mtd: spi-nor: Move Atmel bits out of core.c
[linux/fpc-iii.git] / drivers / mtd / spi-nor / core.c
blob56def4d0bbd07016e5e03fbfeb16f549dc162719
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
25 #include "core.h"
27 /* Define max times to check status register before we give up. */
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37 * for larger flash
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
43 #define JEDEC_MFR(info) ((info)->id[0])
45 /**
46 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
47 * transfer
48 * @nor: pointer to 'struct spi_nor'
49 * @op: pointer to 'struct spi_mem_op' template for transfer
51 * If we have to use the bounce buffer, the data field in @op will be updated.
53 * Return: true if the bounce buffer is needed, false if not
55 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
57 /* op->data.buf.in occupies the same memory as op->data.buf.out */
58 if (object_is_on_stack(op->data.buf.in) ||
59 !virt_addr_valid(op->data.buf.in)) {
60 if (op->data.nbytes > nor->bouncebuf_size)
61 op->data.nbytes = nor->bouncebuf_size;
62 op->data.buf.in = nor->bouncebuf;
63 return true;
66 return false;
69 /**
70 * spi_nor_spimem_exec_op() - execute a memory operation
71 * @nor: pointer to 'struct spi_nor'
72 * @op: pointer to 'struct spi_mem_op' template for transfer
74 * Return: 0 on success, -error otherwise.
76 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
78 int error;
80 error = spi_mem_adjust_op_size(nor->spimem, op);
81 if (error)
82 return error;
84 return spi_mem_exec_op(nor->spimem, op);
87 /**
88 * spi_nor_spimem_read_data() - read data from flash's memory region via
89 * spi-mem
90 * @nor: pointer to 'struct spi_nor'
91 * @from: offset to read from
92 * @len: number of bytes to read
93 * @buf: pointer to dst buffer
95 * Return: number of bytes read successfully, -errno otherwise
97 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
98 size_t len, u8 *buf)
100 struct spi_mem_op op =
101 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
102 SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
103 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
104 SPI_MEM_OP_DATA_IN(len, buf, 1));
105 bool usebouncebuf;
106 ssize_t nbytes;
107 int error;
109 /* get transfer protocols. */
110 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
111 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
112 op.dummy.buswidth = op.addr.buswidth;
113 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
115 /* convert the dummy cycles to the number of bytes */
116 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
118 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
120 if (nor->dirmap.rdesc) {
121 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
122 op.data.nbytes, op.data.buf.in);
123 } else {
124 error = spi_nor_spimem_exec_op(nor, &op);
125 if (error)
126 return error;
127 nbytes = op.data.nbytes;
130 if (usebouncebuf && nbytes > 0)
131 memcpy(buf, op.data.buf.in, nbytes);
133 return nbytes;
137 * spi_nor_read_data() - read data from flash memory
138 * @nor: pointer to 'struct spi_nor'
139 * @from: offset to read from
140 * @len: number of bytes to read
141 * @buf: pointer to dst buffer
143 * Return: number of bytes read successfully, -errno otherwise
145 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
147 if (nor->spimem)
148 return spi_nor_spimem_read_data(nor, from, len, buf);
150 return nor->controller_ops->read(nor, from, len, buf);
154 * spi_nor_spimem_write_data() - write data to flash memory via
155 * spi-mem
156 * @nor: pointer to 'struct spi_nor'
157 * @to: offset to write to
158 * @len: number of bytes to write
159 * @buf: pointer to src buffer
161 * Return: number of bytes written successfully, -errno otherwise
163 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
164 size_t len, const u8 *buf)
166 struct spi_mem_op op =
167 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
168 SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
169 SPI_MEM_OP_NO_DUMMY,
170 SPI_MEM_OP_DATA_OUT(len, buf, 1));
171 ssize_t nbytes;
172 int error;
174 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
175 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
176 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
178 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
179 op.addr.nbytes = 0;
181 if (spi_nor_spimem_bounce(nor, &op))
182 memcpy(nor->bouncebuf, buf, op.data.nbytes);
184 if (nor->dirmap.wdesc) {
185 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
186 op.data.nbytes, op.data.buf.out);
187 } else {
188 error = spi_nor_spimem_exec_op(nor, &op);
189 if (error)
190 return error;
191 nbytes = op.data.nbytes;
194 return nbytes;
198 * spi_nor_write_data() - write data to flash memory
199 * @nor: pointer to 'struct spi_nor'
200 * @to: offset to write to
201 * @len: number of bytes to write
202 * @buf: pointer to src buffer
204 * Return: number of bytes written successfully, -errno otherwise
206 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
207 const u8 *buf)
209 if (nor->spimem)
210 return spi_nor_spimem_write_data(nor, to, len, buf);
212 return nor->controller_ops->write(nor, to, len, buf);
216 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
217 * @nor: pointer to 'struct spi_nor'.
219 * Return: 0 on success, -errno otherwise.
221 int spi_nor_write_enable(struct spi_nor *nor)
223 int ret;
225 if (nor->spimem) {
226 struct spi_mem_op op =
227 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
228 SPI_MEM_OP_NO_ADDR,
229 SPI_MEM_OP_NO_DUMMY,
230 SPI_MEM_OP_NO_DATA);
232 ret = spi_mem_exec_op(nor->spimem, &op);
233 } else {
234 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
235 NULL, 0);
238 if (ret)
239 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
241 return ret;
245 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
246 * @nor: pointer to 'struct spi_nor'.
248 * Return: 0 on success, -errno otherwise.
250 int spi_nor_write_disable(struct spi_nor *nor)
252 int ret;
254 if (nor->spimem) {
255 struct spi_mem_op op =
256 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
257 SPI_MEM_OP_NO_ADDR,
258 SPI_MEM_OP_NO_DUMMY,
259 SPI_MEM_OP_NO_DATA);
261 ret = spi_mem_exec_op(nor->spimem, &op);
262 } else {
263 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
264 NULL, 0);
267 if (ret)
268 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
270 return ret;
274 * spi_nor_read_sr() - Read the Status Register.
275 * @nor: pointer to 'struct spi_nor'.
276 * @sr: pointer to a DMA-able buffer where the value of the
277 * Status Register will be written.
279 * Return: 0 on success, -errno otherwise.
281 static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
283 int ret;
285 if (nor->spimem) {
286 struct spi_mem_op op =
287 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
288 SPI_MEM_OP_NO_ADDR,
289 SPI_MEM_OP_NO_DUMMY,
290 SPI_MEM_OP_DATA_IN(1, sr, 1));
292 ret = spi_mem_exec_op(nor->spimem, &op);
293 } else {
294 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
295 sr, 1);
298 if (ret)
299 dev_dbg(nor->dev, "error %d reading SR\n", ret);
301 return ret;
305 * spi_nor_read_fsr() - Read the Flag Status Register.
306 * @nor: pointer to 'struct spi_nor'
307 * @fsr: pointer to a DMA-able buffer where the value of the
308 * Flag Status Register will be written.
310 * Return: 0 on success, -errno otherwise.
312 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
314 int ret;
316 if (nor->spimem) {
317 struct spi_mem_op op =
318 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
319 SPI_MEM_OP_NO_ADDR,
320 SPI_MEM_OP_NO_DUMMY,
321 SPI_MEM_OP_DATA_IN(1, fsr, 1));
323 ret = spi_mem_exec_op(nor->spimem, &op);
324 } else {
325 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
326 fsr, 1);
329 if (ret)
330 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
332 return ret;
336 * spi_nor_read_cr() - Read the Configuration Register using the
337 * SPINOR_OP_RDCR (35h) command.
338 * @nor: pointer to 'struct spi_nor'
339 * @cr: pointer to a DMA-able buffer where the value of the
340 * Configuration Register will be written.
342 * Return: 0 on success, -errno otherwise.
344 static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
346 int ret;
348 if (nor->spimem) {
349 struct spi_mem_op op =
350 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
351 SPI_MEM_OP_NO_ADDR,
352 SPI_MEM_OP_NO_DUMMY,
353 SPI_MEM_OP_DATA_IN(1, cr, 1));
355 ret = spi_mem_exec_op(nor->spimem, &op);
356 } else {
357 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
360 if (ret)
361 dev_dbg(nor->dev, "error %d reading CR\n", ret);
363 return ret;
367 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
368 * @nor: pointer to 'struct spi_nor'.
369 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
370 * address mode.
372 * Return: 0 on success, -errno otherwise.
374 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
376 int ret;
378 if (nor->spimem) {
379 struct spi_mem_op op =
380 SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
381 SPINOR_OP_EN4B :
382 SPINOR_OP_EX4B,
384 SPI_MEM_OP_NO_ADDR,
385 SPI_MEM_OP_NO_DUMMY,
386 SPI_MEM_OP_NO_DATA);
388 ret = spi_mem_exec_op(nor->spimem, &op);
389 } else {
390 ret = nor->controller_ops->write_reg(nor,
391 enable ? SPINOR_OP_EN4B :
392 SPINOR_OP_EX4B,
393 NULL, 0);
396 if (ret)
397 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
399 return ret;
403 * st_micron_set_4byte_addr_mode() - Set 4-byte address mode for ST and Micron
404 * flashes.
405 * @nor: pointer to 'struct spi_nor'.
406 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
407 * address mode.
409 * Return: 0 on success, -errno otherwise.
411 static int st_micron_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
413 int ret;
415 ret = spi_nor_write_enable(nor);
416 if (ret)
417 return ret;
419 ret = spi_nor_set_4byte_addr_mode(nor, enable);
420 if (ret)
421 return ret;
423 return spi_nor_write_disable(nor);
427 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
428 * flashes.
429 * @nor: pointer to 'struct spi_nor'.
430 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
431 * address mode.
433 * Return: 0 on success, -errno otherwise.
435 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
437 int ret;
439 nor->bouncebuf[0] = enable << 7;
441 if (nor->spimem) {
442 struct spi_mem_op op =
443 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
444 SPI_MEM_OP_NO_ADDR,
445 SPI_MEM_OP_NO_DUMMY,
446 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
448 ret = spi_mem_exec_op(nor->spimem, &op);
449 } else {
450 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
451 nor->bouncebuf, 1);
454 if (ret)
455 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
457 return ret;
461 * spi_nor_write_ear() - Write Extended Address Register.
462 * @nor: pointer to 'struct spi_nor'.
463 * @ear: value to write to the Extended Address Register.
465 * Return: 0 on success, -errno otherwise.
467 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
469 int ret;
471 nor->bouncebuf[0] = ear;
473 if (nor->spimem) {
474 struct spi_mem_op op =
475 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
476 SPI_MEM_OP_NO_ADDR,
477 SPI_MEM_OP_NO_DUMMY,
478 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
480 ret = spi_mem_exec_op(nor->spimem, &op);
481 } else {
482 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
483 nor->bouncebuf, 1);
486 if (ret)
487 dev_dbg(nor->dev, "error %d writing EAR\n", ret);
489 return ret;
493 * winbond_set_4byte_addr_mode() - Set 4-byte address mode for Winbond flashes.
494 * @nor: pointer to 'struct spi_nor'.
495 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
496 * address mode.
498 * Return: 0 on success, -errno otherwise.
500 static int winbond_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
502 int ret;
504 ret = spi_nor_set_4byte_addr_mode(nor, enable);
505 if (ret || enable)
506 return ret;
509 * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
510 * Register to be set to 1, so all 3-byte-address reads come from the
511 * second 16M. We must clear the register to enable normal behavior.
513 ret = spi_nor_write_enable(nor);
514 if (ret)
515 return ret;
517 ret = spi_nor_write_ear(nor, 0);
518 if (ret)
519 return ret;
521 return spi_nor_write_disable(nor);
525 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
526 * @nor: pointer to 'struct spi_nor'.
527 * @sr: pointer to a DMA-able buffer where the value of the
528 * Status Register will be written.
530 * Return: 0 on success, -errno otherwise.
532 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
534 int ret;
536 if (nor->spimem) {
537 struct spi_mem_op op =
538 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
539 SPI_MEM_OP_NO_ADDR,
540 SPI_MEM_OP_NO_DUMMY,
541 SPI_MEM_OP_DATA_IN(1, sr, 1));
543 ret = spi_mem_exec_op(nor->spimem, &op);
544 } else {
545 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
546 sr, 1);
549 if (ret)
550 dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
552 return ret;
556 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
557 * the flash is ready for new commands.
558 * @nor: pointer to 'struct spi_nor'.
560 * Return: 0 on success, -errno otherwise.
562 static int spi_nor_xsr_ready(struct spi_nor *nor)
564 int ret;
566 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
567 if (ret)
568 return ret;
570 return !!(nor->bouncebuf[0] & XSR_RDY);
574 * spi_nor_clear_sr() - Clear the Status Register.
575 * @nor: pointer to 'struct spi_nor'.
577 static void spi_nor_clear_sr(struct spi_nor *nor)
579 int ret;
581 if (nor->spimem) {
582 struct spi_mem_op op =
583 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
584 SPI_MEM_OP_NO_ADDR,
585 SPI_MEM_OP_NO_DUMMY,
586 SPI_MEM_OP_NO_DATA);
588 ret = spi_mem_exec_op(nor->spimem, &op);
589 } else {
590 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
591 NULL, 0);
594 if (ret)
595 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
599 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
600 * for new commands.
601 * @nor: pointer to 'struct spi_nor'.
603 * Return: 0 on success, -errno otherwise.
605 static int spi_nor_sr_ready(struct spi_nor *nor)
607 int ret = spi_nor_read_sr(nor, nor->bouncebuf);
609 if (ret)
610 return ret;
612 if (nor->flags & SNOR_F_USE_CLSR &&
613 nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
614 if (nor->bouncebuf[0] & SR_E_ERR)
615 dev_err(nor->dev, "Erase Error occurred\n");
616 else
617 dev_err(nor->dev, "Programming Error occurred\n");
619 spi_nor_clear_sr(nor);
620 return -EIO;
623 return !(nor->bouncebuf[0] & SR_WIP);
627 * spi_nor_clear_fsr() - Clear the Flag Status Register.
628 * @nor: pointer to 'struct spi_nor'.
630 static void spi_nor_clear_fsr(struct spi_nor *nor)
632 int ret;
634 if (nor->spimem) {
635 struct spi_mem_op op =
636 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
637 SPI_MEM_OP_NO_ADDR,
638 SPI_MEM_OP_NO_DUMMY,
639 SPI_MEM_OP_NO_DATA);
641 ret = spi_mem_exec_op(nor->spimem, &op);
642 } else {
643 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
644 NULL, 0);
647 if (ret)
648 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
652 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
653 * ready for new commands.
654 * @nor: pointer to 'struct spi_nor'.
656 * Return: 0 on success, -errno otherwise.
658 static int spi_nor_fsr_ready(struct spi_nor *nor)
660 int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
662 if (ret)
663 return ret;
665 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
666 if (nor->bouncebuf[0] & FSR_E_ERR)
667 dev_err(nor->dev, "Erase operation failed.\n");
668 else
669 dev_err(nor->dev, "Program operation failed.\n");
671 if (nor->bouncebuf[0] & FSR_PT_ERR)
672 dev_err(nor->dev,
673 "Attempted to modify a protected sector.\n");
675 spi_nor_clear_fsr(nor);
676 return -EIO;
679 return nor->bouncebuf[0] & FSR_READY;
683 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
684 * @nor: pointer to 'struct spi_nor'.
686 * Return: 0 on success, -errno otherwise.
688 static int spi_nor_ready(struct spi_nor *nor)
690 int sr, fsr;
692 if (nor->flags & SNOR_F_READY_XSR_RDY)
693 sr = spi_nor_xsr_ready(nor);
694 else
695 sr = spi_nor_sr_ready(nor);
696 if (sr < 0)
697 return sr;
698 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
699 if (fsr < 0)
700 return fsr;
701 return sr && fsr;
705 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
706 * Status Register until ready, or timeout occurs.
707 * @nor: pointer to "struct spi_nor".
708 * @timeout_jiffies: jiffies to wait until timeout.
710 * Return: 0 on success, -errno otherwise.
712 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
713 unsigned long timeout_jiffies)
715 unsigned long deadline;
716 int timeout = 0, ret;
718 deadline = jiffies + timeout_jiffies;
720 while (!timeout) {
721 if (time_after_eq(jiffies, deadline))
722 timeout = 1;
724 ret = spi_nor_ready(nor);
725 if (ret < 0)
726 return ret;
727 if (ret)
728 return 0;
730 cond_resched();
733 dev_dbg(nor->dev, "flash operation timed out\n");
735 return -ETIMEDOUT;
739 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
740 * flash to be ready, or timeout occurs.
741 * @nor: pointer to "struct spi_nor".
743 * Return: 0 on success, -errno otherwise.
745 int spi_nor_wait_till_ready(struct spi_nor *nor)
747 return spi_nor_wait_till_ready_with_timeout(nor,
748 DEFAULT_READY_WAIT_JIFFIES);
752 * spi_nor_write_sr() - Write the Status Register.
753 * @nor: pointer to 'struct spi_nor'.
754 * @sr: pointer to DMA-able buffer to write to the Status Register.
755 * @len: number of bytes to write to the Status Register.
757 * Return: 0 on success, -errno otherwise.
759 static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
761 int ret;
763 ret = spi_nor_write_enable(nor);
764 if (ret)
765 return ret;
767 if (nor->spimem) {
768 struct spi_mem_op op =
769 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
770 SPI_MEM_OP_NO_ADDR,
771 SPI_MEM_OP_NO_DUMMY,
772 SPI_MEM_OP_DATA_OUT(len, sr, 1));
774 ret = spi_mem_exec_op(nor->spimem, &op);
775 } else {
776 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
777 sr, len);
780 if (ret) {
781 dev_dbg(nor->dev, "error %d writing SR\n", ret);
782 return ret;
785 return spi_nor_wait_till_ready(nor);
789 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
790 * ensure that the byte written match the received value.
791 * @nor: pointer to a 'struct spi_nor'.
792 * @sr1: byte value to be written to the Status Register.
794 * Return: 0 on success, -errno otherwise.
796 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
798 int ret;
800 nor->bouncebuf[0] = sr1;
802 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
803 if (ret)
804 return ret;
806 ret = spi_nor_read_sr(nor, nor->bouncebuf);
807 if (ret)
808 return ret;
810 if (nor->bouncebuf[0] != sr1) {
811 dev_dbg(nor->dev, "SR1: read back test failed\n");
812 return -EIO;
815 return 0;
819 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
820 * Status Register 2 in one shot. Ensure that the byte written in the Status
821 * Register 1 match the received value, and that the 16-bit Write did not
822 * affect what was already in the Status Register 2.
823 * @nor: pointer to a 'struct spi_nor'.
824 * @sr1: byte value to be written to the Status Register 1.
826 * Return: 0 on success, -errno otherwise.
828 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
830 int ret;
831 u8 *sr_cr = nor->bouncebuf;
832 u8 cr_written;
834 /* Make sure we don't overwrite the contents of Status Register 2. */
835 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
836 ret = spi_nor_read_cr(nor, &sr_cr[1]);
837 if (ret)
838 return ret;
839 } else if (nor->params.quad_enable) {
841 * If the Status Register 2 Read command (35h) is not
842 * supported, we should at least be sure we don't
843 * change the value of the SR2 Quad Enable bit.
845 * We can safely assume that when the Quad Enable method is
846 * set, the value of the QE bit is one, as a consequence of the
847 * nor->params.quad_enable() call.
849 * We can safely assume that the Quad Enable bit is present in
850 * the Status Register 2 at BIT(1). According to the JESD216
851 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
852 * Write Status (01h) command is available just for the cases
853 * in which the QE bit is described in SR2 at BIT(1).
855 sr_cr[1] = SR2_QUAD_EN_BIT1;
856 } else {
857 sr_cr[1] = 0;
860 sr_cr[0] = sr1;
862 ret = spi_nor_write_sr(nor, sr_cr, 2);
863 if (ret)
864 return ret;
866 if (nor->flags & SNOR_F_NO_READ_CR)
867 return 0;
869 cr_written = sr_cr[1];
871 ret = spi_nor_read_cr(nor, &sr_cr[1]);
872 if (ret)
873 return ret;
875 if (cr_written != sr_cr[1]) {
876 dev_dbg(nor->dev, "CR: read back test failed\n");
877 return -EIO;
880 return 0;
884 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
885 * Configuration Register in one shot. Ensure that the byte written in the
886 * Configuration Register match the received value, and that the 16-bit Write
887 * did not affect what was already in the Status Register 1.
888 * @nor: pointer to a 'struct spi_nor'.
889 * @cr: byte value to be written to the Configuration Register.
891 * Return: 0 on success, -errno otherwise.
893 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
895 int ret;
896 u8 *sr_cr = nor->bouncebuf;
897 u8 sr_written;
899 /* Keep the current value of the Status Register 1. */
900 ret = spi_nor_read_sr(nor, sr_cr);
901 if (ret)
902 return ret;
904 sr_cr[1] = cr;
906 ret = spi_nor_write_sr(nor, sr_cr, 2);
907 if (ret)
908 return ret;
910 sr_written = sr_cr[0];
912 ret = spi_nor_read_sr(nor, sr_cr);
913 if (ret)
914 return ret;
916 if (sr_written != sr_cr[0]) {
917 dev_dbg(nor->dev, "SR: Read back test failed\n");
918 return -EIO;
921 if (nor->flags & SNOR_F_NO_READ_CR)
922 return 0;
924 ret = spi_nor_read_cr(nor, &sr_cr[1]);
925 if (ret)
926 return ret;
928 if (cr != sr_cr[1]) {
929 dev_dbg(nor->dev, "CR: read back test failed\n");
930 return -EIO;
933 return 0;
937 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
938 * the byte written match the received value without affecting other bits in the
939 * Status Register 1 and 2.
940 * @nor: pointer to a 'struct spi_nor'.
941 * @sr1: byte value to be written to the Status Register.
943 * Return: 0 on success, -errno otherwise.
945 static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
947 if (nor->flags & SNOR_F_HAS_16BIT_SR)
948 return spi_nor_write_16bit_sr_and_check(nor, sr1);
950 return spi_nor_write_sr1_and_check(nor, sr1);
954 * spi_nor_write_sr2() - Write the Status Register 2 using the
955 * SPINOR_OP_WRSR2 (3eh) command.
956 * @nor: pointer to 'struct spi_nor'.
957 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
959 * Return: 0 on success, -errno otherwise.
961 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
963 int ret;
965 ret = spi_nor_write_enable(nor);
966 if (ret)
967 return ret;
969 if (nor->spimem) {
970 struct spi_mem_op op =
971 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
972 SPI_MEM_OP_NO_ADDR,
973 SPI_MEM_OP_NO_DUMMY,
974 SPI_MEM_OP_DATA_OUT(1, sr2, 1));
976 ret = spi_mem_exec_op(nor->spimem, &op);
977 } else {
978 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
979 sr2, 1);
982 if (ret) {
983 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
984 return ret;
987 return spi_nor_wait_till_ready(nor);
991 * spi_nor_read_sr2() - Read the Status Register 2 using the
992 * SPINOR_OP_RDSR2 (3fh) command.
993 * @nor: pointer to 'struct spi_nor'.
994 * @sr2: pointer to DMA-able buffer where the value of the
995 * Status Register 2 will be written.
997 * Return: 0 on success, -errno otherwise.
999 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1001 int ret;
1003 if (nor->spimem) {
1004 struct spi_mem_op op =
1005 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
1006 SPI_MEM_OP_NO_ADDR,
1007 SPI_MEM_OP_NO_DUMMY,
1008 SPI_MEM_OP_DATA_IN(1, sr2, 1));
1010 ret = spi_mem_exec_op(nor->spimem, &op);
1011 } else {
1012 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
1013 sr2, 1);
1016 if (ret)
1017 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1019 return ret;
1023 * spi_nor_erase_chip() - Erase the entire flash memory.
1024 * @nor: pointer to 'struct spi_nor'.
1026 * Return: 0 on success, -errno otherwise.
1028 static int spi_nor_erase_chip(struct spi_nor *nor)
1030 int ret;
1032 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1034 if (nor->spimem) {
1035 struct spi_mem_op op =
1036 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
1037 SPI_MEM_OP_NO_ADDR,
1038 SPI_MEM_OP_NO_DUMMY,
1039 SPI_MEM_OP_NO_DATA);
1041 ret = spi_mem_exec_op(nor->spimem, &op);
1042 } else {
1043 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
1044 NULL, 0);
1047 if (ret)
1048 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1050 return ret;
1053 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1055 size_t i;
1057 for (i = 0; i < size; i++)
1058 if (table[i][0] == opcode)
1059 return table[i][1];
1061 /* No conversion found, keep input op code. */
1062 return opcode;
1065 u8 spi_nor_convert_3to4_read(u8 opcode)
1067 static const u8 spi_nor_3to4_read[][2] = {
1068 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1069 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1070 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1071 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1072 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1073 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1074 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1075 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1077 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1078 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1079 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1082 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1083 ARRAY_SIZE(spi_nor_3to4_read));
1086 static u8 spi_nor_convert_3to4_program(u8 opcode)
1088 static const u8 spi_nor_3to4_program[][2] = {
1089 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1090 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1091 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1092 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1093 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1096 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1097 ARRAY_SIZE(spi_nor_3to4_program));
1100 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1102 static const u8 spi_nor_3to4_erase[][2] = {
1103 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1104 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1105 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1108 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1109 ARRAY_SIZE(spi_nor_3to4_erase));
1112 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1114 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1115 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1116 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1118 if (!spi_nor_has_uniform_erase(nor)) {
1119 struct spi_nor_erase_map *map = &nor->params.erase_map;
1120 struct spi_nor_erase_type *erase;
1121 int i;
1123 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1124 erase = &map->erase_type[i];
1125 erase->opcode =
1126 spi_nor_convert_3to4_erase(erase->opcode);
1131 int spi_nor_lock_and_prep(struct spi_nor *nor)
1133 int ret = 0;
1135 mutex_lock(&nor->lock);
1137 if (nor->controller_ops && nor->controller_ops->prepare) {
1138 ret = nor->controller_ops->prepare(nor);
1139 if (ret) {
1140 mutex_unlock(&nor->lock);
1141 return ret;
1144 return ret;
1147 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1149 if (nor->controller_ops && nor->controller_ops->unprepare)
1150 nor->controller_ops->unprepare(nor);
1151 mutex_unlock(&nor->lock);
1155 * This code converts an address to the Default Address Mode, that has non
1156 * power of two page sizes. We must support this mode because it is the default
1157 * mode supported by Xilinx tools, it can access the whole flash area and
1158 * changing over to the Power-of-two mode is irreversible and corrupts the
1159 * original data.
1160 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
1161 * 4 MiB.
1163 static u32 s3an_convert_addr(struct spi_nor *nor, u32 addr)
1165 u32 offset, page;
1167 offset = addr % nor->page_size;
1168 page = addr / nor->page_size;
1169 page <<= (nor->page_size > 512) ? 10 : 9;
1171 return page | offset;
1174 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1176 if (!nor->params.convert_addr)
1177 return addr;
1179 return nor->params.convert_addr(nor, addr);
1183 * Initiate the erasure of a single sector
1185 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1187 int i;
1189 addr = spi_nor_convert_addr(nor, addr);
1191 if (nor->spimem) {
1192 struct spi_mem_op op =
1193 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
1194 SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
1195 SPI_MEM_OP_NO_DUMMY,
1196 SPI_MEM_OP_NO_DATA);
1198 return spi_mem_exec_op(nor->spimem, &op);
1199 } else if (nor->controller_ops->erase) {
1200 return nor->controller_ops->erase(nor, addr);
1204 * Default implementation, if driver doesn't have a specialized HW
1205 * control
1207 for (i = nor->addr_width - 1; i >= 0; i--) {
1208 nor->bouncebuf[i] = addr & 0xff;
1209 addr >>= 8;
1212 return nor->controller_ops->write_reg(nor, nor->erase_opcode,
1213 nor->bouncebuf, nor->addr_width);
1217 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1218 * @erase: pointer to a structure that describes a SPI NOR erase type
1219 * @dividend: dividend value
1220 * @remainder: pointer to u32 remainder (will be updated)
1222 * Return: the result of the division
1224 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1225 u64 dividend, u32 *remainder)
1227 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1228 *remainder = (u32)dividend & erase->size_mask;
1229 return dividend >> erase->size_shift;
1233 * spi_nor_find_best_erase_type() - find the best erase type for the given
1234 * offset in the serial flash memory and the
1235 * number of bytes to erase. The region in
1236 * which the address fits is expected to be
1237 * provided.
1238 * @map: the erase map of the SPI NOR
1239 * @region: pointer to a structure that describes a SPI NOR erase region
1240 * @addr: offset in the serial flash memory
1241 * @len: number of bytes to erase
1243 * Return: a pointer to the best fitted erase type, NULL otherwise.
1245 static const struct spi_nor_erase_type *
1246 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1247 const struct spi_nor_erase_region *region,
1248 u64 addr, u32 len)
1250 const struct spi_nor_erase_type *erase;
1251 u32 rem;
1252 int i;
1253 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1256 * Erase types are ordered by size, with the smallest erase type at
1257 * index 0.
1259 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1260 /* Does the erase region support the tested erase type? */
1261 if (!(erase_mask & BIT(i)))
1262 continue;
1264 erase = &map->erase_type[i];
1266 /* Don't erase more than what the user has asked for. */
1267 if (erase->size > len)
1268 continue;
1270 /* Alignment is not mandatory for overlaid regions */
1271 if (region->offset & SNOR_OVERLAID_REGION)
1272 return erase;
1274 spi_nor_div_by_erase_size(erase, addr, &rem);
1275 if (rem)
1276 continue;
1277 else
1278 return erase;
1281 return NULL;
1285 * spi_nor_region_next() - get the next spi nor region
1286 * @region: pointer to a structure that describes a SPI NOR erase region
1288 * Return: the next spi nor region or NULL if last region.
1290 struct spi_nor_erase_region *
1291 spi_nor_region_next(struct spi_nor_erase_region *region)
1293 if (spi_nor_region_is_last(region))
1294 return NULL;
1295 region++;
1296 return region;
1300 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1301 * which the offset fits
1302 * @map: the erase map of the SPI NOR
1303 * @addr: offset in the serial flash memory
1305 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1306 * otherwise.
1308 static struct spi_nor_erase_region *
1309 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1311 struct spi_nor_erase_region *region = map->regions;
1312 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1313 u64 region_end = region_start + region->size;
1315 while (addr < region_start || addr >= region_end) {
1316 region = spi_nor_region_next(region);
1317 if (!region)
1318 return ERR_PTR(-EINVAL);
1320 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1321 region_end = region_start + region->size;
1324 return region;
1328 * spi_nor_init_erase_cmd() - initialize an erase command
1329 * @region: pointer to a structure that describes a SPI NOR erase region
1330 * @erase: pointer to a structure that describes a SPI NOR erase type
1332 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1333 * otherwise.
1335 static struct spi_nor_erase_command *
1336 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1337 const struct spi_nor_erase_type *erase)
1339 struct spi_nor_erase_command *cmd;
1341 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1342 if (!cmd)
1343 return ERR_PTR(-ENOMEM);
1345 INIT_LIST_HEAD(&cmd->list);
1346 cmd->opcode = erase->opcode;
1347 cmd->count = 1;
1349 if (region->offset & SNOR_OVERLAID_REGION)
1350 cmd->size = region->size;
1351 else
1352 cmd->size = erase->size;
1354 return cmd;
1358 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1359 * @erase_list: list of erase commands
1361 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1363 struct spi_nor_erase_command *cmd, *next;
1365 list_for_each_entry_safe(cmd, next, erase_list, list) {
1366 list_del(&cmd->list);
1367 kfree(cmd);
1372 * spi_nor_init_erase_cmd_list() - initialize erase command list
1373 * @nor: pointer to a 'struct spi_nor'
1374 * @erase_list: list of erase commands to be executed once we validate that the
1375 * erase can be performed
1376 * @addr: offset in the serial flash memory
1377 * @len: number of bytes to erase
1379 * Builds the list of best fitted erase commands and verifies if the erase can
1380 * be performed.
1382 * Return: 0 on success, -errno otherwise.
1384 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1385 struct list_head *erase_list,
1386 u64 addr, u32 len)
1388 const struct spi_nor_erase_map *map = &nor->params.erase_map;
1389 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1390 struct spi_nor_erase_region *region;
1391 struct spi_nor_erase_command *cmd = NULL;
1392 u64 region_end;
1393 int ret = -EINVAL;
1395 region = spi_nor_find_erase_region(map, addr);
1396 if (IS_ERR(region))
1397 return PTR_ERR(region);
1399 region_end = spi_nor_region_end(region);
1401 while (len) {
1402 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1403 if (!erase)
1404 goto destroy_erase_cmd_list;
1406 if (prev_erase != erase ||
1407 region->offset & SNOR_OVERLAID_REGION) {
1408 cmd = spi_nor_init_erase_cmd(region, erase);
1409 if (IS_ERR(cmd)) {
1410 ret = PTR_ERR(cmd);
1411 goto destroy_erase_cmd_list;
1414 list_add_tail(&cmd->list, erase_list);
1415 } else {
1416 cmd->count++;
1419 addr += cmd->size;
1420 len -= cmd->size;
1422 if (len && addr >= region_end) {
1423 region = spi_nor_region_next(region);
1424 if (!region)
1425 goto destroy_erase_cmd_list;
1426 region_end = spi_nor_region_end(region);
1429 prev_erase = erase;
1432 return 0;
1434 destroy_erase_cmd_list:
1435 spi_nor_destroy_erase_cmd_list(erase_list);
1436 return ret;
1440 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1441 * @nor: pointer to a 'struct spi_nor'
1442 * @addr: offset in the serial flash memory
1443 * @len: number of bytes to erase
1445 * Build a list of best fitted erase commands and execute it once we validate
1446 * that the erase can be performed.
1448 * Return: 0 on success, -errno otherwise.
1450 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1452 LIST_HEAD(erase_list);
1453 struct spi_nor_erase_command *cmd, *next;
1454 int ret;
1456 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1457 if (ret)
1458 return ret;
1460 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1461 nor->erase_opcode = cmd->opcode;
1462 while (cmd->count) {
1463 ret = spi_nor_write_enable(nor);
1464 if (ret)
1465 goto destroy_erase_cmd_list;
1467 ret = spi_nor_erase_sector(nor, addr);
1468 if (ret)
1469 goto destroy_erase_cmd_list;
1471 addr += cmd->size;
1472 cmd->count--;
1474 ret = spi_nor_wait_till_ready(nor);
1475 if (ret)
1476 goto destroy_erase_cmd_list;
1478 list_del(&cmd->list);
1479 kfree(cmd);
1482 return 0;
1484 destroy_erase_cmd_list:
1485 spi_nor_destroy_erase_cmd_list(&erase_list);
1486 return ret;
1490 * Erase an address range on the nor chip. The address range may extend
1491 * one or more erase sectors. Return an error is there is a problem erasing.
1493 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1495 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1496 u32 addr, len;
1497 uint32_t rem;
1498 int ret;
1500 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1501 (long long)instr->len);
1503 if (spi_nor_has_uniform_erase(nor)) {
1504 div_u64_rem(instr->len, mtd->erasesize, &rem);
1505 if (rem)
1506 return -EINVAL;
1509 addr = instr->addr;
1510 len = instr->len;
1512 ret = spi_nor_lock_and_prep(nor);
1513 if (ret)
1514 return ret;
1516 /* whole-chip erase? */
1517 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1518 unsigned long timeout;
1520 ret = spi_nor_write_enable(nor);
1521 if (ret)
1522 goto erase_err;
1524 ret = spi_nor_erase_chip(nor);
1525 if (ret)
1526 goto erase_err;
1529 * Scale the timeout linearly with the size of the flash, with
1530 * a minimum calibrated to an old 2MB flash. We could try to
1531 * pull these from CFI/SFDP, but these values should be good
1532 * enough for now.
1534 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1535 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1536 (unsigned long)(mtd->size / SZ_2M));
1537 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1538 if (ret)
1539 goto erase_err;
1541 /* REVISIT in some cases we could speed up erasing large regions
1542 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1543 * to use "small sector erase", but that's not always optimal.
1546 /* "sector"-at-a-time erase */
1547 } else if (spi_nor_has_uniform_erase(nor)) {
1548 while (len) {
1549 ret = spi_nor_write_enable(nor);
1550 if (ret)
1551 goto erase_err;
1553 ret = spi_nor_erase_sector(nor, addr);
1554 if (ret)
1555 goto erase_err;
1557 addr += mtd->erasesize;
1558 len -= mtd->erasesize;
1560 ret = spi_nor_wait_till_ready(nor);
1561 if (ret)
1562 goto erase_err;
1565 /* erase multiple sectors */
1566 } else {
1567 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1568 if (ret)
1569 goto erase_err;
1572 ret = spi_nor_write_disable(nor);
1574 erase_err:
1575 spi_nor_unlock_and_unprep(nor);
1577 return ret;
1580 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1581 uint64_t *len)
1583 struct mtd_info *mtd = &nor->mtd;
1584 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1585 u8 tb_mask = SR_TB_BIT5;
1586 int pow;
1588 if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1589 tb_mask = SR_TB_BIT6;
1591 if (!(sr & mask)) {
1592 /* No protection */
1593 *ofs = 0;
1594 *len = 0;
1595 } else {
1596 pow = ((sr & mask) ^ mask) >> SR_BP_SHIFT;
1597 *len = mtd->size >> pow;
1598 if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1599 *ofs = 0;
1600 else
1601 *ofs = mtd->size - *len;
1606 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1607 * @locked is false); 0 otherwise
1609 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1610 uint64_t len, u8 sr, bool locked)
1612 loff_t lock_offs;
1613 uint64_t lock_len;
1615 if (!len)
1616 return 1;
1618 spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1620 if (locked)
1621 /* Requested range is a sub-range of locked range */
1622 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1623 else
1624 /* Requested range does not overlap with locked range */
1625 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1628 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1629 u8 sr)
1631 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1634 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1635 u8 sr)
1637 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1641 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1642 * Supports the block protection bits BP{0,1,2} in the status register
1643 * (SR). Does not support these features found in newer SR bitfields:
1644 * - SEC: sector/block protect - only handle SEC=0 (block protect)
1645 * - CMP: complement protect - only support CMP=0 (range is not complemented)
1647 * Support for the following is provided conditionally for some flash:
1648 * - TB: top/bottom protect
1650 * Sample table portion for 8MB flash (Winbond w25q64fw):
1652 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
1653 * --------------------------------------------------------------------------
1654 * X | X | 0 | 0 | 0 | NONE | NONE
1655 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
1656 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
1657 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
1658 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
1659 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
1660 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
1661 * X | X | 1 | 1 | 1 | 8 MB | ALL
1662 * ------|-------|-------|-------|-------|---------------|-------------------
1663 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
1664 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
1665 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
1666 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
1667 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
1668 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
1670 * Returns negative on errors, 0 on success.
1672 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1674 struct mtd_info *mtd = &nor->mtd;
1675 int ret, status_old, status_new;
1676 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1677 u8 tb_mask = SR_TB_BIT5;
1678 u8 pow, val;
1679 loff_t lock_len;
1680 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1681 bool use_top;
1683 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1684 if (ret)
1685 return ret;
1687 status_old = nor->bouncebuf[0];
1689 /* If nothing in our range is unlocked, we don't need to do anything */
1690 if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1691 return 0;
1693 /* If anything below us is unlocked, we can't use 'bottom' protection */
1694 if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1695 can_be_bottom = false;
1697 /* If anything above us is unlocked, we can't use 'top' protection */
1698 if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1699 status_old))
1700 can_be_top = false;
1702 if (!can_be_bottom && !can_be_top)
1703 return -EINVAL;
1705 /* Prefer top, if both are valid */
1706 use_top = can_be_top;
1708 /* lock_len: length of region that should end up locked */
1709 if (use_top)
1710 lock_len = mtd->size - ofs;
1711 else
1712 lock_len = ofs + len;
1714 if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1715 tb_mask = SR_TB_BIT6;
1718 * Need smallest pow such that:
1720 * 1 / (2^pow) <= (len / size)
1722 * so (assuming power-of-2 size) we do:
1724 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
1726 pow = ilog2(mtd->size) - ilog2(lock_len);
1727 val = mask - (pow << SR_BP_SHIFT);
1728 if (val & ~mask)
1729 return -EINVAL;
1730 /* Don't "lock" with no region! */
1731 if (!(val & mask))
1732 return -EINVAL;
1734 status_new = (status_old & ~mask & ~tb_mask) | val;
1736 /* Disallow further writes if WP pin is asserted */
1737 status_new |= SR_SRWD;
1739 if (!use_top)
1740 status_new |= tb_mask;
1742 /* Don't bother if they're the same */
1743 if (status_new == status_old)
1744 return 0;
1746 /* Only modify protection if it will not unlock other areas */
1747 if ((status_new & mask) < (status_old & mask))
1748 return -EINVAL;
1750 return spi_nor_write_sr_and_check(nor, status_new);
1754 * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1756 * Returns negative on errors, 0 on success.
1758 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1760 struct mtd_info *mtd = &nor->mtd;
1761 int ret, status_old, status_new;
1762 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1763 u8 tb_mask = SR_TB_BIT5;
1764 u8 pow, val;
1765 loff_t lock_len;
1766 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1767 bool use_top;
1769 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1770 if (ret)
1771 return ret;
1773 status_old = nor->bouncebuf[0];
1775 /* If nothing in our range is locked, we don't need to do anything */
1776 if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1777 return 0;
1779 /* If anything below us is locked, we can't use 'top' protection */
1780 if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1781 can_be_top = false;
1783 /* If anything above us is locked, we can't use 'bottom' protection */
1784 if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1785 status_old))
1786 can_be_bottom = false;
1788 if (!can_be_bottom && !can_be_top)
1789 return -EINVAL;
1791 /* Prefer top, if both are valid */
1792 use_top = can_be_top;
1794 /* lock_len: length of region that should remain locked */
1795 if (use_top)
1796 lock_len = mtd->size - (ofs + len);
1797 else
1798 lock_len = ofs;
1800 if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1801 tb_mask = SR_TB_BIT6;
1803 * Need largest pow such that:
1805 * 1 / (2^pow) >= (len / size)
1807 * so (assuming power-of-2 size) we do:
1809 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
1811 pow = ilog2(mtd->size) - order_base_2(lock_len);
1812 if (lock_len == 0) {
1813 val = 0; /* fully unlocked */
1814 } else {
1815 val = mask - (pow << SR_BP_SHIFT);
1816 /* Some power-of-two sizes are not supported */
1817 if (val & ~mask)
1818 return -EINVAL;
1821 status_new = (status_old & ~mask & ~tb_mask) | val;
1823 /* Don't protect status register if we're fully unlocked */
1824 if (lock_len == 0)
1825 status_new &= ~SR_SRWD;
1827 if (!use_top)
1828 status_new |= tb_mask;
1830 /* Don't bother if they're the same */
1831 if (status_new == status_old)
1832 return 0;
1834 /* Only modify protection if it will not lock other areas */
1835 if ((status_new & mask) > (status_old & mask))
1836 return -EINVAL;
1838 return spi_nor_write_sr_and_check(nor, status_new);
1842 * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
1843 * for more info.
1845 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1846 * negative on errors.
1848 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1850 int ret;
1852 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1853 if (ret)
1854 return ret;
1856 return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1859 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
1860 .lock = spi_nor_sr_lock,
1861 .unlock = spi_nor_sr_unlock,
1862 .is_locked = spi_nor_sr_is_locked,
1865 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1867 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1868 int ret;
1870 ret = spi_nor_lock_and_prep(nor);
1871 if (ret)
1872 return ret;
1874 ret = nor->params.locking_ops->lock(nor, ofs, len);
1876 spi_nor_unlock_and_unprep(nor);
1877 return ret;
1880 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1882 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1883 int ret;
1885 ret = spi_nor_lock_and_prep(nor);
1886 if (ret)
1887 return ret;
1889 ret = nor->params.locking_ops->unlock(nor, ofs, len);
1891 spi_nor_unlock_and_unprep(nor);
1892 return ret;
1895 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1897 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1898 int ret;
1900 ret = spi_nor_lock_and_prep(nor);
1901 if (ret)
1902 return ret;
1904 ret = nor->params.locking_ops->is_locked(nor, ofs, len);
1906 spi_nor_unlock_and_unprep(nor);
1907 return ret;
1911 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1912 * Register 1.
1913 * @nor: pointer to a 'struct spi_nor'
1915 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1917 * Return: 0 on success, -errno otherwise.
1919 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1921 int ret;
1923 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1924 if (ret)
1925 return ret;
1927 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1928 return 0;
1930 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1932 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1936 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1937 * Register 2.
1938 * @nor: pointer to a 'struct spi_nor'.
1940 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1942 * Return: 0 on success, -errno otherwise.
1944 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1946 int ret;
1948 if (nor->flags & SNOR_F_NO_READ_CR)
1949 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1951 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1952 if (ret)
1953 return ret;
1955 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1956 return 0;
1958 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1960 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1964 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1965 * @nor: pointer to a 'struct spi_nor'
1967 * Set the Quad Enable (QE) bit in the Status Register 2.
1969 * This is one of the procedures to set the QE bit described in the SFDP
1970 * (JESD216 rev B) specification but no manufacturer using this procedure has
1971 * been identified yet, hence the name of the function.
1973 * Return: 0 on success, -errno otherwise.
1975 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1977 u8 *sr2 = nor->bouncebuf;
1978 int ret;
1979 u8 sr2_written;
1981 /* Check current Quad Enable bit value. */
1982 ret = spi_nor_read_sr2(nor, sr2);
1983 if (ret)
1984 return ret;
1985 if (*sr2 & SR2_QUAD_EN_BIT7)
1986 return 0;
1988 /* Update the Quad Enable bit. */
1989 *sr2 |= SR2_QUAD_EN_BIT7;
1991 ret = spi_nor_write_sr2(nor, sr2);
1992 if (ret)
1993 return ret;
1995 sr2_written = *sr2;
1997 /* Read back and check it. */
1998 ret = spi_nor_read_sr2(nor, sr2);
1999 if (ret)
2000 return ret;
2002 if (*sr2 != sr2_written) {
2003 dev_dbg(nor->dev, "SR2: Read back test failed\n");
2004 return -EIO;
2007 return 0;
2010 static int
2011 is25lp256_post_bfpt_fixups(struct spi_nor *nor,
2012 const struct sfdp_parameter_header *bfpt_header,
2013 const struct sfdp_bfpt *bfpt,
2014 struct spi_nor_flash_parameter *params)
2017 * IS25LP256 supports 4B opcodes, but the BFPT advertises a
2018 * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
2019 * Overwrite the address width advertised by the BFPT.
2021 if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) ==
2022 BFPT_DWORD1_ADDRESS_BYTES_3_ONLY)
2023 nor->addr_width = 4;
2025 return 0;
2028 static struct spi_nor_fixups is25lp256_fixups = {
2029 .post_bfpt = is25lp256_post_bfpt_fixups,
2032 static int
2033 mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
2034 const struct sfdp_parameter_header *bfpt_header,
2035 const struct sfdp_bfpt *bfpt,
2036 struct spi_nor_flash_parameter *params)
2039 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
2040 * Unfortunately, Macronix has re-used the same JEDEC ID for both
2041 * variants which prevents us from defining a new entry in the parts
2042 * table.
2043 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
2044 * seems that the F version advertises support for Fast Read 4-4-4 in
2045 * its BFPT table.
2047 if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
2048 nor->flags |= SNOR_F_4B_OPCODES;
2050 return 0;
2053 static struct spi_nor_fixups mx25l25635_fixups = {
2054 .post_bfpt = mx25l25635_post_bfpt_fixups,
2057 static void gd25q256_default_init(struct spi_nor *nor)
2060 * Some manufacturer like GigaDevice may use different
2061 * bit to set QE on different memories, so the MFR can't
2062 * indicate the quad_enable method for this case, we need
2063 * to set it in the default_init fixup hook.
2065 nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
2068 static struct spi_nor_fixups gd25q256_fixups = {
2069 .default_init = gd25q256_default_init,
2072 /* NOTE: double check command sets and memory organization when you add
2073 * more nor chips. This current list focusses on newer chips, which
2074 * have been converging on command sets which including JEDEC ID.
2076 * All newly added entries should describe *hardware* and should use SECT_4K
2077 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
2078 * scenarios excluding small sectors there is config option that can be
2079 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
2080 * For historical (and compatibility) reasons (before we got above config) some
2081 * old entries may be missing 4K flag.
2083 static const struct flash_info spi_nor_ids[] = {
2084 /* EON -- en25xxx */
2085 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
2086 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
2087 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
2088 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
2089 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
2090 { "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16,
2091 SECT_4K | SPI_NOR_DUAL_READ) },
2092 { "en25qh16", INFO(0x1c7015, 0, 64 * 1024, 32,
2093 SECT_4K | SPI_NOR_DUAL_READ) },
2094 { "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) },
2095 { "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128,
2096 SECT_4K | SPI_NOR_DUAL_READ) },
2097 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
2098 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
2099 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
2101 /* ESMT */
2102 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
2103 { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
2104 { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
2106 /* Everspin */
2107 { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2108 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2109 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2110 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2112 /* Fujitsu */
2113 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
2115 /* GigaDevice */
2117 "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
2118 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2119 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2122 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
2123 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2124 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2127 "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
2128 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2129 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2132 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
2133 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2134 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2137 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
2138 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2139 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2142 "gd25lq128d", INFO(0xc86018, 0, 64 * 1024, 256,
2143 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2144 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2147 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
2148 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2149 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2152 "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
2153 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2154 SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
2155 SPI_NOR_TB_SR_BIT6)
2156 .fixups = &gd25q256_fixups,
2159 /* Intel/Numonyx -- xxxs33b */
2160 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
2161 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
2162 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
2164 /* ISSI */
2165 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
2166 { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8,
2167 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2168 { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32,
2169 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2170 { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16,
2171 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2172 { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64,
2173 SECT_4K | SPI_NOR_DUAL_READ) },
2174 { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128,
2175 SECT_4K | SPI_NOR_DUAL_READ) },
2176 { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256,
2177 SECT_4K | SPI_NOR_DUAL_READ) },
2178 { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512,
2179 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2180 SPI_NOR_4B_OPCODES)
2181 .fixups = &is25lp256_fixups },
2182 { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
2183 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2184 { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
2185 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2186 { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
2187 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2188 { "is25wp256", INFO(0x9d7019, 0, 64 * 1024, 512,
2189 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2190 SPI_NOR_4B_OPCODES)
2191 .fixups = &is25lp256_fixups },
2193 /* Macronix */
2194 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
2195 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
2196 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
2197 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
2198 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
2199 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
2200 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
2201 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
2202 { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) },
2203 { "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64,
2204 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2205 { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) },
2206 { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) },
2207 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
2208 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
2209 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
2210 { "mx25r3235f", INFO(0xc22816, 0, 64 * 1024, 64,
2211 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2212 { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
2213 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2214 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
2215 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
2216 .fixups = &mx25l25635_fixups },
2217 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
2218 { "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16,
2219 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2220 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
2221 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2222 { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2223 { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2224 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
2226 /* Micron <--> ST Micro */
2227 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
2228 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
2229 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
2230 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2231 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2232 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K |
2233 USE_FSR | SPI_NOR_QUAD_READ) },
2234 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K |
2235 USE_FSR | SPI_NOR_QUAD_READ) },
2236 { "mt25ql256a", INFO6(0x20ba19, 0x104400, 64 * 1024, 512,
2237 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
2238 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2239 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K |
2240 USE_FSR | SPI_NOR_DUAL_READ |
2241 SPI_NOR_QUAD_READ) },
2242 { "mt25qu256a", INFO6(0x20bb19, 0x104400, 64 * 1024, 512,
2243 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
2244 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2245 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K |
2246 USE_FSR | SPI_NOR_QUAD_READ) },
2247 { "mt25ql512a", INFO6(0x20ba20, 0x104400, 64 * 1024, 1024,
2248 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
2249 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2250 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
2251 { "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024,
2252 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
2253 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2254 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K |
2255 USE_FSR | SPI_NOR_QUAD_READ) },
2256 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2257 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2258 { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096,
2259 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
2260 NO_CHIP_ERASE) },
2261 { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2263 /* Micron */
2265 "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
2266 SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
2267 SPI_NOR_4B_OPCODES)
2269 { "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048,
2270 SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
2271 SPI_NOR_4B_OPCODES) },
2273 /* PMC */
2274 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
2275 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
2276 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
2278 /* Spansion/Cypress -- single (large) sector size only, at least
2279 * for the chips listed here (without boot sectors).
2281 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2282 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2283 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
2284 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2285 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
2286 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2287 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
2288 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2289 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
2290 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2291 SPI_NOR_HAS_LOCK | USE_CLSR) },
2292 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2293 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
2294 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
2295 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
2296 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2297 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2298 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
2299 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
2300 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
2301 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
2302 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
2303 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2304 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2305 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2306 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2307 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2308 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
2309 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
2310 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
2311 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
2312 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2313 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2314 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2316 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
2317 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
2318 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
2319 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
2320 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
2321 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
2322 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
2323 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
2324 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
2325 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
2326 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
2327 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
2328 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
2329 { "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32, SECT_4K |
2330 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2331 { "sst26vf016b", INFO(0xbf2641, 0, 64 * 1024, 32, SECT_4K |
2332 SPI_NOR_DUAL_READ) },
2333 { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2335 /* ST Microelectronics -- newer production may have feature updates */
2336 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
2337 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
2338 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
2339 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
2340 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
2341 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
2342 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
2343 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
2344 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
2346 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
2347 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
2348 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
2349 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
2350 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
2351 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
2352 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
2353 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
2354 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
2356 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
2357 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
2358 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
2360 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
2361 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
2362 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
2364 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
2365 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
2366 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
2367 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
2368 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
2369 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
2371 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
2372 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
2373 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
2374 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
2375 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
2376 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
2377 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
2379 "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32,
2380 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2381 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2383 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
2385 "w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024, 32,
2386 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2387 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2389 { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
2390 { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
2391 { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
2392 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
2394 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
2395 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2396 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2399 "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64,
2400 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2401 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2404 "w25q32jwm", INFO(0xef8016, 0, 64 * 1024, 64,
2405 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2406 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2408 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
2409 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2411 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
2412 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2413 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2416 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
2417 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2418 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2421 "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
2422 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2423 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2425 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
2426 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
2427 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2428 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512,
2429 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2430 SPI_NOR_4B_OPCODES) },
2431 { "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
2432 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2433 { "w25q256jw", INFO(0xef6019, 0, 64 * 1024, 512,
2434 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2435 { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
2436 SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2438 /* Catalyst / On Semiconductor -- non-JEDEC */
2439 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2440 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2441 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2442 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2443 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2445 /* Xilinx S3AN Internal Flash */
2446 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
2447 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
2448 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
2449 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
2450 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2452 /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
2453 { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2454 { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2455 { },
2458 static const struct spi_nor_manufacturer *manufacturers[] = {
2459 &spi_nor_atmel,
2462 static const struct flash_info *
2463 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2464 const u8 *id)
2466 unsigned int i;
2468 for (i = 0; i < nparts; i++) {
2469 if (parts[i].id_len &&
2470 !memcmp(parts[i].id, id, parts[i].id_len))
2471 return &parts[i];
2474 return NULL;
2477 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2479 const struct flash_info *info;
2480 u8 *id = nor->bouncebuf;
2481 unsigned int i;
2482 int ret;
2484 if (nor->spimem) {
2485 struct spi_mem_op op =
2486 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2487 SPI_MEM_OP_NO_ADDR,
2488 SPI_MEM_OP_NO_DUMMY,
2489 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2491 ret = spi_mem_exec_op(nor->spimem, &op);
2492 } else {
2493 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2494 SPI_NOR_MAX_ID_LEN);
2496 if (ret) {
2497 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2498 return ERR_PTR(ret);
2501 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2502 info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2503 manufacturers[i]->nparts,
2504 id);
2505 if (info) {
2506 nor->manufacturer = manufacturers[i];
2507 return info;
2511 info = spi_nor_search_part_by_id(spi_nor_ids,
2512 ARRAY_SIZE(spi_nor_ids) - 1, id);
2513 if (info)
2514 return info;
2516 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2517 SPI_NOR_MAX_ID_LEN, id);
2518 return ERR_PTR(-ENODEV);
2521 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2522 size_t *retlen, u_char *buf)
2524 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2525 ssize_t ret;
2527 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2529 ret = spi_nor_lock_and_prep(nor);
2530 if (ret)
2531 return ret;
2533 while (len) {
2534 loff_t addr = from;
2536 addr = spi_nor_convert_addr(nor, addr);
2538 ret = spi_nor_read_data(nor, addr, len, buf);
2539 if (ret == 0) {
2540 /* We shouldn't see 0-length reads */
2541 ret = -EIO;
2542 goto read_err;
2544 if (ret < 0)
2545 goto read_err;
2547 WARN_ON(ret > len);
2548 *retlen += ret;
2549 buf += ret;
2550 from += ret;
2551 len -= ret;
2553 ret = 0;
2555 read_err:
2556 spi_nor_unlock_and_unprep(nor);
2557 return ret;
2560 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
2561 size_t *retlen, const u_char *buf)
2563 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2564 size_t actual = 0;
2565 int ret;
2567 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2569 ret = spi_nor_lock_and_prep(nor);
2570 if (ret)
2571 return ret;
2573 ret = spi_nor_write_enable(nor);
2574 if (ret)
2575 goto out;
2577 nor->sst_write_second = false;
2579 /* Start write from odd address. */
2580 if (to % 2) {
2581 nor->program_opcode = SPINOR_OP_BP;
2583 /* write one byte. */
2584 ret = spi_nor_write_data(nor, to, 1, buf);
2585 if (ret < 0)
2586 goto out;
2587 WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
2588 ret = spi_nor_wait_till_ready(nor);
2589 if (ret)
2590 goto out;
2592 to++;
2593 actual++;
2596 /* Write out most of the data here. */
2597 for (; actual < len - 1; actual += 2) {
2598 nor->program_opcode = SPINOR_OP_AAI_WP;
2600 /* write two bytes. */
2601 ret = spi_nor_write_data(nor, to, 2, buf + actual);
2602 if (ret < 0)
2603 goto out;
2604 WARN(ret != 2, "While writing 2 bytes written %i bytes\n", ret);
2605 ret = spi_nor_wait_till_ready(nor);
2606 if (ret)
2607 goto out;
2608 to += 2;
2609 nor->sst_write_second = true;
2611 nor->sst_write_second = false;
2613 ret = spi_nor_write_disable(nor);
2614 if (ret)
2615 goto out;
2617 ret = spi_nor_wait_till_ready(nor);
2618 if (ret)
2619 goto out;
2621 /* Write out trailing byte if it exists. */
2622 if (actual != len) {
2623 ret = spi_nor_write_enable(nor);
2624 if (ret)
2625 goto out;
2627 nor->program_opcode = SPINOR_OP_BP;
2628 ret = spi_nor_write_data(nor, to, 1, buf + actual);
2629 if (ret < 0)
2630 goto out;
2631 WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
2632 ret = spi_nor_wait_till_ready(nor);
2633 if (ret)
2634 goto out;
2636 actual += 1;
2638 ret = spi_nor_write_disable(nor);
2640 out:
2641 *retlen += actual;
2642 spi_nor_unlock_and_unprep(nor);
2643 return ret;
2647 * Write an address range to the nor chip. Data must be written in
2648 * FLASH_PAGESIZE chunks. The address range may be any size provided
2649 * it is within the physical boundaries.
2651 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2652 size_t *retlen, const u_char *buf)
2654 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2655 size_t page_offset, page_remain, i;
2656 ssize_t ret;
2658 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2660 ret = spi_nor_lock_and_prep(nor);
2661 if (ret)
2662 return ret;
2664 for (i = 0; i < len; ) {
2665 ssize_t written;
2666 loff_t addr = to + i;
2669 * If page_size is a power of two, the offset can be quickly
2670 * calculated with an AND operation. On the other cases we
2671 * need to do a modulus operation (more expensive).
2672 * Power of two numbers have only one bit set and we can use
2673 * the instruction hweight32 to detect if we need to do a
2674 * modulus (do_div()) or not.
2676 if (hweight32(nor->page_size) == 1) {
2677 page_offset = addr & (nor->page_size - 1);
2678 } else {
2679 uint64_t aux = addr;
2681 page_offset = do_div(aux, nor->page_size);
2683 /* the size of data remaining on the first page */
2684 page_remain = min_t(size_t,
2685 nor->page_size - page_offset, len - i);
2687 addr = spi_nor_convert_addr(nor, addr);
2689 ret = spi_nor_write_enable(nor);
2690 if (ret)
2691 goto write_err;
2693 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2694 if (ret < 0)
2695 goto write_err;
2696 written = ret;
2698 ret = spi_nor_wait_till_ready(nor);
2699 if (ret)
2700 goto write_err;
2701 *retlen += written;
2702 i += written;
2705 write_err:
2706 spi_nor_unlock_and_unprep(nor);
2707 return ret;
2710 static int spi_nor_check(struct spi_nor *nor)
2712 if (!nor->dev ||
2713 (!nor->spimem && !nor->controller_ops) ||
2714 (!nor->spimem && nor->controller_ops &&
2715 (!nor->controller_ops->read ||
2716 !nor->controller_ops->write ||
2717 !nor->controller_ops->read_reg ||
2718 !nor->controller_ops->write_reg))) {
2719 pr_err("spi-nor: please fill all the necessary fields!\n");
2720 return -EINVAL;
2723 if (nor->spimem && nor->controller_ops) {
2724 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2725 return -EINVAL;
2728 return 0;
2731 static int s3an_nor_setup(struct spi_nor *nor,
2732 const struct spi_nor_hwcaps *hwcaps)
2734 int ret;
2736 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
2737 if (ret)
2738 return ret;
2740 nor->erase_opcode = SPINOR_OP_XSE;
2741 nor->program_opcode = SPINOR_OP_XPP;
2742 nor->read_opcode = SPINOR_OP_READ;
2743 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2746 * This flashes have a page size of 264 or 528 bytes (known as
2747 * Default addressing mode). It can be changed to a more standard
2748 * Power of two mode where the page size is 256/512. This comes
2749 * with a price: there is 3% less of space, the data is corrupted
2750 * and the page size cannot be changed back to default addressing
2751 * mode.
2753 * The current addressing mode can be read from the XRDSR register
2754 * and should not be changed, because is a destructive operation.
2756 if (nor->bouncebuf[0] & XSR_PAGESIZE) {
2757 /* Flash in Power of 2 mode */
2758 nor->page_size = (nor->page_size == 264) ? 256 : 512;
2759 nor->mtd.writebufsize = nor->page_size;
2760 nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
2761 nor->mtd.erasesize = 8 * nor->page_size;
2762 } else {
2763 /* Flash in Default addressing mode */
2764 nor->params.convert_addr = s3an_convert_addr;
2765 nor->mtd.erasesize = nor->info->sector_size;
2768 return 0;
2771 static void
2772 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2773 u8 num_mode_clocks,
2774 u8 num_wait_states,
2775 u8 opcode,
2776 enum spi_nor_protocol proto)
2778 read->num_mode_clocks = num_mode_clocks;
2779 read->num_wait_states = num_wait_states;
2780 read->opcode = opcode;
2781 read->proto = proto;
2784 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2785 enum spi_nor_protocol proto)
2787 pp->opcode = opcode;
2788 pp->proto = proto;
2791 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2793 size_t i;
2795 for (i = 0; i < size; i++)
2796 if (table[i][0] == (int)hwcaps)
2797 return table[i][1];
2799 return -EINVAL;
2802 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2804 static const int hwcaps_read2cmd[][2] = {
2805 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2806 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2807 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2808 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2809 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2810 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2811 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2812 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2813 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2814 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2815 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2816 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2817 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2818 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2819 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2822 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2823 ARRAY_SIZE(hwcaps_read2cmd));
2826 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2828 static const int hwcaps_pp2cmd[][2] = {
2829 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2830 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2831 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2832 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2833 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2834 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2835 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2838 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2839 ARRAY_SIZE(hwcaps_pp2cmd));
2843 * spi_nor_spimem_check_op - check if the operation is supported
2844 * by controller
2845 *@nor: pointer to a 'struct spi_nor'
2846 *@op: pointer to op template to be checked
2848 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2850 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2851 struct spi_mem_op *op)
2854 * First test with 4 address bytes. The opcode itself might
2855 * be a 3B addressing opcode but we don't care, because
2856 * SPI controller implementation should not check the opcode,
2857 * but just the sequence.
2859 op->addr.nbytes = 4;
2860 if (!spi_mem_supports_op(nor->spimem, op)) {
2861 if (nor->mtd.size > SZ_16M)
2862 return -ENOTSUPP;
2864 /* If flash size <= 16MB, 3 address bytes are sufficient */
2865 op->addr.nbytes = 3;
2866 if (!spi_mem_supports_op(nor->spimem, op))
2867 return -ENOTSUPP;
2870 return 0;
2874 * spi_nor_spimem_check_readop - check if the read op is supported
2875 * by controller
2876 *@nor: pointer to a 'struct spi_nor'
2877 *@read: pointer to op template to be checked
2879 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2881 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2882 const struct spi_nor_read_command *read)
2884 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2885 SPI_MEM_OP_ADDR(3, 0, 1),
2886 SPI_MEM_OP_DUMMY(0, 1),
2887 SPI_MEM_OP_DATA_IN(0, NULL, 1));
2889 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2890 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2891 op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2892 op.dummy.buswidth = op.addr.buswidth;
2893 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2894 op.dummy.buswidth / 8;
2896 return spi_nor_spimem_check_op(nor, &op);
2900 * spi_nor_spimem_check_pp - check if the page program op is supported
2901 * by controller
2902 *@nor: pointer to a 'struct spi_nor'
2903 *@pp: pointer to op template to be checked
2905 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2907 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2908 const struct spi_nor_pp_command *pp)
2910 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2911 SPI_MEM_OP_ADDR(3, 0, 1),
2912 SPI_MEM_OP_NO_DUMMY,
2913 SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2915 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2916 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2917 op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2919 return spi_nor_spimem_check_op(nor, &op);
2923 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2924 * based on SPI controller capabilities
2925 * @nor: pointer to a 'struct spi_nor'
2926 * @hwcaps: pointer to resulting capabilities after adjusting
2927 * according to controller and flash's capability
2929 static void
2930 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2932 struct spi_nor_flash_parameter *params = &nor->params;
2933 unsigned int cap;
2935 /* DTR modes are not supported yet, mask them all. */
2936 *hwcaps &= ~SNOR_HWCAPS_DTR;
2938 /* X-X-X modes are not supported yet, mask them all. */
2939 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2941 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2942 int rdidx, ppidx;
2944 if (!(*hwcaps & BIT(cap)))
2945 continue;
2947 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2948 if (rdidx >= 0 &&
2949 spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2950 *hwcaps &= ~BIT(cap);
2952 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2953 if (ppidx < 0)
2954 continue;
2956 if (spi_nor_spimem_check_pp(nor,
2957 &params->page_programs[ppidx]))
2958 *hwcaps &= ~BIT(cap);
2963 * spi_nor_set_erase_type() - set a SPI NOR erase type
2964 * @erase: pointer to a structure that describes a SPI NOR erase type
2965 * @size: the size of the sector/block erased by the erase type
2966 * @opcode: the SPI command op code to erase the sector/block
2968 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2969 u8 opcode)
2971 erase->size = size;
2972 erase->opcode = opcode;
2973 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2974 erase->size_shift = ffs(erase->size) - 1;
2975 erase->size_mask = (1 << erase->size_shift) - 1;
2979 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2980 * @map: the erase map of the SPI NOR
2981 * @erase_mask: bitmask encoding erase types that can erase the entire
2982 * flash memory
2983 * @flash_size: the spi nor flash memory size
2985 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2986 u8 erase_mask, u64 flash_size)
2988 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2989 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2990 SNOR_LAST_REGION;
2991 map->uniform_region.size = flash_size;
2992 map->regions = &map->uniform_region;
2993 map->uniform_erase_type = erase_mask;
2996 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2997 const struct sfdp_parameter_header *bfpt_header,
2998 const struct sfdp_bfpt *bfpt,
2999 struct spi_nor_flash_parameter *params)
3001 int ret;
3003 if (nor->manufacturer && nor->manufacturer->fixups &&
3004 nor->manufacturer->fixups->post_bfpt) {
3005 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
3006 bfpt, params);
3007 if (ret)
3008 return ret;
3011 if (nor->info->fixups && nor->info->fixups->post_bfpt)
3012 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
3013 params);
3015 return 0;
3018 static int spi_nor_select_read(struct spi_nor *nor,
3019 u32 shared_hwcaps)
3021 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
3022 const struct spi_nor_read_command *read;
3024 if (best_match < 0)
3025 return -EINVAL;
3027 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
3028 if (cmd < 0)
3029 return -EINVAL;
3031 read = &nor->params.reads[cmd];
3032 nor->read_opcode = read->opcode;
3033 nor->read_proto = read->proto;
3036 * In the spi-nor framework, we don't need to make the difference
3037 * between mode clock cycles and wait state clock cycles.
3038 * Indeed, the value of the mode clock cycles is used by a QSPI
3039 * flash memory to know whether it should enter or leave its 0-4-4
3040 * (Continuous Read / XIP) mode.
3041 * eXecution In Place is out of the scope of the mtd sub-system.
3042 * Hence we choose to merge both mode and wait state clock cycles
3043 * into the so called dummy clock cycles.
3045 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
3046 return 0;
3049 static int spi_nor_select_pp(struct spi_nor *nor,
3050 u32 shared_hwcaps)
3052 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
3053 const struct spi_nor_pp_command *pp;
3055 if (best_match < 0)
3056 return -EINVAL;
3058 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
3059 if (cmd < 0)
3060 return -EINVAL;
3062 pp = &nor->params.page_programs[cmd];
3063 nor->program_opcode = pp->opcode;
3064 nor->write_proto = pp->proto;
3065 return 0;
3069 * spi_nor_select_uniform_erase() - select optimum uniform erase type
3070 * @map: the erase map of the SPI NOR
3071 * @wanted_size: the erase type size to search for. Contains the value of
3072 * info->sector_size or of the "small sector" size in case
3073 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
3075 * Once the optimum uniform sector erase command is found, disable all the
3076 * other.
3078 * Return: pointer to erase type on success, NULL otherwise.
3080 static const struct spi_nor_erase_type *
3081 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
3082 const u32 wanted_size)
3084 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
3085 int i;
3086 u8 uniform_erase_type = map->uniform_erase_type;
3088 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3089 if (!(uniform_erase_type & BIT(i)))
3090 continue;
3092 tested_erase = &map->erase_type[i];
3095 * If the current erase size is the one, stop here:
3096 * we have found the right uniform Sector Erase command.
3098 if (tested_erase->size == wanted_size) {
3099 erase = tested_erase;
3100 break;
3104 * Otherwise, the current erase size is still a valid canditate.
3105 * Select the biggest valid candidate.
3107 if (!erase && tested_erase->size)
3108 erase = tested_erase;
3109 /* keep iterating to find the wanted_size */
3112 if (!erase)
3113 return NULL;
3115 /* Disable all other Sector Erase commands. */
3116 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
3117 map->uniform_erase_type |= BIT(erase - map->erase_type);
3118 return erase;
3121 static int spi_nor_select_erase(struct spi_nor *nor)
3123 struct spi_nor_erase_map *map = &nor->params.erase_map;
3124 const struct spi_nor_erase_type *erase = NULL;
3125 struct mtd_info *mtd = &nor->mtd;
3126 u32 wanted_size = nor->info->sector_size;
3127 int i;
3130 * The previous implementation handling Sector Erase commands assumed
3131 * that the SPI flash memory has an uniform layout then used only one
3132 * of the supported erase sizes for all Sector Erase commands.
3133 * So to be backward compatible, the new implementation also tries to
3134 * manage the SPI flash memory as uniform with a single erase sector
3135 * size, when possible.
3137 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
3138 /* prefer "small sector" erase if possible */
3139 wanted_size = 4096u;
3140 #endif
3142 if (spi_nor_has_uniform_erase(nor)) {
3143 erase = spi_nor_select_uniform_erase(map, wanted_size);
3144 if (!erase)
3145 return -EINVAL;
3146 nor->erase_opcode = erase->opcode;
3147 mtd->erasesize = erase->size;
3148 return 0;
3152 * For non-uniform SPI flash memory, set mtd->erasesize to the
3153 * maximum erase sector size. No need to set nor->erase_opcode.
3155 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3156 if (map->erase_type[i].size) {
3157 erase = &map->erase_type[i];
3158 break;
3162 if (!erase)
3163 return -EINVAL;
3165 mtd->erasesize = erase->size;
3166 return 0;
3169 static int spi_nor_default_setup(struct spi_nor *nor,
3170 const struct spi_nor_hwcaps *hwcaps)
3172 struct spi_nor_flash_parameter *params = &nor->params;
3173 u32 ignored_mask, shared_mask;
3174 int err;
3177 * Keep only the hardware capabilities supported by both the SPI
3178 * controller and the SPI flash memory.
3180 shared_mask = hwcaps->mask & params->hwcaps.mask;
3182 if (nor->spimem) {
3184 * When called from spi_nor_probe(), all caps are set and we
3185 * need to discard some of them based on what the SPI
3186 * controller actually supports (using spi_mem_supports_op()).
3188 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
3189 } else {
3191 * SPI n-n-n protocols are not supported when the SPI
3192 * controller directly implements the spi_nor interface.
3193 * Yet another reason to switch to spi-mem.
3195 ignored_mask = SNOR_HWCAPS_X_X_X;
3196 if (shared_mask & ignored_mask) {
3197 dev_dbg(nor->dev,
3198 "SPI n-n-n protocols are not supported.\n");
3199 shared_mask &= ~ignored_mask;
3203 /* Select the (Fast) Read command. */
3204 err = spi_nor_select_read(nor, shared_mask);
3205 if (err) {
3206 dev_dbg(nor->dev,
3207 "can't select read settings supported by both the SPI controller and memory.\n");
3208 return err;
3211 /* Select the Page Program command. */
3212 err = spi_nor_select_pp(nor, shared_mask);
3213 if (err) {
3214 dev_dbg(nor->dev,
3215 "can't select write settings supported by both the SPI controller and memory.\n");
3216 return err;
3219 /* Select the Sector Erase command. */
3220 err = spi_nor_select_erase(nor);
3221 if (err) {
3222 dev_dbg(nor->dev,
3223 "can't select erase settings supported by both the SPI controller and memory.\n");
3224 return err;
3227 return 0;
3230 static int spi_nor_setup(struct spi_nor *nor,
3231 const struct spi_nor_hwcaps *hwcaps)
3233 if (!nor->params.setup)
3234 return 0;
3236 return nor->params.setup(nor, hwcaps);
3239 static void intel_set_default_init(struct spi_nor *nor)
3241 nor->flags |= SNOR_F_HAS_LOCK;
3244 static void issi_set_default_init(struct spi_nor *nor)
3246 nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
3249 static void macronix_set_default_init(struct spi_nor *nor)
3251 nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
3252 nor->params.set_4byte_addr_mode = spi_nor_set_4byte_addr_mode;
3255 static void sst_set_default_init(struct spi_nor *nor)
3257 nor->flags |= SNOR_F_HAS_LOCK;
3260 static void st_micron_set_default_init(struct spi_nor *nor)
3262 nor->flags |= SNOR_F_HAS_LOCK;
3263 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
3264 nor->params.quad_enable = NULL;
3265 nor->params.set_4byte_addr_mode = st_micron_set_4byte_addr_mode;
3268 static void winbond_set_default_init(struct spi_nor *nor)
3270 nor->params.set_4byte_addr_mode = winbond_set_4byte_addr_mode;
3274 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
3275 * settings based on MFR register and ->default_init() hook.
3276 * @nor: pointer to a 'struct spi-nor'.
3278 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
3280 /* Init flash parameters based on MFR */
3281 switch (JEDEC_MFR(nor->info)) {
3282 case SNOR_MFR_INTEL:
3283 intel_set_default_init(nor);
3284 break;
3286 case SNOR_MFR_ISSI:
3287 issi_set_default_init(nor);
3288 break;
3290 case SNOR_MFR_MACRONIX:
3291 macronix_set_default_init(nor);
3292 break;
3294 case SNOR_MFR_ST:
3295 case SNOR_MFR_MICRON:
3296 st_micron_set_default_init(nor);
3297 break;
3299 case SNOR_MFR_SST:
3300 sst_set_default_init(nor);
3301 break;
3303 case SNOR_MFR_WINBOND:
3304 winbond_set_default_init(nor);
3305 break;
3307 default:
3308 break;
3311 if (nor->manufacturer && nor->manufacturer->fixups &&
3312 nor->manufacturer->fixups->default_init)
3313 nor->manufacturer->fixups->default_init(nor);
3315 if (nor->info->fixups && nor->info->fixups->default_init)
3316 nor->info->fixups->default_init(nor);
3320 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
3321 * based on JESD216 SFDP standard.
3322 * @nor: pointer to a 'struct spi-nor'.
3324 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
3325 * legacy flash parameters and settings will be restored.
3327 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
3329 struct spi_nor_flash_parameter sfdp_params;
3331 memcpy(&sfdp_params, &nor->params, sizeof(sfdp_params));
3333 if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
3334 nor->addr_width = 0;
3335 nor->flags &= ~SNOR_F_4B_OPCODES;
3336 } else {
3337 memcpy(&nor->params, &sfdp_params, sizeof(nor->params));
3342 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
3343 * based on nor->info data.
3344 * @nor: pointer to a 'struct spi-nor'.
3346 static void spi_nor_info_init_params(struct spi_nor *nor)
3348 struct spi_nor_flash_parameter *params = &nor->params;
3349 struct spi_nor_erase_map *map = &params->erase_map;
3350 const struct flash_info *info = nor->info;
3351 struct device_node *np = spi_nor_get_flash_node(nor);
3352 u8 i, erase_mask;
3354 /* Initialize legacy flash parameters and settings. */
3355 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
3356 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
3357 params->setup = spi_nor_default_setup;
3358 /* Default to 16-bit Write Status (01h) Command */
3359 nor->flags |= SNOR_F_HAS_16BIT_SR;
3361 /* Set SPI NOR sizes. */
3362 params->size = (u64)info->sector_size * info->n_sectors;
3363 params->page_size = info->page_size;
3365 if (!(info->flags & SPI_NOR_NO_FR)) {
3366 /* Default to Fast Read for DT and non-DT platform devices. */
3367 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
3369 /* Mask out Fast Read if not requested at DT instantiation. */
3370 if (np && !of_property_read_bool(np, "m25p,fast-read"))
3371 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
3374 /* (Fast) Read settings. */
3375 params->hwcaps.mask |= SNOR_HWCAPS_READ;
3376 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
3377 0, 0, SPINOR_OP_READ,
3378 SNOR_PROTO_1_1_1);
3380 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
3381 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
3382 0, 8, SPINOR_OP_READ_FAST,
3383 SNOR_PROTO_1_1_1);
3385 if (info->flags & SPI_NOR_DUAL_READ) {
3386 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
3387 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
3388 0, 8, SPINOR_OP_READ_1_1_2,
3389 SNOR_PROTO_1_1_2);
3392 if (info->flags & SPI_NOR_QUAD_READ) {
3393 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
3394 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
3395 0, 8, SPINOR_OP_READ_1_1_4,
3396 SNOR_PROTO_1_1_4);
3399 if (info->flags & SPI_NOR_OCTAL_READ) {
3400 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
3401 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
3402 0, 8, SPINOR_OP_READ_1_1_8,
3403 SNOR_PROTO_1_1_8);
3406 /* Page Program settings. */
3407 params->hwcaps.mask |= SNOR_HWCAPS_PP;
3408 spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
3409 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
3412 * Sector Erase settings. Sort Erase Types in ascending order, with the
3413 * smallest erase size starting at BIT(0).
3415 erase_mask = 0;
3416 i = 0;
3417 if (info->flags & SECT_4K_PMC) {
3418 erase_mask |= BIT(i);
3419 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
3420 SPINOR_OP_BE_4K_PMC);
3421 i++;
3422 } else if (info->flags & SECT_4K) {
3423 erase_mask |= BIT(i);
3424 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
3425 SPINOR_OP_BE_4K);
3426 i++;
3428 erase_mask |= BIT(i);
3429 spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
3430 SPINOR_OP_SE);
3431 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
3434 static void spansion_post_sfdp_fixups(struct spi_nor *nor)
3436 if (nor->params.size <= SZ_16M)
3437 return;
3439 nor->flags |= SNOR_F_4B_OPCODES;
3440 /* No small sector erase for 4-byte command set */
3441 nor->erase_opcode = SPINOR_OP_SE;
3442 nor->mtd.erasesize = nor->info->sector_size;
3445 static void s3an_post_sfdp_fixups(struct spi_nor *nor)
3447 nor->params.setup = s3an_nor_setup;
3451 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
3452 * after SFDP has been parsed (is also called for SPI NORs that do not
3453 * support RDSFDP).
3454 * @nor: pointer to a 'struct spi_nor'
3456 * Typically used to tweak various parameters that could not be extracted by
3457 * other means (i.e. when information provided by the SFDP/flash_info tables
3458 * are incomplete or wrong).
3460 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
3462 switch (JEDEC_MFR(nor->info)) {
3463 case SNOR_MFR_SPANSION:
3464 spansion_post_sfdp_fixups(nor);
3465 break;
3467 default:
3468 break;
3471 if (nor->info->flags & SPI_S3AN)
3472 s3an_post_sfdp_fixups(nor);
3474 if (nor->manufacturer && nor->manufacturer->fixups &&
3475 nor->manufacturer->fixups->post_sfdp)
3476 nor->manufacturer->fixups->post_sfdp(nor);
3478 if (nor->info->fixups && nor->info->fixups->post_sfdp)
3479 nor->info->fixups->post_sfdp(nor);
3483 * spi_nor_late_init_params() - Late initialization of default flash parameters.
3484 * @nor: pointer to a 'struct spi_nor'
3486 * Used to set default flash parameters and settings when the ->default_init()
3487 * hook or the SFDP parser let voids.
3489 static void spi_nor_late_init_params(struct spi_nor *nor)
3492 * NOR protection support. When locking_ops are not provided, we pick
3493 * the default ones.
3495 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params.locking_ops)
3496 nor->params.locking_ops = &spi_nor_sr_locking_ops;
3500 * spi_nor_init_params() - Initialize the flash's parameters and settings.
3501 * @nor: pointer to a 'struct spi-nor'.
3503 * The flash parameters and settings are initialized based on a sequence of
3504 * calls that are ordered by priority:
3506 * 1/ Default flash parameters initialization. The initializations are done
3507 * based on nor->info data:
3508 * spi_nor_info_init_params()
3510 * which can be overwritten by:
3511 * 2/ Manufacturer flash parameters initialization. The initializations are
3512 * done based on MFR register, or when the decisions can not be done solely
3513 * based on MFR, by using specific flash_info tweeks, ->default_init():
3514 * spi_nor_manufacturer_init_params()
3516 * which can be overwritten by:
3517 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
3518 * should be more accurate that the above.
3519 * spi_nor_sfdp_init_params()
3521 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
3522 * the flash parameters and settings immediately after parsing the Basic
3523 * Flash Parameter Table.
3525 * which can be overwritten by:
3526 * 4/ Post SFDP flash parameters initialization. Used to tweak various
3527 * parameters that could not be extracted by other means (i.e. when
3528 * information provided by the SFDP/flash_info tables are incomplete or
3529 * wrong).
3530 * spi_nor_post_sfdp_fixups()
3532 * 5/ Late default flash parameters initialization, used when the
3533 * ->default_init() hook or the SFDP parser do not set specific params.
3534 * spi_nor_late_init_params()
3536 static void spi_nor_init_params(struct spi_nor *nor)
3538 spi_nor_info_init_params(nor);
3540 spi_nor_manufacturer_init_params(nor);
3542 if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
3543 !(nor->info->flags & SPI_NOR_SKIP_SFDP))
3544 spi_nor_sfdp_init_params(nor);
3546 spi_nor_post_sfdp_fixups(nor);
3548 spi_nor_late_init_params(nor);
3552 * spi_nor_quad_enable() - enable Quad I/O if needed.
3553 * @nor: pointer to a 'struct spi_nor'
3555 * Return: 0 on success, -errno otherwise.
3557 static int spi_nor_quad_enable(struct spi_nor *nor)
3559 if (!nor->params.quad_enable)
3560 return 0;
3562 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3563 spi_nor_get_protocol_width(nor->write_proto) == 4))
3564 return 0;
3566 return nor->params.quad_enable(nor);
3570 * spi_nor_unlock_all() - Unlocks the entire flash memory array.
3571 * @nor: pointer to a 'struct spi_nor'.
3573 * Some SPI NOR flashes are write protected by default after a power-on reset
3574 * cycle, in order to avoid inadvertent writes during power-up. Backward
3575 * compatibility imposes to unlock the entire flash memory array at power-up
3576 * by default.
3578 static int spi_nor_unlock_all(struct spi_nor *nor)
3580 if (nor->flags & SNOR_F_HAS_LOCK)
3581 return spi_nor_unlock(&nor->mtd, 0, nor->params.size);
3583 return 0;
3586 static int spi_nor_init(struct spi_nor *nor)
3588 int err;
3590 err = spi_nor_quad_enable(nor);
3591 if (err) {
3592 dev_dbg(nor->dev, "quad mode not supported\n");
3593 return err;
3596 err = spi_nor_unlock_all(nor);
3597 if (err) {
3598 dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
3599 return err;
3602 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
3604 * If the RESET# pin isn't hooked up properly, or the system
3605 * otherwise doesn't perform a reset command in the boot
3606 * sequence, it's impossible to 100% protect against unexpected
3607 * reboots (e.g., crashes). Warn the user (or hopefully, system
3608 * designer) that this is bad.
3610 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3611 "enabling reset hack; may not recover from unexpected reboots\n");
3612 nor->params.set_4byte_addr_mode(nor, true);
3615 return 0;
3618 /* mtd resume handler */
3619 static void spi_nor_resume(struct mtd_info *mtd)
3621 struct spi_nor *nor = mtd_to_spi_nor(mtd);
3622 struct device *dev = nor->dev;
3623 int ret;
3625 /* re-initialize the nor chip */
3626 ret = spi_nor_init(nor);
3627 if (ret)
3628 dev_err(dev, "resume() failed\n");
3631 void spi_nor_restore(struct spi_nor *nor)
3633 /* restore the addressing mode */
3634 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3635 nor->flags & SNOR_F_BROKEN_RESET)
3636 nor->params.set_4byte_addr_mode(nor, false);
3638 EXPORT_SYMBOL_GPL(spi_nor_restore);
3640 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3641 const char *name)
3643 unsigned int i, j;
3645 for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
3646 if (!strcmp(name, spi_nor_ids[i].name))
3647 return &spi_nor_ids[i];
3650 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3651 for (j = 0; j < manufacturers[i]->nparts; j++) {
3652 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3653 nor->manufacturer = manufacturers[i];
3654 return &manufacturers[i]->parts[j];
3659 return NULL;
3662 static int spi_nor_set_addr_width(struct spi_nor *nor)
3664 if (nor->addr_width) {
3665 /* already configured from SFDP */
3666 } else if (nor->info->addr_width) {
3667 nor->addr_width = nor->info->addr_width;
3668 } else if (nor->mtd.size > 0x1000000) {
3669 /* enable 4-byte addressing if the device exceeds 16MiB */
3670 nor->addr_width = 4;
3671 } else {
3672 nor->addr_width = 3;
3675 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3676 dev_dbg(nor->dev, "address width is too large: %u\n",
3677 nor->addr_width);
3678 return -EINVAL;
3681 /* Set 4byte opcodes when possible. */
3682 if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3683 !(nor->flags & SNOR_F_HAS_4BAIT))
3684 spi_nor_set_4byte_opcodes(nor);
3686 return 0;
3689 static void spi_nor_debugfs_init(struct spi_nor *nor,
3690 const struct flash_info *info)
3692 struct mtd_info *mtd = &nor->mtd;
3694 mtd->dbg.partname = info->name;
3695 mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3696 info->id_len, info->id);
3699 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3700 const char *name)
3702 const struct flash_info *info = NULL;
3704 if (name)
3705 info = spi_nor_match_id(nor, name);
3706 /* Try to auto-detect if chip name wasn't specified or not found */
3707 if (!info)
3708 info = spi_nor_read_id(nor);
3709 if (IS_ERR_OR_NULL(info))
3710 return ERR_PTR(-ENOENT);
3713 * If caller has specified name of flash model that can normally be
3714 * detected using JEDEC, let's verify it.
3716 if (name && info->id_len) {
3717 const struct flash_info *jinfo;
3719 jinfo = spi_nor_read_id(nor);
3720 if (IS_ERR(jinfo)) {
3721 return jinfo;
3722 } else if (jinfo != info) {
3724 * JEDEC knows better, so overwrite platform ID. We
3725 * can't trust partitions any longer, but we'll let
3726 * mtd apply them anyway, since some partitions may be
3727 * marked read-only, and we don't want to lose that
3728 * information, even if it's not 100% accurate.
3730 dev_warn(nor->dev, "found %s, expected %s\n",
3731 jinfo->name, info->name);
3732 info = jinfo;
3736 return info;
3739 int spi_nor_scan(struct spi_nor *nor, const char *name,
3740 const struct spi_nor_hwcaps *hwcaps)
3742 const struct flash_info *info;
3743 struct device *dev = nor->dev;
3744 struct mtd_info *mtd = &nor->mtd;
3745 struct device_node *np = spi_nor_get_flash_node(nor);
3746 struct spi_nor_flash_parameter *params = &nor->params;
3747 int ret;
3748 int i;
3750 ret = spi_nor_check(nor);
3751 if (ret)
3752 return ret;
3754 /* Reset SPI protocol for all commands. */
3755 nor->reg_proto = SNOR_PROTO_1_1_1;
3756 nor->read_proto = SNOR_PROTO_1_1_1;
3757 nor->write_proto = SNOR_PROTO_1_1_1;
3760 * We need the bounce buffer early to read/write registers when going
3761 * through the spi-mem layer (buffers have to be DMA-able).
3762 * For spi-mem drivers, we'll reallocate a new buffer if
3763 * nor->page_size turns out to be greater than PAGE_SIZE (which
3764 * shouldn't happen before long since NOR pages are usually less
3765 * than 1KB) after spi_nor_scan() returns.
3767 nor->bouncebuf_size = PAGE_SIZE;
3768 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3769 GFP_KERNEL);
3770 if (!nor->bouncebuf)
3771 return -ENOMEM;
3773 info = spi_nor_get_flash_info(nor, name);
3774 if (IS_ERR(info))
3775 return PTR_ERR(info);
3777 nor->info = info;
3779 spi_nor_debugfs_init(nor, info);
3781 mutex_init(&nor->lock);
3784 * Make sure the XSR_RDY flag is set before calling
3785 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3786 * with Atmel spi-nor
3788 if (info->flags & SPI_NOR_XSR_RDY)
3789 nor->flags |= SNOR_F_READY_XSR_RDY;
3791 if (info->flags & SPI_NOR_HAS_LOCK)
3792 nor->flags |= SNOR_F_HAS_LOCK;
3794 /* Init flash parameters based on flash_info struct and SFDP */
3795 spi_nor_init_params(nor);
3797 if (!mtd->name)
3798 mtd->name = dev_name(dev);
3799 mtd->priv = nor;
3800 mtd->type = MTD_NORFLASH;
3801 mtd->writesize = 1;
3802 mtd->flags = MTD_CAP_NORFLASH;
3803 mtd->size = params->size;
3804 mtd->_erase = spi_nor_erase;
3805 mtd->_read = spi_nor_read;
3806 mtd->_resume = spi_nor_resume;
3808 if (nor->params.locking_ops) {
3809 mtd->_lock = spi_nor_lock;
3810 mtd->_unlock = spi_nor_unlock;
3811 mtd->_is_locked = spi_nor_is_locked;
3814 /* sst nor chips use AAI word program */
3815 if (info->flags & SST_WRITE)
3816 mtd->_write = sst_write;
3817 else
3818 mtd->_write = spi_nor_write;
3820 if (info->flags & USE_FSR)
3821 nor->flags |= SNOR_F_USE_FSR;
3822 if (info->flags & SPI_NOR_HAS_TB) {
3823 nor->flags |= SNOR_F_HAS_SR_TB;
3824 if (info->flags & SPI_NOR_TB_SR_BIT6)
3825 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3828 if (info->flags & NO_CHIP_ERASE)
3829 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3830 if (info->flags & USE_CLSR)
3831 nor->flags |= SNOR_F_USE_CLSR;
3833 if (info->flags & SPI_NOR_NO_ERASE)
3834 mtd->flags |= MTD_NO_ERASE;
3836 mtd->dev.parent = dev;
3837 nor->page_size = params->page_size;
3838 mtd->writebufsize = nor->page_size;
3840 if (of_property_read_bool(np, "broken-flash-reset"))
3841 nor->flags |= SNOR_F_BROKEN_RESET;
3844 * Configure the SPI memory:
3845 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3846 * - set the number of dummy cycles (mode cycles + wait states).
3847 * - set the SPI protocols for register and memory accesses.
3849 ret = spi_nor_setup(nor, hwcaps);
3850 if (ret)
3851 return ret;
3853 if (info->flags & SPI_NOR_4B_OPCODES)
3854 nor->flags |= SNOR_F_4B_OPCODES;
3856 ret = spi_nor_set_addr_width(nor);
3857 if (ret)
3858 return ret;
3860 /* Send all the required SPI flash commands to initialize device */
3861 ret = spi_nor_init(nor);
3862 if (ret)
3863 return ret;
3865 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3866 (long long)mtd->size >> 10);
3868 dev_dbg(dev,
3869 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3870 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3871 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3872 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3874 if (mtd->numeraseregions)
3875 for (i = 0; i < mtd->numeraseregions; i++)
3876 dev_dbg(dev,
3877 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3878 ".erasesize = 0x%.8x (%uKiB), "
3879 ".numblocks = %d }\n",
3880 i, (long long)mtd->eraseregions[i].offset,
3881 mtd->eraseregions[i].erasesize,
3882 mtd->eraseregions[i].erasesize / 1024,
3883 mtd->eraseregions[i].numblocks);
3884 return 0;
3886 EXPORT_SYMBOL_GPL(spi_nor_scan);
3888 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3890 struct spi_mem_dirmap_info info = {
3891 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
3892 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3893 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
3894 SPI_MEM_OP_DATA_IN(0, NULL, 1)),
3895 .offset = 0,
3896 .length = nor->mtd.size,
3898 struct spi_mem_op *op = &info.op_tmpl;
3900 /* get transfer protocols. */
3901 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
3902 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
3903 op->dummy.buswidth = op->addr.buswidth;
3904 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3906 /* convert the dummy cycles to the number of bytes */
3907 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3909 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3910 &info);
3911 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3914 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3916 struct spi_mem_dirmap_info info = {
3917 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
3918 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3919 SPI_MEM_OP_NO_DUMMY,
3920 SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
3921 .offset = 0,
3922 .length = nor->mtd.size,
3924 struct spi_mem_op *op = &info.op_tmpl;
3926 /* get transfer protocols. */
3927 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
3928 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
3929 op->dummy.buswidth = op->addr.buswidth;
3930 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3932 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3933 op->addr.nbytes = 0;
3935 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3936 &info);
3937 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3940 static int spi_nor_probe(struct spi_mem *spimem)
3942 struct spi_device *spi = spimem->spi;
3943 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3944 struct spi_nor *nor;
3946 * Enable all caps by default. The core will mask them after
3947 * checking what's really supported using spi_mem_supports_op().
3949 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3950 char *flash_name;
3951 int ret;
3953 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3954 if (!nor)
3955 return -ENOMEM;
3957 nor->spimem = spimem;
3958 nor->dev = &spi->dev;
3959 spi_nor_set_flash_node(nor, spi->dev.of_node);
3961 spi_mem_set_drvdata(spimem, nor);
3963 if (data && data->name)
3964 nor->mtd.name = data->name;
3966 if (!nor->mtd.name)
3967 nor->mtd.name = spi_mem_get_name(spimem);
3970 * For some (historical?) reason many platforms provide two different
3971 * names in flash_platform_data: "name" and "type". Quite often name is
3972 * set to "m25p80" and then "type" provides a real chip name.
3973 * If that's the case, respect "type" and ignore a "name".
3975 if (data && data->type)
3976 flash_name = data->type;
3977 else if (!strcmp(spi->modalias, "spi-nor"))
3978 flash_name = NULL; /* auto-detect */
3979 else
3980 flash_name = spi->modalias;
3982 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3983 if (ret)
3984 return ret;
3987 * None of the existing parts have > 512B pages, but let's play safe
3988 * and add this logic so that if anyone ever adds support for such
3989 * a NOR we don't end up with buffer overflows.
3991 if (nor->page_size > PAGE_SIZE) {
3992 nor->bouncebuf_size = nor->page_size;
3993 devm_kfree(nor->dev, nor->bouncebuf);
3994 nor->bouncebuf = devm_kmalloc(nor->dev,
3995 nor->bouncebuf_size,
3996 GFP_KERNEL);
3997 if (!nor->bouncebuf)
3998 return -ENOMEM;
4001 ret = spi_nor_create_read_dirmap(nor);
4002 if (ret)
4003 return ret;
4005 ret = spi_nor_create_write_dirmap(nor);
4006 if (ret)
4007 return ret;
4009 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
4010 data ? data->nr_parts : 0);
4013 static int spi_nor_remove(struct spi_mem *spimem)
4015 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
4017 spi_nor_restore(nor);
4019 /* Clean up MTD stuff. */
4020 return mtd_device_unregister(&nor->mtd);
4023 static void spi_nor_shutdown(struct spi_mem *spimem)
4025 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
4027 spi_nor_restore(nor);
4031 * Do NOT add to this array without reading the following:
4033 * Historically, many flash devices are bound to this driver by their name. But
4034 * since most of these flash are compatible to some extent, and their
4035 * differences can often be differentiated by the JEDEC read-ID command, we
4036 * encourage new users to add support to the spi-nor library, and simply bind
4037 * against a generic string here (e.g., "jedec,spi-nor").
4039 * Many flash names are kept here in this list (as well as in spi-nor.c) to
4040 * keep them available as module aliases for existing platforms.
4042 static const struct spi_device_id spi_nor_dev_ids[] = {
4044 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
4045 * hack around the fact that the SPI core does not provide uevent
4046 * matching for .of_match_table
4048 {"spi-nor"},
4051 * Entries not used in DTs that should be safe to drop after replacing
4052 * them with "spi-nor" in platform data.
4054 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
4057 * Entries that were used in DTs without "jedec,spi-nor" fallback and
4058 * should be kept for backward compatibility.
4060 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
4061 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
4062 {"mx25l25635e"},{"mx66l51235l"},
4063 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
4064 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
4065 {"s25fl064k"},
4066 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
4067 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
4068 {"m25p64"}, {"m25p128"},
4069 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
4070 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
4072 /* Flashes that can't be detected using JEDEC */
4073 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
4074 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
4075 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
4077 /* Everspin MRAMs (non-JEDEC) */
4078 { "mr25h128" }, /* 128 Kib, 40 MHz */
4079 { "mr25h256" }, /* 256 Kib, 40 MHz */
4080 { "mr25h10" }, /* 1 Mib, 40 MHz */
4081 { "mr25h40" }, /* 4 Mib, 40 MHz */
4083 { },
4085 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
4087 static const struct of_device_id spi_nor_of_table[] = {
4089 * Generic compatibility for SPI NOR that can be identified by the
4090 * JEDEC READ ID opcode (0x9F). Use this, if possible.
4092 { .compatible = "jedec,spi-nor" },
4093 { /* sentinel */ },
4095 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
4098 * REVISIT: many of these chips have deep power-down modes, which
4099 * should clearly be entered on suspend() to minimize power use.
4100 * And also when they're otherwise idle...
4102 static struct spi_mem_driver spi_nor_driver = {
4103 .spidrv = {
4104 .driver = {
4105 .name = "spi-nor",
4106 .of_match_table = spi_nor_of_table,
4108 .id_table = spi_nor_dev_ids,
4110 .probe = spi_nor_probe,
4111 .remove = spi_nor_remove,
4112 .shutdown = spi_nor_shutdown,
4114 module_spi_mem_driver(spi_nor_driver);
4116 MODULE_LICENSE("GPL v2");
4117 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
4118 MODULE_AUTHOR("Mike Lavender");
4119 MODULE_DESCRIPTION("framework for SPI NOR");