4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly
= 100000;
36 static unsigned int m_hash_mask __read_mostly
;
37 static unsigned int m_hash_shift __read_mostly
;
38 static unsigned int mp_hash_mask __read_mostly
;
39 static unsigned int mp_hash_shift __read_mostly
;
41 static __initdata
unsigned long mhash_entries
;
42 static int __init
set_mhash_entries(char *str
)
46 mhash_entries
= simple_strtoul(str
, &str
, 0);
49 __setup("mhash_entries=", set_mhash_entries
);
51 static __initdata
unsigned long mphash_entries
;
52 static int __init
set_mphash_entries(char *str
)
56 mphash_entries
= simple_strtoul(str
, &str
, 0);
59 __setup("mphash_entries=", set_mphash_entries
);
62 static DEFINE_IDA(mnt_id_ida
);
63 static DEFINE_IDA(mnt_group_ida
);
64 static DEFINE_SPINLOCK(mnt_id_lock
);
65 static int mnt_id_start
= 0;
66 static int mnt_group_start
= 1;
68 static struct hlist_head
*mount_hashtable __read_mostly
;
69 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
70 static struct kmem_cache
*mnt_cache __read_mostly
;
71 static DECLARE_RWSEM(namespace_sem
);
74 struct kobject
*fs_kobj
;
75 EXPORT_SYMBOL_GPL(fs_kobj
);
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
87 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
89 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
90 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
91 tmp
= tmp
+ (tmp
>> m_hash_shift
);
92 return &mount_hashtable
[tmp
& m_hash_mask
];
95 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
97 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
98 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
99 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
102 static int mnt_alloc_id(struct mount
*mnt
)
107 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
108 spin_lock(&mnt_id_lock
);
109 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
111 mnt_id_start
= mnt
->mnt_id
+ 1;
112 spin_unlock(&mnt_id_lock
);
119 static void mnt_free_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_id
;
122 spin_lock(&mnt_id_lock
);
123 ida_remove(&mnt_id_ida
, id
);
124 if (mnt_id_start
> id
)
126 spin_unlock(&mnt_id_lock
);
130 * Allocate a new peer group ID
132 * mnt_group_ida is protected by namespace_sem
134 static int mnt_alloc_group_id(struct mount
*mnt
)
138 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
141 res
= ida_get_new_above(&mnt_group_ida
,
145 mnt_group_start
= mnt
->mnt_group_id
+ 1;
151 * Release a peer group ID
153 void mnt_release_group_id(struct mount
*mnt
)
155 int id
= mnt
->mnt_group_id
;
156 ida_remove(&mnt_group_ida
, id
);
157 if (mnt_group_start
> id
)
158 mnt_group_start
= id
;
159 mnt
->mnt_group_id
= 0;
163 * vfsmount lock must be held for read
165 static inline void mnt_add_count(struct mount
*mnt
, int n
)
168 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
177 * vfsmount lock must be held for write
179 unsigned int mnt_get_count(struct mount
*mnt
)
182 unsigned int count
= 0;
185 for_each_possible_cpu(cpu
) {
186 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
191 return mnt
->mnt_count
;
195 static void drop_mountpoint(struct fs_pin
*p
)
197 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
198 dput(m
->mnt_ex_mountpoint
);
203 static struct mount
*alloc_vfsmnt(const char *name
)
205 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
209 err
= mnt_alloc_id(mnt
);
214 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
215 if (!mnt
->mnt_devname
)
220 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
222 goto out_free_devname
;
224 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
227 mnt
->mnt_writers
= 0;
230 INIT_HLIST_NODE(&mnt
->mnt_hash
);
231 INIT_LIST_HEAD(&mnt
->mnt_child
);
232 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
233 INIT_LIST_HEAD(&mnt
->mnt_list
);
234 INIT_LIST_HEAD(&mnt
->mnt_expire
);
235 INIT_LIST_HEAD(&mnt
->mnt_share
);
236 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave
);
238 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
239 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
240 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
246 kfree_const(mnt
->mnt_devname
);
251 kmem_cache_free(mnt_cache
, mnt
);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount
*mnt
)
276 if (mnt
->mnt_flags
& MNT_READONLY
)
278 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
284 static inline void mnt_inc_writers(struct mount
*mnt
)
287 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
293 static inline void mnt_dec_writers(struct mount
*mnt
)
296 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
302 static unsigned int mnt_get_writers(struct mount
*mnt
)
305 unsigned int count
= 0;
308 for_each_possible_cpu(cpu
) {
309 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
314 return mnt
->mnt_writers
;
318 static int mnt_is_readonly(struct vfsmount
*mnt
)
320 if (mnt
->mnt_sb
->s_readonly_remount
)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt
);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount
*m
)
345 struct mount
*mnt
= real_mount(m
);
349 mnt_inc_writers(mnt
);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m
)) {
365 mnt_dec_writers(mnt
);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount
*m
)
386 sb_start_write(m
->mnt_sb
);
387 ret
= __mnt_want_write(m
);
389 sb_end_write(m
->mnt_sb
);
392 EXPORT_SYMBOL_GPL(mnt_want_write
);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount
*mnt
)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt
))
412 mnt_inc_writers(real_mount(mnt
));
416 EXPORT_SYMBOL_GPL(mnt_clone_write
);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file
*file
)
427 if (!(file
->f_mode
& FMODE_WRITER
))
428 return __mnt_want_write(file
->f_path
.mnt
);
430 return mnt_clone_write(file
->f_path
.mnt
);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file
*file
)
444 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
445 ret
= __mnt_want_write_file(file
);
447 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
450 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount
*mnt
)
463 mnt_dec_writers(real_mount(mnt
));
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount
*mnt
)
477 __mnt_drop_write(mnt
);
478 sb_end_write(mnt
->mnt_sb
);
480 EXPORT_SYMBOL_GPL(mnt_drop_write
);
482 void __mnt_drop_write_file(struct file
*file
)
484 __mnt_drop_write(file
->f_path
.mnt
);
487 void mnt_drop_write_file(struct file
*file
)
489 mnt_drop_write(file
->f_path
.mnt
);
491 EXPORT_SYMBOL(mnt_drop_write_file
);
493 static int mnt_make_readonly(struct mount
*mnt
)
498 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
521 if (mnt_get_writers(mnt
) > 0)
524 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
530 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
535 static void __mnt_unmake_readonly(struct mount
*mnt
)
538 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
542 int sb_prepare_remount_readonly(struct super_block
*sb
)
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb
->s_remove_count
))
552 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
553 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
554 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
556 if (mnt_get_writers(mnt
) > 0) {
562 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
566 sb
->s_readonly_remount
= 1;
569 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
570 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
571 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
578 static void free_vfsmnt(struct mount
*mnt
)
580 kfree_const(mnt
->mnt_devname
);
582 free_percpu(mnt
->mnt_pcp
);
584 kmem_cache_free(mnt_cache
, mnt
);
587 static void delayed_free_vfsmnt(struct rcu_head
*head
)
589 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
596 if (read_seqretry(&mount_lock
, seq
))
600 mnt
= real_mount(bastard
);
601 mnt_add_count(mnt
, 1);
602 if (likely(!read_seqretry(&mount_lock
, seq
)))
604 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
605 mnt_add_count(mnt
, -1);
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
614 int res
= __legitimize_mnt(bastard
, seq
);
617 if (unlikely(res
< 0)) {
626 * find the first mount at @dentry on vfsmount @mnt.
627 * call under rcu_read_lock()
629 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
631 struct hlist_head
*head
= m_hash(mnt
, dentry
);
634 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
635 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
641 * lookup_mnt - Return the first child mount mounted at path
643 * "First" means first mounted chronologically. If you create the
646 * mount /dev/sda1 /mnt
647 * mount /dev/sda2 /mnt
648 * mount /dev/sda3 /mnt
650 * Then lookup_mnt() on the base /mnt dentry in the root mount will
651 * return successively the root dentry and vfsmount of /dev/sda1, then
652 * /dev/sda2, then /dev/sda3, then NULL.
654 * lookup_mnt takes a reference to the found vfsmount.
656 struct vfsmount
*lookup_mnt(const struct path
*path
)
658 struct mount
*child_mnt
;
664 seq
= read_seqbegin(&mount_lock
);
665 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
666 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
667 } while (!legitimize_mnt(m
, seq
));
673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674 * current mount namespace.
676 * The common case is dentries are not mountpoints at all and that
677 * test is handled inline. For the slow case when we are actually
678 * dealing with a mountpoint of some kind, walk through all of the
679 * mounts in the current mount namespace and test to see if the dentry
682 * The mount_hashtable is not usable in the context because we
683 * need to identify all mounts that may be in the current mount
684 * namespace not just a mount that happens to have some specified
687 bool __is_local_mountpoint(struct dentry
*dentry
)
689 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
691 bool is_covered
= false;
693 if (!d_mountpoint(dentry
))
696 down_read(&namespace_sem
);
697 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
698 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
702 up_read(&namespace_sem
);
707 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
709 struct hlist_head
*chain
= mp_hash(dentry
);
710 struct mountpoint
*mp
;
712 hlist_for_each_entry(mp
, chain
, m_hash
) {
713 if (mp
->m_dentry
== dentry
) {
714 /* might be worth a WARN_ON() */
715 if (d_unlinked(dentry
))
716 return ERR_PTR(-ENOENT
);
724 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
726 struct mountpoint
*mp
, *new = NULL
;
729 if (d_mountpoint(dentry
)) {
731 read_seqlock_excl(&mount_lock
);
732 mp
= lookup_mountpoint(dentry
);
733 read_sequnlock_excl(&mount_lock
);
739 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
741 return ERR_PTR(-ENOMEM
);
744 /* Exactly one processes may set d_mounted */
745 ret
= d_set_mounted(dentry
);
747 /* Someone else set d_mounted? */
751 /* The dentry is not available as a mountpoint? */
756 /* Add the new mountpoint to the hash table */
757 read_seqlock_excl(&mount_lock
);
758 new->m_dentry
= dentry
;
760 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
761 INIT_HLIST_HEAD(&new->m_list
);
762 read_sequnlock_excl(&mount_lock
);
771 static void put_mountpoint(struct mountpoint
*mp
)
773 if (!--mp
->m_count
) {
774 struct dentry
*dentry
= mp
->m_dentry
;
775 BUG_ON(!hlist_empty(&mp
->m_list
));
776 spin_lock(&dentry
->d_lock
);
777 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
778 spin_unlock(&dentry
->d_lock
);
779 hlist_del(&mp
->m_hash
);
784 static inline int check_mnt(struct mount
*mnt
)
786 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
790 * vfsmount lock must be held for write
792 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
796 wake_up_interruptible(&ns
->poll
);
801 * vfsmount lock must be held for write
803 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
805 if (ns
&& ns
->event
!= event
) {
807 wake_up_interruptible(&ns
->poll
);
812 * vfsmount lock must be held for write
814 static void unhash_mnt(struct mount
*mnt
)
816 mnt
->mnt_parent
= mnt
;
817 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
818 list_del_init(&mnt
->mnt_child
);
819 hlist_del_init_rcu(&mnt
->mnt_hash
);
820 hlist_del_init(&mnt
->mnt_mp_list
);
821 put_mountpoint(mnt
->mnt_mp
);
826 * vfsmount lock must be held for write
828 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
830 old_path
->dentry
= mnt
->mnt_mountpoint
;
831 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
836 * vfsmount lock must be held for write
838 static void umount_mnt(struct mount
*mnt
)
840 /* old mountpoint will be dropped when we can do that */
841 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
846 * vfsmount lock must be held for write
848 void mnt_set_mountpoint(struct mount
*mnt
,
849 struct mountpoint
*mp
,
850 struct mount
*child_mnt
)
853 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
854 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
855 child_mnt
->mnt_parent
= mnt
;
856 child_mnt
->mnt_mp
= mp
;
857 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
860 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
862 hlist_add_head_rcu(&mnt
->mnt_hash
,
863 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
864 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
868 * vfsmount lock must be held for write
870 static void attach_mnt(struct mount
*mnt
,
871 struct mount
*parent
,
872 struct mountpoint
*mp
)
874 mnt_set_mountpoint(parent
, mp
, mnt
);
875 __attach_mnt(mnt
, parent
);
878 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
880 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
881 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
882 struct mount
*old_parent
= mnt
->mnt_parent
;
884 list_del_init(&mnt
->mnt_child
);
885 hlist_del_init(&mnt
->mnt_mp_list
);
886 hlist_del_init_rcu(&mnt
->mnt_hash
);
888 attach_mnt(mnt
, parent
, mp
);
890 put_mountpoint(old_mp
);
893 * Safely avoid even the suggestion this code might sleep or
894 * lock the mount hash by taking advantage of the knowledge that
895 * mnt_change_mountpoint will not release the final reference
898 * During mounting, the mount passed in as the parent mount will
899 * continue to use the old mountpoint and during unmounting, the
900 * old mountpoint will continue to exist until namespace_unlock,
901 * which happens well after mnt_change_mountpoint.
903 spin_lock(&old_mountpoint
->d_lock
);
904 old_mountpoint
->d_lockref
.count
--;
905 spin_unlock(&old_mountpoint
->d_lock
);
907 mnt_add_count(old_parent
, -1);
911 * vfsmount lock must be held for write
913 static void commit_tree(struct mount
*mnt
)
915 struct mount
*parent
= mnt
->mnt_parent
;
918 struct mnt_namespace
*n
= parent
->mnt_ns
;
920 BUG_ON(parent
== mnt
);
922 list_add_tail(&head
, &mnt
->mnt_list
);
923 list_for_each_entry(m
, &head
, mnt_list
)
926 list_splice(&head
, n
->list
.prev
);
928 n
->mounts
+= n
->pending_mounts
;
929 n
->pending_mounts
= 0;
931 __attach_mnt(mnt
, parent
);
932 touch_mnt_namespace(n
);
935 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
937 struct list_head
*next
= p
->mnt_mounts
.next
;
938 if (next
== &p
->mnt_mounts
) {
942 next
= p
->mnt_child
.next
;
943 if (next
!= &p
->mnt_parent
->mnt_mounts
)
948 return list_entry(next
, struct mount
, mnt_child
);
951 static struct mount
*skip_mnt_tree(struct mount
*p
)
953 struct list_head
*prev
= p
->mnt_mounts
.prev
;
954 while (prev
!= &p
->mnt_mounts
) {
955 p
= list_entry(prev
, struct mount
, mnt_child
);
956 prev
= p
->mnt_mounts
.prev
;
962 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
968 return ERR_PTR(-ENODEV
);
970 mnt
= alloc_vfsmnt(name
);
972 return ERR_PTR(-ENOMEM
);
974 if (flags
& MS_KERNMOUNT
)
975 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
977 root
= mount_fs(type
, flags
, name
, data
);
981 return ERR_CAST(root
);
984 mnt
->mnt
.mnt_root
= root
;
985 mnt
->mnt
.mnt_sb
= root
->d_sb
;
986 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
987 mnt
->mnt_parent
= mnt
;
989 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
993 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
996 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
997 const char *name
, void *data
)
999 /* Until it is worked out how to pass the user namespace
1000 * through from the parent mount to the submount don't support
1001 * unprivileged mounts with submounts.
1003 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1004 return ERR_PTR(-EPERM
);
1006 return vfs_kern_mount(type
, MS_SUBMOUNT
, name
, data
);
1008 EXPORT_SYMBOL_GPL(vfs_submount
);
1010 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1013 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1017 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1019 return ERR_PTR(-ENOMEM
);
1021 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1022 mnt
->mnt_group_id
= 0; /* not a peer of original */
1024 mnt
->mnt_group_id
= old
->mnt_group_id
;
1026 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1027 err
= mnt_alloc_group_id(mnt
);
1032 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
1033 /* Don't allow unprivileged users to change mount flags */
1034 if (flag
& CL_UNPRIVILEGED
) {
1035 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1037 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1038 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1040 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1041 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1043 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1044 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1046 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1047 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1050 /* Don't allow unprivileged users to reveal what is under a mount */
1051 if ((flag
& CL_UNPRIVILEGED
) &&
1052 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1053 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1055 atomic_inc(&sb
->s_active
);
1056 mnt
->mnt
.mnt_sb
= sb
;
1057 mnt
->mnt
.mnt_root
= dget(root
);
1058 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1059 mnt
->mnt_parent
= mnt
;
1061 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1062 unlock_mount_hash();
1064 if ((flag
& CL_SLAVE
) ||
1065 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1066 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1067 mnt
->mnt_master
= old
;
1068 CLEAR_MNT_SHARED(mnt
);
1069 } else if (!(flag
& CL_PRIVATE
)) {
1070 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1071 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1072 if (IS_MNT_SLAVE(old
))
1073 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1074 mnt
->mnt_master
= old
->mnt_master
;
1076 CLEAR_MNT_SHARED(mnt
);
1078 if (flag
& CL_MAKE_SHARED
)
1079 set_mnt_shared(mnt
);
1081 /* stick the duplicate mount on the same expiry list
1082 * as the original if that was on one */
1083 if (flag
& CL_EXPIRE
) {
1084 if (!list_empty(&old
->mnt_expire
))
1085 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1093 return ERR_PTR(err
);
1096 static void cleanup_mnt(struct mount
*mnt
)
1099 * This probably indicates that somebody messed
1100 * up a mnt_want/drop_write() pair. If this
1101 * happens, the filesystem was probably unable
1102 * to make r/w->r/o transitions.
1105 * The locking used to deal with mnt_count decrement provides barriers,
1106 * so mnt_get_writers() below is safe.
1108 WARN_ON(mnt_get_writers(mnt
));
1109 if (unlikely(mnt
->mnt_pins
.first
))
1111 fsnotify_vfsmount_delete(&mnt
->mnt
);
1112 dput(mnt
->mnt
.mnt_root
);
1113 deactivate_super(mnt
->mnt
.mnt_sb
);
1115 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1118 static void __cleanup_mnt(struct rcu_head
*head
)
1120 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1123 static LLIST_HEAD(delayed_mntput_list
);
1124 static void delayed_mntput(struct work_struct
*unused
)
1126 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1127 struct llist_node
*next
;
1129 for (; node
; node
= next
) {
1130 next
= llist_next(node
);
1131 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1134 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1136 static void mntput_no_expire(struct mount
*mnt
)
1139 mnt_add_count(mnt
, -1);
1140 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1145 if (mnt_get_count(mnt
)) {
1147 unlock_mount_hash();
1150 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1152 unlock_mount_hash();
1155 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1158 list_del(&mnt
->mnt_instance
);
1160 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1161 struct mount
*p
, *tmp
;
1162 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1166 unlock_mount_hash();
1168 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1169 struct task_struct
*task
= current
;
1170 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1171 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1172 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1175 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1176 schedule_delayed_work(&delayed_mntput_work
, 1);
1182 void mntput(struct vfsmount
*mnt
)
1185 struct mount
*m
= real_mount(mnt
);
1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1187 if (unlikely(m
->mnt_expiry_mark
))
1188 m
->mnt_expiry_mark
= 0;
1189 mntput_no_expire(m
);
1192 EXPORT_SYMBOL(mntput
);
1194 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1197 mnt_add_count(real_mount(mnt
), 1);
1200 EXPORT_SYMBOL(mntget
);
1202 /* path_is_mountpoint() - Check if path is a mount in the current
1205 * d_mountpoint() can only be used reliably to establish if a dentry is
1206 * not mounted in any namespace and that common case is handled inline.
1207 * d_mountpoint() isn't aware of the possibility there may be multiple
1208 * mounts using a given dentry in a different namespace. This function
1209 * checks if the passed in path is a mountpoint rather than the dentry
1212 bool path_is_mountpoint(const struct path
*path
)
1217 if (!d_mountpoint(path
->dentry
))
1222 seq
= read_seqbegin(&mount_lock
);
1223 res
= __path_is_mountpoint(path
);
1224 } while (read_seqretry(&mount_lock
, seq
));
1229 EXPORT_SYMBOL(path_is_mountpoint
);
1231 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1234 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1237 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1241 #ifdef CONFIG_PROC_FS
1242 /* iterator; we want it to have access to namespace_sem, thus here... */
1243 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1245 struct proc_mounts
*p
= m
->private;
1247 down_read(&namespace_sem
);
1248 if (p
->cached_event
== p
->ns
->event
) {
1249 void *v
= p
->cached_mount
;
1250 if (*pos
== p
->cached_index
)
1252 if (*pos
== p
->cached_index
+ 1) {
1253 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1254 return p
->cached_mount
= v
;
1258 p
->cached_event
= p
->ns
->event
;
1259 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1260 p
->cached_index
= *pos
;
1261 return p
->cached_mount
;
1264 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1266 struct proc_mounts
*p
= m
->private;
1268 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1269 p
->cached_index
= *pos
;
1270 return p
->cached_mount
;
1273 static void m_stop(struct seq_file
*m
, void *v
)
1275 up_read(&namespace_sem
);
1278 static int m_show(struct seq_file
*m
, void *v
)
1280 struct proc_mounts
*p
= m
->private;
1281 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1282 return p
->show(m
, &r
->mnt
);
1285 const struct seq_operations mounts_op
= {
1291 #endif /* CONFIG_PROC_FS */
1294 * may_umount_tree - check if a mount tree is busy
1295 * @mnt: root of mount tree
1297 * This is called to check if a tree of mounts has any
1298 * open files, pwds, chroots or sub mounts that are
1301 int may_umount_tree(struct vfsmount
*m
)
1303 struct mount
*mnt
= real_mount(m
);
1304 int actual_refs
= 0;
1305 int minimum_refs
= 0;
1309 /* write lock needed for mnt_get_count */
1311 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1312 actual_refs
+= mnt_get_count(p
);
1315 unlock_mount_hash();
1317 if (actual_refs
> minimum_refs
)
1323 EXPORT_SYMBOL(may_umount_tree
);
1326 * may_umount - check if a mount point is busy
1327 * @mnt: root of mount
1329 * This is called to check if a mount point has any
1330 * open files, pwds, chroots or sub mounts. If the
1331 * mount has sub mounts this will return busy
1332 * regardless of whether the sub mounts are busy.
1334 * Doesn't take quota and stuff into account. IOW, in some cases it will
1335 * give false negatives. The main reason why it's here is that we need
1336 * a non-destructive way to look for easily umountable filesystems.
1338 int may_umount(struct vfsmount
*mnt
)
1341 down_read(&namespace_sem
);
1343 if (propagate_mount_busy(real_mount(mnt
), 2))
1345 unlock_mount_hash();
1346 up_read(&namespace_sem
);
1350 EXPORT_SYMBOL(may_umount
);
1352 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1354 static void namespace_unlock(void)
1356 struct hlist_head head
;
1358 hlist_move_list(&unmounted
, &head
);
1360 up_write(&namespace_sem
);
1362 if (likely(hlist_empty(&head
)))
1367 group_pin_kill(&head
);
1370 static inline void namespace_lock(void)
1372 down_write(&namespace_sem
);
1375 enum umount_tree_flags
{
1377 UMOUNT_PROPAGATE
= 2,
1378 UMOUNT_CONNECTED
= 4,
1381 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1383 /* Leaving mounts connected is only valid for lazy umounts */
1384 if (how
& UMOUNT_SYNC
)
1387 /* A mount without a parent has nothing to be connected to */
1388 if (!mnt_has_parent(mnt
))
1391 /* Because the reference counting rules change when mounts are
1392 * unmounted and connected, umounted mounts may not be
1393 * connected to mounted mounts.
1395 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1398 /* Has it been requested that the mount remain connected? */
1399 if (how
& UMOUNT_CONNECTED
)
1402 /* Is the mount locked such that it needs to remain connected? */
1403 if (IS_MNT_LOCKED(mnt
))
1406 /* By default disconnect the mount */
1411 * mount_lock must be held
1412 * namespace_sem must be held for write
1414 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1416 LIST_HEAD(tmp_list
);
1419 if (how
& UMOUNT_PROPAGATE
)
1420 propagate_mount_unlock(mnt
);
1422 /* Gather the mounts to umount */
1423 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1424 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1425 list_move(&p
->mnt_list
, &tmp_list
);
1428 /* Hide the mounts from mnt_mounts */
1429 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1430 list_del_init(&p
->mnt_child
);
1433 /* Add propogated mounts to the tmp_list */
1434 if (how
& UMOUNT_PROPAGATE
)
1435 propagate_umount(&tmp_list
);
1437 while (!list_empty(&tmp_list
)) {
1438 struct mnt_namespace
*ns
;
1440 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1441 list_del_init(&p
->mnt_expire
);
1442 list_del_init(&p
->mnt_list
);
1446 __touch_mnt_namespace(ns
);
1449 if (how
& UMOUNT_SYNC
)
1450 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1452 disconnect
= disconnect_mount(p
, how
);
1454 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1455 disconnect
? &unmounted
: NULL
);
1456 if (mnt_has_parent(p
)) {
1457 mnt_add_count(p
->mnt_parent
, -1);
1459 /* Don't forget about p */
1460 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1465 change_mnt_propagation(p
, MS_PRIVATE
);
1469 static void shrink_submounts(struct mount
*mnt
);
1471 static int do_umount(struct mount
*mnt
, int flags
)
1473 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1476 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1481 * Allow userspace to request a mountpoint be expired rather than
1482 * unmounting unconditionally. Unmount only happens if:
1483 * (1) the mark is already set (the mark is cleared by mntput())
1484 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1486 if (flags
& MNT_EXPIRE
) {
1487 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1488 flags
& (MNT_FORCE
| MNT_DETACH
))
1492 * probably don't strictly need the lock here if we examined
1493 * all race cases, but it's a slowpath.
1496 if (mnt_get_count(mnt
) != 2) {
1497 unlock_mount_hash();
1500 unlock_mount_hash();
1502 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1507 * If we may have to abort operations to get out of this
1508 * mount, and they will themselves hold resources we must
1509 * allow the fs to do things. In the Unix tradition of
1510 * 'Gee thats tricky lets do it in userspace' the umount_begin
1511 * might fail to complete on the first run through as other tasks
1512 * must return, and the like. Thats for the mount program to worry
1513 * about for the moment.
1516 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1517 sb
->s_op
->umount_begin(sb
);
1521 * No sense to grab the lock for this test, but test itself looks
1522 * somewhat bogus. Suggestions for better replacement?
1523 * Ho-hum... In principle, we might treat that as umount + switch
1524 * to rootfs. GC would eventually take care of the old vfsmount.
1525 * Actually it makes sense, especially if rootfs would contain a
1526 * /reboot - static binary that would close all descriptors and
1527 * call reboot(9). Then init(8) could umount root and exec /reboot.
1529 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1531 * Special case for "unmounting" root ...
1532 * we just try to remount it readonly.
1534 if (!capable(CAP_SYS_ADMIN
))
1536 down_write(&sb
->s_umount
);
1537 if (!(sb
->s_flags
& MS_RDONLY
))
1538 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1539 up_write(&sb
->s_umount
);
1547 if (flags
& MNT_DETACH
) {
1548 if (!list_empty(&mnt
->mnt_list
))
1549 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1552 shrink_submounts(mnt
);
1554 if (!propagate_mount_busy(mnt
, 2)) {
1555 if (!list_empty(&mnt
->mnt_list
))
1556 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1560 unlock_mount_hash();
1566 * __detach_mounts - lazily unmount all mounts on the specified dentry
1568 * During unlink, rmdir, and d_drop it is possible to loose the path
1569 * to an existing mountpoint, and wind up leaking the mount.
1570 * detach_mounts allows lazily unmounting those mounts instead of
1573 * The caller may hold dentry->d_inode->i_mutex.
1575 void __detach_mounts(struct dentry
*dentry
)
1577 struct mountpoint
*mp
;
1582 mp
= lookup_mountpoint(dentry
);
1583 if (IS_ERR_OR_NULL(mp
))
1587 while (!hlist_empty(&mp
->m_list
)) {
1588 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1589 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1590 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1593 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1597 unlock_mount_hash();
1602 * Is the caller allowed to modify his namespace?
1604 static inline bool may_mount(void)
1606 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1609 static inline bool may_mandlock(void)
1611 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1614 return capable(CAP_SYS_ADMIN
);
1618 * Now umount can handle mount points as well as block devices.
1619 * This is important for filesystems which use unnamed block devices.
1621 * We now support a flag for forced unmount like the other 'big iron'
1622 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1625 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1630 int lookup_flags
= 0;
1632 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1638 if (!(flags
& UMOUNT_NOFOLLOW
))
1639 lookup_flags
|= LOOKUP_FOLLOW
;
1641 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1644 mnt
= real_mount(path
.mnt
);
1646 if (path
.dentry
!= path
.mnt
->mnt_root
)
1648 if (!check_mnt(mnt
))
1650 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1653 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1656 retval
= do_umount(mnt
, flags
);
1658 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1660 mntput_no_expire(mnt
);
1665 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1668 * The 2.0 compatible umount. No flags.
1670 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1672 return sys_umount(name
, 0);
1677 static bool is_mnt_ns_file(struct dentry
*dentry
)
1679 /* Is this a proxy for a mount namespace? */
1680 return dentry
->d_op
== &ns_dentry_operations
&&
1681 dentry
->d_fsdata
== &mntns_operations
;
1684 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1686 return container_of(ns
, struct mnt_namespace
, ns
);
1689 static bool mnt_ns_loop(struct dentry
*dentry
)
1691 /* Could bind mounting the mount namespace inode cause a
1692 * mount namespace loop?
1694 struct mnt_namespace
*mnt_ns
;
1695 if (!is_mnt_ns_file(dentry
))
1698 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1699 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1702 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1705 struct mount
*res
, *p
, *q
, *r
, *parent
;
1707 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1708 return ERR_PTR(-EINVAL
);
1710 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1711 return ERR_PTR(-EINVAL
);
1713 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1717 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1720 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1722 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1725 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1726 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1727 IS_MNT_UNBINDABLE(s
)) {
1728 s
= skip_mnt_tree(s
);
1731 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1732 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1733 s
= skip_mnt_tree(s
);
1736 while (p
!= s
->mnt_parent
) {
1742 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1746 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1747 attach_mnt(q
, parent
, p
->mnt_mp
);
1748 unlock_mount_hash();
1755 umount_tree(res
, UMOUNT_SYNC
);
1756 unlock_mount_hash();
1761 /* Caller should check returned pointer for errors */
1763 struct vfsmount
*collect_mounts(const struct path
*path
)
1767 if (!check_mnt(real_mount(path
->mnt
)))
1768 tree
= ERR_PTR(-EINVAL
);
1770 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1771 CL_COPY_ALL
| CL_PRIVATE
);
1774 return ERR_CAST(tree
);
1778 void drop_collected_mounts(struct vfsmount
*mnt
)
1782 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1783 unlock_mount_hash();
1788 * clone_private_mount - create a private clone of a path
1790 * This creates a new vfsmount, which will be the clone of @path. The new will
1791 * not be attached anywhere in the namespace and will be private (i.e. changes
1792 * to the originating mount won't be propagated into this).
1794 * Release with mntput().
1796 struct vfsmount
*clone_private_mount(const struct path
*path
)
1798 struct mount
*old_mnt
= real_mount(path
->mnt
);
1799 struct mount
*new_mnt
;
1801 if (IS_MNT_UNBINDABLE(old_mnt
))
1802 return ERR_PTR(-EINVAL
);
1804 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1805 if (IS_ERR(new_mnt
))
1806 return ERR_CAST(new_mnt
);
1808 return &new_mnt
->mnt
;
1810 EXPORT_SYMBOL_GPL(clone_private_mount
);
1812 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1813 struct vfsmount
*root
)
1816 int res
= f(root
, arg
);
1819 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1820 res
= f(&mnt
->mnt
, arg
);
1827 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1831 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1832 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1833 mnt_release_group_id(p
);
1837 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1841 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1842 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1843 int err
= mnt_alloc_group_id(p
);
1845 cleanup_group_ids(mnt
, p
);
1854 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1856 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1857 unsigned int mounts
= 0, old
, pending
, sum
;
1860 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1864 pending
= ns
->pending_mounts
;
1865 sum
= old
+ pending
;
1869 (mounts
> (max
- sum
)))
1872 ns
->pending_mounts
= pending
+ mounts
;
1877 * @source_mnt : mount tree to be attached
1878 * @nd : place the mount tree @source_mnt is attached
1879 * @parent_nd : if non-null, detach the source_mnt from its parent and
1880 * store the parent mount and mountpoint dentry.
1881 * (done when source_mnt is moved)
1883 * NOTE: in the table below explains the semantics when a source mount
1884 * of a given type is attached to a destination mount of a given type.
1885 * ---------------------------------------------------------------------------
1886 * | BIND MOUNT OPERATION |
1887 * |**************************************************************************
1888 * | source-->| shared | private | slave | unbindable |
1892 * |**************************************************************************
1893 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1895 * |non-shared| shared (+) | private | slave (*) | invalid |
1896 * ***************************************************************************
1897 * A bind operation clones the source mount and mounts the clone on the
1898 * destination mount.
1900 * (++) the cloned mount is propagated to all the mounts in the propagation
1901 * tree of the destination mount and the cloned mount is added to
1902 * the peer group of the source mount.
1903 * (+) the cloned mount is created under the destination mount and is marked
1904 * as shared. The cloned mount is added to the peer group of the source
1906 * (+++) the mount is propagated to all the mounts in the propagation tree
1907 * of the destination mount and the cloned mount is made slave
1908 * of the same master as that of the source mount. The cloned mount
1909 * is marked as 'shared and slave'.
1910 * (*) the cloned mount is made a slave of the same master as that of the
1913 * ---------------------------------------------------------------------------
1914 * | MOVE MOUNT OPERATION |
1915 * |**************************************************************************
1916 * | source-->| shared | private | slave | unbindable |
1920 * |**************************************************************************
1921 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1923 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1924 * ***************************************************************************
1926 * (+) the mount is moved to the destination. And is then propagated to
1927 * all the mounts in the propagation tree of the destination mount.
1928 * (+*) the mount is moved to the destination.
1929 * (+++) the mount is moved to the destination and is then propagated to
1930 * all the mounts belonging to the destination mount's propagation tree.
1931 * the mount is marked as 'shared and slave'.
1932 * (*) the mount continues to be a slave at the new location.
1934 * if the source mount is a tree, the operations explained above is
1935 * applied to each mount in the tree.
1936 * Must be called without spinlocks held, since this function can sleep
1939 static int attach_recursive_mnt(struct mount
*source_mnt
,
1940 struct mount
*dest_mnt
,
1941 struct mountpoint
*dest_mp
,
1942 struct path
*parent_path
)
1944 HLIST_HEAD(tree_list
);
1945 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1946 struct mountpoint
*smp
;
1947 struct mount
*child
, *p
;
1948 struct hlist_node
*n
;
1951 /* Preallocate a mountpoint in case the new mounts need
1952 * to be tucked under other mounts.
1954 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
1956 return PTR_ERR(smp
);
1958 /* Is there space to add these mounts to the mount namespace? */
1960 err
= count_mounts(ns
, source_mnt
);
1965 if (IS_MNT_SHARED(dest_mnt
)) {
1966 err
= invent_group_ids(source_mnt
, true);
1969 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1972 goto out_cleanup_ids
;
1973 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1979 detach_mnt(source_mnt
, parent_path
);
1980 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1981 touch_mnt_namespace(source_mnt
->mnt_ns
);
1983 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1984 commit_tree(source_mnt
);
1987 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
1989 hlist_del_init(&child
->mnt_hash
);
1990 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
1991 child
->mnt_mountpoint
);
1993 mnt_change_mountpoint(child
, smp
, q
);
1996 put_mountpoint(smp
);
1997 unlock_mount_hash();
2002 while (!hlist_empty(&tree_list
)) {
2003 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2004 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2005 umount_tree(child
, UMOUNT_SYNC
);
2007 unlock_mount_hash();
2008 cleanup_group_ids(source_mnt
, NULL
);
2010 ns
->pending_mounts
= 0;
2012 read_seqlock_excl(&mount_lock
);
2013 put_mountpoint(smp
);
2014 read_sequnlock_excl(&mount_lock
);
2019 static struct mountpoint
*lock_mount(struct path
*path
)
2021 struct vfsmount
*mnt
;
2022 struct dentry
*dentry
= path
->dentry
;
2024 inode_lock(dentry
->d_inode
);
2025 if (unlikely(cant_mount(dentry
))) {
2026 inode_unlock(dentry
->d_inode
);
2027 return ERR_PTR(-ENOENT
);
2030 mnt
= lookup_mnt(path
);
2032 struct mountpoint
*mp
= get_mountpoint(dentry
);
2035 inode_unlock(dentry
->d_inode
);
2041 inode_unlock(path
->dentry
->d_inode
);
2044 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2048 static void unlock_mount(struct mountpoint
*where
)
2050 struct dentry
*dentry
= where
->m_dentry
;
2052 read_seqlock_excl(&mount_lock
);
2053 put_mountpoint(where
);
2054 read_sequnlock_excl(&mount_lock
);
2057 inode_unlock(dentry
->d_inode
);
2060 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2062 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2065 if (d_is_dir(mp
->m_dentry
) !=
2066 d_is_dir(mnt
->mnt
.mnt_root
))
2069 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2073 * Sanity check the flags to change_mnt_propagation.
2076 static int flags_to_propagation_type(int flags
)
2078 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2080 /* Fail if any non-propagation flags are set */
2081 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2083 /* Only one propagation flag should be set */
2084 if (!is_power_of_2(type
))
2090 * recursively change the type of the mountpoint.
2092 static int do_change_type(struct path
*path
, int flag
)
2095 struct mount
*mnt
= real_mount(path
->mnt
);
2096 int recurse
= flag
& MS_REC
;
2100 if (path
->dentry
!= path
->mnt
->mnt_root
)
2103 type
= flags_to_propagation_type(flag
);
2108 if (type
== MS_SHARED
) {
2109 err
= invent_group_ids(mnt
, recurse
);
2115 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2116 change_mnt_propagation(m
, type
);
2117 unlock_mount_hash();
2124 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2126 struct mount
*child
;
2127 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2128 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2131 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2138 * do loopback mount.
2140 static int do_loopback(struct path
*path
, const char *old_name
,
2143 struct path old_path
;
2144 struct mount
*mnt
= NULL
, *old
, *parent
;
2145 struct mountpoint
*mp
;
2147 if (!old_name
|| !*old_name
)
2149 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2154 if (mnt_ns_loop(old_path
.dentry
))
2157 mp
= lock_mount(path
);
2162 old
= real_mount(old_path
.mnt
);
2163 parent
= real_mount(path
->mnt
);
2166 if (IS_MNT_UNBINDABLE(old
))
2169 if (!check_mnt(parent
))
2172 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2175 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2179 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2181 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2188 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2190 err
= graft_tree(mnt
, parent
, mp
);
2193 umount_tree(mnt
, UMOUNT_SYNC
);
2194 unlock_mount_hash();
2199 path_put(&old_path
);
2203 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2206 int readonly_request
= 0;
2208 if (ms_flags
& MS_RDONLY
)
2209 readonly_request
= 1;
2210 if (readonly_request
== __mnt_is_readonly(mnt
))
2213 if (readonly_request
)
2214 error
= mnt_make_readonly(real_mount(mnt
));
2216 __mnt_unmake_readonly(real_mount(mnt
));
2221 * change filesystem flags. dir should be a physical root of filesystem.
2222 * If you've mounted a non-root directory somewhere and want to do remount
2223 * on it - tough luck.
2225 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2229 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2230 struct mount
*mnt
= real_mount(path
->mnt
);
2232 if (!check_mnt(mnt
))
2235 if (path
->dentry
!= path
->mnt
->mnt_root
)
2238 /* Don't allow changing of locked mnt flags.
2240 * No locks need to be held here while testing the various
2241 * MNT_LOCK flags because those flags can never be cleared
2242 * once they are set.
2244 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2245 !(mnt_flags
& MNT_READONLY
)) {
2248 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2249 !(mnt_flags
& MNT_NODEV
)) {
2252 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2253 !(mnt_flags
& MNT_NOSUID
)) {
2256 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2257 !(mnt_flags
& MNT_NOEXEC
)) {
2260 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2261 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2265 err
= security_sb_remount(sb
, data
);
2269 down_write(&sb
->s_umount
);
2270 if (flags
& MS_BIND
)
2271 err
= change_mount_flags(path
->mnt
, flags
);
2272 else if (!capable(CAP_SYS_ADMIN
))
2275 err
= do_remount_sb(sb
, flags
, data
, 0);
2278 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2279 mnt
->mnt
.mnt_flags
= mnt_flags
;
2280 touch_mnt_namespace(mnt
->mnt_ns
);
2281 unlock_mount_hash();
2283 up_write(&sb
->s_umount
);
2287 static inline int tree_contains_unbindable(struct mount
*mnt
)
2290 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2291 if (IS_MNT_UNBINDABLE(p
))
2297 static int do_move_mount(struct path
*path
, const char *old_name
)
2299 struct path old_path
, parent_path
;
2302 struct mountpoint
*mp
;
2304 if (!old_name
|| !*old_name
)
2306 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2310 mp
= lock_mount(path
);
2315 old
= real_mount(old_path
.mnt
);
2316 p
= real_mount(path
->mnt
);
2319 if (!check_mnt(p
) || !check_mnt(old
))
2322 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2326 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2329 if (!mnt_has_parent(old
))
2332 if (d_is_dir(path
->dentry
) !=
2333 d_is_dir(old_path
.dentry
))
2336 * Don't move a mount residing in a shared parent.
2338 if (IS_MNT_SHARED(old
->mnt_parent
))
2341 * Don't move a mount tree containing unbindable mounts to a destination
2342 * mount which is shared.
2344 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2347 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2351 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2355 /* if the mount is moved, it should no longer be expire
2357 list_del_init(&old
->mnt_expire
);
2362 path_put(&parent_path
);
2363 path_put(&old_path
);
2367 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2370 const char *subtype
= strchr(fstype
, '.');
2379 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2381 if (!mnt
->mnt_sb
->s_subtype
)
2387 return ERR_PTR(err
);
2391 * add a mount into a namespace's mount tree
2393 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2395 struct mountpoint
*mp
;
2396 struct mount
*parent
;
2399 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2401 mp
= lock_mount(path
);
2405 parent
= real_mount(path
->mnt
);
2407 if (unlikely(!check_mnt(parent
))) {
2408 /* that's acceptable only for automounts done in private ns */
2409 if (!(mnt_flags
& MNT_SHRINKABLE
))
2411 /* ... and for those we'd better have mountpoint still alive */
2412 if (!parent
->mnt_ns
)
2416 /* Refuse the same filesystem on the same mount point */
2418 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2419 path
->mnt
->mnt_root
== path
->dentry
)
2423 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2426 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2427 err
= graft_tree(newmnt
, parent
, mp
);
2434 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2437 * create a new mount for userspace and request it to be added into the
2440 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2441 int mnt_flags
, const char *name
, void *data
)
2443 struct file_system_type
*type
;
2444 struct vfsmount
*mnt
;
2450 type
= get_fs_type(fstype
);
2454 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2455 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2456 !mnt
->mnt_sb
->s_subtype
)
2457 mnt
= fs_set_subtype(mnt
, fstype
);
2459 put_filesystem(type
);
2461 return PTR_ERR(mnt
);
2463 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2468 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2474 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2476 struct mount
*mnt
= real_mount(m
);
2478 /* The new mount record should have at least 2 refs to prevent it being
2479 * expired before we get a chance to add it
2481 BUG_ON(mnt_get_count(mnt
) < 2);
2483 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2484 m
->mnt_root
== path
->dentry
) {
2489 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2493 /* remove m from any expiration list it may be on */
2494 if (!list_empty(&mnt
->mnt_expire
)) {
2496 list_del_init(&mnt
->mnt_expire
);
2505 * mnt_set_expiry - Put a mount on an expiration list
2506 * @mnt: The mount to list.
2507 * @expiry_list: The list to add the mount to.
2509 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2513 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2517 EXPORT_SYMBOL(mnt_set_expiry
);
2520 * process a list of expirable mountpoints with the intent of discarding any
2521 * mountpoints that aren't in use and haven't been touched since last we came
2524 void mark_mounts_for_expiry(struct list_head
*mounts
)
2526 struct mount
*mnt
, *next
;
2527 LIST_HEAD(graveyard
);
2529 if (list_empty(mounts
))
2535 /* extract from the expiration list every vfsmount that matches the
2536 * following criteria:
2537 * - only referenced by its parent vfsmount
2538 * - still marked for expiry (marked on the last call here; marks are
2539 * cleared by mntput())
2541 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2542 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2543 propagate_mount_busy(mnt
, 1))
2545 list_move(&mnt
->mnt_expire
, &graveyard
);
2547 while (!list_empty(&graveyard
)) {
2548 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2549 touch_mnt_namespace(mnt
->mnt_ns
);
2550 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2552 unlock_mount_hash();
2556 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2559 * Ripoff of 'select_parent()'
2561 * search the list of submounts for a given mountpoint, and move any
2562 * shrinkable submounts to the 'graveyard' list.
2564 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2566 struct mount
*this_parent
= parent
;
2567 struct list_head
*next
;
2571 next
= this_parent
->mnt_mounts
.next
;
2573 while (next
!= &this_parent
->mnt_mounts
) {
2574 struct list_head
*tmp
= next
;
2575 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2578 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2581 * Descend a level if the d_mounts list is non-empty.
2583 if (!list_empty(&mnt
->mnt_mounts
)) {
2588 if (!propagate_mount_busy(mnt
, 1)) {
2589 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2594 * All done at this level ... ascend and resume the search
2596 if (this_parent
!= parent
) {
2597 next
= this_parent
->mnt_child
.next
;
2598 this_parent
= this_parent
->mnt_parent
;
2605 * process a list of expirable mountpoints with the intent of discarding any
2606 * submounts of a specific parent mountpoint
2608 * mount_lock must be held for write
2610 static void shrink_submounts(struct mount
*mnt
)
2612 LIST_HEAD(graveyard
);
2615 /* extract submounts of 'mountpoint' from the expiration list */
2616 while (select_submounts(mnt
, &graveyard
)) {
2617 while (!list_empty(&graveyard
)) {
2618 m
= list_first_entry(&graveyard
, struct mount
,
2620 touch_mnt_namespace(m
->mnt_ns
);
2621 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2627 * Some copy_from_user() implementations do not return the exact number of
2628 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2629 * Note that this function differs from copy_from_user() in that it will oops
2630 * on bad values of `to', rather than returning a short copy.
2632 static long exact_copy_from_user(void *to
, const void __user
* from
,
2636 const char __user
*f
= from
;
2639 if (!access_ok(VERIFY_READ
, from
, n
))
2643 if (__get_user(c
, f
)) {
2654 void *copy_mount_options(const void __user
* data
)
2663 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2665 return ERR_PTR(-ENOMEM
);
2667 /* We only care that *some* data at the address the user
2668 * gave us is valid. Just in case, we'll zero
2669 * the remainder of the page.
2671 /* copy_from_user cannot cross TASK_SIZE ! */
2672 size
= TASK_SIZE
- (unsigned long)data
;
2673 if (size
> PAGE_SIZE
)
2676 i
= size
- exact_copy_from_user(copy
, data
, size
);
2679 return ERR_PTR(-EFAULT
);
2682 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2686 char *copy_mount_string(const void __user
*data
)
2688 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2692 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2693 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2695 * data is a (void *) that can point to any structure up to
2696 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2697 * information (or be NULL).
2699 * Pre-0.97 versions of mount() didn't have a flags word.
2700 * When the flags word was introduced its top half was required
2701 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2702 * Therefore, if this magic number is present, it carries no information
2703 * and must be discarded.
2705 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2706 const char *type_page
, unsigned long flags
, void *data_page
)
2713 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2714 flags
&= ~MS_MGC_MSK
;
2716 /* Basic sanity checks */
2718 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2720 /* ... and get the mountpoint */
2721 retval
= user_path(dir_name
, &path
);
2725 retval
= security_sb_mount(dev_name
, &path
,
2726 type_page
, flags
, data_page
);
2727 if (!retval
&& !may_mount())
2729 if (!retval
&& (flags
& MS_MANDLOCK
) && !may_mandlock())
2734 /* Default to relatime unless overriden */
2735 if (!(flags
& MS_NOATIME
))
2736 mnt_flags
|= MNT_RELATIME
;
2738 /* Separate the per-mountpoint flags */
2739 if (flags
& MS_NOSUID
)
2740 mnt_flags
|= MNT_NOSUID
;
2741 if (flags
& MS_NODEV
)
2742 mnt_flags
|= MNT_NODEV
;
2743 if (flags
& MS_NOEXEC
)
2744 mnt_flags
|= MNT_NOEXEC
;
2745 if (flags
& MS_NOATIME
)
2746 mnt_flags
|= MNT_NOATIME
;
2747 if (flags
& MS_NODIRATIME
)
2748 mnt_flags
|= MNT_NODIRATIME
;
2749 if (flags
& MS_STRICTATIME
)
2750 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2751 if (flags
& MS_RDONLY
)
2752 mnt_flags
|= MNT_READONLY
;
2754 /* The default atime for remount is preservation */
2755 if ((flags
& MS_REMOUNT
) &&
2756 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2757 MS_STRICTATIME
)) == 0)) {
2758 mnt_flags
&= ~MNT_ATIME_MASK
;
2759 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2762 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2763 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2764 MS_STRICTATIME
| MS_NOREMOTELOCK
| MS_SUBMOUNT
);
2766 if (flags
& MS_REMOUNT
)
2767 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2769 else if (flags
& MS_BIND
)
2770 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2771 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2772 retval
= do_change_type(&path
, flags
);
2773 else if (flags
& MS_MOVE
)
2774 retval
= do_move_mount(&path
, dev_name
);
2776 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2777 dev_name
, data_page
);
2783 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2785 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2788 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2790 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2793 static void free_mnt_ns(struct mnt_namespace
*ns
)
2795 ns_free_inum(&ns
->ns
);
2796 dec_mnt_namespaces(ns
->ucounts
);
2797 put_user_ns(ns
->user_ns
);
2802 * Assign a sequence number so we can detect when we attempt to bind
2803 * mount a reference to an older mount namespace into the current
2804 * mount namespace, preventing reference counting loops. A 64bit
2805 * number incrementing at 10Ghz will take 12,427 years to wrap which
2806 * is effectively never, so we can ignore the possibility.
2808 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2810 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2812 struct mnt_namespace
*new_ns
;
2813 struct ucounts
*ucounts
;
2816 ucounts
= inc_mnt_namespaces(user_ns
);
2818 return ERR_PTR(-ENOSPC
);
2820 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2822 dec_mnt_namespaces(ucounts
);
2823 return ERR_PTR(-ENOMEM
);
2825 ret
= ns_alloc_inum(&new_ns
->ns
);
2828 dec_mnt_namespaces(ucounts
);
2829 return ERR_PTR(ret
);
2831 new_ns
->ns
.ops
= &mntns_operations
;
2832 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2833 atomic_set(&new_ns
->count
, 1);
2834 new_ns
->root
= NULL
;
2835 INIT_LIST_HEAD(&new_ns
->list
);
2836 init_waitqueue_head(&new_ns
->poll
);
2838 new_ns
->user_ns
= get_user_ns(user_ns
);
2839 new_ns
->ucounts
= ucounts
;
2841 new_ns
->pending_mounts
= 0;
2846 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2847 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2849 struct mnt_namespace
*new_ns
;
2850 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2851 struct mount
*p
, *q
;
2858 if (likely(!(flags
& CLONE_NEWNS
))) {
2865 new_ns
= alloc_mnt_ns(user_ns
);
2870 /* First pass: copy the tree topology */
2871 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2872 if (user_ns
!= ns
->user_ns
)
2873 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2874 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2877 free_mnt_ns(new_ns
);
2878 return ERR_CAST(new);
2881 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2884 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2885 * as belonging to new namespace. We have already acquired a private
2886 * fs_struct, so tsk->fs->lock is not needed.
2894 if (&p
->mnt
== new_fs
->root
.mnt
) {
2895 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2898 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2899 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2903 p
= next_mnt(p
, old
);
2904 q
= next_mnt(q
, new);
2907 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2908 p
= next_mnt(p
, old
);
2921 * create_mnt_ns - creates a private namespace and adds a root filesystem
2922 * @mnt: pointer to the new root filesystem mountpoint
2924 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2926 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2927 if (!IS_ERR(new_ns
)) {
2928 struct mount
*mnt
= real_mount(m
);
2929 mnt
->mnt_ns
= new_ns
;
2932 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2939 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2941 struct mnt_namespace
*ns
;
2942 struct super_block
*s
;
2946 ns
= create_mnt_ns(mnt
);
2948 return ERR_CAST(ns
);
2950 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2951 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2956 return ERR_PTR(err
);
2958 /* trade a vfsmount reference for active sb one */
2959 s
= path
.mnt
->mnt_sb
;
2960 atomic_inc(&s
->s_active
);
2962 /* lock the sucker */
2963 down_write(&s
->s_umount
);
2964 /* ... and return the root of (sub)tree on it */
2967 EXPORT_SYMBOL(mount_subtree
);
2969 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2970 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2977 kernel_type
= copy_mount_string(type
);
2978 ret
= PTR_ERR(kernel_type
);
2979 if (IS_ERR(kernel_type
))
2982 kernel_dev
= copy_mount_string(dev_name
);
2983 ret
= PTR_ERR(kernel_dev
);
2984 if (IS_ERR(kernel_dev
))
2987 options
= copy_mount_options(data
);
2988 ret
= PTR_ERR(options
);
2989 if (IS_ERR(options
))
2992 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3004 * Return true if path is reachable from root
3006 * namespace_sem or mount_lock is held
3008 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3009 const struct path
*root
)
3011 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3012 dentry
= mnt
->mnt_mountpoint
;
3013 mnt
= mnt
->mnt_parent
;
3015 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3018 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3021 read_seqlock_excl(&mount_lock
);
3022 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3023 read_sequnlock_excl(&mount_lock
);
3026 EXPORT_SYMBOL(path_is_under
);
3029 * pivot_root Semantics:
3030 * Moves the root file system of the current process to the directory put_old,
3031 * makes new_root as the new root file system of the current process, and sets
3032 * root/cwd of all processes which had them on the current root to new_root.
3035 * The new_root and put_old must be directories, and must not be on the
3036 * same file system as the current process root. The put_old must be
3037 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3038 * pointed to by put_old must yield the same directory as new_root. No other
3039 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3041 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3042 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3043 * in this situation.
3046 * - we don't move root/cwd if they are not at the root (reason: if something
3047 * cared enough to change them, it's probably wrong to force them elsewhere)
3048 * - it's okay to pick a root that isn't the root of a file system, e.g.
3049 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3050 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3053 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3054 const char __user
*, put_old
)
3056 struct path
new, old
, parent_path
, root_parent
, root
;
3057 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3058 struct mountpoint
*old_mp
, *root_mp
;
3064 error
= user_path_dir(new_root
, &new);
3068 error
= user_path_dir(put_old
, &old
);
3072 error
= security_sb_pivotroot(&old
, &new);
3076 get_fs_root(current
->fs
, &root
);
3077 old_mp
= lock_mount(&old
);
3078 error
= PTR_ERR(old_mp
);
3083 new_mnt
= real_mount(new.mnt
);
3084 root_mnt
= real_mount(root
.mnt
);
3085 old_mnt
= real_mount(old
.mnt
);
3086 if (IS_MNT_SHARED(old_mnt
) ||
3087 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3088 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3090 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3092 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3095 if (d_unlinked(new.dentry
))
3098 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3099 goto out4
; /* loop, on the same file system */
3101 if (root
.mnt
->mnt_root
!= root
.dentry
)
3102 goto out4
; /* not a mountpoint */
3103 if (!mnt_has_parent(root_mnt
))
3104 goto out4
; /* not attached */
3105 root_mp
= root_mnt
->mnt_mp
;
3106 if (new.mnt
->mnt_root
!= new.dentry
)
3107 goto out4
; /* not a mountpoint */
3108 if (!mnt_has_parent(new_mnt
))
3109 goto out4
; /* not attached */
3110 /* make sure we can reach put_old from new_root */
3111 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3113 /* make certain new is below the root */
3114 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3116 root_mp
->m_count
++; /* pin it so it won't go away */
3118 detach_mnt(new_mnt
, &parent_path
);
3119 detach_mnt(root_mnt
, &root_parent
);
3120 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3121 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3122 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3124 /* mount old root on put_old */
3125 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3126 /* mount new_root on / */
3127 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3128 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3129 /* A moved mount should not expire automatically */
3130 list_del_init(&new_mnt
->mnt_expire
);
3131 put_mountpoint(root_mp
);
3132 unlock_mount_hash();
3133 chroot_fs_refs(&root
, &new);
3136 unlock_mount(old_mp
);
3138 path_put(&root_parent
);
3139 path_put(&parent_path
);
3151 static void __init
init_mount_tree(void)
3153 struct vfsmount
*mnt
;
3154 struct mnt_namespace
*ns
;
3156 struct file_system_type
*type
;
3158 type
= get_fs_type("rootfs");
3160 panic("Can't find rootfs type");
3161 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3162 put_filesystem(type
);
3164 panic("Can't create rootfs");
3166 ns
= create_mnt_ns(mnt
);
3168 panic("Can't allocate initial namespace");
3170 init_task
.nsproxy
->mnt_ns
= ns
;
3174 root
.dentry
= mnt
->mnt_root
;
3175 mnt
->mnt_flags
|= MNT_LOCKED
;
3177 set_fs_pwd(current
->fs
, &root
);
3178 set_fs_root(current
->fs
, &root
);
3181 void __init
mnt_init(void)
3185 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3186 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3188 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3189 sizeof(struct hlist_head
),
3192 &m_hash_shift
, &m_hash_mask
, 0, 0);
3193 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3194 sizeof(struct hlist_head
),
3197 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3199 if (!mount_hashtable
|| !mountpoint_hashtable
)
3200 panic("Failed to allocate mount hash table\n");
3206 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3208 fs_kobj
= kobject_create_and_add("fs", NULL
);
3210 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3215 void put_mnt_ns(struct mnt_namespace
*ns
)
3217 if (!atomic_dec_and_test(&ns
->count
))
3219 drop_collected_mounts(&ns
->root
->mnt
);
3223 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3225 struct vfsmount
*mnt
;
3226 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3229 * it is a longterm mount, don't release mnt until
3230 * we unmount before file sys is unregistered
3232 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3236 EXPORT_SYMBOL_GPL(kern_mount_data
);
3238 void kern_unmount(struct vfsmount
*mnt
)
3240 /* release long term mount so mount point can be released */
3241 if (!IS_ERR_OR_NULL(mnt
)) {
3242 real_mount(mnt
)->mnt_ns
= NULL
;
3243 synchronize_rcu(); /* yecchhh... */
3247 EXPORT_SYMBOL(kern_unmount
);
3249 bool our_mnt(struct vfsmount
*mnt
)
3251 return check_mnt(real_mount(mnt
));
3254 bool current_chrooted(void)
3256 /* Does the current process have a non-standard root */
3257 struct path ns_root
;
3258 struct path fs_root
;
3261 /* Find the namespace root */
3262 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3263 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3265 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3268 get_fs_root(current
->fs
, &fs_root
);
3270 chrooted
= !path_equal(&fs_root
, &ns_root
);
3278 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3281 int new_flags
= *new_mnt_flags
;
3283 bool visible
= false;
3285 down_read(&namespace_sem
);
3286 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3287 struct mount
*child
;
3290 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3293 /* This mount is not fully visible if it's root directory
3294 * is not the root directory of the filesystem.
3296 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3299 /* A local view of the mount flags */
3300 mnt_flags
= mnt
->mnt
.mnt_flags
;
3302 /* Don't miss readonly hidden in the superblock flags */
3303 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_RDONLY
)
3304 mnt_flags
|= MNT_LOCK_READONLY
;
3306 /* Verify the mount flags are equal to or more permissive
3307 * than the proposed new mount.
3309 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3310 !(new_flags
& MNT_READONLY
))
3312 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3313 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3316 /* This mount is not fully visible if there are any
3317 * locked child mounts that cover anything except for
3318 * empty directories.
3320 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3321 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3322 /* Only worry about locked mounts */
3323 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3325 /* Is the directory permanetly empty? */
3326 if (!is_empty_dir_inode(inode
))
3329 /* Preserve the locked attributes */
3330 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3337 up_read(&namespace_sem
);
3341 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3343 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3344 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3345 unsigned long s_iflags
;
3347 if (ns
->user_ns
== &init_user_ns
)
3350 /* Can this filesystem be too revealing? */
3351 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3352 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3355 if ((s_iflags
& required_iflags
) != required_iflags
) {
3356 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3361 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3364 bool mnt_may_suid(struct vfsmount
*mnt
)
3367 * Foreign mounts (accessed via fchdir or through /proc
3368 * symlinks) are always treated as if they are nosuid. This
3369 * prevents namespaces from trusting potentially unsafe
3370 * suid/sgid bits, file caps, or security labels that originate
3371 * in other namespaces.
3373 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3374 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3377 static struct ns_common
*mntns_get(struct task_struct
*task
)
3379 struct ns_common
*ns
= NULL
;
3380 struct nsproxy
*nsproxy
;
3383 nsproxy
= task
->nsproxy
;
3385 ns
= &nsproxy
->mnt_ns
->ns
;
3386 get_mnt_ns(to_mnt_ns(ns
));
3393 static void mntns_put(struct ns_common
*ns
)
3395 put_mnt_ns(to_mnt_ns(ns
));
3398 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3400 struct fs_struct
*fs
= current
->fs
;
3401 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
3405 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3406 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3407 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3414 old_mnt_ns
= nsproxy
->mnt_ns
;
3415 nsproxy
->mnt_ns
= mnt_ns
;
3418 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
3419 "/", LOOKUP_DOWN
, &root
);
3421 /* revert to old namespace */
3422 nsproxy
->mnt_ns
= old_mnt_ns
;
3427 put_mnt_ns(old_mnt_ns
);
3429 /* Update the pwd and root */
3430 set_fs_pwd(fs
, &root
);
3431 set_fs_root(fs
, &root
);
3437 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3439 return to_mnt_ns(ns
)->user_ns
;
3442 const struct proc_ns_operations mntns_operations
= {
3444 .type
= CLONE_NEWNS
,
3447 .install
= mntns_install
,
3448 .owner
= mntns_owner
,