Linux 4.14.215
[linux/fpc-iii.git] / mm / mmap.c
blobc389fd258384f6bce207df461202186514d683e3
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
55 #include "internal.h"
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags) (0)
59 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
83 * map_type prot
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 pgprot_t protection_map[16] __ro_after_init = {
94 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
98 pgprot_t vm_get_page_prot(unsigned long vm_flags)
100 return __pgprot(pgprot_val(protection_map[vm_flags &
101 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
102 pgprot_val(arch_vm_get_page_prot(vm_flags)));
104 EXPORT_SYMBOL(vm_get_page_prot);
106 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
108 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
111 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
112 void vma_set_page_prot(struct vm_area_struct *vma)
114 unsigned long vm_flags = vma->vm_flags;
115 pgprot_t vm_page_prot;
117 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118 if (vma_wants_writenotify(vma, vm_page_prot)) {
119 vm_flags &= ~VM_SHARED;
120 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
122 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
123 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
127 * Requires inode->i_mapping->i_mmap_rwsem
129 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
130 struct file *file, struct address_space *mapping)
132 if (vma->vm_flags & VM_DENYWRITE)
133 atomic_inc(&file_inode(file)->i_writecount);
134 if (vma->vm_flags & VM_SHARED)
135 mapping_unmap_writable(mapping);
137 flush_dcache_mmap_lock(mapping);
138 vma_interval_tree_remove(vma, &mapping->i_mmap);
139 flush_dcache_mmap_unlock(mapping);
143 * Unlink a file-based vm structure from its interval tree, to hide
144 * vma from rmap and vmtruncate before freeing its page tables.
146 void unlink_file_vma(struct vm_area_struct *vma)
148 struct file *file = vma->vm_file;
150 if (file) {
151 struct address_space *mapping = file->f_mapping;
152 i_mmap_lock_write(mapping);
153 __remove_shared_vm_struct(vma, file, mapping);
154 i_mmap_unlock_write(mapping);
159 * Close a vm structure and free it, returning the next.
161 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
163 struct vm_area_struct *next = vma->vm_next;
165 might_sleep();
166 if (vma->vm_ops && vma->vm_ops->close)
167 vma->vm_ops->close(vma);
168 if (vma->vm_file)
169 fput(vma->vm_file);
170 mpol_put(vma_policy(vma));
171 kmem_cache_free(vm_area_cachep, vma);
172 return next;
175 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
176 struct list_head *uf);
177 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 unsigned long retval;
180 unsigned long newbrk, oldbrk;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *next;
183 unsigned long min_brk;
184 bool populate;
185 LIST_HEAD(uf);
187 if (down_write_killable(&mm->mmap_sem))
188 return -EINTR;
190 #ifdef CONFIG_COMPAT_BRK
192 * CONFIG_COMPAT_BRK can still be overridden by setting
193 * randomize_va_space to 2, which will still cause mm->start_brk
194 * to be arbitrarily shifted
196 if (current->brk_randomized)
197 min_brk = mm->start_brk;
198 else
199 min_brk = mm->end_data;
200 #else
201 min_brk = mm->start_brk;
202 #endif
203 if (brk < min_brk)
204 goto out;
207 * Check against rlimit here. If this check is done later after the test
208 * of oldbrk with newbrk then it can escape the test and let the data
209 * segment grow beyond its set limit the in case where the limit is
210 * not page aligned -Ram Gupta
212 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213 mm->end_data, mm->start_data))
214 goto out;
216 newbrk = PAGE_ALIGN(brk);
217 oldbrk = PAGE_ALIGN(mm->brk);
218 if (oldbrk == newbrk)
219 goto set_brk;
221 /* Always allow shrinking brk. */
222 if (brk <= mm->brk) {
223 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
224 goto set_brk;
225 goto out;
228 /* Check against existing mmap mappings. */
229 next = find_vma(mm, oldbrk);
230 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
231 goto out;
233 /* Ok, looks good - let it rip. */
234 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
235 goto out;
237 set_brk:
238 mm->brk = brk;
239 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
240 up_write(&mm->mmap_sem);
241 userfaultfd_unmap_complete(mm, &uf);
242 if (populate)
243 mm_populate(oldbrk, newbrk - oldbrk);
244 return brk;
246 out:
247 retval = mm->brk;
248 up_write(&mm->mmap_sem);
249 return retval;
252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
254 unsigned long max, prev_end, subtree_gap;
257 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
258 * allow two stack_guard_gaps between them here, and when choosing
259 * an unmapped area; whereas when expanding we only require one.
260 * That's a little inconsistent, but keeps the code here simpler.
262 max = vm_start_gap(vma);
263 if (vma->vm_prev) {
264 prev_end = vm_end_gap(vma->vm_prev);
265 if (max > prev_end)
266 max -= prev_end;
267 else
268 max = 0;
270 if (vma->vm_rb.rb_left) {
271 subtree_gap = rb_entry(vma->vm_rb.rb_left,
272 struct vm_area_struct, vm_rb)->rb_subtree_gap;
273 if (subtree_gap > max)
274 max = subtree_gap;
276 if (vma->vm_rb.rb_right) {
277 subtree_gap = rb_entry(vma->vm_rb.rb_right,
278 struct vm_area_struct, vm_rb)->rb_subtree_gap;
279 if (subtree_gap > max)
280 max = subtree_gap;
282 return max;
285 #ifdef CONFIG_DEBUG_VM_RB
286 static int browse_rb(struct mm_struct *mm)
288 struct rb_root *root = &mm->mm_rb;
289 int i = 0, j, bug = 0;
290 struct rb_node *nd, *pn = NULL;
291 unsigned long prev = 0, pend = 0;
293 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
294 struct vm_area_struct *vma;
295 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
296 if (vma->vm_start < prev) {
297 pr_emerg("vm_start %lx < prev %lx\n",
298 vma->vm_start, prev);
299 bug = 1;
301 if (vma->vm_start < pend) {
302 pr_emerg("vm_start %lx < pend %lx\n",
303 vma->vm_start, pend);
304 bug = 1;
306 if (vma->vm_start > vma->vm_end) {
307 pr_emerg("vm_start %lx > vm_end %lx\n",
308 vma->vm_start, vma->vm_end);
309 bug = 1;
311 spin_lock(&mm->page_table_lock);
312 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
313 pr_emerg("free gap %lx, correct %lx\n",
314 vma->rb_subtree_gap,
315 vma_compute_subtree_gap(vma));
316 bug = 1;
318 spin_unlock(&mm->page_table_lock);
319 i++;
320 pn = nd;
321 prev = vma->vm_start;
322 pend = vma->vm_end;
324 j = 0;
325 for (nd = pn; nd; nd = rb_prev(nd))
326 j++;
327 if (i != j) {
328 pr_emerg("backwards %d, forwards %d\n", j, i);
329 bug = 1;
331 return bug ? -1 : i;
334 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
336 struct rb_node *nd;
338 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 struct vm_area_struct *vma;
340 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 VM_BUG_ON_VMA(vma != ignore &&
342 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
343 vma);
347 static void validate_mm(struct mm_struct *mm)
349 int bug = 0;
350 int i = 0;
351 unsigned long highest_address = 0;
352 struct vm_area_struct *vma = mm->mmap;
354 while (vma) {
355 struct anon_vma *anon_vma = vma->anon_vma;
356 struct anon_vma_chain *avc;
358 if (anon_vma) {
359 anon_vma_lock_read(anon_vma);
360 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361 anon_vma_interval_tree_verify(avc);
362 anon_vma_unlock_read(anon_vma);
365 highest_address = vm_end_gap(vma);
366 vma = vma->vm_next;
367 i++;
369 if (i != mm->map_count) {
370 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
371 bug = 1;
373 if (highest_address != mm->highest_vm_end) {
374 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
375 mm->highest_vm_end, highest_address);
376 bug = 1;
378 i = browse_rb(mm);
379 if (i != mm->map_count) {
380 if (i != -1)
381 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
382 bug = 1;
384 VM_BUG_ON_MM(bug, mm);
386 #else
387 #define validate_mm_rb(root, ignore) do { } while (0)
388 #define validate_mm(mm) do { } while (0)
389 #endif
391 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
392 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
395 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
396 * vma->vm_prev->vm_end values changed, without modifying the vma's position
397 * in the rbtree.
399 static void vma_gap_update(struct vm_area_struct *vma)
402 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
403 * function that does exacltly what we want.
405 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
408 static inline void vma_rb_insert(struct vm_area_struct *vma,
409 struct rb_root *root)
411 /* All rb_subtree_gap values must be consistent prior to insertion */
412 validate_mm_rb(root, NULL);
414 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
417 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
420 * Note rb_erase_augmented is a fairly large inline function,
421 * so make sure we instantiate it only once with our desired
422 * augmented rbtree callbacks.
424 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
427 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
428 struct rb_root *root,
429 struct vm_area_struct *ignore)
432 * All rb_subtree_gap values must be consistent prior to erase,
433 * with the possible exception of the "next" vma being erased if
434 * next->vm_start was reduced.
436 validate_mm_rb(root, ignore);
438 __vma_rb_erase(vma, root);
441 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
442 struct rb_root *root)
445 * All rb_subtree_gap values must be consistent prior to erase,
446 * with the possible exception of the vma being erased.
448 validate_mm_rb(root, vma);
450 __vma_rb_erase(vma, root);
454 * vma has some anon_vma assigned, and is already inserted on that
455 * anon_vma's interval trees.
457 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
458 * vma must be removed from the anon_vma's interval trees using
459 * anon_vma_interval_tree_pre_update_vma().
461 * After the update, the vma will be reinserted using
462 * anon_vma_interval_tree_post_update_vma().
464 * The entire update must be protected by exclusive mmap_sem and by
465 * the root anon_vma's mutex.
467 static inline void
468 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
470 struct anon_vma_chain *avc;
472 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
473 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
476 static inline void
477 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
479 struct anon_vma_chain *avc;
481 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
485 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
486 unsigned long end, struct vm_area_struct **pprev,
487 struct rb_node ***rb_link, struct rb_node **rb_parent)
489 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
491 __rb_link = &mm->mm_rb.rb_node;
492 rb_prev = __rb_parent = NULL;
494 while (*__rb_link) {
495 struct vm_area_struct *vma_tmp;
497 __rb_parent = *__rb_link;
498 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
500 if (vma_tmp->vm_end > addr) {
501 /* Fail if an existing vma overlaps the area */
502 if (vma_tmp->vm_start < end)
503 return -ENOMEM;
504 __rb_link = &__rb_parent->rb_left;
505 } else {
506 rb_prev = __rb_parent;
507 __rb_link = &__rb_parent->rb_right;
511 *pprev = NULL;
512 if (rb_prev)
513 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
514 *rb_link = __rb_link;
515 *rb_parent = __rb_parent;
516 return 0;
519 static unsigned long count_vma_pages_range(struct mm_struct *mm,
520 unsigned long addr, unsigned long end)
522 unsigned long nr_pages = 0;
523 struct vm_area_struct *vma;
525 /* Find first overlaping mapping */
526 vma = find_vma_intersection(mm, addr, end);
527 if (!vma)
528 return 0;
530 nr_pages = (min(end, vma->vm_end) -
531 max(addr, vma->vm_start)) >> PAGE_SHIFT;
533 /* Iterate over the rest of the overlaps */
534 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
535 unsigned long overlap_len;
537 if (vma->vm_start > end)
538 break;
540 overlap_len = min(end, vma->vm_end) - vma->vm_start;
541 nr_pages += overlap_len >> PAGE_SHIFT;
544 return nr_pages;
547 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
548 struct rb_node **rb_link, struct rb_node *rb_parent)
550 /* Update tracking information for the gap following the new vma. */
551 if (vma->vm_next)
552 vma_gap_update(vma->vm_next);
553 else
554 mm->highest_vm_end = vm_end_gap(vma);
557 * vma->vm_prev wasn't known when we followed the rbtree to find the
558 * correct insertion point for that vma. As a result, we could not
559 * update the vma vm_rb parents rb_subtree_gap values on the way down.
560 * So, we first insert the vma with a zero rb_subtree_gap value
561 * (to be consistent with what we did on the way down), and then
562 * immediately update the gap to the correct value. Finally we
563 * rebalance the rbtree after all augmented values have been set.
565 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
566 vma->rb_subtree_gap = 0;
567 vma_gap_update(vma);
568 vma_rb_insert(vma, &mm->mm_rb);
571 static void __vma_link_file(struct vm_area_struct *vma)
573 struct file *file;
575 file = vma->vm_file;
576 if (file) {
577 struct address_space *mapping = file->f_mapping;
579 if (vma->vm_flags & VM_DENYWRITE)
580 atomic_dec(&file_inode(file)->i_writecount);
581 if (vma->vm_flags & VM_SHARED)
582 atomic_inc(&mapping->i_mmap_writable);
584 flush_dcache_mmap_lock(mapping);
585 vma_interval_tree_insert(vma, &mapping->i_mmap);
586 flush_dcache_mmap_unlock(mapping);
590 static void
591 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
592 struct vm_area_struct *prev, struct rb_node **rb_link,
593 struct rb_node *rb_parent)
595 __vma_link_list(mm, vma, prev, rb_parent);
596 __vma_link_rb(mm, vma, rb_link, rb_parent);
599 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
600 struct vm_area_struct *prev, struct rb_node **rb_link,
601 struct rb_node *rb_parent)
603 struct address_space *mapping = NULL;
605 if (vma->vm_file) {
606 mapping = vma->vm_file->f_mapping;
607 i_mmap_lock_write(mapping);
610 __vma_link(mm, vma, prev, rb_link, rb_parent);
611 __vma_link_file(vma);
613 if (mapping)
614 i_mmap_unlock_write(mapping);
616 mm->map_count++;
617 validate_mm(mm);
621 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
622 * mm's list and rbtree. It has already been inserted into the interval tree.
624 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
626 struct vm_area_struct *prev;
627 struct rb_node **rb_link, *rb_parent;
629 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
630 &prev, &rb_link, &rb_parent))
631 BUG();
632 __vma_link(mm, vma, prev, rb_link, rb_parent);
633 mm->map_count++;
636 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
637 struct vm_area_struct *vma,
638 struct vm_area_struct *prev,
639 bool has_prev,
640 struct vm_area_struct *ignore)
642 struct vm_area_struct *next;
644 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
645 next = vma->vm_next;
646 if (has_prev)
647 prev->vm_next = next;
648 else {
649 prev = vma->vm_prev;
650 if (prev)
651 prev->vm_next = next;
652 else
653 mm->mmap = next;
655 if (next)
656 next->vm_prev = prev;
658 /* Kill the cache */
659 vmacache_invalidate(mm);
662 static inline void __vma_unlink_prev(struct mm_struct *mm,
663 struct vm_area_struct *vma,
664 struct vm_area_struct *prev)
666 __vma_unlink_common(mm, vma, prev, true, vma);
670 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
671 * is already present in an i_mmap tree without adjusting the tree.
672 * The following helper function should be used when such adjustments
673 * are necessary. The "insert" vma (if any) is to be inserted
674 * before we drop the necessary locks.
676 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
677 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
678 struct vm_area_struct *expand)
680 struct mm_struct *mm = vma->vm_mm;
681 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
682 struct address_space *mapping = NULL;
683 struct rb_root_cached *root = NULL;
684 struct anon_vma *anon_vma = NULL;
685 struct file *file = vma->vm_file;
686 bool start_changed = false, end_changed = false;
687 long adjust_next = 0;
688 int remove_next = 0;
690 if (next && !insert) {
691 struct vm_area_struct *exporter = NULL, *importer = NULL;
693 if (end >= next->vm_end) {
695 * vma expands, overlapping all the next, and
696 * perhaps the one after too (mprotect case 6).
697 * The only other cases that gets here are
698 * case 1, case 7 and case 8.
700 if (next == expand) {
702 * The only case where we don't expand "vma"
703 * and we expand "next" instead is case 8.
705 VM_WARN_ON(end != next->vm_end);
707 * remove_next == 3 means we're
708 * removing "vma" and that to do so we
709 * swapped "vma" and "next".
711 remove_next = 3;
712 VM_WARN_ON(file != next->vm_file);
713 swap(vma, next);
714 } else {
715 VM_WARN_ON(expand != vma);
717 * case 1, 6, 7, remove_next == 2 is case 6,
718 * remove_next == 1 is case 1 or 7.
720 remove_next = 1 + (end > next->vm_end);
721 VM_WARN_ON(remove_next == 2 &&
722 end != next->vm_next->vm_end);
723 VM_WARN_ON(remove_next == 1 &&
724 end != next->vm_end);
725 /* trim end to next, for case 6 first pass */
726 end = next->vm_end;
729 exporter = next;
730 importer = vma;
733 * If next doesn't have anon_vma, import from vma after
734 * next, if the vma overlaps with it.
736 if (remove_next == 2 && !next->anon_vma)
737 exporter = next->vm_next;
739 } else if (end > next->vm_start) {
741 * vma expands, overlapping part of the next:
742 * mprotect case 5 shifting the boundary up.
744 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
745 exporter = next;
746 importer = vma;
747 VM_WARN_ON(expand != importer);
748 } else if (end < vma->vm_end) {
750 * vma shrinks, and !insert tells it's not
751 * split_vma inserting another: so it must be
752 * mprotect case 4 shifting the boundary down.
754 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
755 exporter = vma;
756 importer = next;
757 VM_WARN_ON(expand != importer);
761 * Easily overlooked: when mprotect shifts the boundary,
762 * make sure the expanding vma has anon_vma set if the
763 * shrinking vma had, to cover any anon pages imported.
765 if (exporter && exporter->anon_vma && !importer->anon_vma) {
766 int error;
768 importer->anon_vma = exporter->anon_vma;
769 error = anon_vma_clone(importer, exporter);
770 if (error)
771 return error;
774 again:
775 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
777 if (file) {
778 mapping = file->f_mapping;
779 root = &mapping->i_mmap;
780 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
782 if (adjust_next)
783 uprobe_munmap(next, next->vm_start, next->vm_end);
785 i_mmap_lock_write(mapping);
786 if (insert) {
788 * Put into interval tree now, so instantiated pages
789 * are visible to arm/parisc __flush_dcache_page
790 * throughout; but we cannot insert into address
791 * space until vma start or end is updated.
793 __vma_link_file(insert);
797 anon_vma = vma->anon_vma;
798 if (!anon_vma && adjust_next)
799 anon_vma = next->anon_vma;
800 if (anon_vma) {
801 VM_WARN_ON(adjust_next && next->anon_vma &&
802 anon_vma != next->anon_vma);
803 anon_vma_lock_write(anon_vma);
804 anon_vma_interval_tree_pre_update_vma(vma);
805 if (adjust_next)
806 anon_vma_interval_tree_pre_update_vma(next);
809 if (root) {
810 flush_dcache_mmap_lock(mapping);
811 vma_interval_tree_remove(vma, root);
812 if (adjust_next)
813 vma_interval_tree_remove(next, root);
816 if (start != vma->vm_start) {
817 vma->vm_start = start;
818 start_changed = true;
820 if (end != vma->vm_end) {
821 vma->vm_end = end;
822 end_changed = true;
824 vma->vm_pgoff = pgoff;
825 if (adjust_next) {
826 next->vm_start += adjust_next << PAGE_SHIFT;
827 next->vm_pgoff += adjust_next;
830 if (root) {
831 if (adjust_next)
832 vma_interval_tree_insert(next, root);
833 vma_interval_tree_insert(vma, root);
834 flush_dcache_mmap_unlock(mapping);
837 if (remove_next) {
839 * vma_merge has merged next into vma, and needs
840 * us to remove next before dropping the locks.
842 if (remove_next != 3)
843 __vma_unlink_prev(mm, next, vma);
844 else
846 * vma is not before next if they've been
847 * swapped.
849 * pre-swap() next->vm_start was reduced so
850 * tell validate_mm_rb to ignore pre-swap()
851 * "next" (which is stored in post-swap()
852 * "vma").
854 __vma_unlink_common(mm, next, NULL, false, vma);
855 if (file)
856 __remove_shared_vm_struct(next, file, mapping);
857 } else if (insert) {
859 * split_vma has split insert from vma, and needs
860 * us to insert it before dropping the locks
861 * (it may either follow vma or precede it).
863 __insert_vm_struct(mm, insert);
864 } else {
865 if (start_changed)
866 vma_gap_update(vma);
867 if (end_changed) {
868 if (!next)
869 mm->highest_vm_end = vm_end_gap(vma);
870 else if (!adjust_next)
871 vma_gap_update(next);
875 if (anon_vma) {
876 anon_vma_interval_tree_post_update_vma(vma);
877 if (adjust_next)
878 anon_vma_interval_tree_post_update_vma(next);
879 anon_vma_unlock_write(anon_vma);
881 if (mapping)
882 i_mmap_unlock_write(mapping);
884 if (root) {
885 uprobe_mmap(vma);
887 if (adjust_next)
888 uprobe_mmap(next);
891 if (remove_next) {
892 if (file) {
893 uprobe_munmap(next, next->vm_start, next->vm_end);
894 fput(file);
896 if (next->anon_vma)
897 anon_vma_merge(vma, next);
898 mm->map_count--;
899 mpol_put(vma_policy(next));
900 kmem_cache_free(vm_area_cachep, next);
902 * In mprotect's case 6 (see comments on vma_merge),
903 * we must remove another next too. It would clutter
904 * up the code too much to do both in one go.
906 if (remove_next != 3) {
908 * If "next" was removed and vma->vm_end was
909 * expanded (up) over it, in turn
910 * "next->vm_prev->vm_end" changed and the
911 * "vma->vm_next" gap must be updated.
913 next = vma->vm_next;
914 } else {
916 * For the scope of the comment "next" and
917 * "vma" considered pre-swap(): if "vma" was
918 * removed, next->vm_start was expanded (down)
919 * over it and the "next" gap must be updated.
920 * Because of the swap() the post-swap() "vma"
921 * actually points to pre-swap() "next"
922 * (post-swap() "next" as opposed is now a
923 * dangling pointer).
925 next = vma;
927 if (remove_next == 2) {
928 remove_next = 1;
929 end = next->vm_end;
930 goto again;
932 else if (next)
933 vma_gap_update(next);
934 else {
936 * If remove_next == 2 we obviously can't
937 * reach this path.
939 * If remove_next == 3 we can't reach this
940 * path because pre-swap() next is always not
941 * NULL. pre-swap() "next" is not being
942 * removed and its next->vm_end is not altered
943 * (and furthermore "end" already matches
944 * next->vm_end in remove_next == 3).
946 * We reach this only in the remove_next == 1
947 * case if the "next" vma that was removed was
948 * the highest vma of the mm. However in such
949 * case next->vm_end == "end" and the extended
950 * "vma" has vma->vm_end == next->vm_end so
951 * mm->highest_vm_end doesn't need any update
952 * in remove_next == 1 case.
954 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
957 if (insert && file)
958 uprobe_mmap(insert);
960 validate_mm(mm);
962 return 0;
966 * If the vma has a ->close operation then the driver probably needs to release
967 * per-vma resources, so we don't attempt to merge those.
969 static inline int is_mergeable_vma(struct vm_area_struct *vma,
970 struct file *file, unsigned long vm_flags,
971 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
974 * VM_SOFTDIRTY should not prevent from VMA merging, if we
975 * match the flags but dirty bit -- the caller should mark
976 * merged VMA as dirty. If dirty bit won't be excluded from
977 * comparison, we increase pressue on the memory system forcing
978 * the kernel to generate new VMAs when old one could be
979 * extended instead.
981 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
982 return 0;
983 if (vma->vm_file != file)
984 return 0;
985 if (vma->vm_ops && vma->vm_ops->close)
986 return 0;
987 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
988 return 0;
989 return 1;
992 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
993 struct anon_vma *anon_vma2,
994 struct vm_area_struct *vma)
997 * The list_is_singular() test is to avoid merging VMA cloned from
998 * parents. This can improve scalability caused by anon_vma lock.
1000 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1001 list_is_singular(&vma->anon_vma_chain)))
1002 return 1;
1003 return anon_vma1 == anon_vma2;
1007 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1008 * in front of (at a lower virtual address and file offset than) the vma.
1010 * We cannot merge two vmas if they have differently assigned (non-NULL)
1011 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1013 * We don't check here for the merged mmap wrapping around the end of pagecache
1014 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1015 * wrap, nor mmaps which cover the final page at index -1UL.
1017 static int
1018 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1019 struct anon_vma *anon_vma, struct file *file,
1020 pgoff_t vm_pgoff,
1021 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1023 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1024 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1025 if (vma->vm_pgoff == vm_pgoff)
1026 return 1;
1028 return 0;
1032 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1033 * beyond (at a higher virtual address and file offset than) the vma.
1035 * We cannot merge two vmas if they have differently assigned (non-NULL)
1036 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1038 static int
1039 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1040 struct anon_vma *anon_vma, struct file *file,
1041 pgoff_t vm_pgoff,
1042 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1044 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1045 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1046 pgoff_t vm_pglen;
1047 vm_pglen = vma_pages(vma);
1048 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1049 return 1;
1051 return 0;
1055 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1056 * whether that can be merged with its predecessor or its successor.
1057 * Or both (it neatly fills a hole).
1059 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1060 * certain not to be mapped by the time vma_merge is called; but when
1061 * called for mprotect, it is certain to be already mapped (either at
1062 * an offset within prev, or at the start of next), and the flags of
1063 * this area are about to be changed to vm_flags - and the no-change
1064 * case has already been eliminated.
1066 * The following mprotect cases have to be considered, where AAAA is
1067 * the area passed down from mprotect_fixup, never extending beyond one
1068 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1070 * AAAA AAAA AAAA AAAA
1071 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1072 * cannot merge might become might become might become
1073 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1074 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1075 * mremap move: PPPPXXXXXXXX 8
1076 * AAAA
1077 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1078 * might become case 1 below case 2 below case 3 below
1080 * It is important for case 8 that the the vma NNNN overlapping the
1081 * region AAAA is never going to extended over XXXX. Instead XXXX must
1082 * be extended in region AAAA and NNNN must be removed. This way in
1083 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1084 * rmap_locks, the properties of the merged vma will be already
1085 * correct for the whole merged range. Some of those properties like
1086 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1087 * be correct for the whole merged range immediately after the
1088 * rmap_locks are released. Otherwise if XXXX would be removed and
1089 * NNNN would be extended over the XXXX range, remove_migration_ptes
1090 * or other rmap walkers (if working on addresses beyond the "end"
1091 * parameter) may establish ptes with the wrong permissions of NNNN
1092 * instead of the right permissions of XXXX.
1094 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1095 struct vm_area_struct *prev, unsigned long addr,
1096 unsigned long end, unsigned long vm_flags,
1097 struct anon_vma *anon_vma, struct file *file,
1098 pgoff_t pgoff, struct mempolicy *policy,
1099 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1101 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1102 struct vm_area_struct *area, *next;
1103 int err;
1106 * We later require that vma->vm_flags == vm_flags,
1107 * so this tests vma->vm_flags & VM_SPECIAL, too.
1109 if (vm_flags & VM_SPECIAL)
1110 return NULL;
1112 if (prev)
1113 next = prev->vm_next;
1114 else
1115 next = mm->mmap;
1116 area = next;
1117 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1118 next = next->vm_next;
1120 /* verify some invariant that must be enforced by the caller */
1121 VM_WARN_ON(prev && addr <= prev->vm_start);
1122 VM_WARN_ON(area && end > area->vm_end);
1123 VM_WARN_ON(addr >= end);
1126 * Can it merge with the predecessor?
1128 if (prev && prev->vm_end == addr &&
1129 mpol_equal(vma_policy(prev), policy) &&
1130 can_vma_merge_after(prev, vm_flags,
1131 anon_vma, file, pgoff,
1132 vm_userfaultfd_ctx)) {
1134 * OK, it can. Can we now merge in the successor as well?
1136 if (next && end == next->vm_start &&
1137 mpol_equal(policy, vma_policy(next)) &&
1138 can_vma_merge_before(next, vm_flags,
1139 anon_vma, file,
1140 pgoff+pglen,
1141 vm_userfaultfd_ctx) &&
1142 is_mergeable_anon_vma(prev->anon_vma,
1143 next->anon_vma, NULL)) {
1144 /* cases 1, 6 */
1145 err = __vma_adjust(prev, prev->vm_start,
1146 next->vm_end, prev->vm_pgoff, NULL,
1147 prev);
1148 } else /* cases 2, 5, 7 */
1149 err = __vma_adjust(prev, prev->vm_start,
1150 end, prev->vm_pgoff, NULL, prev);
1151 if (err)
1152 return NULL;
1153 khugepaged_enter_vma_merge(prev, vm_flags);
1154 return prev;
1158 * Can this new request be merged in front of next?
1160 if (next && end == next->vm_start &&
1161 mpol_equal(policy, vma_policy(next)) &&
1162 can_vma_merge_before(next, vm_flags,
1163 anon_vma, file, pgoff+pglen,
1164 vm_userfaultfd_ctx)) {
1165 if (prev && addr < prev->vm_end) /* case 4 */
1166 err = __vma_adjust(prev, prev->vm_start,
1167 addr, prev->vm_pgoff, NULL, next);
1168 else { /* cases 3, 8 */
1169 err = __vma_adjust(area, addr, next->vm_end,
1170 next->vm_pgoff - pglen, NULL, next);
1172 * In case 3 area is already equal to next and
1173 * this is a noop, but in case 8 "area" has
1174 * been removed and next was expanded over it.
1176 area = next;
1178 if (err)
1179 return NULL;
1180 khugepaged_enter_vma_merge(area, vm_flags);
1181 return area;
1184 return NULL;
1188 * Rough compatbility check to quickly see if it's even worth looking
1189 * at sharing an anon_vma.
1191 * They need to have the same vm_file, and the flags can only differ
1192 * in things that mprotect may change.
1194 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1195 * we can merge the two vma's. For example, we refuse to merge a vma if
1196 * there is a vm_ops->close() function, because that indicates that the
1197 * driver is doing some kind of reference counting. But that doesn't
1198 * really matter for the anon_vma sharing case.
1200 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1202 return a->vm_end == b->vm_start &&
1203 mpol_equal(vma_policy(a), vma_policy(b)) &&
1204 a->vm_file == b->vm_file &&
1205 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1206 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1210 * Do some basic sanity checking to see if we can re-use the anon_vma
1211 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1212 * the same as 'old', the other will be the new one that is trying
1213 * to share the anon_vma.
1215 * NOTE! This runs with mm_sem held for reading, so it is possible that
1216 * the anon_vma of 'old' is concurrently in the process of being set up
1217 * by another page fault trying to merge _that_. But that's ok: if it
1218 * is being set up, that automatically means that it will be a singleton
1219 * acceptable for merging, so we can do all of this optimistically. But
1220 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1222 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1223 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1224 * is to return an anon_vma that is "complex" due to having gone through
1225 * a fork).
1227 * We also make sure that the two vma's are compatible (adjacent,
1228 * and with the same memory policies). That's all stable, even with just
1229 * a read lock on the mm_sem.
1231 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1233 if (anon_vma_compatible(a, b)) {
1234 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1236 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1237 return anon_vma;
1239 return NULL;
1243 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1244 * neighbouring vmas for a suitable anon_vma, before it goes off
1245 * to allocate a new anon_vma. It checks because a repetitive
1246 * sequence of mprotects and faults may otherwise lead to distinct
1247 * anon_vmas being allocated, preventing vma merge in subsequent
1248 * mprotect.
1250 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1252 struct anon_vma *anon_vma;
1253 struct vm_area_struct *near;
1255 near = vma->vm_next;
1256 if (!near)
1257 goto try_prev;
1259 anon_vma = reusable_anon_vma(near, vma, near);
1260 if (anon_vma)
1261 return anon_vma;
1262 try_prev:
1263 near = vma->vm_prev;
1264 if (!near)
1265 goto none;
1267 anon_vma = reusable_anon_vma(near, near, vma);
1268 if (anon_vma)
1269 return anon_vma;
1270 none:
1272 * There's no absolute need to look only at touching neighbours:
1273 * we could search further afield for "compatible" anon_vmas.
1274 * But it would probably just be a waste of time searching,
1275 * or lead to too many vmas hanging off the same anon_vma.
1276 * We're trying to allow mprotect remerging later on,
1277 * not trying to minimize memory used for anon_vmas.
1279 return NULL;
1283 * If a hint addr is less than mmap_min_addr change hint to be as
1284 * low as possible but still greater than mmap_min_addr
1286 static inline unsigned long round_hint_to_min(unsigned long hint)
1288 hint &= PAGE_MASK;
1289 if (((void *)hint != NULL) &&
1290 (hint < mmap_min_addr))
1291 return PAGE_ALIGN(mmap_min_addr);
1292 return hint;
1295 static inline int mlock_future_check(struct mm_struct *mm,
1296 unsigned long flags,
1297 unsigned long len)
1299 unsigned long locked, lock_limit;
1301 /* mlock MCL_FUTURE? */
1302 if (flags & VM_LOCKED) {
1303 locked = len >> PAGE_SHIFT;
1304 locked += mm->locked_vm;
1305 lock_limit = rlimit(RLIMIT_MEMLOCK);
1306 lock_limit >>= PAGE_SHIFT;
1307 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1308 return -EAGAIN;
1310 return 0;
1313 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1315 if (S_ISREG(inode->i_mode))
1316 return MAX_LFS_FILESIZE;
1318 if (S_ISBLK(inode->i_mode))
1319 return MAX_LFS_FILESIZE;
1321 /* Special "we do even unsigned file positions" case */
1322 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1323 return 0;
1325 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1326 return ULONG_MAX;
1329 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1330 unsigned long pgoff, unsigned long len)
1332 u64 maxsize = file_mmap_size_max(file, inode);
1334 if (maxsize && len > maxsize)
1335 return false;
1336 maxsize -= len;
1337 if (pgoff > maxsize >> PAGE_SHIFT)
1338 return false;
1339 return true;
1343 * The caller must hold down_write(&current->mm->mmap_sem).
1345 unsigned long do_mmap(struct file *file, unsigned long addr,
1346 unsigned long len, unsigned long prot,
1347 unsigned long flags, vm_flags_t vm_flags,
1348 unsigned long pgoff, unsigned long *populate,
1349 struct list_head *uf)
1351 struct mm_struct *mm = current->mm;
1352 int pkey = 0;
1354 *populate = 0;
1356 if (!len)
1357 return -EINVAL;
1360 * Does the application expect PROT_READ to imply PROT_EXEC?
1362 * (the exception is when the underlying filesystem is noexec
1363 * mounted, in which case we dont add PROT_EXEC.)
1365 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1366 if (!(file && path_noexec(&file->f_path)))
1367 prot |= PROT_EXEC;
1369 if (!(flags & MAP_FIXED))
1370 addr = round_hint_to_min(addr);
1372 /* Careful about overflows.. */
1373 len = PAGE_ALIGN(len);
1374 if (!len)
1375 return -ENOMEM;
1377 /* offset overflow? */
1378 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1379 return -EOVERFLOW;
1381 /* Too many mappings? */
1382 if (mm->map_count > sysctl_max_map_count)
1383 return -ENOMEM;
1385 /* Obtain the address to map to. we verify (or select) it and ensure
1386 * that it represents a valid section of the address space.
1388 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1389 if (offset_in_page(addr))
1390 return addr;
1392 if (prot == PROT_EXEC) {
1393 pkey = execute_only_pkey(mm);
1394 if (pkey < 0)
1395 pkey = 0;
1398 /* Do simple checking here so the lower-level routines won't have
1399 * to. we assume access permissions have been handled by the open
1400 * of the memory object, so we don't do any here.
1402 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1403 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1405 if (flags & MAP_LOCKED)
1406 if (!can_do_mlock())
1407 return -EPERM;
1409 if (mlock_future_check(mm, vm_flags, len))
1410 return -EAGAIN;
1412 if (file) {
1413 struct inode *inode = file_inode(file);
1415 if (!file_mmap_ok(file, inode, pgoff, len))
1416 return -EOVERFLOW;
1418 switch (flags & MAP_TYPE) {
1419 case MAP_SHARED:
1420 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1421 return -EACCES;
1424 * Make sure we don't allow writing to an append-only
1425 * file..
1427 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1428 return -EACCES;
1431 * Make sure there are no mandatory locks on the file.
1433 if (locks_verify_locked(file))
1434 return -EAGAIN;
1436 vm_flags |= VM_SHARED | VM_MAYSHARE;
1437 if (!(file->f_mode & FMODE_WRITE))
1438 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1440 /* fall through */
1441 case MAP_PRIVATE:
1442 if (!(file->f_mode & FMODE_READ))
1443 return -EACCES;
1444 if (path_noexec(&file->f_path)) {
1445 if (vm_flags & VM_EXEC)
1446 return -EPERM;
1447 vm_flags &= ~VM_MAYEXEC;
1450 if (!file->f_op->mmap)
1451 return -ENODEV;
1452 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1453 return -EINVAL;
1454 break;
1456 default:
1457 return -EINVAL;
1459 } else {
1460 switch (flags & MAP_TYPE) {
1461 case MAP_SHARED:
1462 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1463 return -EINVAL;
1465 * Ignore pgoff.
1467 pgoff = 0;
1468 vm_flags |= VM_SHARED | VM_MAYSHARE;
1469 break;
1470 case MAP_PRIVATE:
1472 * Set pgoff according to addr for anon_vma.
1474 pgoff = addr >> PAGE_SHIFT;
1475 break;
1476 default:
1477 return -EINVAL;
1482 * Set 'VM_NORESERVE' if we should not account for the
1483 * memory use of this mapping.
1485 if (flags & MAP_NORESERVE) {
1486 /* We honor MAP_NORESERVE if allowed to overcommit */
1487 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1488 vm_flags |= VM_NORESERVE;
1490 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1491 if (file && is_file_hugepages(file))
1492 vm_flags |= VM_NORESERVE;
1495 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1496 if (!IS_ERR_VALUE(addr) &&
1497 ((vm_flags & VM_LOCKED) ||
1498 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1499 *populate = len;
1500 return addr;
1503 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1504 unsigned long, prot, unsigned long, flags,
1505 unsigned long, fd, unsigned long, pgoff)
1507 struct file *file = NULL;
1508 unsigned long retval;
1510 if (!(flags & MAP_ANONYMOUS)) {
1511 audit_mmap_fd(fd, flags);
1512 file = fget(fd);
1513 if (!file)
1514 return -EBADF;
1515 if (is_file_hugepages(file))
1516 len = ALIGN(len, huge_page_size(hstate_file(file)));
1517 retval = -EINVAL;
1518 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1519 goto out_fput;
1520 } else if (flags & MAP_HUGETLB) {
1521 struct user_struct *user = NULL;
1522 struct hstate *hs;
1524 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1525 if (!hs)
1526 return -EINVAL;
1528 len = ALIGN(len, huge_page_size(hs));
1530 * VM_NORESERVE is used because the reservations will be
1531 * taken when vm_ops->mmap() is called
1532 * A dummy user value is used because we are not locking
1533 * memory so no accounting is necessary
1535 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1536 VM_NORESERVE,
1537 &user, HUGETLB_ANONHUGE_INODE,
1538 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1539 if (IS_ERR(file))
1540 return PTR_ERR(file);
1543 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1545 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1546 out_fput:
1547 if (file)
1548 fput(file);
1549 return retval;
1552 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1553 struct mmap_arg_struct {
1554 unsigned long addr;
1555 unsigned long len;
1556 unsigned long prot;
1557 unsigned long flags;
1558 unsigned long fd;
1559 unsigned long offset;
1562 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1564 struct mmap_arg_struct a;
1566 if (copy_from_user(&a, arg, sizeof(a)))
1567 return -EFAULT;
1568 if (offset_in_page(a.offset))
1569 return -EINVAL;
1571 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1572 a.offset >> PAGE_SHIFT);
1574 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1577 * Some shared mappigns will want the pages marked read-only
1578 * to track write events. If so, we'll downgrade vm_page_prot
1579 * to the private version (using protection_map[] without the
1580 * VM_SHARED bit).
1582 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1584 vm_flags_t vm_flags = vma->vm_flags;
1585 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1587 /* If it was private or non-writable, the write bit is already clear */
1588 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1589 return 0;
1591 /* The backer wishes to know when pages are first written to? */
1592 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1593 return 1;
1595 /* The open routine did something to the protections that pgprot_modify
1596 * won't preserve? */
1597 if (pgprot_val(vm_page_prot) !=
1598 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1599 return 0;
1601 /* Do we need to track softdirty? */
1602 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1603 return 1;
1605 /* Specialty mapping? */
1606 if (vm_flags & VM_PFNMAP)
1607 return 0;
1609 /* Can the mapping track the dirty pages? */
1610 return vma->vm_file && vma->vm_file->f_mapping &&
1611 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1615 * We account for memory if it's a private writeable mapping,
1616 * not hugepages and VM_NORESERVE wasn't set.
1618 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1621 * hugetlb has its own accounting separate from the core VM
1622 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1624 if (file && is_file_hugepages(file))
1625 return 0;
1627 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1630 unsigned long mmap_region(struct file *file, unsigned long addr,
1631 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1632 struct list_head *uf)
1634 struct mm_struct *mm = current->mm;
1635 struct vm_area_struct *vma, *prev;
1636 int error;
1637 struct rb_node **rb_link, *rb_parent;
1638 unsigned long charged = 0;
1640 /* Check against address space limit. */
1641 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1642 unsigned long nr_pages;
1645 * MAP_FIXED may remove pages of mappings that intersects with
1646 * requested mapping. Account for the pages it would unmap.
1648 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1650 if (!may_expand_vm(mm, vm_flags,
1651 (len >> PAGE_SHIFT) - nr_pages))
1652 return -ENOMEM;
1655 /* Clear old maps */
1656 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1657 &rb_parent)) {
1658 if (do_munmap(mm, addr, len, uf))
1659 return -ENOMEM;
1663 * Private writable mapping: check memory availability
1665 if (accountable_mapping(file, vm_flags)) {
1666 charged = len >> PAGE_SHIFT;
1667 if (security_vm_enough_memory_mm(mm, charged))
1668 return -ENOMEM;
1669 vm_flags |= VM_ACCOUNT;
1673 * Can we just expand an old mapping?
1675 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1676 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1677 if (vma)
1678 goto out;
1681 * Determine the object being mapped and call the appropriate
1682 * specific mapper. the address has already been validated, but
1683 * not unmapped, but the maps are removed from the list.
1685 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1686 if (!vma) {
1687 error = -ENOMEM;
1688 goto unacct_error;
1691 vma->vm_mm = mm;
1692 vma->vm_start = addr;
1693 vma->vm_end = addr + len;
1694 vma->vm_flags = vm_flags;
1695 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1696 vma->vm_pgoff = pgoff;
1697 INIT_LIST_HEAD(&vma->anon_vma_chain);
1699 if (file) {
1700 if (vm_flags & VM_DENYWRITE) {
1701 error = deny_write_access(file);
1702 if (error)
1703 goto free_vma;
1705 if (vm_flags & VM_SHARED) {
1706 error = mapping_map_writable(file->f_mapping);
1707 if (error)
1708 goto allow_write_and_free_vma;
1711 /* ->mmap() can change vma->vm_file, but must guarantee that
1712 * vma_link() below can deny write-access if VM_DENYWRITE is set
1713 * and map writably if VM_SHARED is set. This usually means the
1714 * new file must not have been exposed to user-space, yet.
1716 vma->vm_file = get_file(file);
1717 error = call_mmap(file, vma);
1718 if (error)
1719 goto unmap_and_free_vma;
1721 /* Can addr have changed??
1723 * Answer: Yes, several device drivers can do it in their
1724 * f_op->mmap method. -DaveM
1725 * Bug: If addr is changed, prev, rb_link, rb_parent should
1726 * be updated for vma_link()
1728 WARN_ON_ONCE(addr != vma->vm_start);
1730 addr = vma->vm_start;
1731 vm_flags = vma->vm_flags;
1732 } else if (vm_flags & VM_SHARED) {
1733 error = shmem_zero_setup(vma);
1734 if (error)
1735 goto free_vma;
1738 vma_link(mm, vma, prev, rb_link, rb_parent);
1739 /* Once vma denies write, undo our temporary denial count */
1740 if (file) {
1741 if (vm_flags & VM_SHARED)
1742 mapping_unmap_writable(file->f_mapping);
1743 if (vm_flags & VM_DENYWRITE)
1744 allow_write_access(file);
1746 file = vma->vm_file;
1747 out:
1748 perf_event_mmap(vma);
1750 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1751 if (vm_flags & VM_LOCKED) {
1752 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1753 vma == get_gate_vma(current->mm)))
1754 mm->locked_vm += (len >> PAGE_SHIFT);
1755 else
1756 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1759 if (file)
1760 uprobe_mmap(vma);
1763 * New (or expanded) vma always get soft dirty status.
1764 * Otherwise user-space soft-dirty page tracker won't
1765 * be able to distinguish situation when vma area unmapped,
1766 * then new mapped in-place (which must be aimed as
1767 * a completely new data area).
1769 vma->vm_flags |= VM_SOFTDIRTY;
1771 vma_set_page_prot(vma);
1773 return addr;
1775 unmap_and_free_vma:
1776 vma->vm_file = NULL;
1777 fput(file);
1779 /* Undo any partial mapping done by a device driver. */
1780 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1781 charged = 0;
1782 if (vm_flags & VM_SHARED)
1783 mapping_unmap_writable(file->f_mapping);
1784 allow_write_and_free_vma:
1785 if (vm_flags & VM_DENYWRITE)
1786 allow_write_access(file);
1787 free_vma:
1788 kmem_cache_free(vm_area_cachep, vma);
1789 unacct_error:
1790 if (charged)
1791 vm_unacct_memory(charged);
1792 return error;
1795 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1798 * We implement the search by looking for an rbtree node that
1799 * immediately follows a suitable gap. That is,
1800 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1801 * - gap_end = vma->vm_start >= info->low_limit + length;
1802 * - gap_end - gap_start >= length
1805 struct mm_struct *mm = current->mm;
1806 struct vm_area_struct *vma;
1807 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1809 /* Adjust search length to account for worst case alignment overhead */
1810 length = info->length + info->align_mask;
1811 if (length < info->length)
1812 return -ENOMEM;
1814 /* Adjust search limits by the desired length */
1815 if (info->high_limit < length)
1816 return -ENOMEM;
1817 high_limit = info->high_limit - length;
1819 if (info->low_limit > high_limit)
1820 return -ENOMEM;
1821 low_limit = info->low_limit + length;
1823 /* Check if rbtree root looks promising */
1824 if (RB_EMPTY_ROOT(&mm->mm_rb))
1825 goto check_highest;
1826 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1827 if (vma->rb_subtree_gap < length)
1828 goto check_highest;
1830 while (true) {
1831 /* Visit left subtree if it looks promising */
1832 gap_end = vm_start_gap(vma);
1833 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1834 struct vm_area_struct *left =
1835 rb_entry(vma->vm_rb.rb_left,
1836 struct vm_area_struct, vm_rb);
1837 if (left->rb_subtree_gap >= length) {
1838 vma = left;
1839 continue;
1843 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1844 check_current:
1845 /* Check if current node has a suitable gap */
1846 if (gap_start > high_limit)
1847 return -ENOMEM;
1848 if (gap_end >= low_limit &&
1849 gap_end > gap_start && gap_end - gap_start >= length)
1850 goto found;
1852 /* Visit right subtree if it looks promising */
1853 if (vma->vm_rb.rb_right) {
1854 struct vm_area_struct *right =
1855 rb_entry(vma->vm_rb.rb_right,
1856 struct vm_area_struct, vm_rb);
1857 if (right->rb_subtree_gap >= length) {
1858 vma = right;
1859 continue;
1863 /* Go back up the rbtree to find next candidate node */
1864 while (true) {
1865 struct rb_node *prev = &vma->vm_rb;
1866 if (!rb_parent(prev))
1867 goto check_highest;
1868 vma = rb_entry(rb_parent(prev),
1869 struct vm_area_struct, vm_rb);
1870 if (prev == vma->vm_rb.rb_left) {
1871 gap_start = vm_end_gap(vma->vm_prev);
1872 gap_end = vm_start_gap(vma);
1873 goto check_current;
1878 check_highest:
1879 /* Check highest gap, which does not precede any rbtree node */
1880 gap_start = mm->highest_vm_end;
1881 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1882 if (gap_start > high_limit)
1883 return -ENOMEM;
1885 found:
1886 /* We found a suitable gap. Clip it with the original low_limit. */
1887 if (gap_start < info->low_limit)
1888 gap_start = info->low_limit;
1890 /* Adjust gap address to the desired alignment */
1891 gap_start += (info->align_offset - gap_start) & info->align_mask;
1893 VM_BUG_ON(gap_start + info->length > info->high_limit);
1894 VM_BUG_ON(gap_start + info->length > gap_end);
1895 return gap_start;
1898 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1900 struct mm_struct *mm = current->mm;
1901 struct vm_area_struct *vma;
1902 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1904 /* Adjust search length to account for worst case alignment overhead */
1905 length = info->length + info->align_mask;
1906 if (length < info->length)
1907 return -ENOMEM;
1910 * Adjust search limits by the desired length.
1911 * See implementation comment at top of unmapped_area().
1913 gap_end = info->high_limit;
1914 if (gap_end < length)
1915 return -ENOMEM;
1916 high_limit = gap_end - length;
1918 if (info->low_limit > high_limit)
1919 return -ENOMEM;
1920 low_limit = info->low_limit + length;
1922 /* Check highest gap, which does not precede any rbtree node */
1923 gap_start = mm->highest_vm_end;
1924 if (gap_start <= high_limit)
1925 goto found_highest;
1927 /* Check if rbtree root looks promising */
1928 if (RB_EMPTY_ROOT(&mm->mm_rb))
1929 return -ENOMEM;
1930 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1931 if (vma->rb_subtree_gap < length)
1932 return -ENOMEM;
1934 while (true) {
1935 /* Visit right subtree if it looks promising */
1936 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1937 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1938 struct vm_area_struct *right =
1939 rb_entry(vma->vm_rb.rb_right,
1940 struct vm_area_struct, vm_rb);
1941 if (right->rb_subtree_gap >= length) {
1942 vma = right;
1943 continue;
1947 check_current:
1948 /* Check if current node has a suitable gap */
1949 gap_end = vm_start_gap(vma);
1950 if (gap_end < low_limit)
1951 return -ENOMEM;
1952 if (gap_start <= high_limit &&
1953 gap_end > gap_start && gap_end - gap_start >= length)
1954 goto found;
1956 /* Visit left subtree if it looks promising */
1957 if (vma->vm_rb.rb_left) {
1958 struct vm_area_struct *left =
1959 rb_entry(vma->vm_rb.rb_left,
1960 struct vm_area_struct, vm_rb);
1961 if (left->rb_subtree_gap >= length) {
1962 vma = left;
1963 continue;
1967 /* Go back up the rbtree to find next candidate node */
1968 while (true) {
1969 struct rb_node *prev = &vma->vm_rb;
1970 if (!rb_parent(prev))
1971 return -ENOMEM;
1972 vma = rb_entry(rb_parent(prev),
1973 struct vm_area_struct, vm_rb);
1974 if (prev == vma->vm_rb.rb_right) {
1975 gap_start = vma->vm_prev ?
1976 vm_end_gap(vma->vm_prev) : 0;
1977 goto check_current;
1982 found:
1983 /* We found a suitable gap. Clip it with the original high_limit. */
1984 if (gap_end > info->high_limit)
1985 gap_end = info->high_limit;
1987 found_highest:
1988 /* Compute highest gap address at the desired alignment */
1989 gap_end -= info->length;
1990 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1992 VM_BUG_ON(gap_end < info->low_limit);
1993 VM_BUG_ON(gap_end < gap_start);
1994 return gap_end;
1997 /* Get an address range which is currently unmapped.
1998 * For shmat() with addr=0.
2000 * Ugly calling convention alert:
2001 * Return value with the low bits set means error value,
2002 * ie
2003 * if (ret & ~PAGE_MASK)
2004 * error = ret;
2006 * This function "knows" that -ENOMEM has the bits set.
2008 #ifndef HAVE_ARCH_UNMAPPED_AREA
2009 unsigned long
2010 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2011 unsigned long len, unsigned long pgoff, unsigned long flags)
2013 struct mm_struct *mm = current->mm;
2014 struct vm_area_struct *vma, *prev;
2015 struct vm_unmapped_area_info info;
2017 if (len > TASK_SIZE - mmap_min_addr)
2018 return -ENOMEM;
2020 if (flags & MAP_FIXED)
2021 return addr;
2023 if (addr) {
2024 addr = PAGE_ALIGN(addr);
2025 vma = find_vma_prev(mm, addr, &prev);
2026 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2027 (!vma || addr + len <= vm_start_gap(vma)) &&
2028 (!prev || addr >= vm_end_gap(prev)))
2029 return addr;
2032 info.flags = 0;
2033 info.length = len;
2034 info.low_limit = mm->mmap_base;
2035 info.high_limit = TASK_SIZE;
2036 info.align_mask = 0;
2037 info.align_offset = 0;
2038 return vm_unmapped_area(&info);
2040 #endif
2043 * This mmap-allocator allocates new areas top-down from below the
2044 * stack's low limit (the base):
2046 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2047 unsigned long
2048 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2049 const unsigned long len, const unsigned long pgoff,
2050 const unsigned long flags)
2052 struct vm_area_struct *vma, *prev;
2053 struct mm_struct *mm = current->mm;
2054 unsigned long addr = addr0;
2055 struct vm_unmapped_area_info info;
2057 /* requested length too big for entire address space */
2058 if (len > TASK_SIZE - mmap_min_addr)
2059 return -ENOMEM;
2061 if (flags & MAP_FIXED)
2062 return addr;
2064 /* requesting a specific address */
2065 if (addr) {
2066 addr = PAGE_ALIGN(addr);
2067 vma = find_vma_prev(mm, addr, &prev);
2068 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2069 (!vma || addr + len <= vm_start_gap(vma)) &&
2070 (!prev || addr >= vm_end_gap(prev)))
2071 return addr;
2074 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2075 info.length = len;
2076 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2077 info.high_limit = mm->mmap_base;
2078 info.align_mask = 0;
2079 info.align_offset = 0;
2080 addr = vm_unmapped_area(&info);
2083 * A failed mmap() very likely causes application failure,
2084 * so fall back to the bottom-up function here. This scenario
2085 * can happen with large stack limits and large mmap()
2086 * allocations.
2088 if (offset_in_page(addr)) {
2089 VM_BUG_ON(addr != -ENOMEM);
2090 info.flags = 0;
2091 info.low_limit = TASK_UNMAPPED_BASE;
2092 info.high_limit = TASK_SIZE;
2093 addr = vm_unmapped_area(&info);
2096 return addr;
2098 #endif
2100 unsigned long
2101 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2102 unsigned long pgoff, unsigned long flags)
2104 unsigned long (*get_area)(struct file *, unsigned long,
2105 unsigned long, unsigned long, unsigned long);
2107 unsigned long error = arch_mmap_check(addr, len, flags);
2108 if (error)
2109 return error;
2111 /* Careful about overflows.. */
2112 if (len > TASK_SIZE)
2113 return -ENOMEM;
2115 get_area = current->mm->get_unmapped_area;
2116 if (file) {
2117 if (file->f_op->get_unmapped_area)
2118 get_area = file->f_op->get_unmapped_area;
2119 } else if (flags & MAP_SHARED) {
2121 * mmap_region() will call shmem_zero_setup() to create a file,
2122 * so use shmem's get_unmapped_area in case it can be huge.
2123 * do_mmap_pgoff() will clear pgoff, so match alignment.
2125 pgoff = 0;
2126 get_area = shmem_get_unmapped_area;
2129 addr = get_area(file, addr, len, pgoff, flags);
2130 if (IS_ERR_VALUE(addr))
2131 return addr;
2133 if (addr > TASK_SIZE - len)
2134 return -ENOMEM;
2135 if (offset_in_page(addr))
2136 return -EINVAL;
2138 error = security_mmap_addr(addr);
2139 return error ? error : addr;
2142 EXPORT_SYMBOL(get_unmapped_area);
2144 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2145 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2147 struct rb_node *rb_node;
2148 struct vm_area_struct *vma;
2150 /* Check the cache first. */
2151 vma = vmacache_find(mm, addr);
2152 if (likely(vma))
2153 return vma;
2155 rb_node = mm->mm_rb.rb_node;
2157 while (rb_node) {
2158 struct vm_area_struct *tmp;
2160 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2162 if (tmp->vm_end > addr) {
2163 vma = tmp;
2164 if (tmp->vm_start <= addr)
2165 break;
2166 rb_node = rb_node->rb_left;
2167 } else
2168 rb_node = rb_node->rb_right;
2171 if (vma)
2172 vmacache_update(addr, vma);
2173 return vma;
2176 EXPORT_SYMBOL(find_vma);
2179 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2181 struct vm_area_struct *
2182 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2183 struct vm_area_struct **pprev)
2185 struct vm_area_struct *vma;
2187 vma = find_vma(mm, addr);
2188 if (vma) {
2189 *pprev = vma->vm_prev;
2190 } else {
2191 struct rb_node *rb_node = mm->mm_rb.rb_node;
2192 *pprev = NULL;
2193 while (rb_node) {
2194 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2195 rb_node = rb_node->rb_right;
2198 return vma;
2202 * Verify that the stack growth is acceptable and
2203 * update accounting. This is shared with both the
2204 * grow-up and grow-down cases.
2206 static int acct_stack_growth(struct vm_area_struct *vma,
2207 unsigned long size, unsigned long grow)
2209 struct mm_struct *mm = vma->vm_mm;
2210 unsigned long new_start;
2212 /* address space limit tests */
2213 if (!may_expand_vm(mm, vma->vm_flags, grow))
2214 return -ENOMEM;
2216 /* Stack limit test */
2217 if (size > rlimit(RLIMIT_STACK))
2218 return -ENOMEM;
2220 /* mlock limit tests */
2221 if (vma->vm_flags & VM_LOCKED) {
2222 unsigned long locked;
2223 unsigned long limit;
2224 locked = mm->locked_vm + grow;
2225 limit = rlimit(RLIMIT_MEMLOCK);
2226 limit >>= PAGE_SHIFT;
2227 if (locked > limit && !capable(CAP_IPC_LOCK))
2228 return -ENOMEM;
2231 /* Check to ensure the stack will not grow into a hugetlb-only region */
2232 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2233 vma->vm_end - size;
2234 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2235 return -EFAULT;
2238 * Overcommit.. This must be the final test, as it will
2239 * update security statistics.
2241 if (security_vm_enough_memory_mm(mm, grow))
2242 return -ENOMEM;
2244 return 0;
2247 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2249 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2250 * vma is the last one with address > vma->vm_end. Have to extend vma.
2252 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2254 struct mm_struct *mm = vma->vm_mm;
2255 struct vm_area_struct *next;
2256 unsigned long gap_addr;
2257 int error = 0;
2259 if (!(vma->vm_flags & VM_GROWSUP))
2260 return -EFAULT;
2262 /* Guard against exceeding limits of the address space. */
2263 address &= PAGE_MASK;
2264 if (address >= (TASK_SIZE & PAGE_MASK))
2265 return -ENOMEM;
2266 address += PAGE_SIZE;
2268 /* Enforce stack_guard_gap */
2269 gap_addr = address + stack_guard_gap;
2271 /* Guard against overflow */
2272 if (gap_addr < address || gap_addr > TASK_SIZE)
2273 gap_addr = TASK_SIZE;
2275 next = vma->vm_next;
2276 if (next && next->vm_start < gap_addr &&
2277 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2278 if (!(next->vm_flags & VM_GROWSUP))
2279 return -ENOMEM;
2280 /* Check that both stack segments have the same anon_vma? */
2283 /* We must make sure the anon_vma is allocated. */
2284 if (unlikely(anon_vma_prepare(vma)))
2285 return -ENOMEM;
2288 * vma->vm_start/vm_end cannot change under us because the caller
2289 * is required to hold the mmap_sem in read mode. We need the
2290 * anon_vma lock to serialize against concurrent expand_stacks.
2292 anon_vma_lock_write(vma->anon_vma);
2294 /* Somebody else might have raced and expanded it already */
2295 if (address > vma->vm_end) {
2296 unsigned long size, grow;
2298 size = address - vma->vm_start;
2299 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2301 error = -ENOMEM;
2302 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2303 error = acct_stack_growth(vma, size, grow);
2304 if (!error) {
2306 * vma_gap_update() doesn't support concurrent
2307 * updates, but we only hold a shared mmap_sem
2308 * lock here, so we need to protect against
2309 * concurrent vma expansions.
2310 * anon_vma_lock_write() doesn't help here, as
2311 * we don't guarantee that all growable vmas
2312 * in a mm share the same root anon vma.
2313 * So, we reuse mm->page_table_lock to guard
2314 * against concurrent vma expansions.
2316 spin_lock(&mm->page_table_lock);
2317 if (vma->vm_flags & VM_LOCKED)
2318 mm->locked_vm += grow;
2319 vm_stat_account(mm, vma->vm_flags, grow);
2320 anon_vma_interval_tree_pre_update_vma(vma);
2321 vma->vm_end = address;
2322 anon_vma_interval_tree_post_update_vma(vma);
2323 if (vma->vm_next)
2324 vma_gap_update(vma->vm_next);
2325 else
2326 mm->highest_vm_end = vm_end_gap(vma);
2327 spin_unlock(&mm->page_table_lock);
2329 perf_event_mmap(vma);
2333 anon_vma_unlock_write(vma->anon_vma);
2334 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2335 validate_mm(mm);
2336 return error;
2338 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2341 * vma is the first one with address < vma->vm_start. Have to extend vma.
2343 int expand_downwards(struct vm_area_struct *vma,
2344 unsigned long address)
2346 struct mm_struct *mm = vma->vm_mm;
2347 struct vm_area_struct *prev;
2348 int error = 0;
2350 address &= PAGE_MASK;
2351 if (address < mmap_min_addr)
2352 return -EPERM;
2354 /* Enforce stack_guard_gap */
2355 prev = vma->vm_prev;
2356 /* Check that both stack segments have the same anon_vma? */
2357 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2358 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2359 if (address - prev->vm_end < stack_guard_gap)
2360 return -ENOMEM;
2363 /* We must make sure the anon_vma is allocated. */
2364 if (unlikely(anon_vma_prepare(vma)))
2365 return -ENOMEM;
2368 * vma->vm_start/vm_end cannot change under us because the caller
2369 * is required to hold the mmap_sem in read mode. We need the
2370 * anon_vma lock to serialize against concurrent expand_stacks.
2372 anon_vma_lock_write(vma->anon_vma);
2374 /* Somebody else might have raced and expanded it already */
2375 if (address < vma->vm_start) {
2376 unsigned long size, grow;
2378 size = vma->vm_end - address;
2379 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2381 error = -ENOMEM;
2382 if (grow <= vma->vm_pgoff) {
2383 error = acct_stack_growth(vma, size, grow);
2384 if (!error) {
2386 * vma_gap_update() doesn't support concurrent
2387 * updates, but we only hold a shared mmap_sem
2388 * lock here, so we need to protect against
2389 * concurrent vma expansions.
2390 * anon_vma_lock_write() doesn't help here, as
2391 * we don't guarantee that all growable vmas
2392 * in a mm share the same root anon vma.
2393 * So, we reuse mm->page_table_lock to guard
2394 * against concurrent vma expansions.
2396 spin_lock(&mm->page_table_lock);
2397 if (vma->vm_flags & VM_LOCKED)
2398 mm->locked_vm += grow;
2399 vm_stat_account(mm, vma->vm_flags, grow);
2400 anon_vma_interval_tree_pre_update_vma(vma);
2401 vma->vm_start = address;
2402 vma->vm_pgoff -= grow;
2403 anon_vma_interval_tree_post_update_vma(vma);
2404 vma_gap_update(vma);
2405 spin_unlock(&mm->page_table_lock);
2407 perf_event_mmap(vma);
2411 anon_vma_unlock_write(vma->anon_vma);
2412 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2413 validate_mm(mm);
2414 return error;
2417 /* enforced gap between the expanding stack and other mappings. */
2418 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2420 static int __init cmdline_parse_stack_guard_gap(char *p)
2422 unsigned long val;
2423 char *endptr;
2425 val = simple_strtoul(p, &endptr, 10);
2426 if (!*endptr)
2427 stack_guard_gap = val << PAGE_SHIFT;
2429 return 0;
2431 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2433 #ifdef CONFIG_STACK_GROWSUP
2434 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2436 return expand_upwards(vma, address);
2439 struct vm_area_struct *
2440 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2442 struct vm_area_struct *vma, *prev;
2444 addr &= PAGE_MASK;
2445 vma = find_vma_prev(mm, addr, &prev);
2446 if (vma && (vma->vm_start <= addr))
2447 return vma;
2448 /* don't alter vm_end if the coredump is running */
2449 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2450 return NULL;
2451 if (prev->vm_flags & VM_LOCKED)
2452 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2453 return prev;
2455 #else
2456 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2458 return expand_downwards(vma, address);
2461 struct vm_area_struct *
2462 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2464 struct vm_area_struct *vma;
2465 unsigned long start;
2467 addr &= PAGE_MASK;
2468 vma = find_vma(mm, addr);
2469 if (!vma)
2470 return NULL;
2471 if (vma->vm_start <= addr)
2472 return vma;
2473 if (!(vma->vm_flags & VM_GROWSDOWN))
2474 return NULL;
2475 /* don't alter vm_start if the coredump is running */
2476 if (!mmget_still_valid(mm))
2477 return NULL;
2478 start = vma->vm_start;
2479 if (expand_stack(vma, addr))
2480 return NULL;
2481 if (vma->vm_flags & VM_LOCKED)
2482 populate_vma_page_range(vma, addr, start, NULL);
2483 return vma;
2485 #endif
2487 EXPORT_SYMBOL_GPL(find_extend_vma);
2490 * Ok - we have the memory areas we should free on the vma list,
2491 * so release them, and do the vma updates.
2493 * Called with the mm semaphore held.
2495 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2497 unsigned long nr_accounted = 0;
2499 /* Update high watermark before we lower total_vm */
2500 update_hiwater_vm(mm);
2501 do {
2502 long nrpages = vma_pages(vma);
2504 if (vma->vm_flags & VM_ACCOUNT)
2505 nr_accounted += nrpages;
2506 vm_stat_account(mm, vma->vm_flags, -nrpages);
2507 vma = remove_vma(vma);
2508 } while (vma);
2509 vm_unacct_memory(nr_accounted);
2510 validate_mm(mm);
2514 * Get rid of page table information in the indicated region.
2516 * Called with the mm semaphore held.
2518 static void unmap_region(struct mm_struct *mm,
2519 struct vm_area_struct *vma, struct vm_area_struct *prev,
2520 unsigned long start, unsigned long end)
2522 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2523 struct mmu_gather tlb;
2525 lru_add_drain();
2526 tlb_gather_mmu(&tlb, mm, start, end);
2527 update_hiwater_rss(mm);
2528 unmap_vmas(&tlb, vma, start, end);
2529 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2530 next ? next->vm_start : USER_PGTABLES_CEILING);
2531 tlb_finish_mmu(&tlb, start, end);
2535 * Create a list of vma's touched by the unmap, removing them from the mm's
2536 * vma list as we go..
2538 static void
2539 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2540 struct vm_area_struct *prev, unsigned long end)
2542 struct vm_area_struct **insertion_point;
2543 struct vm_area_struct *tail_vma = NULL;
2545 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2546 vma->vm_prev = NULL;
2547 do {
2548 vma_rb_erase(vma, &mm->mm_rb);
2549 mm->map_count--;
2550 tail_vma = vma;
2551 vma = vma->vm_next;
2552 } while (vma && vma->vm_start < end);
2553 *insertion_point = vma;
2554 if (vma) {
2555 vma->vm_prev = prev;
2556 vma_gap_update(vma);
2557 } else
2558 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2559 tail_vma->vm_next = NULL;
2561 /* Kill the cache */
2562 vmacache_invalidate(mm);
2566 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2567 * has already been checked or doesn't make sense to fail.
2569 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2570 unsigned long addr, int new_below)
2572 struct vm_area_struct *new;
2573 int err;
2575 if (vma->vm_ops && vma->vm_ops->split) {
2576 err = vma->vm_ops->split(vma, addr);
2577 if (err)
2578 return err;
2581 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2582 if (!new)
2583 return -ENOMEM;
2585 /* most fields are the same, copy all, and then fixup */
2586 *new = *vma;
2588 INIT_LIST_HEAD(&new->anon_vma_chain);
2590 if (new_below)
2591 new->vm_end = addr;
2592 else {
2593 new->vm_start = addr;
2594 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2597 err = vma_dup_policy(vma, new);
2598 if (err)
2599 goto out_free_vma;
2601 err = anon_vma_clone(new, vma);
2602 if (err)
2603 goto out_free_mpol;
2605 if (new->vm_file)
2606 get_file(new->vm_file);
2608 if (new->vm_ops && new->vm_ops->open)
2609 new->vm_ops->open(new);
2611 if (new_below)
2612 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2613 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2614 else
2615 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2617 /* Success. */
2618 if (!err)
2619 return 0;
2621 /* Clean everything up if vma_adjust failed. */
2622 if (new->vm_ops && new->vm_ops->close)
2623 new->vm_ops->close(new);
2624 if (new->vm_file)
2625 fput(new->vm_file);
2626 unlink_anon_vmas(new);
2627 out_free_mpol:
2628 mpol_put(vma_policy(new));
2629 out_free_vma:
2630 kmem_cache_free(vm_area_cachep, new);
2631 return err;
2635 * Split a vma into two pieces at address 'addr', a new vma is allocated
2636 * either for the first part or the tail.
2638 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2639 unsigned long addr, int new_below)
2641 if (mm->map_count >= sysctl_max_map_count)
2642 return -ENOMEM;
2644 return __split_vma(mm, vma, addr, new_below);
2647 /* Munmap is split into 2 main parts -- this part which finds
2648 * what needs doing, and the areas themselves, which do the
2649 * work. This now handles partial unmappings.
2650 * Jeremy Fitzhardinge <jeremy@goop.org>
2652 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2653 struct list_head *uf)
2655 unsigned long end;
2656 struct vm_area_struct *vma, *prev, *last;
2658 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2659 return -EINVAL;
2661 len = PAGE_ALIGN(len);
2662 if (len == 0)
2663 return -EINVAL;
2665 /* Find the first overlapping VMA */
2666 vma = find_vma(mm, start);
2667 if (!vma)
2668 return 0;
2669 prev = vma->vm_prev;
2670 /* we have start < vma->vm_end */
2672 /* if it doesn't overlap, we have nothing.. */
2673 end = start + len;
2674 if (vma->vm_start >= end)
2675 return 0;
2678 * If we need to split any vma, do it now to save pain later.
2680 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2681 * unmapped vm_area_struct will remain in use: so lower split_vma
2682 * places tmp vma above, and higher split_vma places tmp vma below.
2684 if (start > vma->vm_start) {
2685 int error;
2688 * Make sure that map_count on return from munmap() will
2689 * not exceed its limit; but let map_count go just above
2690 * its limit temporarily, to help free resources as expected.
2692 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2693 return -ENOMEM;
2695 error = __split_vma(mm, vma, start, 0);
2696 if (error)
2697 return error;
2698 prev = vma;
2701 /* Does it split the last one? */
2702 last = find_vma(mm, end);
2703 if (last && end > last->vm_start) {
2704 int error = __split_vma(mm, last, end, 1);
2705 if (error)
2706 return error;
2708 vma = prev ? prev->vm_next : mm->mmap;
2710 if (unlikely(uf)) {
2712 * If userfaultfd_unmap_prep returns an error the vmas
2713 * will remain splitted, but userland will get a
2714 * highly unexpected error anyway. This is no
2715 * different than the case where the first of the two
2716 * __split_vma fails, but we don't undo the first
2717 * split, despite we could. This is unlikely enough
2718 * failure that it's not worth optimizing it for.
2720 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2721 if (error)
2722 return error;
2726 * unlock any mlock()ed ranges before detaching vmas
2728 if (mm->locked_vm) {
2729 struct vm_area_struct *tmp = vma;
2730 while (tmp && tmp->vm_start < end) {
2731 if (tmp->vm_flags & VM_LOCKED) {
2732 mm->locked_vm -= vma_pages(tmp);
2733 munlock_vma_pages_all(tmp);
2735 tmp = tmp->vm_next;
2740 * Remove the vma's, and unmap the actual pages
2742 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2743 unmap_region(mm, vma, prev, start, end);
2745 arch_unmap(mm, vma, start, end);
2747 /* Fix up all other VM information */
2748 remove_vma_list(mm, vma);
2750 return 0;
2753 int vm_munmap(unsigned long start, size_t len)
2755 int ret;
2756 struct mm_struct *mm = current->mm;
2757 LIST_HEAD(uf);
2759 if (down_write_killable(&mm->mmap_sem))
2760 return -EINTR;
2762 ret = do_munmap(mm, start, len, &uf);
2763 up_write(&mm->mmap_sem);
2764 userfaultfd_unmap_complete(mm, &uf);
2765 return ret;
2767 EXPORT_SYMBOL(vm_munmap);
2769 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2771 profile_munmap(addr);
2772 return vm_munmap(addr, len);
2777 * Emulation of deprecated remap_file_pages() syscall.
2779 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2780 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2783 struct mm_struct *mm = current->mm;
2784 struct vm_area_struct *vma;
2785 unsigned long populate = 0;
2786 unsigned long ret = -EINVAL;
2787 struct file *file;
2789 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2790 current->comm, current->pid);
2792 if (prot)
2793 return ret;
2794 start = start & PAGE_MASK;
2795 size = size & PAGE_MASK;
2797 if (start + size <= start)
2798 return ret;
2800 /* Does pgoff wrap? */
2801 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2802 return ret;
2804 if (down_write_killable(&mm->mmap_sem))
2805 return -EINTR;
2807 vma = find_vma(mm, start);
2809 if (!vma || !(vma->vm_flags & VM_SHARED))
2810 goto out;
2812 if (start < vma->vm_start)
2813 goto out;
2815 if (start + size > vma->vm_end) {
2816 struct vm_area_struct *next;
2818 for (next = vma->vm_next; next; next = next->vm_next) {
2819 /* hole between vmas ? */
2820 if (next->vm_start != next->vm_prev->vm_end)
2821 goto out;
2823 if (next->vm_file != vma->vm_file)
2824 goto out;
2826 if (next->vm_flags != vma->vm_flags)
2827 goto out;
2829 if (start + size <= next->vm_end)
2830 break;
2833 if (!next)
2834 goto out;
2837 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2838 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2839 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2841 flags &= MAP_NONBLOCK;
2842 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2843 if (vma->vm_flags & VM_LOCKED) {
2844 struct vm_area_struct *tmp;
2845 flags |= MAP_LOCKED;
2847 /* drop PG_Mlocked flag for over-mapped range */
2848 for (tmp = vma; tmp->vm_start >= start + size;
2849 tmp = tmp->vm_next) {
2851 * Split pmd and munlock page on the border
2852 * of the range.
2854 vma_adjust_trans_huge(tmp, start, start + size, 0);
2856 munlock_vma_pages_range(tmp,
2857 max(tmp->vm_start, start),
2858 min(tmp->vm_end, start + size));
2862 file = get_file(vma->vm_file);
2863 ret = do_mmap_pgoff(vma->vm_file, start, size,
2864 prot, flags, pgoff, &populate, NULL);
2865 fput(file);
2866 out:
2867 up_write(&mm->mmap_sem);
2868 if (populate)
2869 mm_populate(ret, populate);
2870 if (!IS_ERR_VALUE(ret))
2871 ret = 0;
2872 return ret;
2875 static inline void verify_mm_writelocked(struct mm_struct *mm)
2877 #ifdef CONFIG_DEBUG_VM
2878 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2879 WARN_ON(1);
2880 up_read(&mm->mmap_sem);
2882 #endif
2886 * this is really a simplified "do_mmap". it only handles
2887 * anonymous maps. eventually we may be able to do some
2888 * brk-specific accounting here.
2890 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2892 struct mm_struct *mm = current->mm;
2893 struct vm_area_struct *vma, *prev;
2894 struct rb_node **rb_link, *rb_parent;
2895 pgoff_t pgoff = addr >> PAGE_SHIFT;
2896 int error;
2898 /* Until we need other flags, refuse anything except VM_EXEC. */
2899 if ((flags & (~VM_EXEC)) != 0)
2900 return -EINVAL;
2901 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2903 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2904 if (offset_in_page(error))
2905 return error;
2907 error = mlock_future_check(mm, mm->def_flags, len);
2908 if (error)
2909 return error;
2912 * mm->mmap_sem is required to protect against another thread
2913 * changing the mappings in case we sleep.
2915 verify_mm_writelocked(mm);
2918 * Clear old maps. this also does some error checking for us
2920 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2921 &rb_parent)) {
2922 if (do_munmap(mm, addr, len, uf))
2923 return -ENOMEM;
2926 /* Check against address space limits *after* clearing old maps... */
2927 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2928 return -ENOMEM;
2930 if (mm->map_count > sysctl_max_map_count)
2931 return -ENOMEM;
2933 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2934 return -ENOMEM;
2936 /* Can we just expand an old private anonymous mapping? */
2937 vma = vma_merge(mm, prev, addr, addr + len, flags,
2938 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2939 if (vma)
2940 goto out;
2943 * create a vma struct for an anonymous mapping
2945 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2946 if (!vma) {
2947 vm_unacct_memory(len >> PAGE_SHIFT);
2948 return -ENOMEM;
2951 INIT_LIST_HEAD(&vma->anon_vma_chain);
2952 vma->vm_mm = mm;
2953 vma->vm_start = addr;
2954 vma->vm_end = addr + len;
2955 vma->vm_pgoff = pgoff;
2956 vma->vm_flags = flags;
2957 vma->vm_page_prot = vm_get_page_prot(flags);
2958 vma_link(mm, vma, prev, rb_link, rb_parent);
2959 out:
2960 perf_event_mmap(vma);
2961 mm->total_vm += len >> PAGE_SHIFT;
2962 mm->data_vm += len >> PAGE_SHIFT;
2963 if (flags & VM_LOCKED)
2964 mm->locked_vm += (len >> PAGE_SHIFT);
2965 vma->vm_flags |= VM_SOFTDIRTY;
2966 return 0;
2969 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2971 struct mm_struct *mm = current->mm;
2972 unsigned long len;
2973 int ret;
2974 bool populate;
2975 LIST_HEAD(uf);
2977 len = PAGE_ALIGN(request);
2978 if (len < request)
2979 return -ENOMEM;
2980 if (!len)
2981 return 0;
2983 if (down_write_killable(&mm->mmap_sem))
2984 return -EINTR;
2986 ret = do_brk_flags(addr, len, flags, &uf);
2987 populate = ((mm->def_flags & VM_LOCKED) != 0);
2988 up_write(&mm->mmap_sem);
2989 userfaultfd_unmap_complete(mm, &uf);
2990 if (populate && !ret)
2991 mm_populate(addr, len);
2992 return ret;
2994 EXPORT_SYMBOL(vm_brk_flags);
2996 int vm_brk(unsigned long addr, unsigned long len)
2998 return vm_brk_flags(addr, len, 0);
3000 EXPORT_SYMBOL(vm_brk);
3002 /* Release all mmaps. */
3003 void exit_mmap(struct mm_struct *mm)
3005 struct mmu_gather tlb;
3006 struct vm_area_struct *vma;
3007 unsigned long nr_accounted = 0;
3009 /* mm's last user has gone, and its about to be pulled down */
3010 mmu_notifier_release(mm);
3012 if (unlikely(mm_is_oom_victim(mm))) {
3014 * Manually reap the mm to free as much memory as possible.
3015 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3016 * this mm from further consideration. Taking mm->mmap_sem for
3017 * write after setting MMF_OOM_SKIP will guarantee that the oom
3018 * reaper will not run on this mm again after mmap_sem is
3019 * dropped.
3021 * Nothing can be holding mm->mmap_sem here and the above call
3022 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3023 * __oom_reap_task_mm() will not block.
3025 * This needs to be done before calling munlock_vma_pages_all(),
3026 * which clears VM_LOCKED, otherwise the oom reaper cannot
3027 * reliably test it.
3029 mutex_lock(&oom_lock);
3030 __oom_reap_task_mm(mm);
3031 mutex_unlock(&oom_lock);
3033 set_bit(MMF_OOM_SKIP, &mm->flags);
3034 down_write(&mm->mmap_sem);
3035 up_write(&mm->mmap_sem);
3038 if (mm->locked_vm) {
3039 vma = mm->mmap;
3040 while (vma) {
3041 if (vma->vm_flags & VM_LOCKED)
3042 munlock_vma_pages_all(vma);
3043 vma = vma->vm_next;
3047 arch_exit_mmap(mm);
3049 vma = mm->mmap;
3050 if (!vma) /* Can happen if dup_mmap() received an OOM */
3051 return;
3053 lru_add_drain();
3054 flush_cache_mm(mm);
3055 tlb_gather_mmu(&tlb, mm, 0, -1);
3056 /* update_hiwater_rss(mm) here? but nobody should be looking */
3057 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3058 unmap_vmas(&tlb, vma, 0, -1);
3059 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3060 tlb_finish_mmu(&tlb, 0, -1);
3063 * Walk the list again, actually closing and freeing it,
3064 * with preemption enabled, without holding any MM locks.
3066 while (vma) {
3067 if (vma->vm_flags & VM_ACCOUNT)
3068 nr_accounted += vma_pages(vma);
3069 vma = remove_vma(vma);
3070 cond_resched();
3072 vm_unacct_memory(nr_accounted);
3075 /* Insert vm structure into process list sorted by address
3076 * and into the inode's i_mmap tree. If vm_file is non-NULL
3077 * then i_mmap_rwsem is taken here.
3079 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3081 struct vm_area_struct *prev;
3082 struct rb_node **rb_link, *rb_parent;
3084 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3085 &prev, &rb_link, &rb_parent))
3086 return -ENOMEM;
3087 if ((vma->vm_flags & VM_ACCOUNT) &&
3088 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3089 return -ENOMEM;
3092 * The vm_pgoff of a purely anonymous vma should be irrelevant
3093 * until its first write fault, when page's anon_vma and index
3094 * are set. But now set the vm_pgoff it will almost certainly
3095 * end up with (unless mremap moves it elsewhere before that
3096 * first wfault), so /proc/pid/maps tells a consistent story.
3098 * By setting it to reflect the virtual start address of the
3099 * vma, merges and splits can happen in a seamless way, just
3100 * using the existing file pgoff checks and manipulations.
3101 * Similarly in do_mmap_pgoff and in do_brk.
3103 if (vma_is_anonymous(vma)) {
3104 BUG_ON(vma->anon_vma);
3105 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3108 vma_link(mm, vma, prev, rb_link, rb_parent);
3109 return 0;
3113 * Copy the vma structure to a new location in the same mm,
3114 * prior to moving page table entries, to effect an mremap move.
3116 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3117 unsigned long addr, unsigned long len, pgoff_t pgoff,
3118 bool *need_rmap_locks)
3120 struct vm_area_struct *vma = *vmap;
3121 unsigned long vma_start = vma->vm_start;
3122 struct mm_struct *mm = vma->vm_mm;
3123 struct vm_area_struct *new_vma, *prev;
3124 struct rb_node **rb_link, *rb_parent;
3125 bool faulted_in_anon_vma = true;
3128 * If anonymous vma has not yet been faulted, update new pgoff
3129 * to match new location, to increase its chance of merging.
3131 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3132 pgoff = addr >> PAGE_SHIFT;
3133 faulted_in_anon_vma = false;
3136 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3137 return NULL; /* should never get here */
3138 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3139 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3140 vma->vm_userfaultfd_ctx);
3141 if (new_vma) {
3143 * Source vma may have been merged into new_vma
3145 if (unlikely(vma_start >= new_vma->vm_start &&
3146 vma_start < new_vma->vm_end)) {
3148 * The only way we can get a vma_merge with
3149 * self during an mremap is if the vma hasn't
3150 * been faulted in yet and we were allowed to
3151 * reset the dst vma->vm_pgoff to the
3152 * destination address of the mremap to allow
3153 * the merge to happen. mremap must change the
3154 * vm_pgoff linearity between src and dst vmas
3155 * (in turn preventing a vma_merge) to be
3156 * safe. It is only safe to keep the vm_pgoff
3157 * linear if there are no pages mapped yet.
3159 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3160 *vmap = vma = new_vma;
3162 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3163 } else {
3164 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3165 if (!new_vma)
3166 goto out;
3167 *new_vma = *vma;
3168 new_vma->vm_start = addr;
3169 new_vma->vm_end = addr + len;
3170 new_vma->vm_pgoff = pgoff;
3171 if (vma_dup_policy(vma, new_vma))
3172 goto out_free_vma;
3173 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3174 if (anon_vma_clone(new_vma, vma))
3175 goto out_free_mempol;
3176 if (new_vma->vm_file)
3177 get_file(new_vma->vm_file);
3178 if (new_vma->vm_ops && new_vma->vm_ops->open)
3179 new_vma->vm_ops->open(new_vma);
3180 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3181 *need_rmap_locks = false;
3183 return new_vma;
3185 out_free_mempol:
3186 mpol_put(vma_policy(new_vma));
3187 out_free_vma:
3188 kmem_cache_free(vm_area_cachep, new_vma);
3189 out:
3190 return NULL;
3194 * Return true if the calling process may expand its vm space by the passed
3195 * number of pages
3197 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3199 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3200 return false;
3202 if (is_data_mapping(flags) &&
3203 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3204 /* Workaround for Valgrind */
3205 if (rlimit(RLIMIT_DATA) == 0 &&
3206 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3207 return true;
3208 if (!ignore_rlimit_data) {
3209 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3210 current->comm, current->pid,
3211 (mm->data_vm + npages) << PAGE_SHIFT,
3212 rlimit(RLIMIT_DATA));
3213 return false;
3217 return true;
3220 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3222 mm->total_vm += npages;
3224 if (is_exec_mapping(flags))
3225 mm->exec_vm += npages;
3226 else if (is_stack_mapping(flags))
3227 mm->stack_vm += npages;
3228 else if (is_data_mapping(flags))
3229 mm->data_vm += npages;
3232 static int special_mapping_fault(struct vm_fault *vmf);
3235 * Having a close hook prevents vma merging regardless of flags.
3237 static void special_mapping_close(struct vm_area_struct *vma)
3241 static const char *special_mapping_name(struct vm_area_struct *vma)
3243 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3246 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3248 struct vm_special_mapping *sm = new_vma->vm_private_data;
3250 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3251 return -EFAULT;
3253 if (sm->mremap)
3254 return sm->mremap(sm, new_vma);
3256 return 0;
3259 static const struct vm_operations_struct special_mapping_vmops = {
3260 .close = special_mapping_close,
3261 .fault = special_mapping_fault,
3262 .mremap = special_mapping_mremap,
3263 .name = special_mapping_name,
3266 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3267 .close = special_mapping_close,
3268 .fault = special_mapping_fault,
3271 static int special_mapping_fault(struct vm_fault *vmf)
3273 struct vm_area_struct *vma = vmf->vma;
3274 pgoff_t pgoff;
3275 struct page **pages;
3277 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3278 pages = vma->vm_private_data;
3279 } else {
3280 struct vm_special_mapping *sm = vma->vm_private_data;
3282 if (sm->fault)
3283 return sm->fault(sm, vmf->vma, vmf);
3285 pages = sm->pages;
3288 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3289 pgoff--;
3291 if (*pages) {
3292 struct page *page = *pages;
3293 get_page(page);
3294 vmf->page = page;
3295 return 0;
3298 return VM_FAULT_SIGBUS;
3301 static struct vm_area_struct *__install_special_mapping(
3302 struct mm_struct *mm,
3303 unsigned long addr, unsigned long len,
3304 unsigned long vm_flags, void *priv,
3305 const struct vm_operations_struct *ops)
3307 int ret;
3308 struct vm_area_struct *vma;
3310 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3311 if (unlikely(vma == NULL))
3312 return ERR_PTR(-ENOMEM);
3314 INIT_LIST_HEAD(&vma->anon_vma_chain);
3315 vma->vm_mm = mm;
3316 vma->vm_start = addr;
3317 vma->vm_end = addr + len;
3319 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3320 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3322 vma->vm_ops = ops;
3323 vma->vm_private_data = priv;
3325 ret = insert_vm_struct(mm, vma);
3326 if (ret)
3327 goto out;
3329 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3331 perf_event_mmap(vma);
3333 return vma;
3335 out:
3336 kmem_cache_free(vm_area_cachep, vma);
3337 return ERR_PTR(ret);
3340 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3341 const struct vm_special_mapping *sm)
3343 return vma->vm_private_data == sm &&
3344 (vma->vm_ops == &special_mapping_vmops ||
3345 vma->vm_ops == &legacy_special_mapping_vmops);
3349 * Called with mm->mmap_sem held for writing.
3350 * Insert a new vma covering the given region, with the given flags.
3351 * Its pages are supplied by the given array of struct page *.
3352 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3353 * The region past the last page supplied will always produce SIGBUS.
3354 * The array pointer and the pages it points to are assumed to stay alive
3355 * for as long as this mapping might exist.
3357 struct vm_area_struct *_install_special_mapping(
3358 struct mm_struct *mm,
3359 unsigned long addr, unsigned long len,
3360 unsigned long vm_flags, const struct vm_special_mapping *spec)
3362 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3363 &special_mapping_vmops);
3366 int install_special_mapping(struct mm_struct *mm,
3367 unsigned long addr, unsigned long len,
3368 unsigned long vm_flags, struct page **pages)
3370 struct vm_area_struct *vma = __install_special_mapping(
3371 mm, addr, len, vm_flags, (void *)pages,
3372 &legacy_special_mapping_vmops);
3374 return PTR_ERR_OR_ZERO(vma);
3377 static DEFINE_MUTEX(mm_all_locks_mutex);
3379 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3381 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3383 * The LSB of head.next can't change from under us
3384 * because we hold the mm_all_locks_mutex.
3386 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3388 * We can safely modify head.next after taking the
3389 * anon_vma->root->rwsem. If some other vma in this mm shares
3390 * the same anon_vma we won't take it again.
3392 * No need of atomic instructions here, head.next
3393 * can't change from under us thanks to the
3394 * anon_vma->root->rwsem.
3396 if (__test_and_set_bit(0, (unsigned long *)
3397 &anon_vma->root->rb_root.rb_root.rb_node))
3398 BUG();
3402 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3404 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3406 * AS_MM_ALL_LOCKS can't change from under us because
3407 * we hold the mm_all_locks_mutex.
3409 * Operations on ->flags have to be atomic because
3410 * even if AS_MM_ALL_LOCKS is stable thanks to the
3411 * mm_all_locks_mutex, there may be other cpus
3412 * changing other bitflags in parallel to us.
3414 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3415 BUG();
3416 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3421 * This operation locks against the VM for all pte/vma/mm related
3422 * operations that could ever happen on a certain mm. This includes
3423 * vmtruncate, try_to_unmap, and all page faults.
3425 * The caller must take the mmap_sem in write mode before calling
3426 * mm_take_all_locks(). The caller isn't allowed to release the
3427 * mmap_sem until mm_drop_all_locks() returns.
3429 * mmap_sem in write mode is required in order to block all operations
3430 * that could modify pagetables and free pages without need of
3431 * altering the vma layout. It's also needed in write mode to avoid new
3432 * anon_vmas to be associated with existing vmas.
3434 * A single task can't take more than one mm_take_all_locks() in a row
3435 * or it would deadlock.
3437 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3438 * mapping->flags avoid to take the same lock twice, if more than one
3439 * vma in this mm is backed by the same anon_vma or address_space.
3441 * We take locks in following order, accordingly to comment at beginning
3442 * of mm/rmap.c:
3443 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3444 * hugetlb mapping);
3445 * - all i_mmap_rwsem locks;
3446 * - all anon_vma->rwseml
3448 * We can take all locks within these types randomly because the VM code
3449 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3450 * mm_all_locks_mutex.
3452 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3453 * that may have to take thousand of locks.
3455 * mm_take_all_locks() can fail if it's interrupted by signals.
3457 int mm_take_all_locks(struct mm_struct *mm)
3459 struct vm_area_struct *vma;
3460 struct anon_vma_chain *avc;
3462 BUG_ON(down_read_trylock(&mm->mmap_sem));
3464 mutex_lock(&mm_all_locks_mutex);
3466 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3467 if (signal_pending(current))
3468 goto out_unlock;
3469 if (vma->vm_file && vma->vm_file->f_mapping &&
3470 is_vm_hugetlb_page(vma))
3471 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3474 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3475 if (signal_pending(current))
3476 goto out_unlock;
3477 if (vma->vm_file && vma->vm_file->f_mapping &&
3478 !is_vm_hugetlb_page(vma))
3479 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3482 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3483 if (signal_pending(current))
3484 goto out_unlock;
3485 if (vma->anon_vma)
3486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3487 vm_lock_anon_vma(mm, avc->anon_vma);
3490 return 0;
3492 out_unlock:
3493 mm_drop_all_locks(mm);
3494 return -EINTR;
3497 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3499 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3501 * The LSB of head.next can't change to 0 from under
3502 * us because we hold the mm_all_locks_mutex.
3504 * We must however clear the bitflag before unlocking
3505 * the vma so the users using the anon_vma->rb_root will
3506 * never see our bitflag.
3508 * No need of atomic instructions here, head.next
3509 * can't change from under us until we release the
3510 * anon_vma->root->rwsem.
3512 if (!__test_and_clear_bit(0, (unsigned long *)
3513 &anon_vma->root->rb_root.rb_root.rb_node))
3514 BUG();
3515 anon_vma_unlock_write(anon_vma);
3519 static void vm_unlock_mapping(struct address_space *mapping)
3521 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3523 * AS_MM_ALL_LOCKS can't change to 0 from under us
3524 * because we hold the mm_all_locks_mutex.
3526 i_mmap_unlock_write(mapping);
3527 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3528 &mapping->flags))
3529 BUG();
3534 * The mmap_sem cannot be released by the caller until
3535 * mm_drop_all_locks() returns.
3537 void mm_drop_all_locks(struct mm_struct *mm)
3539 struct vm_area_struct *vma;
3540 struct anon_vma_chain *avc;
3542 BUG_ON(down_read_trylock(&mm->mmap_sem));
3543 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3545 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3546 if (vma->anon_vma)
3547 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3548 vm_unlock_anon_vma(avc->anon_vma);
3549 if (vma->vm_file && vma->vm_file->f_mapping)
3550 vm_unlock_mapping(vma->vm_file->f_mapping);
3553 mutex_unlock(&mm_all_locks_mutex);
3557 * initialise the percpu counter for VM
3559 void __init mmap_init(void)
3561 int ret;
3563 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3564 VM_BUG_ON(ret);
3568 * Initialise sysctl_user_reserve_kbytes.
3570 * This is intended to prevent a user from starting a single memory hogging
3571 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3572 * mode.
3574 * The default value is min(3% of free memory, 128MB)
3575 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3577 static int init_user_reserve(void)
3579 unsigned long free_kbytes;
3581 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3583 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3584 return 0;
3586 subsys_initcall(init_user_reserve);
3589 * Initialise sysctl_admin_reserve_kbytes.
3591 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3592 * to log in and kill a memory hogging process.
3594 * Systems with more than 256MB will reserve 8MB, enough to recover
3595 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3596 * only reserve 3% of free pages by default.
3598 static int init_admin_reserve(void)
3600 unsigned long free_kbytes;
3602 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3604 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3605 return 0;
3607 subsys_initcall(init_admin_reserve);
3610 * Reinititalise user and admin reserves if memory is added or removed.
3612 * The default user reserve max is 128MB, and the default max for the
3613 * admin reserve is 8MB. These are usually, but not always, enough to
3614 * enable recovery from a memory hogging process using login/sshd, a shell,
3615 * and tools like top. It may make sense to increase or even disable the
3616 * reserve depending on the existence of swap or variations in the recovery
3617 * tools. So, the admin may have changed them.
3619 * If memory is added and the reserves have been eliminated or increased above
3620 * the default max, then we'll trust the admin.
3622 * If memory is removed and there isn't enough free memory, then we
3623 * need to reset the reserves.
3625 * Otherwise keep the reserve set by the admin.
3627 static int reserve_mem_notifier(struct notifier_block *nb,
3628 unsigned long action, void *data)
3630 unsigned long tmp, free_kbytes;
3632 switch (action) {
3633 case MEM_ONLINE:
3634 /* Default max is 128MB. Leave alone if modified by operator. */
3635 tmp = sysctl_user_reserve_kbytes;
3636 if (0 < tmp && tmp < (1UL << 17))
3637 init_user_reserve();
3639 /* Default max is 8MB. Leave alone if modified by operator. */
3640 tmp = sysctl_admin_reserve_kbytes;
3641 if (0 < tmp && tmp < (1UL << 13))
3642 init_admin_reserve();
3644 break;
3645 case MEM_OFFLINE:
3646 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3648 if (sysctl_user_reserve_kbytes > free_kbytes) {
3649 init_user_reserve();
3650 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3651 sysctl_user_reserve_kbytes);
3654 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3655 init_admin_reserve();
3656 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3657 sysctl_admin_reserve_kbytes);
3659 break;
3660 default:
3661 break;
3663 return NOTIFY_OK;
3666 static struct notifier_block reserve_mem_nb = {
3667 .notifier_call = reserve_mem_notifier,
3670 static int __meminit init_reserve_notifier(void)
3672 if (register_hotmemory_notifier(&reserve_mem_nb))
3673 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3675 return 0;
3677 subsys_initcall(init_reserve_notifier);