764 } else {
1765 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1770 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1771 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1772 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1774 * Normalize to 128MB by subracting 27 bit shift.
1776 static int map_dbam_to_csrow_size(int index)
1778 int mega_bytes = 0;
1780 if (index > 0 && index <= DBAM_MAX_VALUE)
1781 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1783 return mega_bytes;
1787 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1788 * CSROWs as well
1790 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1791 int ganged)
1793 int dimm, size0, size1;
1794 u32 dbam;
1795 u32 *dcsb;
1797 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1798 ctrl ? pvt->dbam1 : pvt->dbam0,
1799 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1801 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1802 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1804 /* Dump memory sizes for DIMM and its CSROWs */
1805 for (dimm = 0; dimm < 4; dimm++) {
1807 size0 = 0;
1808 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1809 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1811 size1 = 0;
1812 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1813 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1815 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1816 "CSROW-%d=%5dMB\n",
1817 ctrl,
1818 dimm,
1819 size0 + size1,
1820 dimm * 2,
1821 size0,
1822 dimm * 2 + 1,
1823 size1);
1828 * Very early hardware probe on pci_probe thread to determine if this module
1829 * supports the hardware.
1831 * Return:
1832 * 0 for OK
1833 * 1 for error
1835 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1837 int ret = 0;
1840 * If we are on a DDR3 machine, we don't know yet if
1841 * we support that properly at this time
1843 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1844 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1846 amd64_printk(KERN_WARNING,
1847 "%s() This machine is running with DDR3 memory. "
1848 "This is not currently supported. "
1849 "DCHR0=0x%x DCHR1=0x%x\n",
1850 __func__, pvt->dchr0, pvt->dchr1);
1852 amd64_printk(KERN_WARNING,
1853 " Contact '%s' module MAINTAINER to help add"
1854 " support.\n",
1855 EDAC_MOD_STR);
1857 ret = 1;
1860 return ret;
1864 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1865 * (as per PCI DEVICE_IDs):
1867 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1868 * DEVICE ID, even though there is differences between the different Revisions
1869 * (CG,D,E,F).
1871 * Family F10h and F11h.
1874 static struct amd64_family_type amd64_family_types[] = {
1875 [K8_CPUS] = {
1876 .ctl_name = "RevF",
1877 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1878 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1879 .ops = {
1880 .early_channel_count = k8_early_channel_count,
1881 .get_error_address = k8_get_error_address,
1882 .read_dram_base_limit = k8_read_dram_base_limit,
1883 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1884 .dbam_map_to_pages = k8_dbam_map_to_pages,
1887 [F10_CPUS] = {
1888 .ctl_name = "Family 10h",
1889 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1890 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1891 .ops = {
1892 .probe_valid_hardware = f10_probe_valid_hardware,
1893 .early_channel_count = f10_early_channel_count,
1894 .get_error_address = f10_get_error_address,
1895 .read_dram_base_limit = f10_read_dram_base_limit,
1896 .read_dram_ctl_register = f10_read_dram_ctl_register,
1897 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1898 .dbam_map_to_pages = f10_dbam_map_to_pages,
1901 [F11_CPUS] = {
1902 .ctl_name = "Family 11h",
1903 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1904 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1905 .ops = {
1906 .probe_valid_hardware = f10_probe_valid_hardware,
1907 .early_channel_count = f10_early_channel_count,
1908 .get_error_address = f10_get_error_address,
1909 .read_dram_base_limit = f10_read_dram_base_limit,
1910 .read_dram_ctl_register = f10_read_dram_ctl_register,
1911 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1912 .dbam_map_to_pages = f10_dbam_map_to_pages,
1917 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1918 unsigned int device,
1919 struct pci_dev *related)
1921 struct pci_dev *dev = NULL;
1923 dev = pci_get_device(vendor, device, dev);
1924 while (dev) {
1925 if ((dev->bus->number == related->bus->number) &&
1926 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1927 break;
1928 dev = pci_get_device(vendor, device, dev);
1931 return dev;
1935 * syndrome mapping table for ECC ChipKill devices
1937 * The comment in each row is the token (nibble) number that is in error.
1938 * The least significant nibble of the syndrome is the mask for the bits
1939 * that are in error (need to be toggled) for the particular nibble.
1941 * Each row contains 16 entries.
1942 * The first entry (0th) is the channel number for that row of syndromes.
1943 * The remaining 15 entries are the syndromes for the respective Error
1944 * bit mask index.
1946 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1947 * bit in error.
1948 * The 2nd index entry is 0x0010 that the second bit is damaged.
1949 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1950 * are damaged.
1951 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1952 * indicating that all 4 bits are damaged.
1954 * A search is performed on this table looking for a given syndrome.
1956 * See the AMD documentation for ECC syndromes. This ECC table is valid
1957 * across all the versions of the AMD64 processors.
1959 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1960 * COLUMN index, then search all ROWS of that column, looking for a match
1961 * with the input syndrome. The ROW value will be the token number.
1963 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1964 * error.
1966 #define NUMBER_ECC_ROWS 36
1967 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1968 /* Channel 0 syndromes */
1969 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1970 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1971 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1972 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1973 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1974 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1975 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1976 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1977 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1978 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1979 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1980 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1981 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1982 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1983 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1984 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1985 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1986 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1987 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1988 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1989 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1990 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1991 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1992 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1993 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1994 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1995 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1996 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1997 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1998 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1999 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
2000 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
2002 /* Channel 1 syndromes */
2003 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
2004 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
2005 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
2006 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
2007 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
2008 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
2009 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
2010 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
2011 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
2012 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
2013 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
2014 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
2015 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
2016 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
2017 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
2018 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
2019 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
2020 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
2021 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
2022 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
2023 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
2024 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
2025 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
2026 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
2027 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
2028 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
2029 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
2030 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
2031 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
2032 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
2033 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
2034 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2036 /* ECC bits are also in the set of tokens and they too can go bad
2037 * first 2 cover channel 0, while the second 2 cover channel 1
2039 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2040 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2041 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2042 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2043 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2044 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2045 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2046 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2050 * Given the syndrome argument, scan each of the channel tables for a syndrome
2051 * match. Depending on which table it is found, return the channel number.
2053 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2055 int row;
2056 int column;
2058 /* Determine column to scan */
2059 column = syndrome & 0xF;
2061 /* Scan all rows, looking for syndrome, or end of table */
2062 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2063 if (ecc_chipkill_syndromes[row][column] == syndrome)
2064 return ecc_chipkill_syndromes[row][0];
2067 debugf0("syndrome(%x) not found\n", syndrome);
2068 return -1;
2072 * Check for valid error in the NB Status High register. If so, proceed to read
2073 * NB Status Low, NB Address Low and NB Address High registers and store data
2074 * into error structure.
2076 * Returns:
2077 * - 1: if hardware regs contains valid error info
2078 * - 0: if no valid error is indicated
2080 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2081 struct err_regs *regs)
2083 struct amd64_pvt *pvt;
2084 struct pci_dev *misc_f3_ctl;
2085 int err = 0;
2087 pvt = mci->pvt_info;
2088 misc_f3_ctl = pvt->misc_f3_ctl;
2090 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2091 if (err)
2092 goto err_reg;
2094 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2095 return 0;
2097 /* valid error, read remaining error information registers */
2098 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2099 if (err)
2100 goto err_reg;
2102 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2103 if (err)
2104 goto err_reg;
2106 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2107 if (err)
2108 goto err_reg;
2110 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2111 if (err)
2112 goto err_reg;
2114 return 1;
2116 err_reg:
2117 debugf0("Reading error info register failed\n");
2118 return 0;
2122 * This function is called to retrieve the error data from hardware and store it
2123 * in the info structure.
2125 * Returns:
2126 * - 1: if a valid error is found
2127 * - 0: if no error is found
2129 static int amd64_get_error_info(struct mem_ctl_info *mci,
2130 struct err_regs *info)
2132 struct amd64_pvt *pvt;
2133 struct err_regs regs;
2135 pvt = mci->pvt_info;
2137 if (!amd64_get_error_info_regs(mci, info))
2138 return 0;
2141 * Here's the problem with the K8's EDAC reporting: There are four
2142 * registers which report pieces of error information. They are shared
2143 * between CEs and UEs. Furthermore, contrary to what is stated in the
2144 * BKDG, the overflow bit is never used! Every error always updates the
2145 * reporting registers.
2147 * Can you see the race condition? All four error reporting registers
2148 * must be read before a new error updates them! There is no way to read
2149 * all four registers atomically. The best than can be done is to detect
2150 * that a race has occured and then report the error without any kind of
2151 * precision.
2153 * What is still positive is that errors are still reported and thus
2154 * problems can still be detected - just not localized because the
2155 * syndrome and address are spread out across registers.
2157 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2158 * UEs and CEs should have separate register sets with proper overflow
2159 * bits that are used! At very least the problem can be fixed by
2160 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2161 * set the overflow bit - unless the current error is CE and the new
2162 * error is UE which would be the only situation for overwriting the
2163 * current values.
2166 regs = *info;
2168 /* Use info from the second read - most current */
2169 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2170 return 0;
2172 /* clear the error bits in hardware */
2173 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2175 /* Check for the possible race condition */
2176 if ((regs.nbsh != info->nbsh) ||
2177 (regs.nbsl != info->nbsl) ||
2178 (regs.nbeah != info->nbeah) ||
2179 (regs.nbeal != info->nbeal)) {
2180 amd64_mc_printk(mci, KERN_WARNING,
2181 "hardware STATUS read access race condition "
2182 "detected!\n");
2183 return 0;
2185 return 1;
2189 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2190 * ADDRESS and process.
2192 static void amd64_handle_ce(struct mem_ctl_info *mci,
2193 struct err_regs *info)
2195 struct amd64_pvt *pvt = mci->pvt_info;
2196 u64 SystemAddress;
2198 /* Ensure that the Error Address is VALID */
2199 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2200 amd64_mc_printk(mci, KERN_ERR,
2201 "HW has no ERROR_ADDRESS available\n");
2202 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2203 return;
2206 SystemAddress = extract_error_address(mci, info);
2208 amd64_mc_printk(mci, KERN_ERR,
2209 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2211 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2214 /* Handle any Un-correctable Errors (UEs) */
2215 static void amd64_handle_ue(struct mem_ctl_info *mci,
2216 struct err_regs *info)
2218 int csrow;
2219 u64 SystemAddress;
2220 u32 page, offset;
2221 struct mem_ctl_info *log_mci, *src_mci = NULL;
2223 log_mci = mci;
2225 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2226 amd64_mc_printk(mci, KERN_CRIT,
2227 "HW has no ERROR_ADDRESS available\n");
2228 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2229 return;
2232 SystemAddress = extract_error_address(mci, info);
2235 * Find out which node the error address belongs to. This may be
2236 * different from the node that detected the error.
2238 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2239 if (!src_mci) {
2240 amd64_mc_printk(mci, KERN_CRIT,
2241 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2242 (unsigned long)SystemAddress);
2243 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2244 return;
2247 log_mci = src_mci;
2249 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2250 if (csrow < 0) {
2251 amd64_mc_printk(mci, KERN_CRIT,
2252 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2253 (unsigned long)SystemAddress);
2254 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2255 } else {
2256 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2257 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2261 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2262 struct err_regs *info)
2264 u32 ec = ERROR_CODE(info->nbsl);
2265 u32 xec = EXT_ERROR_CODE(info->nbsl);
2266 int ecc_type = (info->nbsh >> 13) & 0x3;
2268 /* Bail early out if this was an 'observed' error */
2269 if (PP(ec) == K8_NBSL_PP_OBS)
2270 return;
2272 /* Do only ECC errors */
2273 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2274 return;
2276 if (ecc_type == 2)
2277 amd64_handle_ce(mci, info);
2278 else if (ecc_type == 1)
2279 amd64_handle_ue(mci, info);
2282 * If main error is CE then overflow must be CE. If main error is UE
2283 * then overflow is unknown. We'll call the overflow a CE - if
2284 * panic_on_ue is set then we're already panic'ed and won't arrive
2285 * here. Else, then apparently someone doesn't think that UE's are
2286 * catastrophic.
2288 if (info->nbsh & K8_NBSH_OVERFLOW)
2289 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2292 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2294 struct mem_ctl_info *mci = mci_lookup[node_id];
2296 __amd64_decode_bus_error(mci, regs);
2299 * Check the UE bit of the NB status high register, if set generate some
2300 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2301 * If it was a GART error, skip that process.
2303 * FIXME: this should go somewhere else, if at all.
2305 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2306 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2311 * The main polling 'check' function, called FROM the edac core to perform the
2312 * error checking and if an error is encountered, error processing.
2314 static void amd64_check(struct mem_ctl_info *mci)
2316 struct err_regs regs;
2318 if (amd64_get_error_info(mci, &regs)) {
2319 struct amd64_pvt *pvt = mci->pvt_info;
2320 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2325 * Input:
2326 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2327 * 2) AMD Family index value
2329 * Ouput:
2330 * Upon return of 0, the following filled in:
2332 * struct pvt->addr_f1_ctl
2333 * struct pvt->misc_f3_ctl
2335 * Filled in with related device funcitions of 'dram_f2_ctl'
2336 * These devices are "reserved" via the pci_get_device()
2338 * Upon return of 1 (error status):
2340 * Nothing reserved
2342 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2344 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2346 /* Reserve the ADDRESS MAP Device */
2347 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2348 amd64_dev->addr_f1_ctl,
2349 pvt->dram_f2_ctl);
2351 if (!pvt->addr_f1_ctl) {
2352 amd64_printk(KERN_ERR, "error address map device not found: "
2353 "vendor %x device 0x%x (broken BIOS?)\n",
2354 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2355 return 1;
2358 /* Reserve the MISC Device */
2359 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2360 amd64_dev->misc_f3_ctl,
2361 pvt->dram_f2_ctl);
2363 if (!pvt->misc_f3_ctl) {
2364 pci_dev_put(pvt->addr_f1_ctl);
2365 pvt->addr_f1_ctl = NULL;
2367 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2368 "vendor %x device 0x%x (broken BIOS?)\n",
2369 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2370 return 1;
2373 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2374 pci_name(pvt->addr_f1_ctl));
2375 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2376 pci_name(pvt->dram_f2_ctl));
2377 debugf1(" Misc device PCI Bus ID:\t%s\n",
2378 pci_name(pvt->misc_f3_ctl));
2380 return 0;
2383 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2385 pci_dev_put(pvt->addr_f1_ctl);
2386 pci_dev_put(pvt->misc_f3_ctl);
2390 * Retrieve the hardware registers of the memory controller (this includes the
2391 * 'Address Map' and 'Misc' device regs)
2393 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2395 u64 msr_val;
2396 int dram, err = 0;
2399 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2400 * those are Read-As-Zero
2402 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2403 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2405 /* check first whether TOP_MEM2 is enabled */
2406 rdmsrl(MSR_K8_SYSCFG, msr_val);
2407 if (msr_val & (1U << 21)) {
2408 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2409 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2410 } else
2411 debugf0(" TOP_MEM2 disabled.\n");
2413 amd64_cpu_display_info(pvt);
2415 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2416 if (err)
2417 goto err_reg;
2419 if (pvt->ops->read_dram_ctl_register)
2420 pvt->ops->read_dram_ctl_register(pvt);
2422 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2424 * Call CPU specific READ function to get the DRAM Base and
2425 * Limit values from the DCT.
2427 pvt->ops->read_dram_base_limit(pvt, dram);
2430 * Only print out debug info on rows with both R and W Enabled.
2431 * Normal processing, compiler should optimize this whole 'if'
2432 * debug output block away.
2434 if (pvt->dram_rw_en[dram] != 0) {
2435 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2436 "DRAM-LIMIT: 0x%016llx\n",
2437 dram,
2438 pvt->dram_base[dram],
2439 pvt->dram_limit[dram]);
2441 debugf1(" IntlvEn=%s %s %s "
2442 "IntlvSel=%d DstNode=%d\n",
2443 pvt->dram_IntlvEn[dram] ?
2444 "Enabled" : "Disabled",
2445 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2446 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2447 pvt->dram_IntlvSel[dram],
2448 pvt->dram_DstNode[dram]);
2452 amd64_read_dct_base_mask(pvt);
2454 err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2455 if (err)
2456 goto err_reg;
2458 amd64_read_dbam_reg(pvt);
2460 err = pci_read_config_dword(pvt->misc_f3_ctl,
2461 F10_ONLINE_SPARE, &pvt->online_spare);
2462 if (err)
2463 goto err_reg;
2465 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2466 if (err)
2467 goto err_reg;
2469 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2470 if (err)
2471 goto err_reg;
2473 if (!dct_ganging_enabled(pvt)) {
2474 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2475 &pvt->dclr1);
2476 if (err)
2477 goto err_reg;
2479 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2480 &pvt->dchr1);
2481 if (err)
2482 goto err_reg;
2485 amd64_dump_misc_regs(pvt);
2487 return;
2489 err_reg:
2490 debugf0("Reading an MC register failed\n");
2495 * NOTE: CPU Revision Dependent code
2497 * Input:
2498 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2499 * k8 private pointer to -->
2500 * DRAM Bank Address mapping register
2501 * node_id
2502 * DCL register where dual_channel_active is
2504 * The DBAM register consists of 4 sets of 4 bits each definitions:
2506 * Bits: CSROWs
2507 * 0-3 CSROWs 0 and 1
2508 * 4-7 CSROWs 2 and 3
2509 * 8-11 CSROWs 4 and 5
2510 * 12-15 CSROWs 6 and 7
2512 * Values range from: 0 to 15
2513 * The meaning of the values depends on CPU revision and dual-channel state,
2514 * see relevant BKDG more info.
2516 * The memory controller provides for total of only 8 CSROWs in its current
2517 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2518 * single channel or two (2) DIMMs in dual channel mode.
2520 * The following code logic collapses the various tables for CSROW based on CPU
2521 * revision.
2523 * Returns:
2524 * The number of PAGE_SIZE pages on the specified CSROW number it
2525 * encompasses
2528 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2530 u32 dram_map, nr_pages;
2533 * The math on this doesn't look right on the surface because x/2*4 can
2534 * be simplified to x*2 but this expression makes use of the fact that
2535 * it is integral math where 1/2=0. This intermediate value becomes the
2536 * number of bits to shift the DBAM register to extract the proper CSROW
2537 * field.
2539 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2541 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2544 * If dual channel then double the memory size of single channel.
2545 * Channel count is 1 or 2
2547 nr_pages <<= (pvt->channel_count - 1);
2549 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2550 debugf0(" nr_pages= %u channel-count = %d\n",
2551 nr_pages, pvt->channel_count);
2553 return nr_pages;
2557 * Initialize the array of csrow attribute instances, based on the values
2558 * from pci config hardware registers.
2560 static int amd64_init_csrows(struct mem_ctl_info *mci)
2562 struct csrow_info *csrow;
2563 struct amd64_pvt *pvt;
2564 u64 input_addr_min, input_addr_max, sys_addr;
2565 int i, err = 0, empty = 1;
2567 pvt = mci->pvt_info;
2569 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2570 if (err)
2571 debugf0("Reading K8_NBCFG failed\n");
2573 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2574 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2575 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2578 for (i = 0; i < pvt->cs_count; i++) {
2579 csrow = &mci->csrows[i];
2581 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2582 debugf1("----CSROW %d EMPTY for node %d\n", i,
2583 pvt->mc_node_id);
2584 continue;
2587 debugf1("----CSROW %d VALID for MC node %d\n",
2588 i, pvt->mc_node_id);
2590 empty = 0;
2591 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2592 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2593 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2594 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2595 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2596 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2597 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2598 /* 8 bytes of resolution */
2600 csrow->mtype = amd64_determine_memory_type(pvt);
2602 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2603 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2604 (unsigned long)input_addr_min,
2605 (unsigned long)input_addr_max);
2606 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2607 (unsigned long)sys_addr, csrow->page_mask);
2608 debugf1(" nr_pages: %u first_page: 0x%lx "
2609 "last_page: 0x%lx\n",
2610 (unsigned)csrow->nr_pages,
2611 csrow->first_page, csrow->last_page);
2614 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2616 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2617 csrow->edac_mode =
2618 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2619 EDAC_S4ECD4ED : EDAC_SECDED;
2620 else
2621 csrow->edac_mode = EDAC_NONE;
2624 return empty;
2627 /* get all cores on this DCT */
2628 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2630 int cpu;
2632 for_each_online_cpu(cpu)
2633 if (amd_get_nb_id(cpu) == nid)
2634 cpumask_set_cpu(cpu, mask);
2637 /* check MCG_CTL on all the cpus on this node */
2638 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2640 cpumask_var_t mask;
2641 struct msr *msrs;
2642 int cpu, nbe, idx = 0;
2643 bool ret = false;
2645 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2646 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2647 __func__);
2648 return false;
2651 get_cpus_on_this_dct_cpumask(mask, nid);
2653 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
2654 if (!msrs) {
2655 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2656 __func__);
2657 free_cpumask_var(mask);
2658 return false;
2661 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2663 for_each_cpu(cpu, mask) {
2664 nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2666 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2667 cpu, msrs[idx].q,
2668 (nbe ? "enabled" : "disabled"));
2670 if (!nbe)
2671 goto out;
2673 idx++;
2675 ret = true;
2677 out:
2678 kfree(msrs);
2679 free_cpumask_var(mask);
2680 return ret;
2683 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2685 cpumask_var_t cmask;
2686 struct msr *msrs = NULL;
2687 int cpu, idx = 0;
2689 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2690 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2691 __func__);
2692 return false;
2695 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2697 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
2698 if (!msrs) {
2699 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2700 __func__);
2701 return -ENOMEM;
2704 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2706 for_each_cpu(cpu, cmask) {
2708 if (on) {
2709 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2710 pvt->flags.ecc_report = 1;
2712 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2713 } else {
2715 * Turn off ECC reporting only when it was off before
2717 if (!pvt->flags.ecc_report)
2718 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2720 idx++;
2722 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2724 kfree(msrs);
2725 free_cpumask_var(cmask);
2727 return 0;
2731 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2732 * enable it.
2734 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2736 struct amd64_pvt *pvt = mci->pvt_info;
2737 int err = 0;
2738 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2740 if (!ecc_enable_override)
2741 return;
2743 amd64_printk(KERN_WARNING,
2744 "'ecc_enable_override' parameter is active, "
2745 "Enabling AMD ECC hardware now: CAUTION\n");
2747 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2748 if (err)
2749 debugf0("Reading K8_NBCTL failed\n");
2751 /* turn on UECCn and CECCEn bits */
2752 pvt->old_nbctl = value & mask;
2753 pvt->nbctl_mcgctl_saved = 1;
2755 value |= mask;
2756 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2758 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2759 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2760 "MCGCTL!\n");
2762 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2763 if (err)
2764 debugf0("Reading K8_NBCFG failed\n");
2766 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2767 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2768 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2770 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2771 amd64_printk(KERN_WARNING,
2772 "This node reports that DRAM ECC is "
2773 "currently Disabled; ENABLING now\n");
2775 /* Attempt to turn on DRAM ECC Enable */
2776 value |= K8_NBCFG_ECC_ENABLE;
2777 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2779 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2780 if (err)
2781 debugf0("Reading K8_NBCFG failed\n");
2783 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2784 amd64_printk(KERN_WARNING,
2785 "Hardware rejects Enabling DRAM ECC checking\n"
2786 "Check memory DIMM configuration\n");
2787 } else {
2788 amd64_printk(KERN_DEBUG,
2789 "Hardware accepted DRAM ECC Enable\n");
2792 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2793 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2794 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2796 pvt->ctl_error_info.nbcfg = value;
2799 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2801 int err = 0;
2802 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2804 if (!pvt->nbctl_mcgctl_saved)
2805 return;
2807 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2808 if (err)
2809 debugf0("Reading K8_NBCTL failed\n");
2810 value &= ~mask;
2811 value |= pvt->old_nbctl;
2813 /* restore the NB Enable MCGCTL bit */
2814 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2816 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2817 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2818 "MCGCTL!\n");
2822 * EDAC requires that the BIOS have ECC enabled before taking over the
2823 * processing of ECC errors. This is because the BIOS can properly initialize
2824 * the memory system completely. A command line option allows to force-enable
2825 * hardware ECC later in amd64_enable_ecc_error_reporting().
2827 static const char *ecc_warning =
2828 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2829 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2830 " Also, use of the override can cause unknown side effects.\n";
2832 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2834 u32 value;
2835 int err = 0;
2836 u8 ecc_enabled = 0;
2837 bool nb_mce_en = false;
2839 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2840 if (err)
2841 debugf0("Reading K8_NBCTL failed\n");
2843 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2844 if (!ecc_enabled)
2845 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2846 "is currently disabled, set F3x%x[22] (%s).\n",
2847 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2848 else
2849 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2851 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2852 if (!nb_mce_en)
2853 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2854 "0x%08x[4] on node %d to enable.\n",
2855 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2857 if (!ecc_enabled || !nb_mce_en) {
2858 if (!ecc_enable_override) {
2859 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2860 return -ENODEV;
2862 } else
2863 /* CLEAR the override, since BIOS controlled it */
2864 ecc_enable_override = 0;
2866 return 0;
2869 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2870 ARRAY_SIZE(amd64_inj_attrs) +
2873 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2875 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2877 unsigned int i = 0, j = 0;
2879 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2880 sysfs_attrs[i] = amd64_dbg_attrs[i];
2882 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2883 sysfs_attrs[i] = amd64_inj_attrs[j];
2885 sysfs_attrs[i] = terminator;
2887 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2890 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2892 struct amd64_pvt *pvt = mci->pvt_info;
2894 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2895 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2897 if (pvt->nbcap & K8_NBCAP_SECDED)
2898 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2900 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2901 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2903 mci->edac_cap = amd64_determine_edac_cap(pvt);
2904 mci->mod_name = EDAC_MOD_STR;
2905 mci->mod_ver = EDAC_AMD64_VERSION;
2906 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2907 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2908 mci->ctl_page_to_phys = NULL;
2910 /* IMPORTANT: Set the polling 'check' function in this module */
2911 mci->edac_check = amd64_check;
2913 /* memory scrubber interface */
2914 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2915 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2919 * Init stuff for this DRAM Controller device.
2921 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2922 * Space feature MUST be enabled on ALL Processors prior to actually reading
2923 * from the ECS registers. Since the loading of the module can occur on any
2924 * 'core', and cores don't 'see' all the other processors ECS data when the
2925 * others are NOT enabled. Our solution is to first enable ECS access in this
2926 * routine on all processors, gather some data in a amd64_pvt structure and
2927 * later come back in a finish-setup function to perform that final
2928 * initialization. See also amd64_init_2nd_stage() for that.
2930 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2931 int mc_type_index)
2933 struct amd64_pvt *pvt = NULL;
2934 int err = 0, ret;
2936 ret = -ENOMEM;
2937 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2938 if (!pvt)
2939 goto err_exit;
2941 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2943 pvt->dram_f2_ctl = dram_f2_ctl;
2944 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2945 pvt->mc_type_index = mc_type_index;
2946 pvt->ops = family_ops(mc_type_index);
2949 * We have the dram_f2_ctl device as an argument, now go reserve its
2950 * sibling devices from the PCI system.
2952 ret = -ENODEV;
2953 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2954 if (err)
2955 goto err_free;
2957 ret = -EINVAL;
2958 err = amd64_check_ecc_enabled(pvt);
2959 if (err)
2960 goto err_put;
2963 * Key operation here: setup of HW prior to performing ops on it. Some
2964 * setup is required to access ECS data. After this is performed, the
2965 * 'teardown' function must be called upon error and normal exit paths.
2967 if (boot_cpu_data.x86 >= 0x10)
2968 amd64_setup(pvt);
2971 * Save the pointer to the private data for use in 2nd initialization
2972 * stage
2974 pvt_lookup[pvt->mc_node_id] = pvt;
2976 return 0;
2978 err_put:
2979 amd64_free_mc_sibling_devices(pvt);
2981 err_free:
2982 kfree(pvt);
2984 err_exit:
2985 return ret;
2989 * This is the finishing stage of the init code. Needs to be performed after all
2990 * MCs' hardware have been prepped for accessing extended config space.
2992 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2994 int node_id = pvt->mc_node_id;
2995 struct mem_ctl_info *mci;
2996 int ret, err = 0;
2998 amd64_read_mc_registers(pvt);
3000 ret = -ENODEV;
3001 if (pvt->ops->probe_valid_hardware) {
3002 err = pvt->ops->probe_valid_hardware(pvt);
3003 if (err)
3004 goto err_exit;
3008 * We need to determine how many memory channels there are. Then use
3009 * that information for calculating the size of the dynamic instance
3010 * tables in the 'mci' structure
3012 pvt->channel_count = pvt->ops->early_channel_count(pvt);
3013 if (pvt->channel_count < 0)
3014 goto err_exit;
3016 ret = -ENOMEM;
3017 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
3018 if (!mci)
3019 goto err_exit;
3021 mci->pvt_info = pvt;
3023 mci->dev = &pvt->dram_f2_ctl->dev;
3024 amd64_setup_mci_misc_attributes(mci);
3026 if (amd64_init_csrows(mci))
3027 mci->edac_cap = EDAC_FLAG_NONE;
3029 amd64_enable_ecc_error_reporting(mci);
3030 amd64_set_mc_sysfs_attributes(mci);
3032 ret = -ENODEV;
3033 if (edac_mc_add_mc(mci)) {
3034 debugf1("failed edac_mc_add_mc()\n");
3035 goto err_add_mc;
3038 mci_lookup[node_id] = mci;
3039 pvt_lookup[node_id] = NULL;
3041 /* register stuff with EDAC MCE */
3042 if (report_gart_errors)
3043 amd_report_gart_errors(true);
3045 amd_register_ecc_decoder(amd64_decode_bus_error);
3047 return 0;
3049 err_add_mc:
3050 edac_mc_free(mci);
3052 err_exit:
3053 debugf0("failure to init 2nd stage: ret=%d\n", ret);
3055 amd64_restore_ecc_error_reporting(pvt);
3057 if (boot_cpu_data.x86 > 0xf)
3058 amd64_teardown(pvt);
3060 amd64_free_mc_sibling_devices(pvt);
3062 kfree(pvt_lookup[pvt->mc_node_id]);
3063 pvt_lookup[node_id] = NULL;
3065 return ret;
3069 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
3070 const struct pci_device_id *mc_type)
3072 int ret = 0;
3074 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
3075 get_amd_family_name(mc_type->driver_data));
3077 ret = pci_enable_device(pdev);
3078 if (ret < 0)
3079 ret = -EIO;
3080 else
3081 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
3083 if (ret < 0)
3084 debugf0("ret=%d\n", ret);
3086 return ret;
3089 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
3091 struct mem_ctl_info *mci;
3092 struct amd64_pvt *pvt;
3094 /* Remove from EDAC CORE tracking list */
3095 mci = edac_mc_del_mc(&pdev->dev);
3096 if (!mci)
3097 return;
3099 pvt = mci->pvt_info;
3101 amd64_restore_ecc_error_reporting(pvt);
3103 if (boot_cpu_data.x86 > 0xf)
3104 amd64_teardown(pvt);
3106 amd64_free_mc_sibling_devices(pvt);
3108 kfree(pvt);
3109 mci->pvt_info = NULL;
3111 mci_lookup[pvt->mc_node_id] = NULL;
3113 /* unregister from EDAC MCE */
3114 amd_report_gart_errors(false);
3115 amd_unregister_ecc_decoder(amd64_decode_bus_error);
3117 /* Free the EDAC CORE resources */
3118 edac_mc_free(mci);
3122 * This table is part of the interface for loading drivers for PCI devices. The
3123 * PCI core identifies what devices are on a system during boot, and then
3124 * inquiry this table to see if this driver is for a given device found.
3126 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3128 .vendor = PCI_VENDOR_ID_AMD,
3129 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3130 .subvendor = PCI_ANY_ID,
3131 .subdevice = PCI_ANY_ID,
3132 .class = 0,
3133 .class_mask = 0,
3134 .driver_data = K8_CPUS
3137 .vendor = PCI_VENDOR_ID_AMD,
3138 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3139 .subvendor = PCI_ANY_ID,
3140 .subdevice = PCI_ANY_ID,
3141 .class = 0,
3142 .class_mask = 0,
3143 .driver_data = F10_CPUS
3146 .vendor = PCI_VENDOR_ID_AMD,
3147 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3148 .subvendor = PCI_ANY_ID,
3149 .subdevice = PCI_ANY_ID,
3150 .class = 0,
3151 .class_mask = 0,
3152 .driver_data = F11_CPUS
3154 {0, }
3156 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3158 static struct pci_driver amd64_pci_driver = {
3159 .name = EDAC_MOD_STR,
3160 .probe = amd64_init_one_instance,
3161 .remove = __devexit_p(amd64_remove_one_instance),
3162 .id_table = amd64_pci_table,
3165 static void amd64_setup_pci_device(void)
3167 struct mem_ctl_info *mci;
3168 struct amd64_pvt *pvt;
3170 if (amd64_ctl_pci)
3171 return;
3173 mci = mci_lookup[0];
3174 if (mci) {
3176 pvt = mci->pvt_info;
3177 amd64_ctl_pci =
3178 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3179 EDAC_MOD_STR);
3181 if (!amd64_ctl_pci) {
3182 pr_warning("%s(): Unable to create PCI control\n",
3183 __func__);
3185 pr_warning("%s(): PCI error report via EDAC not set\n",
3186 __func__);
3191 static int __init amd64_edac_init(void)
3193 int nb, err = -ENODEV;
3195 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3197 opstate_init();
3199 if (cache_k8_northbridges() < 0)
3200 return err;
3202 err = pci_register_driver(&amd64_pci_driver);
3203 if (err)
3204 return err;
3207 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3208 * amd64_pvt structs. These will be used in the 2nd stage init function
3209 * to finish initialization of the MC instances.
3211 for (nb = 0; nb < num_k8_northbridges; nb++) {
3212 if (!pvt_lookup[nb])
3213 continue;
3215 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3216 if (err)
3217 goto err_2nd_stage;
3220 amd64_setup_pci_device();
3222 return 0;
3224 err_2nd_stage:
3225 debugf0("2nd stage failed\n");
3226 pci_unregister_driver(&amd64_pci_driver);
3228 return err;
3231 static void __exit amd64_edac_exit(void)
3233 if (amd64_ctl_pci)
3234 edac_pci_release_generic_ctl(amd64_ctl_pci);
3236 pci_unregister_driver(&amd64_pci_driver);
3239 module_init(amd64_edac_init);
3240 module_exit(amd64_edac_exit);
3242 MODULE_LICENSE("GPL");
3243 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3244 "Dave Peterson, Thayne Harbaugh");
3245 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3246 EDAC_AMD64_VERSION);
3248 module_param(edac_op_state, int, 0444);
3249 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");