1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
23 static struct page
*no_page_table(struct vm_area_struct
*vma
,
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
34 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
35 return ERR_PTR(-EFAULT
);
39 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
40 pte_t
*pte
, unsigned int flags
)
42 /* No page to get reference */
46 if (flags
& FOLL_TOUCH
) {
49 if (flags
& FOLL_WRITE
)
50 entry
= pte_mkdirty(entry
);
51 entry
= pte_mkyoung(entry
);
53 if (!pte_same(*pte
, entry
)) {
54 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
55 update_mmu_cache(vma
, address
, pte
);
59 /* Proper page table entry exists, but no corresponding struct page */
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
67 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
69 return pte_write(pte
) ||
70 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
73 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
74 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
76 struct mm_struct
*mm
= vma
->vm_mm
;
77 struct dev_pagemap
*pgmap
= NULL
;
83 if (unlikely(pmd_bad(*pmd
)))
84 return no_page_table(vma
, flags
);
86 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
88 if (!pte_present(pte
)) {
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
95 if (likely(!(flags
& FOLL_MIGRATION
)))
99 entry
= pte_to_swp_entry(pte
);
100 if (!is_migration_entry(entry
))
102 pte_unmap_unlock(ptep
, ptl
);
103 migration_entry_wait(mm
, pmd
, address
);
106 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
108 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
109 pte_unmap_unlock(ptep
, ptl
);
113 page
= vm_normal_page(vma
, address
, pte
);
114 if (!page
&& pte_devmap(pte
) && (flags
& FOLL_GET
)) {
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
119 pgmap
= get_dev_pagemap(pte_pfn(pte
), NULL
);
121 page
= pte_page(pte
);
124 } else if (unlikely(!page
)) {
125 if (flags
& FOLL_DUMP
) {
126 /* Avoid special (like zero) pages in core dumps */
127 page
= ERR_PTR(-EFAULT
);
131 if (is_zero_pfn(pte_pfn(pte
))) {
132 page
= pte_page(pte
);
136 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
142 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
145 pte_unmap_unlock(ptep
, ptl
);
147 ret
= split_huge_page(page
);
155 if (flags
& FOLL_GET
) {
156 if (unlikely(!try_get_page(page
))) {
157 page
= ERR_PTR(-ENOMEM
);
161 /* drop the pgmap reference now that we hold the page */
163 put_dev_pagemap(pgmap
);
167 if (flags
& FOLL_TOUCH
) {
168 if ((flags
& FOLL_WRITE
) &&
169 !pte_dirty(pte
) && !PageDirty(page
))
170 set_page_dirty(page
);
172 * pte_mkyoung() would be more correct here, but atomic care
173 * is needed to avoid losing the dirty bit: it is easier to use
174 * mark_page_accessed().
176 mark_page_accessed(page
);
178 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
179 /* Do not mlock pte-mapped THP */
180 if (PageTransCompound(page
))
184 * The preliminary mapping check is mainly to avoid the
185 * pointless overhead of lock_page on the ZERO_PAGE
186 * which might bounce very badly if there is contention.
188 * If the page is already locked, we don't need to
189 * handle it now - vmscan will handle it later if and
190 * when it attempts to reclaim the page.
192 if (page
->mapping
&& trylock_page(page
)) {
193 lru_add_drain(); /* push cached pages to LRU */
195 * Because we lock page here, and migration is
196 * blocked by the pte's page reference, and we
197 * know the page is still mapped, we don't even
198 * need to check for file-cache page truncation.
200 mlock_vma_page(page
);
205 pte_unmap_unlock(ptep
, ptl
);
208 pte_unmap_unlock(ptep
, ptl
);
211 return no_page_table(vma
, flags
);
214 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
215 unsigned long address
, pud_t
*pudp
,
216 unsigned int flags
, unsigned int *page_mask
)
221 struct mm_struct
*mm
= vma
->vm_mm
;
223 pmd
= pmd_offset(pudp
, address
);
225 return no_page_table(vma
, flags
);
226 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
227 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
230 return no_page_table(vma
, flags
);
232 if (is_hugepd(__hugepd(pmd_val(*pmd
)))) {
233 page
= follow_huge_pd(vma
, address
,
234 __hugepd(pmd_val(*pmd
)), flags
,
238 return no_page_table(vma
, flags
);
241 if (!pmd_present(*pmd
)) {
242 if (likely(!(flags
& FOLL_MIGRATION
)))
243 return no_page_table(vma
, flags
);
244 VM_BUG_ON(thp_migration_supported() &&
245 !is_pmd_migration_entry(*pmd
));
246 if (is_pmd_migration_entry(*pmd
))
247 pmd_migration_entry_wait(mm
, pmd
);
250 if (pmd_devmap(*pmd
)) {
251 ptl
= pmd_lock(mm
, pmd
);
252 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
);
257 if (likely(!pmd_trans_huge(*pmd
)))
258 return follow_page_pte(vma
, address
, pmd
, flags
);
260 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
261 return no_page_table(vma
, flags
);
264 ptl
= pmd_lock(mm
, pmd
);
265 if (unlikely(!pmd_present(*pmd
))) {
267 if (likely(!(flags
& FOLL_MIGRATION
)))
268 return no_page_table(vma
, flags
);
269 pmd_migration_entry_wait(mm
, pmd
);
272 if (unlikely(!pmd_trans_huge(*pmd
))) {
274 return follow_page_pte(vma
, address
, pmd
, flags
);
276 if (flags
& FOLL_SPLIT
) {
278 page
= pmd_page(*pmd
);
279 if (is_huge_zero_page(page
)) {
282 split_huge_pmd(vma
, pmd
, address
);
283 if (pmd_trans_unstable(pmd
))
286 if (unlikely(!try_get_page(page
))) {
288 return ERR_PTR(-ENOMEM
);
292 ret
= split_huge_page(page
);
296 return no_page_table(vma
, flags
);
299 return ret
? ERR_PTR(ret
) :
300 follow_page_pte(vma
, address
, pmd
, flags
);
302 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
304 *page_mask
= HPAGE_PMD_NR
- 1;
309 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
310 unsigned long address
, p4d_t
*p4dp
,
311 unsigned int flags
, unsigned int *page_mask
)
316 struct mm_struct
*mm
= vma
->vm_mm
;
318 pud
= pud_offset(p4dp
, address
);
320 return no_page_table(vma
, flags
);
321 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
322 page
= follow_huge_pud(mm
, address
, pud
, flags
);
325 return no_page_table(vma
, flags
);
327 if (is_hugepd(__hugepd(pud_val(*pud
)))) {
328 page
= follow_huge_pd(vma
, address
,
329 __hugepd(pud_val(*pud
)), flags
,
333 return no_page_table(vma
, flags
);
335 if (pud_devmap(*pud
)) {
336 ptl
= pud_lock(mm
, pud
);
337 page
= follow_devmap_pud(vma
, address
, pud
, flags
);
342 if (unlikely(pud_bad(*pud
)))
343 return no_page_table(vma
, flags
);
345 return follow_pmd_mask(vma
, address
, pud
, flags
, page_mask
);
349 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
350 unsigned long address
, pgd_t
*pgdp
,
351 unsigned int flags
, unsigned int *page_mask
)
356 p4d
= p4d_offset(pgdp
, address
);
358 return no_page_table(vma
, flags
);
359 BUILD_BUG_ON(p4d_huge(*p4d
));
360 if (unlikely(p4d_bad(*p4d
)))
361 return no_page_table(vma
, flags
);
363 if (is_hugepd(__hugepd(p4d_val(*p4d
)))) {
364 page
= follow_huge_pd(vma
, address
,
365 __hugepd(p4d_val(*p4d
)), flags
,
369 return no_page_table(vma
, flags
);
371 return follow_pud_mask(vma
, address
, p4d
, flags
, page_mask
);
375 * follow_page_mask - look up a page descriptor from a user-virtual address
376 * @vma: vm_area_struct mapping @address
377 * @address: virtual address to look up
378 * @flags: flags modifying lookup behaviour
379 * @page_mask: on output, *page_mask is set according to the size of the page
381 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
383 * Returns the mapped (struct page *), %NULL if no mapping exists, or
384 * an error pointer if there is a mapping to something not represented
385 * by a page descriptor (see also vm_normal_page()).
387 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
388 unsigned long address
, unsigned int flags
,
389 unsigned int *page_mask
)
393 struct mm_struct
*mm
= vma
->vm_mm
;
397 /* make this handle hugepd */
398 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
400 BUG_ON(flags
& FOLL_GET
);
404 pgd
= pgd_offset(mm
, address
);
406 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
407 return no_page_table(vma
, flags
);
409 if (pgd_huge(*pgd
)) {
410 page
= follow_huge_pgd(mm
, address
, pgd
, flags
);
413 return no_page_table(vma
, flags
);
415 if (is_hugepd(__hugepd(pgd_val(*pgd
)))) {
416 page
= follow_huge_pd(vma
, address
,
417 __hugepd(pgd_val(*pgd
)), flags
,
421 return no_page_table(vma
, flags
);
424 return follow_p4d_mask(vma
, address
, pgd
, flags
, page_mask
);
427 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
428 unsigned int gup_flags
, struct vm_area_struct
**vma
,
438 /* user gate pages are read-only */
439 if (gup_flags
& FOLL_WRITE
)
441 if (address
> TASK_SIZE
)
442 pgd
= pgd_offset_k(address
);
444 pgd
= pgd_offset_gate(mm
, address
);
447 p4d
= p4d_offset(pgd
, address
);
450 pud
= pud_offset(p4d
, address
);
453 pmd
= pmd_offset(pud
, address
);
454 if (!pmd_present(*pmd
))
456 VM_BUG_ON(pmd_trans_huge(*pmd
));
457 pte
= pte_offset_map(pmd
, address
);
460 *vma
= get_gate_vma(mm
);
463 *page
= vm_normal_page(*vma
, address
, *pte
);
465 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
467 *page
= pte_page(*pte
);
470 * This should never happen (a device public page in the gate
473 if (is_device_public_page(*page
))
476 if (unlikely(!try_get_page(*page
))) {
488 * mmap_sem must be held on entry. If @nonblocking != NULL and
489 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
490 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
492 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
493 unsigned long address
, unsigned int *flags
, int *nonblocking
)
495 unsigned int fault_flags
= 0;
498 /* mlock all present pages, but do not fault in new pages */
499 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
501 if (*flags
& FOLL_WRITE
)
502 fault_flags
|= FAULT_FLAG_WRITE
;
503 if (*flags
& FOLL_REMOTE
)
504 fault_flags
|= FAULT_FLAG_REMOTE
;
506 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
507 if (*flags
& FOLL_NOWAIT
)
508 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
509 if (*flags
& FOLL_TRIED
) {
510 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
511 fault_flags
|= FAULT_FLAG_TRIED
;
514 ret
= handle_mm_fault(vma
, address
, fault_flags
);
515 if (ret
& VM_FAULT_ERROR
) {
516 int err
= vm_fault_to_errno(ret
, *flags
);
524 if (ret
& VM_FAULT_MAJOR
)
530 if (ret
& VM_FAULT_RETRY
) {
537 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
538 * necessary, even if maybe_mkwrite decided not to set pte_write. We
539 * can thus safely do subsequent page lookups as if they were reads.
540 * But only do so when looping for pte_write is futile: in some cases
541 * userspace may also be wanting to write to the gotten user page,
542 * which a read fault here might prevent (a readonly page might get
543 * reCOWed by userspace write).
545 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
550 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
552 vm_flags_t vm_flags
= vma
->vm_flags
;
553 int write
= (gup_flags
& FOLL_WRITE
);
554 int foreign
= (gup_flags
& FOLL_REMOTE
);
556 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
559 if (gup_flags
& FOLL_ANON
&& !vma_is_anonymous(vma
))
563 if (!(vm_flags
& VM_WRITE
)) {
564 if (!(gup_flags
& FOLL_FORCE
))
567 * We used to let the write,force case do COW in a
568 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
569 * set a breakpoint in a read-only mapping of an
570 * executable, without corrupting the file (yet only
571 * when that file had been opened for writing!).
572 * Anon pages in shared mappings are surprising: now
575 if (!is_cow_mapping(vm_flags
))
578 } else if (!(vm_flags
& VM_READ
)) {
579 if (!(gup_flags
& FOLL_FORCE
))
582 * Is there actually any vma we can reach here which does not
583 * have VM_MAYREAD set?
585 if (!(vm_flags
& VM_MAYREAD
))
589 * gups are always data accesses, not instruction
590 * fetches, so execute=false here
592 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
598 * __get_user_pages() - pin user pages in memory
599 * @tsk: task_struct of target task
600 * @mm: mm_struct of target mm
601 * @start: starting user address
602 * @nr_pages: number of pages from start to pin
603 * @gup_flags: flags modifying pin behaviour
604 * @pages: array that receives pointers to the pages pinned.
605 * Should be at least nr_pages long. Or NULL, if caller
606 * only intends to ensure the pages are faulted in.
607 * @vmas: array of pointers to vmas corresponding to each page.
608 * Or NULL if the caller does not require them.
609 * @nonblocking: whether waiting for disk IO or mmap_sem contention
611 * Returns number of pages pinned. This may be fewer than the number
612 * requested. If nr_pages is 0 or negative, returns 0. If no pages
613 * were pinned, returns -errno. Each page returned must be released
614 * with a put_page() call when it is finished with. vmas will only
615 * remain valid while mmap_sem is held.
617 * Must be called with mmap_sem held. It may be released. See below.
619 * __get_user_pages walks a process's page tables and takes a reference to
620 * each struct page that each user address corresponds to at a given
621 * instant. That is, it takes the page that would be accessed if a user
622 * thread accesses the given user virtual address at that instant.
624 * This does not guarantee that the page exists in the user mappings when
625 * __get_user_pages returns, and there may even be a completely different
626 * page there in some cases (eg. if mmapped pagecache has been invalidated
627 * and subsequently re faulted). However it does guarantee that the page
628 * won't be freed completely. And mostly callers simply care that the page
629 * contains data that was valid *at some point in time*. Typically, an IO
630 * or similar operation cannot guarantee anything stronger anyway because
631 * locks can't be held over the syscall boundary.
633 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
634 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
635 * appropriate) must be called after the page is finished with, and
636 * before put_page is called.
638 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
639 * or mmap_sem contention, and if waiting is needed to pin all pages,
640 * *@nonblocking will be set to 0. Further, if @gup_flags does not
641 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
644 * A caller using such a combination of @nonblocking and @gup_flags
645 * must therefore hold the mmap_sem for reading only, and recognize
646 * when it's been released. Otherwise, it must be held for either
647 * reading or writing and will not be released.
649 * In most cases, get_user_pages or get_user_pages_fast should be used
650 * instead of __get_user_pages. __get_user_pages should be used only if
651 * you need some special @gup_flags.
653 static long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
654 unsigned long start
, unsigned long nr_pages
,
655 unsigned int gup_flags
, struct page
**pages
,
656 struct vm_area_struct
**vmas
, int *nonblocking
)
659 unsigned int page_mask
;
660 struct vm_area_struct
*vma
= NULL
;
665 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
668 * If FOLL_FORCE is set then do not force a full fault as the hinting
669 * fault information is unrelated to the reference behaviour of a task
670 * using the address space
672 if (!(gup_flags
& FOLL_FORCE
))
673 gup_flags
|= FOLL_NUMA
;
677 unsigned int foll_flags
= gup_flags
;
678 unsigned int page_increm
;
680 /* first iteration or cross vma bound */
681 if (!vma
|| start
>= vma
->vm_end
) {
682 vma
= find_extend_vma(mm
, start
);
683 if (!vma
&& in_gate_area(mm
, start
)) {
685 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
687 pages
? &pages
[i
] : NULL
);
694 if (!vma
|| check_vma_flags(vma
, gup_flags
))
695 return i
? : -EFAULT
;
696 if (is_vm_hugetlb_page(vma
)) {
697 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
698 &start
, &nr_pages
, i
,
699 gup_flags
, nonblocking
);
705 * If we have a pending SIGKILL, don't keep faulting pages and
706 * potentially allocating memory.
708 if (unlikely(fatal_signal_pending(current
)))
709 return i
? i
: -ERESTARTSYS
;
711 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
714 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
729 } else if (PTR_ERR(page
) == -EEXIST
) {
731 * Proper page table entry exists, but no corresponding
735 } else if (IS_ERR(page
)) {
736 return i
? i
: PTR_ERR(page
);
740 flush_anon_page(vma
, page
, start
);
741 flush_dcache_page(page
);
749 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
750 if (page_increm
> nr_pages
)
751 page_increm
= nr_pages
;
753 start
+= page_increm
* PAGE_SIZE
;
754 nr_pages
-= page_increm
;
759 static bool vma_permits_fault(struct vm_area_struct
*vma
,
760 unsigned int fault_flags
)
762 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
763 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
764 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
766 if (!(vm_flags
& vma
->vm_flags
))
770 * The architecture might have a hardware protection
771 * mechanism other than read/write that can deny access.
773 * gup always represents data access, not instruction
774 * fetches, so execute=false here:
776 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
783 * fixup_user_fault() - manually resolve a user page fault
784 * @tsk: the task_struct to use for page fault accounting, or
785 * NULL if faults are not to be recorded.
786 * @mm: mm_struct of target mm
787 * @address: user address
788 * @fault_flags:flags to pass down to handle_mm_fault()
789 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
790 * does not allow retry
792 * This is meant to be called in the specific scenario where for locking reasons
793 * we try to access user memory in atomic context (within a pagefault_disable()
794 * section), this returns -EFAULT, and we want to resolve the user fault before
797 * Typically this is meant to be used by the futex code.
799 * The main difference with get_user_pages() is that this function will
800 * unconditionally call handle_mm_fault() which will in turn perform all the
801 * necessary SW fixup of the dirty and young bits in the PTE, while
802 * get_user_pages() only guarantees to update these in the struct page.
804 * This is important for some architectures where those bits also gate the
805 * access permission to the page because they are maintained in software. On
806 * such architectures, gup() will not be enough to make a subsequent access
809 * This function will not return with an unlocked mmap_sem. So it has not the
810 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
812 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
813 unsigned long address
, unsigned int fault_flags
,
816 struct vm_area_struct
*vma
;
820 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
823 vma
= find_extend_vma(mm
, address
);
824 if (!vma
|| address
< vma
->vm_start
)
827 if (!vma_permits_fault(vma
, fault_flags
))
830 ret
= handle_mm_fault(vma
, address
, fault_flags
);
831 major
|= ret
& VM_FAULT_MAJOR
;
832 if (ret
& VM_FAULT_ERROR
) {
833 int err
= vm_fault_to_errno(ret
, 0);
840 if (ret
& VM_FAULT_RETRY
) {
841 down_read(&mm
->mmap_sem
);
842 if (!(fault_flags
& FAULT_FLAG_TRIED
)) {
844 fault_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
845 fault_flags
|= FAULT_FLAG_TRIED
;
858 EXPORT_SYMBOL_GPL(fixup_user_fault
);
860 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
861 struct mm_struct
*mm
,
863 unsigned long nr_pages
,
865 struct vm_area_struct
**vmas
,
866 int *locked
, bool notify_drop
,
869 long ret
, pages_done
;
873 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
875 /* check caller initialized locked */
876 BUG_ON(*locked
!= 1);
883 lock_dropped
= false;
885 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
888 /* VM_FAULT_RETRY couldn't trigger, bypass */
891 /* VM_FAULT_RETRY cannot return errors */
894 BUG_ON(ret
>= nr_pages
);
898 /* If it's a prefault don't insist harder */
908 /* VM_FAULT_RETRY didn't trigger */
913 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
915 start
+= ret
<< PAGE_SHIFT
;
918 * Repeat on the address that fired VM_FAULT_RETRY
919 * without FAULT_FLAG_ALLOW_RETRY but with
924 down_read(&mm
->mmap_sem
);
925 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
940 if (notify_drop
&& lock_dropped
&& *locked
) {
942 * We must let the caller know we temporarily dropped the lock
943 * and so the critical section protected by it was lost.
945 up_read(&mm
->mmap_sem
);
952 * We can leverage the VM_FAULT_RETRY functionality in the page fault
953 * paths better by using either get_user_pages_locked() or
954 * get_user_pages_unlocked().
956 * get_user_pages_locked() is suitable to replace the form:
958 * down_read(&mm->mmap_sem);
960 * get_user_pages(tsk, mm, ..., pages, NULL);
961 * up_read(&mm->mmap_sem);
966 * down_read(&mm->mmap_sem);
968 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
970 * up_read(&mm->mmap_sem);
972 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
973 unsigned int gup_flags
, struct page
**pages
,
976 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
977 pages
, NULL
, locked
, true,
978 gup_flags
| FOLL_TOUCH
);
980 EXPORT_SYMBOL(get_user_pages_locked
);
983 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
984 * tsk, mm to be specified.
986 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
987 * caller if required (just like with __get_user_pages). "FOLL_GET"
988 * is set implicitly if "pages" is non-NULL.
990 static __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
,
991 struct mm_struct
*mm
, unsigned long start
,
992 unsigned long nr_pages
, struct page
**pages
,
993 unsigned int gup_flags
)
998 down_read(&mm
->mmap_sem
);
999 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, NULL
,
1000 &locked
, false, gup_flags
);
1002 up_read(&mm
->mmap_sem
);
1007 * get_user_pages_unlocked() is suitable to replace the form:
1009 * down_read(&mm->mmap_sem);
1010 * get_user_pages(tsk, mm, ..., pages, NULL);
1011 * up_read(&mm->mmap_sem);
1015 * get_user_pages_unlocked(tsk, mm, ..., pages);
1017 * It is functionally equivalent to get_user_pages_fast so
1018 * get_user_pages_fast should be used instead if specific gup_flags
1019 * (e.g. FOLL_FORCE) are not required.
1021 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
1022 struct page
**pages
, unsigned int gup_flags
)
1024 return __get_user_pages_unlocked(current
, current
->mm
, start
, nr_pages
,
1025 pages
, gup_flags
| FOLL_TOUCH
);
1027 EXPORT_SYMBOL(get_user_pages_unlocked
);
1030 * get_user_pages_remote() - pin user pages in memory
1031 * @tsk: the task_struct to use for page fault accounting, or
1032 * NULL if faults are not to be recorded.
1033 * @mm: mm_struct of target mm
1034 * @start: starting user address
1035 * @nr_pages: number of pages from start to pin
1036 * @gup_flags: flags modifying lookup behaviour
1037 * @pages: array that receives pointers to the pages pinned.
1038 * Should be at least nr_pages long. Or NULL, if caller
1039 * only intends to ensure the pages are faulted in.
1040 * @vmas: array of pointers to vmas corresponding to each page.
1041 * Or NULL if the caller does not require them.
1042 * @locked: pointer to lock flag indicating whether lock is held and
1043 * subsequently whether VM_FAULT_RETRY functionality can be
1044 * utilised. Lock must initially be held.
1046 * Returns number of pages pinned. This may be fewer than the number
1047 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1048 * were pinned, returns -errno. Each page returned must be released
1049 * with a put_page() call when it is finished with. vmas will only
1050 * remain valid while mmap_sem is held.
1052 * Must be called with mmap_sem held for read or write.
1054 * get_user_pages walks a process's page tables and takes a reference to
1055 * each struct page that each user address corresponds to at a given
1056 * instant. That is, it takes the page that would be accessed if a user
1057 * thread accesses the given user virtual address at that instant.
1059 * This does not guarantee that the page exists in the user mappings when
1060 * get_user_pages returns, and there may even be a completely different
1061 * page there in some cases (eg. if mmapped pagecache has been invalidated
1062 * and subsequently re faulted). However it does guarantee that the page
1063 * won't be freed completely. And mostly callers simply care that the page
1064 * contains data that was valid *at some point in time*. Typically, an IO
1065 * or similar operation cannot guarantee anything stronger anyway because
1066 * locks can't be held over the syscall boundary.
1068 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1069 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1070 * be called after the page is finished with, and before put_page is called.
1072 * get_user_pages is typically used for fewer-copy IO operations, to get a
1073 * handle on the memory by some means other than accesses via the user virtual
1074 * addresses. The pages may be submitted for DMA to devices or accessed via
1075 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1076 * use the correct cache flushing APIs.
1078 * See also get_user_pages_fast, for performance critical applications.
1080 * get_user_pages should be phased out in favor of
1081 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1082 * should use get_user_pages because it cannot pass
1083 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1085 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
1086 unsigned long start
, unsigned long nr_pages
,
1087 unsigned int gup_flags
, struct page
**pages
,
1088 struct vm_area_struct
**vmas
, int *locked
)
1090 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
1092 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
1094 EXPORT_SYMBOL(get_user_pages_remote
);
1097 * This is the same as get_user_pages_remote(), just with a
1098 * less-flexible calling convention where we assume that the task
1099 * and mm being operated on are the current task's and don't allow
1100 * passing of a locked parameter. We also obviously don't pass
1101 * FOLL_REMOTE in here.
1103 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
1104 unsigned int gup_flags
, struct page
**pages
,
1105 struct vm_area_struct
**vmas
)
1107 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
1108 pages
, vmas
, NULL
, false,
1109 gup_flags
| FOLL_TOUCH
);
1111 EXPORT_SYMBOL(get_user_pages
);
1113 #ifdef CONFIG_FS_DAX
1115 * This is the same as get_user_pages() in that it assumes we are
1116 * operating on the current task's mm, but it goes further to validate
1117 * that the vmas associated with the address range are suitable for
1118 * longterm elevated page reference counts. For example, filesystem-dax
1119 * mappings are subject to the lifetime enforced by the filesystem and
1120 * we need guarantees that longterm users like RDMA and V4L2 only
1121 * establish mappings that have a kernel enforced revocation mechanism.
1123 * "longterm" == userspace controlled elevated page count lifetime.
1124 * Contrast this to iov_iter_get_pages() usages which are transient.
1126 long get_user_pages_longterm(unsigned long start
, unsigned long nr_pages
,
1127 unsigned int gup_flags
, struct page
**pages
,
1128 struct vm_area_struct
**vmas_arg
)
1130 struct vm_area_struct
**vmas
= vmas_arg
;
1131 struct vm_area_struct
*vma_prev
= NULL
;
1138 vmas
= kcalloc(nr_pages
, sizeof(struct vm_area_struct
*),
1144 rc
= get_user_pages(start
, nr_pages
, gup_flags
, pages
, vmas
);
1146 for (i
= 0; i
< rc
; i
++) {
1147 struct vm_area_struct
*vma
= vmas
[i
];
1149 if (vma
== vma_prev
)
1154 if (vma_is_fsdax(vma
))
1159 * Either get_user_pages() failed, or the vma validation
1160 * succeeded, in either case we don't need to put_page() before
1166 for (i
= 0; i
< rc
; i
++)
1170 if (vmas
!= vmas_arg
)
1174 EXPORT_SYMBOL(get_user_pages_longterm
);
1175 #endif /* CONFIG_FS_DAX */
1178 * populate_vma_page_range() - populate a range of pages in the vma.
1180 * @start: start address
1184 * This takes care of mlocking the pages too if VM_LOCKED is set.
1186 * return 0 on success, negative error code on error.
1188 * vma->vm_mm->mmap_sem must be held.
1190 * If @nonblocking is NULL, it may be held for read or write and will
1193 * If @nonblocking is non-NULL, it must held for read only and may be
1194 * released. If it's released, *@nonblocking will be set to 0.
1196 long populate_vma_page_range(struct vm_area_struct
*vma
,
1197 unsigned long start
, unsigned long end
, int *nonblocking
)
1199 struct mm_struct
*mm
= vma
->vm_mm
;
1200 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1203 VM_BUG_ON(start
& ~PAGE_MASK
);
1204 VM_BUG_ON(end
& ~PAGE_MASK
);
1205 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1206 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1207 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1209 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1210 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1211 gup_flags
&= ~FOLL_POPULATE
;
1213 * We want to touch writable mappings with a write fault in order
1214 * to break COW, except for shared mappings because these don't COW
1215 * and we would not want to dirty them for nothing.
1217 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1218 gup_flags
|= FOLL_WRITE
;
1221 * We want mlock to succeed for regions that have any permissions
1222 * other than PROT_NONE.
1224 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
1225 gup_flags
|= FOLL_FORCE
;
1228 * We made sure addr is within a VMA, so the following will
1229 * not result in a stack expansion that recurses back here.
1231 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
1232 NULL
, NULL
, nonblocking
);
1236 * __mm_populate - populate and/or mlock pages within a range of address space.
1238 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1239 * flags. VMAs must be already marked with the desired vm_flags, and
1240 * mmap_sem must not be held.
1242 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1244 struct mm_struct
*mm
= current
->mm
;
1245 unsigned long end
, nstart
, nend
;
1246 struct vm_area_struct
*vma
= NULL
;
1252 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1254 * We want to fault in pages for [nstart; end) address range.
1255 * Find first corresponding VMA.
1259 down_read(&mm
->mmap_sem
);
1260 vma
= find_vma(mm
, nstart
);
1261 } else if (nstart
>= vma
->vm_end
)
1263 if (!vma
|| vma
->vm_start
>= end
)
1266 * Set [nstart; nend) to intersection of desired address
1267 * range with the first VMA. Also, skip undesirable VMA types.
1269 nend
= min(end
, vma
->vm_end
);
1270 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1272 if (nstart
< vma
->vm_start
)
1273 nstart
= vma
->vm_start
;
1275 * Now fault in a range of pages. populate_vma_page_range()
1276 * double checks the vma flags, so that it won't mlock pages
1277 * if the vma was already munlocked.
1279 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1281 if (ignore_errors
) {
1283 continue; /* continue at next VMA */
1287 nend
= nstart
+ ret
* PAGE_SIZE
;
1291 up_read(&mm
->mmap_sem
);
1292 return ret
; /* 0 or negative error code */
1296 * get_dump_page() - pin user page in memory while writing it to core dump
1297 * @addr: user address
1299 * Returns struct page pointer of user page pinned for dump,
1300 * to be freed afterwards by put_page().
1302 * Returns NULL on any kind of failure - a hole must then be inserted into
1303 * the corefile, to preserve alignment with its headers; and also returns
1304 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1305 * allowing a hole to be left in the corefile to save diskspace.
1307 * Called without mmap_sem, but after all other threads have been killed.
1309 #ifdef CONFIG_ELF_CORE
1310 struct page
*get_dump_page(unsigned long addr
)
1312 struct vm_area_struct
*vma
;
1315 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1316 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1319 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1322 #endif /* CONFIG_ELF_CORE */
1327 * get_user_pages_fast attempts to pin user pages by walking the page
1328 * tables directly and avoids taking locks. Thus the walker needs to be
1329 * protected from page table pages being freed from under it, and should
1330 * block any THP splits.
1332 * One way to achieve this is to have the walker disable interrupts, and
1333 * rely on IPIs from the TLB flushing code blocking before the page table
1334 * pages are freed. This is unsuitable for architectures that do not need
1335 * to broadcast an IPI when invalidating TLBs.
1337 * Another way to achieve this is to batch up page table containing pages
1338 * belonging to more than one mm_user, then rcu_sched a callback to free those
1339 * pages. Disabling interrupts will allow the fast_gup walker to both block
1340 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1341 * (which is a relatively rare event). The code below adopts this strategy.
1343 * Before activating this code, please be aware that the following assumptions
1344 * are currently made:
1346 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1347 * free pages containing page tables or TLB flushing requires IPI broadcast.
1349 * *) ptes can be read atomically by the architecture.
1351 * *) access_ok is sufficient to validate userspace address ranges.
1353 * The last two assumptions can be relaxed by the addition of helper functions.
1355 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1357 #ifdef CONFIG_HAVE_GENERIC_GUP
1361 * We assume that the PTE can be read atomically. If this is not the case for
1362 * your architecture, please provide the helper.
1364 static inline pte_t
gup_get_pte(pte_t
*ptep
)
1366 return READ_ONCE(*ptep
);
1370 static void __maybe_unused
undo_dev_pagemap(int *nr
, int nr_start
,
1371 struct page
**pages
)
1373 while ((*nr
) - nr_start
) {
1374 struct page
*page
= pages
[--(*nr
)];
1376 ClearPageReferenced(page
);
1382 * Return the compund head page with ref appropriately incremented,
1383 * or NULL if that failed.
1385 static inline struct page
*try_get_compound_head(struct page
*page
, int refs
)
1387 struct page
*head
= compound_head(page
);
1388 if (WARN_ON_ONCE(page_ref_count(head
) < 0))
1390 if (unlikely(!page_cache_add_speculative(head
, refs
)))
1395 #ifdef __HAVE_ARCH_PTE_SPECIAL
1396 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1397 int write
, struct page
**pages
, int *nr
)
1399 struct dev_pagemap
*pgmap
= NULL
;
1400 int nr_start
= *nr
, ret
= 0;
1403 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1405 pte_t pte
= gup_get_pte(ptep
);
1406 struct page
*head
, *page
;
1409 * Similar to the PMD case below, NUMA hinting must take slow
1410 * path using the pte_protnone check.
1412 if (pte_protnone(pte
))
1415 if (!pte_access_permitted(pte
, write
))
1418 if (pte_devmap(pte
)) {
1419 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
1420 if (unlikely(!pgmap
)) {
1421 undo_dev_pagemap(nr
, nr_start
, pages
);
1424 } else if (pte_special(pte
))
1427 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1428 page
= pte_page(pte
);
1430 head
= try_get_compound_head(page
, 1);
1434 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1439 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1441 put_dev_pagemap(pgmap
);
1442 SetPageReferenced(page
);
1446 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1457 * If we can't determine whether or not a pte is special, then fail immediately
1458 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1461 * For a futex to be placed on a THP tail page, get_futex_key requires a
1462 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1463 * useful to have gup_huge_pmd even if we can't operate on ptes.
1465 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1466 int write
, struct page
**pages
, int *nr
)
1470 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1472 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1473 static int __gup_device_huge(unsigned long pfn
, unsigned long addr
,
1474 unsigned long end
, struct page
**pages
, int *nr
)
1477 struct dev_pagemap
*pgmap
= NULL
;
1480 struct page
*page
= pfn_to_page(pfn
);
1482 pgmap
= get_dev_pagemap(pfn
, pgmap
);
1483 if (unlikely(!pgmap
)) {
1484 undo_dev_pagemap(nr
, nr_start
, pages
);
1487 SetPageReferenced(page
);
1490 put_dev_pagemap(pgmap
);
1493 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1497 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1498 unsigned long end
, struct page
**pages
, int *nr
)
1500 unsigned long fault_pfn
;
1503 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1504 if (!__gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
))
1507 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1508 undo_dev_pagemap(nr
, nr_start
, pages
);
1514 static int __gup_device_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1515 unsigned long end
, struct page
**pages
, int *nr
)
1517 unsigned long fault_pfn
;
1520 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1521 if (!__gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
))
1524 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1525 undo_dev_pagemap(nr
, nr_start
, pages
);
1531 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1532 unsigned long end
, struct page
**pages
, int *nr
)
1538 static int __gup_device_huge_pud(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
1539 unsigned long end
, struct page
**pages
, int *nr
)
1546 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1547 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1549 struct page
*head
, *page
;
1552 if (!pmd_access_permitted(orig
, write
))
1555 if (pmd_devmap(orig
))
1556 return __gup_device_huge_pmd(orig
, pmdp
, addr
, end
, pages
, nr
);
1559 page
= pmd_page(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1565 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1567 head
= try_get_compound_head(pmd_page(orig
), refs
);
1573 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1580 SetPageReferenced(head
);
1584 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1585 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1587 struct page
*head
, *page
;
1590 if (!pud_access_permitted(orig
, write
))
1593 if (pud_devmap(orig
))
1594 return __gup_device_huge_pud(orig
, pudp
, addr
, end
, pages
, nr
);
1597 page
= pud_page(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1603 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1605 head
= try_get_compound_head(pud_page(orig
), refs
);
1611 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1618 SetPageReferenced(head
);
1622 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1623 unsigned long end
, int write
,
1624 struct page
**pages
, int *nr
)
1627 struct page
*head
, *page
;
1629 if (!pgd_access_permitted(orig
, write
))
1632 BUILD_BUG_ON(pgd_devmap(orig
));
1634 page
= pgd_page(orig
) + ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1640 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1642 head
= try_get_compound_head(pgd_page(orig
), refs
);
1648 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1655 SetPageReferenced(head
);
1659 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1660 int write
, struct page
**pages
, int *nr
)
1665 pmdp
= pmd_offset(&pud
, addr
);
1667 pmd_t pmd
= READ_ONCE(*pmdp
);
1669 next
= pmd_addr_end(addr
, end
);
1670 if (!pmd_present(pmd
))
1673 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
) ||
1676 * NUMA hinting faults need to be handled in the GUP
1677 * slowpath for accounting purposes and so that they
1678 * can be serialised against THP migration.
1680 if (pmd_protnone(pmd
))
1683 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1687 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1689 * architecture have different format for hugetlbfs
1690 * pmd format and THP pmd format
1692 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1693 PMD_SHIFT
, next
, write
, pages
, nr
))
1695 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1697 } while (pmdp
++, addr
= next
, addr
!= end
);
1702 static int gup_pud_range(p4d_t p4d
, unsigned long addr
, unsigned long end
,
1703 int write
, struct page
**pages
, int *nr
)
1708 pudp
= pud_offset(&p4d
, addr
);
1710 pud_t pud
= READ_ONCE(*pudp
);
1712 next
= pud_addr_end(addr
, end
);
1715 if (unlikely(pud_huge(pud
))) {
1716 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1719 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1720 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1721 PUD_SHIFT
, next
, write
, pages
, nr
))
1723 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1725 } while (pudp
++, addr
= next
, addr
!= end
);
1730 static int gup_p4d_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1731 int write
, struct page
**pages
, int *nr
)
1736 p4dp
= p4d_offset(&pgd
, addr
);
1738 p4d_t p4d
= READ_ONCE(*p4dp
);
1740 next
= p4d_addr_end(addr
, end
);
1743 BUILD_BUG_ON(p4d_huge(p4d
));
1744 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d
))))) {
1745 if (!gup_huge_pd(__hugepd(p4d_val(p4d
)), addr
,
1746 P4D_SHIFT
, next
, write
, pages
, nr
))
1748 } else if (!gup_pud_range(p4d
, addr
, next
, write
, pages
, nr
))
1750 } while (p4dp
++, addr
= next
, addr
!= end
);
1755 static void gup_pgd_range(unsigned long addr
, unsigned long end
,
1756 int write
, struct page
**pages
, int *nr
)
1761 pgdp
= pgd_offset(current
->mm
, addr
);
1763 pgd_t pgd
= READ_ONCE(*pgdp
);
1765 next
= pgd_addr_end(addr
, end
);
1768 if (unlikely(pgd_huge(pgd
))) {
1769 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1772 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1773 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1774 PGDIR_SHIFT
, next
, write
, pages
, nr
))
1776 } else if (!gup_p4d_range(pgd
, addr
, next
, write
, pages
, nr
))
1778 } while (pgdp
++, addr
= next
, addr
!= end
);
1781 #ifndef gup_fast_permitted
1783 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1784 * we need to fall back to the slow version:
1786 bool gup_fast_permitted(unsigned long start
, int nr_pages
, int write
)
1788 unsigned long len
, end
;
1790 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1792 return end
>= start
;
1797 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1798 * the regular GUP. It will only return non-negative values.
1800 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1801 struct page
**pages
)
1803 unsigned long addr
, len
, end
;
1804 unsigned long flags
;
1809 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1812 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1813 (void __user
*)start
, len
)))
1817 * Disable interrupts. We use the nested form as we can already have
1818 * interrupts disabled by get_futex_key.
1820 * With interrupts disabled, we block page table pages from being
1821 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1824 * We do not adopt an rcu_read_lock(.) here as we also want to
1825 * block IPIs that come from THPs splitting.
1828 if (gup_fast_permitted(start
, nr_pages
, write
)) {
1829 local_irq_save(flags
);
1830 gup_pgd_range(addr
, end
, write
, pages
, &nr
);
1831 local_irq_restore(flags
);
1838 * get_user_pages_fast() - pin user pages in memory
1839 * @start: starting user address
1840 * @nr_pages: number of pages from start to pin
1841 * @write: whether pages will be written to
1842 * @pages: array that receives pointers to the pages pinned.
1843 * Should be at least nr_pages long.
1845 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1846 * If not successful, it will fall back to taking the lock and
1847 * calling get_user_pages().
1849 * Returns number of pages pinned. This may be fewer than the number
1850 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1851 * were pinned, returns -errno.
1853 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1854 struct page
**pages
)
1856 unsigned long addr
, len
, end
;
1857 int nr
= 0, ret
= 0;
1861 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1867 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1868 (void __user
*)start
, len
)))
1871 if (gup_fast_permitted(start
, nr_pages
, write
)) {
1872 local_irq_disable();
1873 gup_pgd_range(addr
, end
, write
, pages
, &nr
);
1878 if (nr
< nr_pages
) {
1879 /* Try to get the remaining pages with get_user_pages */
1880 start
+= nr
<< PAGE_SHIFT
;
1883 ret
= get_user_pages_unlocked(start
, nr_pages
- nr
, pages
,
1884 write
? FOLL_WRITE
: 0);
1886 /* Have to be a bit careful with return values */
1898 #endif /* CONFIG_HAVE_GENERIC_GUP */