2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
45 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
52 struct rb_node rb_node
;
56 * transid where the defrag was added, we search for
57 * extents newer than this
64 /* last offset we were able to defrag */
67 /* if we've wrapped around back to zero once already */
71 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
72 struct inode_defrag
*defrag2
)
74 if (defrag1
->root
> defrag2
->root
)
76 else if (defrag1
->root
< defrag2
->root
)
78 else if (defrag1
->ino
> defrag2
->ino
)
80 else if (defrag1
->ino
< defrag2
->ino
)
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
95 static int __btrfs_add_inode_defrag(struct inode
*inode
,
96 struct inode_defrag
*defrag
)
98 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
99 struct inode_defrag
*entry
;
101 struct rb_node
*parent
= NULL
;
104 p
= &root
->fs_info
->defrag_inodes
.rb_node
;
107 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
109 ret
= __compare_inode_defrag(defrag
, entry
);
111 p
= &parent
->rb_left
;
113 p
= &parent
->rb_right
;
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag
->transid
< entry
->transid
)
120 entry
->transid
= defrag
->transid
;
121 if (defrag
->last_offset
> entry
->last_offset
)
122 entry
->last_offset
= defrag
->last_offset
;
126 set_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
127 rb_link_node(&defrag
->rb_node
, parent
, p
);
128 rb_insert_color(&defrag
->rb_node
, &root
->fs_info
->defrag_inodes
);
132 static inline int __need_auto_defrag(struct btrfs_root
*root
)
134 if (!btrfs_test_opt(root
, AUTO_DEFRAG
))
137 if (btrfs_fs_closing(root
->fs_info
))
144 * insert a defrag record for this inode if auto defrag is
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
150 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
151 struct inode_defrag
*defrag
;
155 if (!__need_auto_defrag(root
))
158 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
))
162 transid
= trans
->transid
;
164 transid
= BTRFS_I(inode
)->root
->last_trans
;
166 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
170 defrag
->ino
= btrfs_ino(inode
);
171 defrag
->transid
= transid
;
172 defrag
->root
= root
->root_key
.objectid
;
174 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
)) {
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
183 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
185 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
187 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 static void btrfs_requeue_inode_defrag(struct inode
*inode
,
197 struct inode_defrag
*defrag
)
199 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
202 if (!__need_auto_defrag(root
))
206 * Here we don't check the IN_DEFRAG flag, because we need merge
209 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
210 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
211 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
216 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
220 * pick the defragable inode that we want, if it doesn't exist, we will get
223 static struct inode_defrag
*
224 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
226 struct inode_defrag
*entry
= NULL
;
227 struct inode_defrag tmp
;
229 struct rb_node
*parent
= NULL
;
235 spin_lock(&fs_info
->defrag_inodes_lock
);
236 p
= fs_info
->defrag_inodes
.rb_node
;
239 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
241 ret
= __compare_inode_defrag(&tmp
, entry
);
245 p
= parent
->rb_right
;
250 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
251 parent
= rb_next(parent
);
253 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
259 rb_erase(parent
, &fs_info
->defrag_inodes
);
260 spin_unlock(&fs_info
->defrag_inodes_lock
);
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
266 struct inode_defrag
*defrag
;
267 struct rb_node
*node
;
269 spin_lock(&fs_info
->defrag_inodes_lock
);
270 node
= rb_first(&fs_info
->defrag_inodes
);
272 rb_erase(node
, &fs_info
->defrag_inodes
);
273 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
274 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
276 if (need_resched()) {
277 spin_unlock(&fs_info
->defrag_inodes_lock
);
279 spin_lock(&fs_info
->defrag_inodes_lock
);
282 node
= rb_first(&fs_info
->defrag_inodes
);
284 spin_unlock(&fs_info
->defrag_inodes_lock
);
287 #define BTRFS_DEFRAG_BATCH 1024
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
290 struct inode_defrag
*defrag
)
292 struct btrfs_root
*inode_root
;
294 struct btrfs_key key
;
295 struct btrfs_ioctl_defrag_range_args range
;
301 key
.objectid
= defrag
->root
;
302 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
303 key
.offset
= (u64
)-1;
305 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
307 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
308 if (IS_ERR(inode_root
)) {
309 ret
= PTR_ERR(inode_root
);
312 if (btrfs_root_refs(&inode_root
->root_item
) == 0) {
317 key
.objectid
= defrag
->ino
;
318 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
320 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
322 ret
= PTR_ERR(inode
);
325 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
327 /* do a chunk of defrag */
328 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
329 memset(&range
, 0, sizeof(range
));
331 range
.start
= defrag
->last_offset
;
333 sb_start_write(fs_info
->sb
);
334 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
336 sb_end_write(fs_info
->sb
);
338 * if we filled the whole defrag batch, there
339 * must be more work to do. Queue this defrag
342 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
343 defrag
->last_offset
= range
.start
;
344 btrfs_requeue_inode_defrag(inode
, defrag
);
345 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
347 * we didn't fill our defrag batch, but
348 * we didn't start at zero. Make sure we loop
349 * around to the start of the file.
351 defrag
->last_offset
= 0;
353 btrfs_requeue_inode_defrag(inode
, defrag
);
355 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
361 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
362 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
367 * run through the list of inodes in the FS that need
370 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
372 struct inode_defrag
*defrag
;
374 u64 root_objectid
= 0;
376 atomic_inc(&fs_info
->defrag_running
);
378 /* Pause the auto defragger. */
379 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
383 if (!__need_auto_defrag(fs_info
->tree_root
))
386 /* find an inode to defrag */
387 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
390 if (root_objectid
|| first_ino
) {
399 first_ino
= defrag
->ino
+ 1;
400 root_objectid
= defrag
->root
;
402 __btrfs_run_defrag_inode(fs_info
, defrag
);
404 atomic_dec(&fs_info
->defrag_running
);
407 * during unmount, we use the transaction_wait queue to
408 * wait for the defragger to stop
410 wake_up(&fs_info
->transaction_wait
);
414 /* simple helper to fault in pages and copy. This should go away
415 * and be replaced with calls into generic code.
417 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
419 struct page
**prepared_pages
,
423 size_t total_copied
= 0;
425 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
427 while (write_bytes
> 0) {
428 size_t count
= min_t(size_t,
429 PAGE_CACHE_SIZE
- offset
, write_bytes
);
430 struct page
*page
= prepared_pages
[pg
];
432 * Copy data from userspace to the current page
434 * Disable pagefault to avoid recursive lock since
435 * the pages are already locked
438 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
441 /* Flush processor's dcache for this page */
442 flush_dcache_page(page
);
445 * if we get a partial write, we can end up with
446 * partially up to date pages. These add
447 * a lot of complexity, so make sure they don't
448 * happen by forcing this copy to be retried.
450 * The rest of the btrfs_file_write code will fall
451 * back to page at a time copies after we return 0.
453 if (!PageUptodate(page
) && copied
< count
)
456 iov_iter_advance(i
, copied
);
457 write_bytes
-= copied
;
458 total_copied
+= copied
;
460 /* Return to btrfs_file_aio_write to fault page */
461 if (unlikely(copied
== 0))
464 if (unlikely(copied
< PAGE_CACHE_SIZE
- offset
)) {
475 * unlocks pages after btrfs_file_write is done with them
477 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
480 for (i
= 0; i
< num_pages
; i
++) {
481 /* page checked is some magic around finding pages that
482 * have been modified without going through btrfs_set_page_dirty
485 ClearPageChecked(pages
[i
]);
486 unlock_page(pages
[i
]);
487 mark_page_accessed(pages
[i
]);
488 page_cache_release(pages
[i
]);
493 * after copy_from_user, pages need to be dirtied and we need to make
494 * sure holes are created between the current EOF and the start of
495 * any next extents (if required).
497 * this also makes the decision about creating an inline extent vs
498 * doing real data extents, marking pages dirty and delalloc as required.
500 int btrfs_dirty_pages(struct btrfs_root
*root
, struct inode
*inode
,
501 struct page
**pages
, size_t num_pages
,
502 loff_t pos
, size_t write_bytes
,
503 struct extent_state
**cached
)
509 u64 end_of_last_block
;
510 u64 end_pos
= pos
+ write_bytes
;
511 loff_t isize
= i_size_read(inode
);
513 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
514 num_bytes
= ALIGN(write_bytes
+ pos
- start_pos
, root
->sectorsize
);
516 end_of_last_block
= start_pos
+ num_bytes
- 1;
517 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
522 for (i
= 0; i
< num_pages
; i
++) {
523 struct page
*p
= pages
[i
];
530 * we've only changed i_size in ram, and we haven't updated
531 * the disk i_size. There is no need to log the inode
535 i_size_write(inode
, end_pos
);
540 * this drops all the extents in the cache that intersect the range
541 * [start, end]. Existing extents are split as required.
543 void btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
546 struct extent_map
*em
;
547 struct extent_map
*split
= NULL
;
548 struct extent_map
*split2
= NULL
;
549 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
550 u64 len
= end
- start
+ 1;
558 WARN_ON(end
< start
);
559 if (end
== (u64
)-1) {
568 split
= alloc_extent_map();
570 split2
= alloc_extent_map();
571 if (!split
|| !split2
)
574 write_lock(&em_tree
->lock
);
575 em
= lookup_extent_mapping(em_tree
, start
, len
);
577 write_unlock(&em_tree
->lock
);
581 gen
= em
->generation
;
582 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
583 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
585 write_unlock(&em_tree
->lock
);
588 start
= em
->start
+ em
->len
;
590 len
= start
+ len
- (em
->start
+ em
->len
);
592 write_unlock(&em_tree
->lock
);
595 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
596 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
597 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
598 modified
= !list_empty(&em
->list
);
599 remove_extent_mapping(em_tree
, em
);
603 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
605 split
->start
= em
->start
;
606 split
->len
= start
- em
->start
;
607 split
->orig_start
= em
->orig_start
;
608 split
->block_start
= em
->block_start
;
611 split
->block_len
= em
->block_len
;
613 split
->block_len
= split
->len
;
614 split
->ram_bytes
= em
->ram_bytes
;
615 split
->orig_block_len
= max(split
->block_len
,
617 split
->generation
= gen
;
618 split
->bdev
= em
->bdev
;
619 split
->flags
= flags
;
620 split
->compress_type
= em
->compress_type
;
621 ret
= add_extent_mapping(em_tree
, split
, modified
);
622 BUG_ON(ret
); /* Logic error */
623 free_extent_map(split
);
627 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
628 testend
&& em
->start
+ em
->len
> start
+ len
) {
629 u64 diff
= start
+ len
- em
->start
;
631 split
->start
= start
+ len
;
632 split
->len
= em
->start
+ em
->len
- (start
+ len
);
633 split
->bdev
= em
->bdev
;
634 split
->flags
= flags
;
635 split
->compress_type
= em
->compress_type
;
636 split
->generation
= gen
;
637 split
->orig_block_len
= max(em
->block_len
,
639 split
->ram_bytes
= em
->ram_bytes
;
642 split
->block_len
= em
->block_len
;
643 split
->block_start
= em
->block_start
;
644 split
->orig_start
= em
->orig_start
;
646 split
->block_len
= split
->len
;
647 split
->block_start
= em
->block_start
+ diff
;
648 split
->orig_start
= em
->orig_start
;
651 ret
= add_extent_mapping(em_tree
, split
, modified
);
652 BUG_ON(ret
); /* Logic error */
653 free_extent_map(split
);
657 write_unlock(&em_tree
->lock
);
661 /* once for the tree*/
665 free_extent_map(split
);
667 free_extent_map(split2
);
671 * this is very complex, but the basic idea is to drop all extents
672 * in the range start - end. hint_block is filled in with a block number
673 * that would be a good hint to the block allocator for this file.
675 * If an extent intersects the range but is not entirely inside the range
676 * it is either truncated or split. Anything entirely inside the range
677 * is deleted from the tree.
679 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
680 struct btrfs_root
*root
, struct inode
*inode
,
681 struct btrfs_path
*path
, u64 start
, u64 end
,
682 u64
*drop_end
, int drop_cache
)
684 struct extent_buffer
*leaf
;
685 struct btrfs_file_extent_item
*fi
;
686 struct btrfs_key key
;
687 struct btrfs_key new_key
;
688 u64 ino
= btrfs_ino(inode
);
689 u64 search_start
= start
;
692 u64 extent_offset
= 0;
699 int modify_tree
= -1;
700 int update_refs
= (root
->ref_cows
|| root
== root
->fs_info
->tree_root
);
704 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
706 if (start
>= BTRFS_I(inode
)->disk_i_size
)
711 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
712 search_start
, modify_tree
);
715 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
716 leaf
= path
->nodes
[0];
717 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
718 if (key
.objectid
== ino
&&
719 key
.type
== BTRFS_EXTENT_DATA_KEY
)
724 leaf
= path
->nodes
[0];
725 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
727 ret
= btrfs_next_leaf(root
, path
);
734 leaf
= path
->nodes
[0];
738 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
739 if (key
.objectid
> ino
||
740 key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
743 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
744 struct btrfs_file_extent_item
);
745 extent_type
= btrfs_file_extent_type(leaf
, fi
);
747 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
748 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
749 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
750 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
751 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
752 extent_end
= key
.offset
+
753 btrfs_file_extent_num_bytes(leaf
, fi
);
754 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
755 extent_end
= key
.offset
+
756 btrfs_file_extent_inline_len(leaf
, fi
);
759 extent_end
= search_start
;
762 if (extent_end
<= search_start
) {
768 search_start
= max(key
.offset
, start
);
769 if (recow
|| !modify_tree
) {
771 btrfs_release_path(path
);
776 * | - range to drop - |
777 * | -------- extent -------- |
779 if (start
> key
.offset
&& end
< extent_end
) {
781 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
783 memcpy(&new_key
, &key
, sizeof(new_key
));
784 new_key
.offset
= start
;
785 ret
= btrfs_duplicate_item(trans
, root
, path
,
787 if (ret
== -EAGAIN
) {
788 btrfs_release_path(path
);
794 leaf
= path
->nodes
[0];
795 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
796 struct btrfs_file_extent_item
);
797 btrfs_set_file_extent_num_bytes(leaf
, fi
,
800 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
801 struct btrfs_file_extent_item
);
803 extent_offset
+= start
- key
.offset
;
804 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
805 btrfs_set_file_extent_num_bytes(leaf
, fi
,
807 btrfs_mark_buffer_dirty(leaf
);
809 if (update_refs
&& disk_bytenr
> 0) {
810 ret
= btrfs_inc_extent_ref(trans
, root
,
811 disk_bytenr
, num_bytes
, 0,
812 root
->root_key
.objectid
,
814 start
- extent_offset
, 0);
815 BUG_ON(ret
); /* -ENOMEM */
820 * | ---- range to drop ----- |
821 * | -------- extent -------- |
823 if (start
<= key
.offset
&& end
< extent_end
) {
824 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
826 memcpy(&new_key
, &key
, sizeof(new_key
));
827 new_key
.offset
= end
;
828 btrfs_set_item_key_safe(root
, path
, &new_key
);
830 extent_offset
+= end
- key
.offset
;
831 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
832 btrfs_set_file_extent_num_bytes(leaf
, fi
,
834 btrfs_mark_buffer_dirty(leaf
);
835 if (update_refs
&& disk_bytenr
> 0)
836 inode_sub_bytes(inode
, end
- key
.offset
);
840 search_start
= extent_end
;
842 * | ---- range to drop ----- |
843 * | -------- extent -------- |
845 if (start
> key
.offset
&& end
>= extent_end
) {
847 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
849 btrfs_set_file_extent_num_bytes(leaf
, fi
,
851 btrfs_mark_buffer_dirty(leaf
);
852 if (update_refs
&& disk_bytenr
> 0)
853 inode_sub_bytes(inode
, extent_end
- start
);
854 if (end
== extent_end
)
862 * | ---- range to drop ----- |
863 * | ------ extent ------ |
865 if (start
<= key
.offset
&& end
>= extent_end
) {
867 del_slot
= path
->slots
[0];
870 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
875 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
876 inode_sub_bytes(inode
,
877 extent_end
- key
.offset
);
878 extent_end
= ALIGN(extent_end
,
880 } else if (update_refs
&& disk_bytenr
> 0) {
881 ret
= btrfs_free_extent(trans
, root
,
882 disk_bytenr
, num_bytes
, 0,
883 root
->root_key
.objectid
,
884 key
.objectid
, key
.offset
-
886 BUG_ON(ret
); /* -ENOMEM */
887 inode_sub_bytes(inode
,
888 extent_end
- key
.offset
);
891 if (end
== extent_end
)
894 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
899 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
902 btrfs_abort_transaction(trans
, root
, ret
);
909 btrfs_release_path(path
);
916 if (!ret
&& del_nr
> 0) {
917 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
919 btrfs_abort_transaction(trans
, root
, ret
);
923 *drop_end
= found
? min(end
, extent_end
) : end
;
924 btrfs_release_path(path
);
928 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
929 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
930 u64 end
, int drop_cache
)
932 struct btrfs_path
*path
;
935 path
= btrfs_alloc_path();
938 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
940 btrfs_free_path(path
);
944 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
945 u64 objectid
, u64 bytenr
, u64 orig_offset
,
946 u64
*start
, u64
*end
)
948 struct btrfs_file_extent_item
*fi
;
949 struct btrfs_key key
;
952 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
955 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
956 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
959 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
960 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
961 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
962 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
963 btrfs_file_extent_compression(leaf
, fi
) ||
964 btrfs_file_extent_encryption(leaf
, fi
) ||
965 btrfs_file_extent_other_encoding(leaf
, fi
))
968 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
969 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
978 * Mark extent in the range start - end as written.
980 * This changes extent type from 'pre-allocated' to 'regular'. If only
981 * part of extent is marked as written, the extent will be split into
984 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
985 struct inode
*inode
, u64 start
, u64 end
)
987 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
988 struct extent_buffer
*leaf
;
989 struct btrfs_path
*path
;
990 struct btrfs_file_extent_item
*fi
;
991 struct btrfs_key key
;
992 struct btrfs_key new_key
;
1004 u64 ino
= btrfs_ino(inode
);
1006 path
= btrfs_alloc_path();
1013 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1016 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1019 if (ret
> 0 && path
->slots
[0] > 0)
1022 leaf
= path
->nodes
[0];
1023 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1024 BUG_ON(key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
);
1025 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1026 struct btrfs_file_extent_item
);
1027 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
1028 BTRFS_FILE_EXTENT_PREALLOC
);
1029 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1030 BUG_ON(key
.offset
> start
|| extent_end
< end
);
1032 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1033 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1034 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1035 memcpy(&new_key
, &key
, sizeof(new_key
));
1037 if (start
== key
.offset
&& end
< extent_end
) {
1040 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1041 ino
, bytenr
, orig_offset
,
1042 &other_start
, &other_end
)) {
1043 new_key
.offset
= end
;
1044 btrfs_set_item_key_safe(root
, path
, &new_key
);
1045 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1046 struct btrfs_file_extent_item
);
1047 btrfs_set_file_extent_generation(leaf
, fi
,
1049 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1051 btrfs_set_file_extent_offset(leaf
, fi
,
1053 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1054 struct btrfs_file_extent_item
);
1055 btrfs_set_file_extent_generation(leaf
, fi
,
1057 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1059 btrfs_mark_buffer_dirty(leaf
);
1064 if (start
> key
.offset
&& end
== extent_end
) {
1067 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1068 ino
, bytenr
, orig_offset
,
1069 &other_start
, &other_end
)) {
1070 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1071 struct btrfs_file_extent_item
);
1072 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1073 start
- key
.offset
);
1074 btrfs_set_file_extent_generation(leaf
, fi
,
1077 new_key
.offset
= start
;
1078 btrfs_set_item_key_safe(root
, path
, &new_key
);
1080 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1081 struct btrfs_file_extent_item
);
1082 btrfs_set_file_extent_generation(leaf
, fi
,
1084 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1086 btrfs_set_file_extent_offset(leaf
, fi
,
1087 start
- orig_offset
);
1088 btrfs_mark_buffer_dirty(leaf
);
1093 while (start
> key
.offset
|| end
< extent_end
) {
1094 if (key
.offset
== start
)
1097 new_key
.offset
= split
;
1098 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1099 if (ret
== -EAGAIN
) {
1100 btrfs_release_path(path
);
1104 btrfs_abort_transaction(trans
, root
, ret
);
1108 leaf
= path
->nodes
[0];
1109 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1110 struct btrfs_file_extent_item
);
1111 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1112 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1113 split
- key
.offset
);
1115 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1116 struct btrfs_file_extent_item
);
1118 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1119 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1120 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1121 extent_end
- split
);
1122 btrfs_mark_buffer_dirty(leaf
);
1124 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
1125 root
->root_key
.objectid
,
1126 ino
, orig_offset
, 0);
1127 BUG_ON(ret
); /* -ENOMEM */
1129 if (split
== start
) {
1132 BUG_ON(start
!= key
.offset
);
1141 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1142 ino
, bytenr
, orig_offset
,
1143 &other_start
, &other_end
)) {
1145 btrfs_release_path(path
);
1148 extent_end
= other_end
;
1149 del_slot
= path
->slots
[0] + 1;
1151 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1152 0, root
->root_key
.objectid
,
1153 ino
, orig_offset
, 0);
1154 BUG_ON(ret
); /* -ENOMEM */
1158 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1159 ino
, bytenr
, orig_offset
,
1160 &other_start
, &other_end
)) {
1162 btrfs_release_path(path
);
1165 key
.offset
= other_start
;
1166 del_slot
= path
->slots
[0];
1168 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1169 0, root
->root_key
.objectid
,
1170 ino
, orig_offset
, 0);
1171 BUG_ON(ret
); /* -ENOMEM */
1174 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1175 struct btrfs_file_extent_item
);
1176 btrfs_set_file_extent_type(leaf
, fi
,
1177 BTRFS_FILE_EXTENT_REG
);
1178 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1179 btrfs_mark_buffer_dirty(leaf
);
1181 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1182 struct btrfs_file_extent_item
);
1183 btrfs_set_file_extent_type(leaf
, fi
,
1184 BTRFS_FILE_EXTENT_REG
);
1185 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1186 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1187 extent_end
- key
.offset
);
1188 btrfs_mark_buffer_dirty(leaf
);
1190 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1192 btrfs_abort_transaction(trans
, root
, ret
);
1197 btrfs_free_path(path
);
1202 * on error we return an unlocked page and the error value
1203 * on success we return a locked page and 0
1205 static int prepare_uptodate_page(struct page
*page
, u64 pos
,
1206 bool force_uptodate
)
1210 if (((pos
& (PAGE_CACHE_SIZE
- 1)) || force_uptodate
) &&
1211 !PageUptodate(page
)) {
1212 ret
= btrfs_readpage(NULL
, page
);
1216 if (!PageUptodate(page
)) {
1225 * this gets pages into the page cache and locks them down, it also properly
1226 * waits for data=ordered extents to finish before allowing the pages to be
1229 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
1230 struct page
**pages
, size_t num_pages
,
1231 loff_t pos
, unsigned long first_index
,
1232 size_t write_bytes
, bool force_uptodate
)
1234 struct extent_state
*cached_state
= NULL
;
1236 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
1237 struct inode
*inode
= file_inode(file
);
1238 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1244 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
1245 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
1248 for (i
= 0; i
< num_pages
; i
++) {
1249 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1250 mask
| __GFP_WRITE
);
1258 err
= prepare_uptodate_page(pages
[i
], pos
,
1260 if (i
== num_pages
- 1)
1261 err
= prepare_uptodate_page(pages
[i
],
1262 pos
+ write_bytes
, false);
1264 page_cache_release(pages
[i
]);
1268 wait_on_page_writeback(pages
[i
]);
1271 if (start_pos
< inode
->i_size
) {
1272 struct btrfs_ordered_extent
*ordered
;
1273 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1274 start_pos
, last_pos
- 1, 0, &cached_state
);
1275 ordered
= btrfs_lookup_first_ordered_extent(inode
,
1278 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1279 ordered
->file_offset
< last_pos
) {
1280 btrfs_put_ordered_extent(ordered
);
1281 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1282 start_pos
, last_pos
- 1,
1283 &cached_state
, GFP_NOFS
);
1284 for (i
= 0; i
< num_pages
; i
++) {
1285 unlock_page(pages
[i
]);
1286 page_cache_release(pages
[i
]);
1288 btrfs_wait_ordered_range(inode
, start_pos
,
1289 last_pos
- start_pos
);
1293 btrfs_put_ordered_extent(ordered
);
1295 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1296 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1297 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1298 0, 0, &cached_state
, GFP_NOFS
);
1299 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1300 start_pos
, last_pos
- 1, &cached_state
,
1303 for (i
= 0; i
< num_pages
; i
++) {
1304 if (clear_page_dirty_for_io(pages
[i
]))
1305 account_page_redirty(pages
[i
]);
1306 set_page_extent_mapped(pages
[i
]);
1307 WARN_ON(!PageLocked(pages
[i
]));
1311 while (faili
>= 0) {
1312 unlock_page(pages
[faili
]);
1313 page_cache_release(pages
[faili
]);
1320 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1324 struct inode
*inode
= file_inode(file
);
1325 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1326 struct page
**pages
= NULL
;
1327 unsigned long first_index
;
1328 size_t num_written
= 0;
1331 bool force_page_uptodate
= false;
1333 nrptrs
= min((iov_iter_count(i
) + PAGE_CACHE_SIZE
- 1) /
1334 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
/
1335 (sizeof(struct page
*)));
1336 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1337 nrptrs
= max(nrptrs
, 8);
1338 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
1342 first_index
= pos
>> PAGE_CACHE_SHIFT
;
1344 while (iov_iter_count(i
) > 0) {
1345 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1346 size_t write_bytes
= min(iov_iter_count(i
),
1347 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
1349 size_t num_pages
= (write_bytes
+ offset
+
1350 PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1354 WARN_ON(num_pages
> nrptrs
);
1357 * Fault pages before locking them in prepare_pages
1358 * to avoid recursive lock
1360 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1365 ret
= btrfs_delalloc_reserve_space(inode
,
1366 num_pages
<< PAGE_CACHE_SHIFT
);
1371 * This is going to setup the pages array with the number of
1372 * pages we want, so we don't really need to worry about the
1373 * contents of pages from loop to loop
1375 ret
= prepare_pages(root
, file
, pages
, num_pages
,
1376 pos
, first_index
, write_bytes
,
1377 force_page_uptodate
);
1379 btrfs_delalloc_release_space(inode
,
1380 num_pages
<< PAGE_CACHE_SHIFT
);
1384 copied
= btrfs_copy_from_user(pos
, num_pages
,
1385 write_bytes
, pages
, i
);
1388 * if we have trouble faulting in the pages, fall
1389 * back to one page at a time
1391 if (copied
< write_bytes
)
1395 force_page_uptodate
= true;
1398 force_page_uptodate
= false;
1399 dirty_pages
= (copied
+ offset
+
1400 PAGE_CACHE_SIZE
- 1) >>
1405 * If we had a short copy we need to release the excess delaloc
1406 * bytes we reserved. We need to increment outstanding_extents
1407 * because btrfs_delalloc_release_space will decrement it, but
1408 * we still have an outstanding extent for the chunk we actually
1411 if (num_pages
> dirty_pages
) {
1413 spin_lock(&BTRFS_I(inode
)->lock
);
1414 BTRFS_I(inode
)->outstanding_extents
++;
1415 spin_unlock(&BTRFS_I(inode
)->lock
);
1417 btrfs_delalloc_release_space(inode
,
1418 (num_pages
- dirty_pages
) <<
1423 ret
= btrfs_dirty_pages(root
, inode
, pages
,
1424 dirty_pages
, pos
, copied
,
1427 btrfs_delalloc_release_space(inode
,
1428 dirty_pages
<< PAGE_CACHE_SHIFT
);
1429 btrfs_drop_pages(pages
, num_pages
);
1434 btrfs_drop_pages(pages
, num_pages
);
1438 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1439 if (dirty_pages
< (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1440 btrfs_btree_balance_dirty(root
);
1443 num_written
+= copied
;
1448 return num_written
? num_written
: ret
;
1451 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
,
1452 const struct iovec
*iov
,
1453 unsigned long nr_segs
, loff_t pos
,
1454 loff_t
*ppos
, size_t count
, size_t ocount
)
1456 struct file
*file
= iocb
->ki_filp
;
1459 ssize_t written_buffered
;
1463 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
, ppos
,
1466 if (written
< 0 || written
== count
)
1471 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
1472 written_buffered
= __btrfs_buffered_write(file
, &i
, pos
);
1473 if (written_buffered
< 0) {
1474 err
= written_buffered
;
1477 endbyte
= pos
+ written_buffered
- 1;
1478 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
1481 written
+= written_buffered
;
1482 *ppos
= pos
+ written_buffered
;
1483 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_CACHE_SHIFT
,
1484 endbyte
>> PAGE_CACHE_SHIFT
);
1486 return written
? written
: err
;
1489 static void update_time_for_write(struct inode
*inode
)
1491 struct timespec now
;
1493 if (IS_NOCMTIME(inode
))
1496 now
= current_fs_time(inode
->i_sb
);
1497 if (!timespec_equal(&inode
->i_mtime
, &now
))
1498 inode
->i_mtime
= now
;
1500 if (!timespec_equal(&inode
->i_ctime
, &now
))
1501 inode
->i_ctime
= now
;
1503 if (IS_I_VERSION(inode
))
1504 inode_inc_iversion(inode
);
1507 static ssize_t
btrfs_file_aio_write(struct kiocb
*iocb
,
1508 const struct iovec
*iov
,
1509 unsigned long nr_segs
, loff_t pos
)
1511 struct file
*file
= iocb
->ki_filp
;
1512 struct inode
*inode
= file_inode(file
);
1513 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1514 loff_t
*ppos
= &iocb
->ki_pos
;
1516 ssize_t num_written
= 0;
1518 size_t count
, ocount
;
1519 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1521 mutex_lock(&inode
->i_mutex
);
1523 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
1525 mutex_unlock(&inode
->i_mutex
);
1530 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
1531 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
1533 mutex_unlock(&inode
->i_mutex
);
1538 mutex_unlock(&inode
->i_mutex
);
1542 err
= file_remove_suid(file
);
1544 mutex_unlock(&inode
->i_mutex
);
1549 * If BTRFS flips readonly due to some impossible error
1550 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1551 * although we have opened a file as writable, we have
1552 * to stop this write operation to ensure FS consistency.
1554 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1555 mutex_unlock(&inode
->i_mutex
);
1561 * We reserve space for updating the inode when we reserve space for the
1562 * extent we are going to write, so we will enospc out there. We don't
1563 * need to start yet another transaction to update the inode as we will
1564 * update the inode when we finish writing whatever data we write.
1566 update_time_for_write(inode
);
1568 start_pos
= round_down(pos
, root
->sectorsize
);
1569 if (start_pos
> i_size_read(inode
)) {
1570 err
= btrfs_cont_expand(inode
, i_size_read(inode
), start_pos
);
1572 mutex_unlock(&inode
->i_mutex
);
1578 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1580 if (unlikely(file
->f_flags
& O_DIRECT
)) {
1581 num_written
= __btrfs_direct_write(iocb
, iov
, nr_segs
,
1582 pos
, ppos
, count
, ocount
);
1586 iov_iter_init(&i
, iov
, nr_segs
, count
, num_written
);
1588 num_written
= __btrfs_buffered_write(file
, &i
, pos
);
1589 if (num_written
> 0)
1590 *ppos
= pos
+ num_written
;
1593 mutex_unlock(&inode
->i_mutex
);
1596 * we want to make sure fsync finds this change
1597 * but we haven't joined a transaction running right now.
1599 * Later on, someone is sure to update the inode and get the
1600 * real transid recorded.
1602 * We set last_trans now to the fs_info generation + 1,
1603 * this will either be one more than the running transaction
1604 * or the generation used for the next transaction if there isn't
1605 * one running right now.
1607 * We also have to set last_sub_trans to the current log transid,
1608 * otherwise subsequent syncs to a file that's been synced in this
1609 * transaction will appear to have already occured.
1611 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1612 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1613 if (num_written
> 0 || num_written
== -EIOCBQUEUED
) {
1614 err
= generic_write_sync(file
, pos
, num_written
);
1615 if (err
< 0 && num_written
> 0)
1620 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1622 current
->backing_dev_info
= NULL
;
1623 return num_written
? num_written
: err
;
1626 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1629 * ordered_data_close is set by settattr when we are about to truncate
1630 * a file from a non-zero size to a zero size. This tries to
1631 * flush down new bytes that may have been written if the
1632 * application were using truncate to replace a file in place.
1634 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
1635 &BTRFS_I(inode
)->runtime_flags
)) {
1636 struct btrfs_trans_handle
*trans
;
1637 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1640 * We need to block on a committing transaction to keep us from
1641 * throwing a ordered operation on to the list and causing
1642 * something like sync to deadlock trying to flush out this
1645 trans
= btrfs_start_transaction(root
, 0);
1647 return PTR_ERR(trans
);
1648 btrfs_add_ordered_operation(trans
, BTRFS_I(inode
)->root
, inode
);
1649 btrfs_end_transaction(trans
, root
);
1650 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1651 filemap_flush(inode
->i_mapping
);
1653 if (filp
->private_data
)
1654 btrfs_ioctl_trans_end(filp
);
1659 * fsync call for both files and directories. This logs the inode into
1660 * the tree log instead of forcing full commits whenever possible.
1662 * It needs to call filemap_fdatawait so that all ordered extent updates are
1663 * in the metadata btree are up to date for copying to the log.
1665 * It drops the inode mutex before doing the tree log commit. This is an
1666 * important optimization for directories because holding the mutex prevents
1667 * new operations on the dir while we write to disk.
1669 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1671 struct dentry
*dentry
= file
->f_path
.dentry
;
1672 struct inode
*inode
= dentry
->d_inode
;
1673 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1675 struct btrfs_trans_handle
*trans
;
1678 trace_btrfs_sync_file(file
, datasync
);
1681 * We write the dirty pages in the range and wait until they complete
1682 * out of the ->i_mutex. If so, we can flush the dirty pages by
1683 * multi-task, and make the performance up. See
1684 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1686 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1687 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1688 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1689 &BTRFS_I(inode
)->runtime_flags
))
1690 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1691 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1695 mutex_lock(&inode
->i_mutex
);
1698 * We flush the dirty pages again to avoid some dirty pages in the
1701 atomic_inc(&root
->log_batch
);
1702 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1703 &BTRFS_I(inode
)->runtime_flags
);
1705 btrfs_wait_ordered_range(inode
, start
, end
- start
+ 1);
1706 atomic_inc(&root
->log_batch
);
1709 * check the transaction that last modified this inode
1710 * and see if its already been committed
1712 if (!BTRFS_I(inode
)->last_trans
) {
1713 mutex_unlock(&inode
->i_mutex
);
1718 * if the last transaction that changed this file was before
1719 * the current transaction, we can bail out now without any
1723 if (btrfs_inode_in_log(inode
, root
->fs_info
->generation
) ||
1724 BTRFS_I(inode
)->last_trans
<=
1725 root
->fs_info
->last_trans_committed
) {
1726 BTRFS_I(inode
)->last_trans
= 0;
1729 * We'v had everything committed since the last time we were
1730 * modified so clear this flag in case it was set for whatever
1731 * reason, it's no longer relevant.
1733 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1734 &BTRFS_I(inode
)->runtime_flags
);
1735 mutex_unlock(&inode
->i_mutex
);
1740 * ok we haven't committed the transaction yet, lets do a commit
1742 if (file
->private_data
)
1743 btrfs_ioctl_trans_end(file
);
1745 trans
= btrfs_start_transaction(root
, 0);
1746 if (IS_ERR(trans
)) {
1747 ret
= PTR_ERR(trans
);
1748 mutex_unlock(&inode
->i_mutex
);
1752 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1754 mutex_unlock(&inode
->i_mutex
);
1758 /* we've logged all the items and now have a consistent
1759 * version of the file in the log. It is possible that
1760 * someone will come in and modify the file, but that's
1761 * fine because the log is consistent on disk, and we
1762 * have references to all of the file's extents
1764 * It is possible that someone will come in and log the
1765 * file again, but that will end up using the synchronization
1766 * inside btrfs_sync_log to keep things safe.
1768 mutex_unlock(&inode
->i_mutex
);
1770 if (ret
!= BTRFS_NO_LOG_SYNC
) {
1773 * If we didn't already wait for ordered extents we need
1777 btrfs_wait_ordered_range(inode
, start
,
1779 ret
= btrfs_commit_transaction(trans
, root
);
1781 ret
= btrfs_sync_log(trans
, root
);
1783 ret
= btrfs_end_transaction(trans
, root
);
1786 btrfs_wait_ordered_range(inode
, start
,
1789 ret
= btrfs_commit_transaction(trans
, root
);
1793 ret
= btrfs_end_transaction(trans
, root
);
1796 return ret
> 0 ? -EIO
: ret
;
1799 static const struct vm_operations_struct btrfs_file_vm_ops
= {
1800 .fault
= filemap_fault
,
1801 .page_mkwrite
= btrfs_page_mkwrite
,
1802 .remap_pages
= generic_file_remap_pages
,
1805 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1807 struct address_space
*mapping
= filp
->f_mapping
;
1809 if (!mapping
->a_ops
->readpage
)
1812 file_accessed(filp
);
1813 vma
->vm_ops
= &btrfs_file_vm_ops
;
1818 static int hole_mergeable(struct inode
*inode
, struct extent_buffer
*leaf
,
1819 int slot
, u64 start
, u64 end
)
1821 struct btrfs_file_extent_item
*fi
;
1822 struct btrfs_key key
;
1824 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1827 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1828 if (key
.objectid
!= btrfs_ino(inode
) ||
1829 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1832 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1834 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
1837 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
1840 if (key
.offset
== end
)
1842 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
1847 static int fill_holes(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
1848 struct btrfs_path
*path
, u64 offset
, u64 end
)
1850 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1851 struct extent_buffer
*leaf
;
1852 struct btrfs_file_extent_item
*fi
;
1853 struct extent_map
*hole_em
;
1854 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1855 struct btrfs_key key
;
1858 key
.objectid
= btrfs_ino(inode
);
1859 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1860 key
.offset
= offset
;
1863 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1868 leaf
= path
->nodes
[0];
1869 if (hole_mergeable(inode
, leaf
, path
->slots
[0]-1, offset
, end
)) {
1873 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1874 struct btrfs_file_extent_item
);
1875 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
1877 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1878 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
1879 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1880 btrfs_mark_buffer_dirty(leaf
);
1884 if (hole_mergeable(inode
, leaf
, path
->slots
[0]+1, offset
, end
)) {
1888 key
.offset
= offset
;
1889 btrfs_set_item_key_safe(root
, path
, &key
);
1890 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1891 struct btrfs_file_extent_item
);
1892 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
1894 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1895 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
1896 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1897 btrfs_mark_buffer_dirty(leaf
);
1900 btrfs_release_path(path
);
1902 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
1903 0, 0, end
- offset
, 0, end
- offset
,
1909 btrfs_release_path(path
);
1911 hole_em
= alloc_extent_map();
1913 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
1914 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1915 &BTRFS_I(inode
)->runtime_flags
);
1917 hole_em
->start
= offset
;
1918 hole_em
->len
= end
- offset
;
1919 hole_em
->ram_bytes
= hole_em
->len
;
1920 hole_em
->orig_start
= offset
;
1922 hole_em
->block_start
= EXTENT_MAP_HOLE
;
1923 hole_em
->block_len
= 0;
1924 hole_em
->orig_block_len
= 0;
1925 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1926 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
1927 hole_em
->generation
= trans
->transid
;
1930 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
1931 write_lock(&em_tree
->lock
);
1932 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
1933 write_unlock(&em_tree
->lock
);
1934 } while (ret
== -EEXIST
);
1935 free_extent_map(hole_em
);
1937 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1938 &BTRFS_I(inode
)->runtime_flags
);
1944 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
1946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1947 struct extent_state
*cached_state
= NULL
;
1948 struct btrfs_path
*path
;
1949 struct btrfs_block_rsv
*rsv
;
1950 struct btrfs_trans_handle
*trans
;
1951 u64 lockstart
= round_up(offset
, BTRFS_I(inode
)->root
->sectorsize
);
1952 u64 lockend
= round_down(offset
+ len
,
1953 BTRFS_I(inode
)->root
->sectorsize
) - 1;
1954 u64 cur_offset
= lockstart
;
1955 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
1959 bool same_page
= ((offset
>> PAGE_CACHE_SHIFT
) ==
1960 ((offset
+ len
- 1) >> PAGE_CACHE_SHIFT
));
1962 btrfs_wait_ordered_range(inode
, offset
, len
);
1964 mutex_lock(&inode
->i_mutex
);
1966 * We needn't truncate any page which is beyond the end of the file
1967 * because we are sure there is no data there.
1970 * Only do this if we are in the same page and we aren't doing the
1973 if (same_page
&& len
< PAGE_CACHE_SIZE
) {
1974 if (offset
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
))
1975 ret
= btrfs_truncate_page(inode
, offset
, len
, 0);
1976 mutex_unlock(&inode
->i_mutex
);
1980 /* zero back part of the first page */
1981 if (offset
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
)) {
1982 ret
= btrfs_truncate_page(inode
, offset
, 0, 0);
1984 mutex_unlock(&inode
->i_mutex
);
1989 /* zero the front end of the last page */
1990 if (offset
+ len
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
)) {
1991 ret
= btrfs_truncate_page(inode
, offset
+ len
, 0, 1);
1993 mutex_unlock(&inode
->i_mutex
);
1998 if (lockend
< lockstart
) {
1999 mutex_unlock(&inode
->i_mutex
);
2004 struct btrfs_ordered_extent
*ordered
;
2006 truncate_pagecache_range(inode
, lockstart
, lockend
);
2008 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2010 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2013 * We need to make sure we have no ordered extents in this range
2014 * and nobody raced in and read a page in this range, if we did
2015 * we need to try again.
2018 (ordered
->file_offset
+ ordered
->len
< lockstart
||
2019 ordered
->file_offset
> lockend
)) &&
2020 !test_range_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
2021 lockend
, EXTENT_UPTODATE
, 0,
2024 btrfs_put_ordered_extent(ordered
);
2028 btrfs_put_ordered_extent(ordered
);
2029 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2030 lockend
, &cached_state
, GFP_NOFS
);
2031 btrfs_wait_ordered_range(inode
, lockstart
,
2032 lockend
- lockstart
+ 1);
2035 path
= btrfs_alloc_path();
2041 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2046 rsv
->size
= btrfs_calc_trunc_metadata_size(root
, 1);
2050 * 1 - update the inode
2051 * 1 - removing the extents in the range
2052 * 1 - adding the hole extent
2054 trans
= btrfs_start_transaction(root
, 3);
2055 if (IS_ERR(trans
)) {
2056 err
= PTR_ERR(trans
);
2060 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
2063 trans
->block_rsv
= rsv
;
2065 while (cur_offset
< lockend
) {
2066 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2067 cur_offset
, lockend
+ 1,
2072 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2074 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2080 cur_offset
= drop_end
;
2082 ret
= btrfs_update_inode(trans
, root
, inode
);
2088 btrfs_end_transaction(trans
, root
);
2089 btrfs_btree_balance_dirty(root
);
2091 trans
= btrfs_start_transaction(root
, 3);
2092 if (IS_ERR(trans
)) {
2093 ret
= PTR_ERR(trans
);
2098 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
2100 BUG_ON(ret
); /* shouldn't happen */
2101 trans
->block_rsv
= rsv
;
2109 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2110 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2120 inode_inc_iversion(inode
);
2121 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2123 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2124 ret
= btrfs_update_inode(trans
, root
, inode
);
2125 btrfs_end_transaction(trans
, root
);
2126 btrfs_btree_balance_dirty(root
);
2128 btrfs_free_path(path
);
2129 btrfs_free_block_rsv(root
, rsv
);
2131 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2132 &cached_state
, GFP_NOFS
);
2133 mutex_unlock(&inode
->i_mutex
);
2139 static long btrfs_fallocate(struct file
*file
, int mode
,
2140 loff_t offset
, loff_t len
)
2142 struct inode
*inode
= file_inode(file
);
2143 struct extent_state
*cached_state
= NULL
;
2144 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2151 struct extent_map
*em
;
2152 int blocksize
= BTRFS_I(inode
)->root
->sectorsize
;
2155 alloc_start
= round_down(offset
, blocksize
);
2156 alloc_end
= round_up(offset
+ len
, blocksize
);
2158 /* Make sure we aren't being give some crap mode */
2159 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2162 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2163 return btrfs_punch_hole(inode
, offset
, len
);
2166 * Make sure we have enough space before we do the
2169 ret
= btrfs_check_data_free_space(inode
, alloc_end
- alloc_start
);
2172 if (root
->fs_info
->quota_enabled
) {
2173 ret
= btrfs_qgroup_reserve(root
, alloc_end
- alloc_start
);
2175 goto out_reserve_fail
;
2179 * wait for ordered IO before we have any locks. We'll loop again
2180 * below with the locks held.
2182 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
2184 mutex_lock(&inode
->i_mutex
);
2185 ret
= inode_newsize_ok(inode
, alloc_end
);
2189 if (alloc_start
> inode
->i_size
) {
2190 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
2196 locked_end
= alloc_end
- 1;
2198 struct btrfs_ordered_extent
*ordered
;
2200 /* the extent lock is ordered inside the running
2203 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
2204 locked_end
, 0, &cached_state
);
2205 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2208 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
2209 ordered
->file_offset
< alloc_end
) {
2210 btrfs_put_ordered_extent(ordered
);
2211 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
2212 alloc_start
, locked_end
,
2213 &cached_state
, GFP_NOFS
);
2215 * we can't wait on the range with the transaction
2216 * running or with the extent lock held
2218 btrfs_wait_ordered_range(inode
, alloc_start
,
2219 alloc_end
- alloc_start
);
2222 btrfs_put_ordered_extent(ordered
);
2227 cur_offset
= alloc_start
;
2231 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2232 alloc_end
- cur_offset
, 0);
2233 if (IS_ERR_OR_NULL(em
)) {
2240 last_byte
= min(extent_map_end(em
), alloc_end
);
2241 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
2242 last_byte
= ALIGN(last_byte
, blocksize
);
2244 if (em
->block_start
== EXTENT_MAP_HOLE
||
2245 (cur_offset
>= inode
->i_size
&&
2246 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
2247 ret
= btrfs_prealloc_file_range(inode
, mode
, cur_offset
,
2248 last_byte
- cur_offset
,
2249 1 << inode
->i_blkbits
,
2254 free_extent_map(em
);
2257 } else if (actual_end
> inode
->i_size
&&
2258 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
2260 * We didn't need to allocate any more space, but we
2261 * still extended the size of the file so we need to
2264 inode
->i_ctime
= CURRENT_TIME
;
2265 i_size_write(inode
, actual_end
);
2266 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
2268 free_extent_map(em
);
2270 cur_offset
= last_byte
;
2271 if (cur_offset
>= alloc_end
) {
2276 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
2277 &cached_state
, GFP_NOFS
);
2279 mutex_unlock(&inode
->i_mutex
);
2280 if (root
->fs_info
->quota_enabled
)
2281 btrfs_qgroup_free(root
, alloc_end
- alloc_start
);
2283 /* Let go of our reservation. */
2284 btrfs_free_reserved_data_space(inode
, alloc_end
- alloc_start
);
2288 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
2290 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2291 struct extent_map
*em
;
2292 struct extent_state
*cached_state
= NULL
;
2293 u64 lockstart
= *offset
;
2294 u64 lockend
= i_size_read(inode
);
2295 u64 start
= *offset
;
2296 u64 orig_start
= *offset
;
2297 u64 len
= i_size_read(inode
);
2301 lockend
= max_t(u64
, root
->sectorsize
, lockend
);
2302 if (lockend
<= lockstart
)
2303 lockend
= lockstart
+ root
->sectorsize
;
2306 len
= lockend
- lockstart
+ 1;
2308 len
= max_t(u64
, len
, root
->sectorsize
);
2309 if (inode
->i_size
== 0)
2312 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
, 0,
2316 * Delalloc is such a pain. If we have a hole and we have pending
2317 * delalloc for a portion of the hole we will get back a hole that
2318 * exists for the entire range since it hasn't been actually written
2319 * yet. So to take care of this case we need to look for an extent just
2320 * before the position we want in case there is outstanding delalloc
2323 if (whence
== SEEK_HOLE
&& start
!= 0) {
2324 if (start
<= root
->sectorsize
)
2325 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, 0,
2326 root
->sectorsize
, 0);
2328 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0,
2329 start
- root
->sectorsize
,
2330 root
->sectorsize
, 0);
2335 last_end
= em
->start
+ em
->len
;
2336 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
2337 last_end
= min_t(u64
, last_end
, inode
->i_size
);
2338 free_extent_map(em
);
2342 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
2348 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2349 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2350 if (last_end
<= orig_start
) {
2351 free_extent_map(em
);
2357 if (whence
== SEEK_HOLE
) {
2359 free_extent_map(em
);
2363 if (whence
== SEEK_DATA
) {
2364 if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
2365 if (start
>= inode
->i_size
) {
2366 free_extent_map(em
);
2372 if (!test_bit(EXTENT_FLAG_PREALLOC
,
2375 free_extent_map(em
);
2381 start
= em
->start
+ em
->len
;
2382 last_end
= em
->start
+ em
->len
;
2384 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
2385 last_end
= min_t(u64
, last_end
, inode
->i_size
);
2387 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2388 free_extent_map(em
);
2392 free_extent_map(em
);
2396 *offset
= min(*offset
, inode
->i_size
);
2398 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2399 &cached_state
, GFP_NOFS
);
2403 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2405 struct inode
*inode
= file
->f_mapping
->host
;
2408 mutex_lock(&inode
->i_mutex
);
2412 offset
= generic_file_llseek(file
, offset
, whence
);
2416 if (offset
>= i_size_read(inode
)) {
2417 mutex_unlock(&inode
->i_mutex
);
2421 ret
= find_desired_extent(inode
, &offset
, whence
);
2423 mutex_unlock(&inode
->i_mutex
);
2428 if (offset
< 0 && !(file
->f_mode
& FMODE_UNSIGNED_OFFSET
)) {
2432 if (offset
> inode
->i_sb
->s_maxbytes
) {
2437 /* Special lock needed here? */
2438 if (offset
!= file
->f_pos
) {
2439 file
->f_pos
= offset
;
2440 file
->f_version
= 0;
2443 mutex_unlock(&inode
->i_mutex
);
2447 const struct file_operations btrfs_file_operations
= {
2448 .llseek
= btrfs_file_llseek
,
2449 .read
= do_sync_read
,
2450 .write
= do_sync_write
,
2451 .aio_read
= generic_file_aio_read
,
2452 .splice_read
= generic_file_splice_read
,
2453 .aio_write
= btrfs_file_aio_write
,
2454 .mmap
= btrfs_file_mmap
,
2455 .open
= generic_file_open
,
2456 .release
= btrfs_release_file
,
2457 .fsync
= btrfs_sync_file
,
2458 .fallocate
= btrfs_fallocate
,
2459 .unlocked_ioctl
= btrfs_ioctl
,
2460 #ifdef CONFIG_COMPAT
2461 .compat_ioctl
= btrfs_ioctl
,
2465 void btrfs_auto_defrag_exit(void)
2467 if (btrfs_inode_defrag_cachep
)
2468 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
2471 int btrfs_auto_defrag_init(void)
2473 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
2474 sizeof(struct inode_defrag
), 0,
2475 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
2477 if (!btrfs_inode_defrag_cachep
)