6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
53 #include <asm/mmu_context.h>
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags) (0)
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
63 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
64 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
68 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
69 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
72 static bool ignore_rlimit_data
;
73 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
75 static void unmap_region(struct mm_struct
*mm
,
76 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
77 unsigned long start
, unsigned long end
);
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 pgprot_t protection_map
[16] __ro_after_init
= {
94 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
95 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
98 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
100 return __pgprot(pgprot_val(protection_map
[vm_flags
&
101 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
102 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
104 EXPORT_SYMBOL(vm_get_page_prot
);
106 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
108 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
111 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
112 void vma_set_page_prot(struct vm_area_struct
*vma
)
114 unsigned long vm_flags
= vma
->vm_flags
;
115 pgprot_t vm_page_prot
;
117 vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
118 if (vma_wants_writenotify(vma
, vm_page_prot
)) {
119 vm_flags
&= ~VM_SHARED
;
120 vm_page_prot
= vm_pgprot_modify(vm_page_prot
, vm_flags
);
122 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
123 WRITE_ONCE(vma
->vm_page_prot
, vm_page_prot
);
127 * Requires inode->i_mapping->i_mmap_rwsem
129 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
130 struct file
*file
, struct address_space
*mapping
)
132 if (vma
->vm_flags
& VM_DENYWRITE
)
133 atomic_inc(&file_inode(file
)->i_writecount
);
134 if (vma
->vm_flags
& VM_SHARED
)
135 mapping_unmap_writable(mapping
);
137 flush_dcache_mmap_lock(mapping
);
138 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
139 flush_dcache_mmap_unlock(mapping
);
143 * Unlink a file-based vm structure from its interval tree, to hide
144 * vma from rmap and vmtruncate before freeing its page tables.
146 void unlink_file_vma(struct vm_area_struct
*vma
)
148 struct file
*file
= vma
->vm_file
;
151 struct address_space
*mapping
= file
->f_mapping
;
152 i_mmap_lock_write(mapping
);
153 __remove_shared_vm_struct(vma
, file
, mapping
);
154 i_mmap_unlock_write(mapping
);
159 * Close a vm structure and free it, returning the next.
161 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
163 struct vm_area_struct
*next
= vma
->vm_next
;
166 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
167 vma
->vm_ops
->close(vma
);
170 mpol_put(vma_policy(vma
));
171 kmem_cache_free(vm_area_cachep
, vma
);
175 static int do_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
,
176 struct list_head
*uf
);
177 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
179 unsigned long retval
;
180 unsigned long newbrk
, oldbrk
;
181 struct mm_struct
*mm
= current
->mm
;
182 struct vm_area_struct
*next
;
183 unsigned long min_brk
;
187 if (down_write_killable(&mm
->mmap_sem
))
190 #ifdef CONFIG_COMPAT_BRK
192 * CONFIG_COMPAT_BRK can still be overridden by setting
193 * randomize_va_space to 2, which will still cause mm->start_brk
194 * to be arbitrarily shifted
196 if (current
->brk_randomized
)
197 min_brk
= mm
->start_brk
;
199 min_brk
= mm
->end_data
;
201 min_brk
= mm
->start_brk
;
207 * Check against rlimit here. If this check is done later after the test
208 * of oldbrk with newbrk then it can escape the test and let the data
209 * segment grow beyond its set limit the in case where the limit is
210 * not page aligned -Ram Gupta
212 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
213 mm
->end_data
, mm
->start_data
))
216 newbrk
= PAGE_ALIGN(brk
);
217 oldbrk
= PAGE_ALIGN(mm
->brk
);
218 if (oldbrk
== newbrk
)
221 /* Always allow shrinking brk. */
222 if (brk
<= mm
->brk
) {
223 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
, &uf
))
228 /* Check against existing mmap mappings. */
229 next
= find_vma(mm
, oldbrk
);
230 if (next
&& newbrk
+ PAGE_SIZE
> vm_start_gap(next
))
233 /* Ok, looks good - let it rip. */
234 if (do_brk_flags(oldbrk
, newbrk
-oldbrk
, 0, &uf
) < 0)
239 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
240 up_write(&mm
->mmap_sem
);
241 userfaultfd_unmap_complete(mm
, &uf
);
243 mm_populate(oldbrk
, newbrk
- oldbrk
);
248 up_write(&mm
->mmap_sem
);
252 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
254 unsigned long max
, prev_end
, subtree_gap
;
257 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
258 * allow two stack_guard_gaps between them here, and when choosing
259 * an unmapped area; whereas when expanding we only require one.
260 * That's a little inconsistent, but keeps the code here simpler.
262 max
= vm_start_gap(vma
);
264 prev_end
= vm_end_gap(vma
->vm_prev
);
270 if (vma
->vm_rb
.rb_left
) {
271 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
272 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
273 if (subtree_gap
> max
)
276 if (vma
->vm_rb
.rb_right
) {
277 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
278 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
279 if (subtree_gap
> max
)
285 #ifdef CONFIG_DEBUG_VM_RB
286 static int browse_rb(struct mm_struct
*mm
)
288 struct rb_root
*root
= &mm
->mm_rb
;
289 int i
= 0, j
, bug
= 0;
290 struct rb_node
*nd
, *pn
= NULL
;
291 unsigned long prev
= 0, pend
= 0;
293 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
294 struct vm_area_struct
*vma
;
295 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
296 if (vma
->vm_start
< prev
) {
297 pr_emerg("vm_start %lx < prev %lx\n",
298 vma
->vm_start
, prev
);
301 if (vma
->vm_start
< pend
) {
302 pr_emerg("vm_start %lx < pend %lx\n",
303 vma
->vm_start
, pend
);
306 if (vma
->vm_start
> vma
->vm_end
) {
307 pr_emerg("vm_start %lx > vm_end %lx\n",
308 vma
->vm_start
, vma
->vm_end
);
311 spin_lock(&mm
->page_table_lock
);
312 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
313 pr_emerg("free gap %lx, correct %lx\n",
315 vma_compute_subtree_gap(vma
));
318 spin_unlock(&mm
->page_table_lock
);
321 prev
= vma
->vm_start
;
325 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
328 pr_emerg("backwards %d, forwards %d\n", j
, i
);
334 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
338 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
339 struct vm_area_struct
*vma
;
340 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
341 VM_BUG_ON_VMA(vma
!= ignore
&&
342 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
347 static void validate_mm(struct mm_struct
*mm
)
351 unsigned long highest_address
= 0;
352 struct vm_area_struct
*vma
= mm
->mmap
;
355 struct anon_vma
*anon_vma
= vma
->anon_vma
;
356 struct anon_vma_chain
*avc
;
359 anon_vma_lock_read(anon_vma
);
360 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
361 anon_vma_interval_tree_verify(avc
);
362 anon_vma_unlock_read(anon_vma
);
365 highest_address
= vm_end_gap(vma
);
369 if (i
!= mm
->map_count
) {
370 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
373 if (highest_address
!= mm
->highest_vm_end
) {
374 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
375 mm
->highest_vm_end
, highest_address
);
379 if (i
!= mm
->map_count
) {
381 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
384 VM_BUG_ON_MM(bug
, mm
);
387 #define validate_mm_rb(root, ignore) do { } while (0)
388 #define validate_mm(mm) do { } while (0)
391 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
392 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
395 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
396 * vma->vm_prev->vm_end values changed, without modifying the vma's position
399 static void vma_gap_update(struct vm_area_struct
*vma
)
402 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
403 * function that does exacltly what we want.
405 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
408 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
409 struct rb_root
*root
)
411 /* All rb_subtree_gap values must be consistent prior to insertion */
412 validate_mm_rb(root
, NULL
);
414 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
417 static void __vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
420 * Note rb_erase_augmented is a fairly large inline function,
421 * so make sure we instantiate it only once with our desired
422 * augmented rbtree callbacks.
424 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
427 static __always_inline
void vma_rb_erase_ignore(struct vm_area_struct
*vma
,
428 struct rb_root
*root
,
429 struct vm_area_struct
*ignore
)
432 * All rb_subtree_gap values must be consistent prior to erase,
433 * with the possible exception of the "next" vma being erased if
434 * next->vm_start was reduced.
436 validate_mm_rb(root
, ignore
);
438 __vma_rb_erase(vma
, root
);
441 static __always_inline
void vma_rb_erase(struct vm_area_struct
*vma
,
442 struct rb_root
*root
)
445 * All rb_subtree_gap values must be consistent prior to erase,
446 * with the possible exception of the vma being erased.
448 validate_mm_rb(root
, vma
);
450 __vma_rb_erase(vma
, root
);
454 * vma has some anon_vma assigned, and is already inserted on that
455 * anon_vma's interval trees.
457 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
458 * vma must be removed from the anon_vma's interval trees using
459 * anon_vma_interval_tree_pre_update_vma().
461 * After the update, the vma will be reinserted using
462 * anon_vma_interval_tree_post_update_vma().
464 * The entire update must be protected by exclusive mmap_sem and by
465 * the root anon_vma's mutex.
468 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
470 struct anon_vma_chain
*avc
;
472 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
473 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
477 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
479 struct anon_vma_chain
*avc
;
481 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
482 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
485 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
486 unsigned long end
, struct vm_area_struct
**pprev
,
487 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
489 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
491 __rb_link
= &mm
->mm_rb
.rb_node
;
492 rb_prev
= __rb_parent
= NULL
;
495 struct vm_area_struct
*vma_tmp
;
497 __rb_parent
= *__rb_link
;
498 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
500 if (vma_tmp
->vm_end
> addr
) {
501 /* Fail if an existing vma overlaps the area */
502 if (vma_tmp
->vm_start
< end
)
504 __rb_link
= &__rb_parent
->rb_left
;
506 rb_prev
= __rb_parent
;
507 __rb_link
= &__rb_parent
->rb_right
;
513 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
514 *rb_link
= __rb_link
;
515 *rb_parent
= __rb_parent
;
519 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
520 unsigned long addr
, unsigned long end
)
522 unsigned long nr_pages
= 0;
523 struct vm_area_struct
*vma
;
525 /* Find first overlaping mapping */
526 vma
= find_vma_intersection(mm
, addr
, end
);
530 nr_pages
= (min(end
, vma
->vm_end
) -
531 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
533 /* Iterate over the rest of the overlaps */
534 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
535 unsigned long overlap_len
;
537 if (vma
->vm_start
> end
)
540 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
541 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
547 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
548 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
550 /* Update tracking information for the gap following the new vma. */
552 vma_gap_update(vma
->vm_next
);
554 mm
->highest_vm_end
= vm_end_gap(vma
);
557 * vma->vm_prev wasn't known when we followed the rbtree to find the
558 * correct insertion point for that vma. As a result, we could not
559 * update the vma vm_rb parents rb_subtree_gap values on the way down.
560 * So, we first insert the vma with a zero rb_subtree_gap value
561 * (to be consistent with what we did on the way down), and then
562 * immediately update the gap to the correct value. Finally we
563 * rebalance the rbtree after all augmented values have been set.
565 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
566 vma
->rb_subtree_gap
= 0;
568 vma_rb_insert(vma
, &mm
->mm_rb
);
571 static void __vma_link_file(struct vm_area_struct
*vma
)
577 struct address_space
*mapping
= file
->f_mapping
;
579 if (vma
->vm_flags
& VM_DENYWRITE
)
580 atomic_dec(&file_inode(file
)->i_writecount
);
581 if (vma
->vm_flags
& VM_SHARED
)
582 atomic_inc(&mapping
->i_mmap_writable
);
584 flush_dcache_mmap_lock(mapping
);
585 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
586 flush_dcache_mmap_unlock(mapping
);
591 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
592 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
593 struct rb_node
*rb_parent
)
595 __vma_link_list(mm
, vma
, prev
, rb_parent
);
596 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
599 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
600 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
601 struct rb_node
*rb_parent
)
603 struct address_space
*mapping
= NULL
;
606 mapping
= vma
->vm_file
->f_mapping
;
607 i_mmap_lock_write(mapping
);
610 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
611 __vma_link_file(vma
);
614 i_mmap_unlock_write(mapping
);
621 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
622 * mm's list and rbtree. It has already been inserted into the interval tree.
624 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
626 struct vm_area_struct
*prev
;
627 struct rb_node
**rb_link
, *rb_parent
;
629 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
630 &prev
, &rb_link
, &rb_parent
))
632 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
636 static __always_inline
void __vma_unlink_common(struct mm_struct
*mm
,
637 struct vm_area_struct
*vma
,
638 struct vm_area_struct
*prev
,
640 struct vm_area_struct
*ignore
)
642 struct vm_area_struct
*next
;
644 vma_rb_erase_ignore(vma
, &mm
->mm_rb
, ignore
);
647 prev
->vm_next
= next
;
651 prev
->vm_next
= next
;
656 next
->vm_prev
= prev
;
659 vmacache_invalidate(mm
);
662 static inline void __vma_unlink_prev(struct mm_struct
*mm
,
663 struct vm_area_struct
*vma
,
664 struct vm_area_struct
*prev
)
666 __vma_unlink_common(mm
, vma
, prev
, true, vma
);
670 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
671 * is already present in an i_mmap tree without adjusting the tree.
672 * The following helper function should be used when such adjustments
673 * are necessary. The "insert" vma (if any) is to be inserted
674 * before we drop the necessary locks.
676 int __vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
677 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
,
678 struct vm_area_struct
*expand
)
680 struct mm_struct
*mm
= vma
->vm_mm
;
681 struct vm_area_struct
*next
= vma
->vm_next
, *orig_vma
= vma
;
682 struct address_space
*mapping
= NULL
;
683 struct rb_root_cached
*root
= NULL
;
684 struct anon_vma
*anon_vma
= NULL
;
685 struct file
*file
= vma
->vm_file
;
686 bool start_changed
= false, end_changed
= false;
687 long adjust_next
= 0;
690 if (next
&& !insert
) {
691 struct vm_area_struct
*exporter
= NULL
, *importer
= NULL
;
693 if (end
>= next
->vm_end
) {
695 * vma expands, overlapping all the next, and
696 * perhaps the one after too (mprotect case 6).
697 * The only other cases that gets here are
698 * case 1, case 7 and case 8.
700 if (next
== expand
) {
702 * The only case where we don't expand "vma"
703 * and we expand "next" instead is case 8.
705 VM_WARN_ON(end
!= next
->vm_end
);
707 * remove_next == 3 means we're
708 * removing "vma" and that to do so we
709 * swapped "vma" and "next".
712 VM_WARN_ON(file
!= next
->vm_file
);
715 VM_WARN_ON(expand
!= vma
);
717 * case 1, 6, 7, remove_next == 2 is case 6,
718 * remove_next == 1 is case 1 or 7.
720 remove_next
= 1 + (end
> next
->vm_end
);
721 VM_WARN_ON(remove_next
== 2 &&
722 end
!= next
->vm_next
->vm_end
);
723 VM_WARN_ON(remove_next
== 1 &&
724 end
!= next
->vm_end
);
725 /* trim end to next, for case 6 first pass */
733 * If next doesn't have anon_vma, import from vma after
734 * next, if the vma overlaps with it.
736 if (remove_next
== 2 && !next
->anon_vma
)
737 exporter
= next
->vm_next
;
739 } else if (end
> next
->vm_start
) {
741 * vma expands, overlapping part of the next:
742 * mprotect case 5 shifting the boundary up.
744 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
747 VM_WARN_ON(expand
!= importer
);
748 } else if (end
< vma
->vm_end
) {
750 * vma shrinks, and !insert tells it's not
751 * split_vma inserting another: so it must be
752 * mprotect case 4 shifting the boundary down.
754 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
757 VM_WARN_ON(expand
!= importer
);
761 * Easily overlooked: when mprotect shifts the boundary,
762 * make sure the expanding vma has anon_vma set if the
763 * shrinking vma had, to cover any anon pages imported.
765 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
768 importer
->anon_vma
= exporter
->anon_vma
;
769 error
= anon_vma_clone(importer
, exporter
);
775 vma_adjust_trans_huge(orig_vma
, start
, end
, adjust_next
);
778 mapping
= file
->f_mapping
;
779 root
= &mapping
->i_mmap
;
780 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
783 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
785 i_mmap_lock_write(mapping
);
788 * Put into interval tree now, so instantiated pages
789 * are visible to arm/parisc __flush_dcache_page
790 * throughout; but we cannot insert into address
791 * space until vma start or end is updated.
793 __vma_link_file(insert
);
797 anon_vma
= vma
->anon_vma
;
798 if (!anon_vma
&& adjust_next
)
799 anon_vma
= next
->anon_vma
;
801 VM_WARN_ON(adjust_next
&& next
->anon_vma
&&
802 anon_vma
!= next
->anon_vma
);
803 anon_vma_lock_write(anon_vma
);
804 anon_vma_interval_tree_pre_update_vma(vma
);
806 anon_vma_interval_tree_pre_update_vma(next
);
810 flush_dcache_mmap_lock(mapping
);
811 vma_interval_tree_remove(vma
, root
);
813 vma_interval_tree_remove(next
, root
);
816 if (start
!= vma
->vm_start
) {
817 vma
->vm_start
= start
;
818 start_changed
= true;
820 if (end
!= vma
->vm_end
) {
824 vma
->vm_pgoff
= pgoff
;
826 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
827 next
->vm_pgoff
+= adjust_next
;
832 vma_interval_tree_insert(next
, root
);
833 vma_interval_tree_insert(vma
, root
);
834 flush_dcache_mmap_unlock(mapping
);
839 * vma_merge has merged next into vma, and needs
840 * us to remove next before dropping the locks.
842 if (remove_next
!= 3)
843 __vma_unlink_prev(mm
, next
, vma
);
846 * vma is not before next if they've been
849 * pre-swap() next->vm_start was reduced so
850 * tell validate_mm_rb to ignore pre-swap()
851 * "next" (which is stored in post-swap()
854 __vma_unlink_common(mm
, next
, NULL
, false, vma
);
856 __remove_shared_vm_struct(next
, file
, mapping
);
859 * split_vma has split insert from vma, and needs
860 * us to insert it before dropping the locks
861 * (it may either follow vma or precede it).
863 __insert_vm_struct(mm
, insert
);
869 mm
->highest_vm_end
= vm_end_gap(vma
);
870 else if (!adjust_next
)
871 vma_gap_update(next
);
876 anon_vma_interval_tree_post_update_vma(vma
);
878 anon_vma_interval_tree_post_update_vma(next
);
879 anon_vma_unlock_write(anon_vma
);
882 i_mmap_unlock_write(mapping
);
893 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
897 anon_vma_merge(vma
, next
);
899 mpol_put(vma_policy(next
));
900 kmem_cache_free(vm_area_cachep
, next
);
902 * In mprotect's case 6 (see comments on vma_merge),
903 * we must remove another next too. It would clutter
904 * up the code too much to do both in one go.
906 if (remove_next
!= 3) {
908 * If "next" was removed and vma->vm_end was
909 * expanded (up) over it, in turn
910 * "next->vm_prev->vm_end" changed and the
911 * "vma->vm_next" gap must be updated.
916 * For the scope of the comment "next" and
917 * "vma" considered pre-swap(): if "vma" was
918 * removed, next->vm_start was expanded (down)
919 * over it and the "next" gap must be updated.
920 * Because of the swap() the post-swap() "vma"
921 * actually points to pre-swap() "next"
922 * (post-swap() "next" as opposed is now a
927 if (remove_next
== 2) {
933 vma_gap_update(next
);
936 * If remove_next == 2 we obviously can't
939 * If remove_next == 3 we can't reach this
940 * path because pre-swap() next is always not
941 * NULL. pre-swap() "next" is not being
942 * removed and its next->vm_end is not altered
943 * (and furthermore "end" already matches
944 * next->vm_end in remove_next == 3).
946 * We reach this only in the remove_next == 1
947 * case if the "next" vma that was removed was
948 * the highest vma of the mm. However in such
949 * case next->vm_end == "end" and the extended
950 * "vma" has vma->vm_end == next->vm_end so
951 * mm->highest_vm_end doesn't need any update
952 * in remove_next == 1 case.
954 VM_WARN_ON(mm
->highest_vm_end
!= vm_end_gap(vma
));
966 * If the vma has a ->close operation then the driver probably needs to release
967 * per-vma resources, so we don't attempt to merge those.
969 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
970 struct file
*file
, unsigned long vm_flags
,
971 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
974 * VM_SOFTDIRTY should not prevent from VMA merging, if we
975 * match the flags but dirty bit -- the caller should mark
976 * merged VMA as dirty. If dirty bit won't be excluded from
977 * comparison, we increase pressue on the memory system forcing
978 * the kernel to generate new VMAs when old one could be
981 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
983 if (vma
->vm_file
!= file
)
985 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
987 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
992 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
993 struct anon_vma
*anon_vma2
,
994 struct vm_area_struct
*vma
)
997 * The list_is_singular() test is to avoid merging VMA cloned from
998 * parents. This can improve scalability caused by anon_vma lock.
1000 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
1001 list_is_singular(&vma
->anon_vma_chain
)))
1003 return anon_vma1
== anon_vma2
;
1007 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1008 * in front of (at a lower virtual address and file offset than) the vma.
1010 * We cannot merge two vmas if they have differently assigned (non-NULL)
1011 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1013 * We don't check here for the merged mmap wrapping around the end of pagecache
1014 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1015 * wrap, nor mmaps which cover the final page at index -1UL.
1018 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1019 struct anon_vma
*anon_vma
, struct file
*file
,
1021 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1023 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1024 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1025 if (vma
->vm_pgoff
== vm_pgoff
)
1032 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1033 * beyond (at a higher virtual address and file offset than) the vma.
1035 * We cannot merge two vmas if they have differently assigned (non-NULL)
1036 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1039 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1040 struct anon_vma
*anon_vma
, struct file
*file
,
1042 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1044 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1045 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1047 vm_pglen
= vma_pages(vma
);
1048 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1055 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1056 * whether that can be merged with its predecessor or its successor.
1057 * Or both (it neatly fills a hole).
1059 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1060 * certain not to be mapped by the time vma_merge is called; but when
1061 * called for mprotect, it is certain to be already mapped (either at
1062 * an offset within prev, or at the start of next), and the flags of
1063 * this area are about to be changed to vm_flags - and the no-change
1064 * case has already been eliminated.
1066 * The following mprotect cases have to be considered, where AAAA is
1067 * the area passed down from mprotect_fixup, never extending beyond one
1068 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1070 * AAAA AAAA AAAA AAAA
1071 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1072 * cannot merge might become might become might become
1073 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1074 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1075 * mremap move: PPPPXXXXXXXX 8
1077 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1078 * might become case 1 below case 2 below case 3 below
1080 * It is important for case 8 that the the vma NNNN overlapping the
1081 * region AAAA is never going to extended over XXXX. Instead XXXX must
1082 * be extended in region AAAA and NNNN must be removed. This way in
1083 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1084 * rmap_locks, the properties of the merged vma will be already
1085 * correct for the whole merged range. Some of those properties like
1086 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1087 * be correct for the whole merged range immediately after the
1088 * rmap_locks are released. Otherwise if XXXX would be removed and
1089 * NNNN would be extended over the XXXX range, remove_migration_ptes
1090 * or other rmap walkers (if working on addresses beyond the "end"
1091 * parameter) may establish ptes with the wrong permissions of NNNN
1092 * instead of the right permissions of XXXX.
1094 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1095 struct vm_area_struct
*prev
, unsigned long addr
,
1096 unsigned long end
, unsigned long vm_flags
,
1097 struct anon_vma
*anon_vma
, struct file
*file
,
1098 pgoff_t pgoff
, struct mempolicy
*policy
,
1099 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1101 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1102 struct vm_area_struct
*area
, *next
;
1106 * We later require that vma->vm_flags == vm_flags,
1107 * so this tests vma->vm_flags & VM_SPECIAL, too.
1109 if (vm_flags
& VM_SPECIAL
)
1113 next
= prev
->vm_next
;
1117 if (area
&& area
->vm_end
== end
) /* cases 6, 7, 8 */
1118 next
= next
->vm_next
;
1120 /* verify some invariant that must be enforced by the caller */
1121 VM_WARN_ON(prev
&& addr
<= prev
->vm_start
);
1122 VM_WARN_ON(area
&& end
> area
->vm_end
);
1123 VM_WARN_ON(addr
>= end
);
1126 * Can it merge with the predecessor?
1128 if (prev
&& prev
->vm_end
== addr
&&
1129 mpol_equal(vma_policy(prev
), policy
) &&
1130 can_vma_merge_after(prev
, vm_flags
,
1131 anon_vma
, file
, pgoff
,
1132 vm_userfaultfd_ctx
)) {
1134 * OK, it can. Can we now merge in the successor as well?
1136 if (next
&& end
== next
->vm_start
&&
1137 mpol_equal(policy
, vma_policy(next
)) &&
1138 can_vma_merge_before(next
, vm_flags
,
1141 vm_userfaultfd_ctx
) &&
1142 is_mergeable_anon_vma(prev
->anon_vma
,
1143 next
->anon_vma
, NULL
)) {
1145 err
= __vma_adjust(prev
, prev
->vm_start
,
1146 next
->vm_end
, prev
->vm_pgoff
, NULL
,
1148 } else /* cases 2, 5, 7 */
1149 err
= __vma_adjust(prev
, prev
->vm_start
,
1150 end
, prev
->vm_pgoff
, NULL
, prev
);
1153 khugepaged_enter_vma_merge(prev
, vm_flags
);
1158 * Can this new request be merged in front of next?
1160 if (next
&& end
== next
->vm_start
&&
1161 mpol_equal(policy
, vma_policy(next
)) &&
1162 can_vma_merge_before(next
, vm_flags
,
1163 anon_vma
, file
, pgoff
+pglen
,
1164 vm_userfaultfd_ctx
)) {
1165 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1166 err
= __vma_adjust(prev
, prev
->vm_start
,
1167 addr
, prev
->vm_pgoff
, NULL
, next
);
1168 else { /* cases 3, 8 */
1169 err
= __vma_adjust(area
, addr
, next
->vm_end
,
1170 next
->vm_pgoff
- pglen
, NULL
, next
);
1172 * In case 3 area is already equal to next and
1173 * this is a noop, but in case 8 "area" has
1174 * been removed and next was expanded over it.
1180 khugepaged_enter_vma_merge(area
, vm_flags
);
1188 * Rough compatbility check to quickly see if it's even worth looking
1189 * at sharing an anon_vma.
1191 * They need to have the same vm_file, and the flags can only differ
1192 * in things that mprotect may change.
1194 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1195 * we can merge the two vma's. For example, we refuse to merge a vma if
1196 * there is a vm_ops->close() function, because that indicates that the
1197 * driver is doing some kind of reference counting. But that doesn't
1198 * really matter for the anon_vma sharing case.
1200 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1202 return a
->vm_end
== b
->vm_start
&&
1203 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1204 a
->vm_file
== b
->vm_file
&&
1205 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1206 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1210 * Do some basic sanity checking to see if we can re-use the anon_vma
1211 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1212 * the same as 'old', the other will be the new one that is trying
1213 * to share the anon_vma.
1215 * NOTE! This runs with mm_sem held for reading, so it is possible that
1216 * the anon_vma of 'old' is concurrently in the process of being set up
1217 * by another page fault trying to merge _that_. But that's ok: if it
1218 * is being set up, that automatically means that it will be a singleton
1219 * acceptable for merging, so we can do all of this optimistically. But
1220 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1222 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1223 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1224 * is to return an anon_vma that is "complex" due to having gone through
1227 * We also make sure that the two vma's are compatible (adjacent,
1228 * and with the same memory policies). That's all stable, even with just
1229 * a read lock on the mm_sem.
1231 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1233 if (anon_vma_compatible(a
, b
)) {
1234 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1236 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1243 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1244 * neighbouring vmas for a suitable anon_vma, before it goes off
1245 * to allocate a new anon_vma. It checks because a repetitive
1246 * sequence of mprotects and faults may otherwise lead to distinct
1247 * anon_vmas being allocated, preventing vma merge in subsequent
1250 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1252 struct anon_vma
*anon_vma
;
1253 struct vm_area_struct
*near
;
1255 near
= vma
->vm_next
;
1259 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1263 near
= vma
->vm_prev
;
1267 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1272 * There's no absolute need to look only at touching neighbours:
1273 * we could search further afield for "compatible" anon_vmas.
1274 * But it would probably just be a waste of time searching,
1275 * or lead to too many vmas hanging off the same anon_vma.
1276 * We're trying to allow mprotect remerging later on,
1277 * not trying to minimize memory used for anon_vmas.
1283 * If a hint addr is less than mmap_min_addr change hint to be as
1284 * low as possible but still greater than mmap_min_addr
1286 static inline unsigned long round_hint_to_min(unsigned long hint
)
1289 if (((void *)hint
!= NULL
) &&
1290 (hint
< mmap_min_addr
))
1291 return PAGE_ALIGN(mmap_min_addr
);
1295 static inline int mlock_future_check(struct mm_struct
*mm
,
1296 unsigned long flags
,
1299 unsigned long locked
, lock_limit
;
1301 /* mlock MCL_FUTURE? */
1302 if (flags
& VM_LOCKED
) {
1303 locked
= len
>> PAGE_SHIFT
;
1304 locked
+= mm
->locked_vm
;
1305 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1306 lock_limit
>>= PAGE_SHIFT
;
1307 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1313 static inline u64
file_mmap_size_max(struct file
*file
, struct inode
*inode
)
1315 if (S_ISREG(inode
->i_mode
))
1316 return MAX_LFS_FILESIZE
;
1318 if (S_ISBLK(inode
->i_mode
))
1319 return MAX_LFS_FILESIZE
;
1321 /* Special "we do even unsigned file positions" case */
1322 if (file
->f_mode
& FMODE_UNSIGNED_OFFSET
)
1325 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1329 static inline bool file_mmap_ok(struct file
*file
, struct inode
*inode
,
1330 unsigned long pgoff
, unsigned long len
)
1332 u64 maxsize
= file_mmap_size_max(file
, inode
);
1334 if (maxsize
&& len
> maxsize
)
1337 if (pgoff
> maxsize
>> PAGE_SHIFT
)
1343 * The caller must hold down_write(¤t->mm->mmap_sem).
1345 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1346 unsigned long len
, unsigned long prot
,
1347 unsigned long flags
, vm_flags_t vm_flags
,
1348 unsigned long pgoff
, unsigned long *populate
,
1349 struct list_head
*uf
)
1351 struct mm_struct
*mm
= current
->mm
;
1360 * Does the application expect PROT_READ to imply PROT_EXEC?
1362 * (the exception is when the underlying filesystem is noexec
1363 * mounted, in which case we dont add PROT_EXEC.)
1365 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1366 if (!(file
&& path_noexec(&file
->f_path
)))
1369 if (!(flags
& MAP_FIXED
))
1370 addr
= round_hint_to_min(addr
);
1372 /* Careful about overflows.. */
1373 len
= PAGE_ALIGN(len
);
1377 /* offset overflow? */
1378 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1381 /* Too many mappings? */
1382 if (mm
->map_count
> sysctl_max_map_count
)
1385 /* Obtain the address to map to. we verify (or select) it and ensure
1386 * that it represents a valid section of the address space.
1388 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1389 if (offset_in_page(addr
))
1392 if (prot
== PROT_EXEC
) {
1393 pkey
= execute_only_pkey(mm
);
1398 /* Do simple checking here so the lower-level routines won't have
1399 * to. we assume access permissions have been handled by the open
1400 * of the memory object, so we don't do any here.
1402 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1403 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1405 if (flags
& MAP_LOCKED
)
1406 if (!can_do_mlock())
1409 if (mlock_future_check(mm
, vm_flags
, len
))
1413 struct inode
*inode
= file_inode(file
);
1415 if (!file_mmap_ok(file
, inode
, pgoff
, len
))
1418 switch (flags
& MAP_TYPE
) {
1420 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1424 * Make sure we don't allow writing to an append-only
1427 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1431 * Make sure there are no mandatory locks on the file.
1433 if (locks_verify_locked(file
))
1436 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1437 if (!(file
->f_mode
& FMODE_WRITE
))
1438 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1442 if (!(file
->f_mode
& FMODE_READ
))
1444 if (path_noexec(&file
->f_path
)) {
1445 if (vm_flags
& VM_EXEC
)
1447 vm_flags
&= ~VM_MAYEXEC
;
1450 if (!file
->f_op
->mmap
)
1452 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1460 switch (flags
& MAP_TYPE
) {
1462 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1468 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1472 * Set pgoff according to addr for anon_vma.
1474 pgoff
= addr
>> PAGE_SHIFT
;
1482 * Set 'VM_NORESERVE' if we should not account for the
1483 * memory use of this mapping.
1485 if (flags
& MAP_NORESERVE
) {
1486 /* We honor MAP_NORESERVE if allowed to overcommit */
1487 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1488 vm_flags
|= VM_NORESERVE
;
1490 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1491 if (file
&& is_file_hugepages(file
))
1492 vm_flags
|= VM_NORESERVE
;
1495 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
, uf
);
1496 if (!IS_ERR_VALUE(addr
) &&
1497 ((vm_flags
& VM_LOCKED
) ||
1498 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1503 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1504 unsigned long, prot
, unsigned long, flags
,
1505 unsigned long, fd
, unsigned long, pgoff
)
1507 struct file
*file
= NULL
;
1508 unsigned long retval
;
1510 if (!(flags
& MAP_ANONYMOUS
)) {
1511 audit_mmap_fd(fd
, flags
);
1515 if (is_file_hugepages(file
))
1516 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1518 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1520 } else if (flags
& MAP_HUGETLB
) {
1521 struct user_struct
*user
= NULL
;
1524 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1528 len
= ALIGN(len
, huge_page_size(hs
));
1530 * VM_NORESERVE is used because the reservations will be
1531 * taken when vm_ops->mmap() is called
1532 * A dummy user value is used because we are not locking
1533 * memory so no accounting is necessary
1535 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1537 &user
, HUGETLB_ANONHUGE_INODE
,
1538 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1540 return PTR_ERR(file
);
1543 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1545 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1552 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1553 struct mmap_arg_struct
{
1557 unsigned long flags
;
1559 unsigned long offset
;
1562 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1564 struct mmap_arg_struct a
;
1566 if (copy_from_user(&a
, arg
, sizeof(a
)))
1568 if (offset_in_page(a
.offset
))
1571 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1572 a
.offset
>> PAGE_SHIFT
);
1574 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1577 * Some shared mappigns will want the pages marked read-only
1578 * to track write events. If so, we'll downgrade vm_page_prot
1579 * to the private version (using protection_map[] without the
1582 int vma_wants_writenotify(struct vm_area_struct
*vma
, pgprot_t vm_page_prot
)
1584 vm_flags_t vm_flags
= vma
->vm_flags
;
1585 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1587 /* If it was private or non-writable, the write bit is already clear */
1588 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1591 /* The backer wishes to know when pages are first written to? */
1592 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1595 /* The open routine did something to the protections that pgprot_modify
1596 * won't preserve? */
1597 if (pgprot_val(vm_page_prot
) !=
1598 pgprot_val(vm_pgprot_modify(vm_page_prot
, vm_flags
)))
1601 /* Do we need to track softdirty? */
1602 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1605 /* Specialty mapping? */
1606 if (vm_flags
& VM_PFNMAP
)
1609 /* Can the mapping track the dirty pages? */
1610 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1611 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1615 * We account for memory if it's a private writeable mapping,
1616 * not hugepages and VM_NORESERVE wasn't set.
1618 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1621 * hugetlb has its own accounting separate from the core VM
1622 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1624 if (file
&& is_file_hugepages(file
))
1627 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1630 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1631 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
,
1632 struct list_head
*uf
)
1634 struct mm_struct
*mm
= current
->mm
;
1635 struct vm_area_struct
*vma
, *prev
;
1637 struct rb_node
**rb_link
, *rb_parent
;
1638 unsigned long charged
= 0;
1640 /* Check against address space limit. */
1641 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1642 unsigned long nr_pages
;
1645 * MAP_FIXED may remove pages of mappings that intersects with
1646 * requested mapping. Account for the pages it would unmap.
1648 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1650 if (!may_expand_vm(mm
, vm_flags
,
1651 (len
>> PAGE_SHIFT
) - nr_pages
))
1655 /* Clear old maps */
1656 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1658 if (do_munmap(mm
, addr
, len
, uf
))
1663 * Private writable mapping: check memory availability
1665 if (accountable_mapping(file
, vm_flags
)) {
1666 charged
= len
>> PAGE_SHIFT
;
1667 if (security_vm_enough_memory_mm(mm
, charged
))
1669 vm_flags
|= VM_ACCOUNT
;
1673 * Can we just expand an old mapping?
1675 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1676 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1681 * Determine the object being mapped and call the appropriate
1682 * specific mapper. the address has already been validated, but
1683 * not unmapped, but the maps are removed from the list.
1685 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1692 vma
->vm_start
= addr
;
1693 vma
->vm_end
= addr
+ len
;
1694 vma
->vm_flags
= vm_flags
;
1695 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1696 vma
->vm_pgoff
= pgoff
;
1697 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1700 if (vm_flags
& VM_DENYWRITE
) {
1701 error
= deny_write_access(file
);
1705 if (vm_flags
& VM_SHARED
) {
1706 error
= mapping_map_writable(file
->f_mapping
);
1708 goto allow_write_and_free_vma
;
1711 /* ->mmap() can change vma->vm_file, but must guarantee that
1712 * vma_link() below can deny write-access if VM_DENYWRITE is set
1713 * and map writably if VM_SHARED is set. This usually means the
1714 * new file must not have been exposed to user-space, yet.
1716 vma
->vm_file
= get_file(file
);
1717 error
= call_mmap(file
, vma
);
1719 goto unmap_and_free_vma
;
1721 /* Can addr have changed??
1723 * Answer: Yes, several device drivers can do it in their
1724 * f_op->mmap method. -DaveM
1725 * Bug: If addr is changed, prev, rb_link, rb_parent should
1726 * be updated for vma_link()
1728 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1730 addr
= vma
->vm_start
;
1731 vm_flags
= vma
->vm_flags
;
1732 } else if (vm_flags
& VM_SHARED
) {
1733 error
= shmem_zero_setup(vma
);
1738 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1739 /* Once vma denies write, undo our temporary denial count */
1741 if (vm_flags
& VM_SHARED
)
1742 mapping_unmap_writable(file
->f_mapping
);
1743 if (vm_flags
& VM_DENYWRITE
)
1744 allow_write_access(file
);
1746 file
= vma
->vm_file
;
1748 perf_event_mmap(vma
);
1750 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1751 if (vm_flags
& VM_LOCKED
) {
1752 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1753 vma
== get_gate_vma(current
->mm
)))
1754 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1756 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1763 * New (or expanded) vma always get soft dirty status.
1764 * Otherwise user-space soft-dirty page tracker won't
1765 * be able to distinguish situation when vma area unmapped,
1766 * then new mapped in-place (which must be aimed as
1767 * a completely new data area).
1769 vma
->vm_flags
|= VM_SOFTDIRTY
;
1771 vma_set_page_prot(vma
);
1776 vma
->vm_file
= NULL
;
1779 /* Undo any partial mapping done by a device driver. */
1780 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1782 if (vm_flags
& VM_SHARED
)
1783 mapping_unmap_writable(file
->f_mapping
);
1784 allow_write_and_free_vma
:
1785 if (vm_flags
& VM_DENYWRITE
)
1786 allow_write_access(file
);
1788 kmem_cache_free(vm_area_cachep
, vma
);
1791 vm_unacct_memory(charged
);
1795 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1798 * We implement the search by looking for an rbtree node that
1799 * immediately follows a suitable gap. That is,
1800 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1801 * - gap_end = vma->vm_start >= info->low_limit + length;
1802 * - gap_end - gap_start >= length
1805 struct mm_struct
*mm
= current
->mm
;
1806 struct vm_area_struct
*vma
;
1807 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1809 /* Adjust search length to account for worst case alignment overhead */
1810 length
= info
->length
+ info
->align_mask
;
1811 if (length
< info
->length
)
1814 /* Adjust search limits by the desired length */
1815 if (info
->high_limit
< length
)
1817 high_limit
= info
->high_limit
- length
;
1819 if (info
->low_limit
> high_limit
)
1821 low_limit
= info
->low_limit
+ length
;
1823 /* Check if rbtree root looks promising */
1824 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1826 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1827 if (vma
->rb_subtree_gap
< length
)
1831 /* Visit left subtree if it looks promising */
1832 gap_end
= vm_start_gap(vma
);
1833 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1834 struct vm_area_struct
*left
=
1835 rb_entry(vma
->vm_rb
.rb_left
,
1836 struct vm_area_struct
, vm_rb
);
1837 if (left
->rb_subtree_gap
>= length
) {
1843 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1845 /* Check if current node has a suitable gap */
1846 if (gap_start
> high_limit
)
1848 if (gap_end
>= low_limit
&&
1849 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1852 /* Visit right subtree if it looks promising */
1853 if (vma
->vm_rb
.rb_right
) {
1854 struct vm_area_struct
*right
=
1855 rb_entry(vma
->vm_rb
.rb_right
,
1856 struct vm_area_struct
, vm_rb
);
1857 if (right
->rb_subtree_gap
>= length
) {
1863 /* Go back up the rbtree to find next candidate node */
1865 struct rb_node
*prev
= &vma
->vm_rb
;
1866 if (!rb_parent(prev
))
1868 vma
= rb_entry(rb_parent(prev
),
1869 struct vm_area_struct
, vm_rb
);
1870 if (prev
== vma
->vm_rb
.rb_left
) {
1871 gap_start
= vm_end_gap(vma
->vm_prev
);
1872 gap_end
= vm_start_gap(vma
);
1879 /* Check highest gap, which does not precede any rbtree node */
1880 gap_start
= mm
->highest_vm_end
;
1881 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1882 if (gap_start
> high_limit
)
1886 /* We found a suitable gap. Clip it with the original low_limit. */
1887 if (gap_start
< info
->low_limit
)
1888 gap_start
= info
->low_limit
;
1890 /* Adjust gap address to the desired alignment */
1891 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1893 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1894 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1898 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1900 struct mm_struct
*mm
= current
->mm
;
1901 struct vm_area_struct
*vma
;
1902 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1904 /* Adjust search length to account for worst case alignment overhead */
1905 length
= info
->length
+ info
->align_mask
;
1906 if (length
< info
->length
)
1910 * Adjust search limits by the desired length.
1911 * See implementation comment at top of unmapped_area().
1913 gap_end
= info
->high_limit
;
1914 if (gap_end
< length
)
1916 high_limit
= gap_end
- length
;
1918 if (info
->low_limit
> high_limit
)
1920 low_limit
= info
->low_limit
+ length
;
1922 /* Check highest gap, which does not precede any rbtree node */
1923 gap_start
= mm
->highest_vm_end
;
1924 if (gap_start
<= high_limit
)
1927 /* Check if rbtree root looks promising */
1928 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1930 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1931 if (vma
->rb_subtree_gap
< length
)
1935 /* Visit right subtree if it looks promising */
1936 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1937 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1938 struct vm_area_struct
*right
=
1939 rb_entry(vma
->vm_rb
.rb_right
,
1940 struct vm_area_struct
, vm_rb
);
1941 if (right
->rb_subtree_gap
>= length
) {
1948 /* Check if current node has a suitable gap */
1949 gap_end
= vm_start_gap(vma
);
1950 if (gap_end
< low_limit
)
1952 if (gap_start
<= high_limit
&&
1953 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1956 /* Visit left subtree if it looks promising */
1957 if (vma
->vm_rb
.rb_left
) {
1958 struct vm_area_struct
*left
=
1959 rb_entry(vma
->vm_rb
.rb_left
,
1960 struct vm_area_struct
, vm_rb
);
1961 if (left
->rb_subtree_gap
>= length
) {
1967 /* Go back up the rbtree to find next candidate node */
1969 struct rb_node
*prev
= &vma
->vm_rb
;
1970 if (!rb_parent(prev
))
1972 vma
= rb_entry(rb_parent(prev
),
1973 struct vm_area_struct
, vm_rb
);
1974 if (prev
== vma
->vm_rb
.rb_right
) {
1975 gap_start
= vma
->vm_prev
?
1976 vm_end_gap(vma
->vm_prev
) : 0;
1983 /* We found a suitable gap. Clip it with the original high_limit. */
1984 if (gap_end
> info
->high_limit
)
1985 gap_end
= info
->high_limit
;
1988 /* Compute highest gap address at the desired alignment */
1989 gap_end
-= info
->length
;
1990 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1992 VM_BUG_ON(gap_end
< info
->low_limit
);
1993 VM_BUG_ON(gap_end
< gap_start
);
1997 /* Get an address range which is currently unmapped.
1998 * For shmat() with addr=0.
2000 * Ugly calling convention alert:
2001 * Return value with the low bits set means error value,
2003 * if (ret & ~PAGE_MASK)
2006 * This function "knows" that -ENOMEM has the bits set.
2008 #ifndef HAVE_ARCH_UNMAPPED_AREA
2010 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
2011 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
2013 struct mm_struct
*mm
= current
->mm
;
2014 struct vm_area_struct
*vma
, *prev
;
2015 struct vm_unmapped_area_info info
;
2017 if (len
> TASK_SIZE
- mmap_min_addr
)
2020 if (flags
& MAP_FIXED
)
2024 addr
= PAGE_ALIGN(addr
);
2025 vma
= find_vma_prev(mm
, addr
, &prev
);
2026 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2027 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2028 (!prev
|| addr
>= vm_end_gap(prev
)))
2034 info
.low_limit
= mm
->mmap_base
;
2035 info
.high_limit
= TASK_SIZE
;
2036 info
.align_mask
= 0;
2037 info
.align_offset
= 0;
2038 return vm_unmapped_area(&info
);
2043 * This mmap-allocator allocates new areas top-down from below the
2044 * stack's low limit (the base):
2046 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2048 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
2049 const unsigned long len
, const unsigned long pgoff
,
2050 const unsigned long flags
)
2052 struct vm_area_struct
*vma
, *prev
;
2053 struct mm_struct
*mm
= current
->mm
;
2054 unsigned long addr
= addr0
;
2055 struct vm_unmapped_area_info info
;
2057 /* requested length too big for entire address space */
2058 if (len
> TASK_SIZE
- mmap_min_addr
)
2061 if (flags
& MAP_FIXED
)
2064 /* requesting a specific address */
2066 addr
= PAGE_ALIGN(addr
);
2067 vma
= find_vma_prev(mm
, addr
, &prev
);
2068 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2069 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2070 (!prev
|| addr
>= vm_end_gap(prev
)))
2074 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2076 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2077 info
.high_limit
= mm
->mmap_base
;
2078 info
.align_mask
= 0;
2079 info
.align_offset
= 0;
2080 addr
= vm_unmapped_area(&info
);
2083 * A failed mmap() very likely causes application failure,
2084 * so fall back to the bottom-up function here. This scenario
2085 * can happen with large stack limits and large mmap()
2088 if (offset_in_page(addr
)) {
2089 VM_BUG_ON(addr
!= -ENOMEM
);
2091 info
.low_limit
= TASK_UNMAPPED_BASE
;
2092 info
.high_limit
= TASK_SIZE
;
2093 addr
= vm_unmapped_area(&info
);
2101 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2102 unsigned long pgoff
, unsigned long flags
)
2104 unsigned long (*get_area
)(struct file
*, unsigned long,
2105 unsigned long, unsigned long, unsigned long);
2107 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2111 /* Careful about overflows.. */
2112 if (len
> TASK_SIZE
)
2115 get_area
= current
->mm
->get_unmapped_area
;
2117 if (file
->f_op
->get_unmapped_area
)
2118 get_area
= file
->f_op
->get_unmapped_area
;
2119 } else if (flags
& MAP_SHARED
) {
2121 * mmap_region() will call shmem_zero_setup() to create a file,
2122 * so use shmem's get_unmapped_area in case it can be huge.
2123 * do_mmap_pgoff() will clear pgoff, so match alignment.
2126 get_area
= shmem_get_unmapped_area
;
2129 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2130 if (IS_ERR_VALUE(addr
))
2133 if (addr
> TASK_SIZE
- len
)
2135 if (offset_in_page(addr
))
2138 error
= security_mmap_addr(addr
);
2139 return error
? error
: addr
;
2142 EXPORT_SYMBOL(get_unmapped_area
);
2144 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2145 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2147 struct rb_node
*rb_node
;
2148 struct vm_area_struct
*vma
;
2150 /* Check the cache first. */
2151 vma
= vmacache_find(mm
, addr
);
2155 rb_node
= mm
->mm_rb
.rb_node
;
2158 struct vm_area_struct
*tmp
;
2160 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2162 if (tmp
->vm_end
> addr
) {
2164 if (tmp
->vm_start
<= addr
)
2166 rb_node
= rb_node
->rb_left
;
2168 rb_node
= rb_node
->rb_right
;
2172 vmacache_update(addr
, vma
);
2176 EXPORT_SYMBOL(find_vma
);
2179 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2181 struct vm_area_struct
*
2182 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2183 struct vm_area_struct
**pprev
)
2185 struct vm_area_struct
*vma
;
2187 vma
= find_vma(mm
, addr
);
2189 *pprev
= vma
->vm_prev
;
2191 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2194 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2195 rb_node
= rb_node
->rb_right
;
2202 * Verify that the stack growth is acceptable and
2203 * update accounting. This is shared with both the
2204 * grow-up and grow-down cases.
2206 static int acct_stack_growth(struct vm_area_struct
*vma
,
2207 unsigned long size
, unsigned long grow
)
2209 struct mm_struct
*mm
= vma
->vm_mm
;
2210 unsigned long new_start
;
2212 /* address space limit tests */
2213 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2216 /* Stack limit test */
2217 if (size
> rlimit(RLIMIT_STACK
))
2220 /* mlock limit tests */
2221 if (vma
->vm_flags
& VM_LOCKED
) {
2222 unsigned long locked
;
2223 unsigned long limit
;
2224 locked
= mm
->locked_vm
+ grow
;
2225 limit
= rlimit(RLIMIT_MEMLOCK
);
2226 limit
>>= PAGE_SHIFT
;
2227 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2231 /* Check to ensure the stack will not grow into a hugetlb-only region */
2232 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2234 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2238 * Overcommit.. This must be the final test, as it will
2239 * update security statistics.
2241 if (security_vm_enough_memory_mm(mm
, grow
))
2247 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2249 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2250 * vma is the last one with address > vma->vm_end. Have to extend vma.
2252 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2254 struct mm_struct
*mm
= vma
->vm_mm
;
2255 struct vm_area_struct
*next
;
2256 unsigned long gap_addr
;
2259 if (!(vma
->vm_flags
& VM_GROWSUP
))
2262 /* Guard against exceeding limits of the address space. */
2263 address
&= PAGE_MASK
;
2264 if (address
>= (TASK_SIZE
& PAGE_MASK
))
2266 address
+= PAGE_SIZE
;
2268 /* Enforce stack_guard_gap */
2269 gap_addr
= address
+ stack_guard_gap
;
2271 /* Guard against overflow */
2272 if (gap_addr
< address
|| gap_addr
> TASK_SIZE
)
2273 gap_addr
= TASK_SIZE
;
2275 next
= vma
->vm_next
;
2276 if (next
&& next
->vm_start
< gap_addr
&&
2277 (next
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2278 if (!(next
->vm_flags
& VM_GROWSUP
))
2280 /* Check that both stack segments have the same anon_vma? */
2283 /* We must make sure the anon_vma is allocated. */
2284 if (unlikely(anon_vma_prepare(vma
)))
2288 * vma->vm_start/vm_end cannot change under us because the caller
2289 * is required to hold the mmap_sem in read mode. We need the
2290 * anon_vma lock to serialize against concurrent expand_stacks.
2292 anon_vma_lock_write(vma
->anon_vma
);
2294 /* Somebody else might have raced and expanded it already */
2295 if (address
> vma
->vm_end
) {
2296 unsigned long size
, grow
;
2298 size
= address
- vma
->vm_start
;
2299 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2302 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2303 error
= acct_stack_growth(vma
, size
, grow
);
2306 * vma_gap_update() doesn't support concurrent
2307 * updates, but we only hold a shared mmap_sem
2308 * lock here, so we need to protect against
2309 * concurrent vma expansions.
2310 * anon_vma_lock_write() doesn't help here, as
2311 * we don't guarantee that all growable vmas
2312 * in a mm share the same root anon vma.
2313 * So, we reuse mm->page_table_lock to guard
2314 * against concurrent vma expansions.
2316 spin_lock(&mm
->page_table_lock
);
2317 if (vma
->vm_flags
& VM_LOCKED
)
2318 mm
->locked_vm
+= grow
;
2319 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2320 anon_vma_interval_tree_pre_update_vma(vma
);
2321 vma
->vm_end
= address
;
2322 anon_vma_interval_tree_post_update_vma(vma
);
2324 vma_gap_update(vma
->vm_next
);
2326 mm
->highest_vm_end
= vm_end_gap(vma
);
2327 spin_unlock(&mm
->page_table_lock
);
2329 perf_event_mmap(vma
);
2333 anon_vma_unlock_write(vma
->anon_vma
);
2334 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2338 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2341 * vma is the first one with address < vma->vm_start. Have to extend vma.
2343 int expand_downwards(struct vm_area_struct
*vma
,
2344 unsigned long address
)
2346 struct mm_struct
*mm
= vma
->vm_mm
;
2347 struct vm_area_struct
*prev
;
2350 address
&= PAGE_MASK
;
2351 if (address
< mmap_min_addr
)
2354 /* Enforce stack_guard_gap */
2355 prev
= vma
->vm_prev
;
2356 /* Check that both stack segments have the same anon_vma? */
2357 if (prev
&& !(prev
->vm_flags
& VM_GROWSDOWN
) &&
2358 (prev
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2359 if (address
- prev
->vm_end
< stack_guard_gap
)
2363 /* We must make sure the anon_vma is allocated. */
2364 if (unlikely(anon_vma_prepare(vma
)))
2368 * vma->vm_start/vm_end cannot change under us because the caller
2369 * is required to hold the mmap_sem in read mode. We need the
2370 * anon_vma lock to serialize against concurrent expand_stacks.
2372 anon_vma_lock_write(vma
->anon_vma
);
2374 /* Somebody else might have raced and expanded it already */
2375 if (address
< vma
->vm_start
) {
2376 unsigned long size
, grow
;
2378 size
= vma
->vm_end
- address
;
2379 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2382 if (grow
<= vma
->vm_pgoff
) {
2383 error
= acct_stack_growth(vma
, size
, grow
);
2386 * vma_gap_update() doesn't support concurrent
2387 * updates, but we only hold a shared mmap_sem
2388 * lock here, so we need to protect against
2389 * concurrent vma expansions.
2390 * anon_vma_lock_write() doesn't help here, as
2391 * we don't guarantee that all growable vmas
2392 * in a mm share the same root anon vma.
2393 * So, we reuse mm->page_table_lock to guard
2394 * against concurrent vma expansions.
2396 spin_lock(&mm
->page_table_lock
);
2397 if (vma
->vm_flags
& VM_LOCKED
)
2398 mm
->locked_vm
+= grow
;
2399 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2400 anon_vma_interval_tree_pre_update_vma(vma
);
2401 vma
->vm_start
= address
;
2402 vma
->vm_pgoff
-= grow
;
2403 anon_vma_interval_tree_post_update_vma(vma
);
2404 vma_gap_update(vma
);
2405 spin_unlock(&mm
->page_table_lock
);
2407 perf_event_mmap(vma
);
2411 anon_vma_unlock_write(vma
->anon_vma
);
2412 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2417 /* enforced gap between the expanding stack and other mappings. */
2418 unsigned long stack_guard_gap
= 256UL<<PAGE_SHIFT
;
2420 static int __init
cmdline_parse_stack_guard_gap(char *p
)
2425 val
= simple_strtoul(p
, &endptr
, 10);
2427 stack_guard_gap
= val
<< PAGE_SHIFT
;
2431 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap
);
2433 #ifdef CONFIG_STACK_GROWSUP
2434 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2436 return expand_upwards(vma
, address
);
2439 struct vm_area_struct
*
2440 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2442 struct vm_area_struct
*vma
, *prev
;
2445 vma
= find_vma_prev(mm
, addr
, &prev
);
2446 if (vma
&& (vma
->vm_start
<= addr
))
2448 /* don't alter vm_end if the coredump is running */
2449 if (!prev
|| !mmget_still_valid(mm
) || expand_stack(prev
, addr
))
2451 if (prev
->vm_flags
& VM_LOCKED
)
2452 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2456 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2458 return expand_downwards(vma
, address
);
2461 struct vm_area_struct
*
2462 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2464 struct vm_area_struct
*vma
;
2465 unsigned long start
;
2468 vma
= find_vma(mm
, addr
);
2471 if (vma
->vm_start
<= addr
)
2473 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2475 /* don't alter vm_start if the coredump is running */
2476 if (!mmget_still_valid(mm
))
2478 start
= vma
->vm_start
;
2479 if (expand_stack(vma
, addr
))
2481 if (vma
->vm_flags
& VM_LOCKED
)
2482 populate_vma_page_range(vma
, addr
, start
, NULL
);
2487 EXPORT_SYMBOL_GPL(find_extend_vma
);
2490 * Ok - we have the memory areas we should free on the vma list,
2491 * so release them, and do the vma updates.
2493 * Called with the mm semaphore held.
2495 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2497 unsigned long nr_accounted
= 0;
2499 /* Update high watermark before we lower total_vm */
2500 update_hiwater_vm(mm
);
2502 long nrpages
= vma_pages(vma
);
2504 if (vma
->vm_flags
& VM_ACCOUNT
)
2505 nr_accounted
+= nrpages
;
2506 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2507 vma
= remove_vma(vma
);
2509 vm_unacct_memory(nr_accounted
);
2514 * Get rid of page table information in the indicated region.
2516 * Called with the mm semaphore held.
2518 static void unmap_region(struct mm_struct
*mm
,
2519 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2520 unsigned long start
, unsigned long end
)
2522 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2523 struct mmu_gather tlb
;
2526 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2527 update_hiwater_rss(mm
);
2528 unmap_vmas(&tlb
, vma
, start
, end
);
2529 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2530 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2531 tlb_finish_mmu(&tlb
, start
, end
);
2535 * Create a list of vma's touched by the unmap, removing them from the mm's
2536 * vma list as we go..
2539 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2540 struct vm_area_struct
*prev
, unsigned long end
)
2542 struct vm_area_struct
**insertion_point
;
2543 struct vm_area_struct
*tail_vma
= NULL
;
2545 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2546 vma
->vm_prev
= NULL
;
2548 vma_rb_erase(vma
, &mm
->mm_rb
);
2552 } while (vma
&& vma
->vm_start
< end
);
2553 *insertion_point
= vma
;
2555 vma
->vm_prev
= prev
;
2556 vma_gap_update(vma
);
2558 mm
->highest_vm_end
= prev
? vm_end_gap(prev
) : 0;
2559 tail_vma
->vm_next
= NULL
;
2561 /* Kill the cache */
2562 vmacache_invalidate(mm
);
2566 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2567 * has already been checked or doesn't make sense to fail.
2569 int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2570 unsigned long addr
, int new_below
)
2572 struct vm_area_struct
*new;
2575 if (vma
->vm_ops
&& vma
->vm_ops
->split
) {
2576 err
= vma
->vm_ops
->split(vma
, addr
);
2581 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2585 /* most fields are the same, copy all, and then fixup */
2588 INIT_LIST_HEAD(&new->anon_vma_chain
);
2593 new->vm_start
= addr
;
2594 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2597 err
= vma_dup_policy(vma
, new);
2601 err
= anon_vma_clone(new, vma
);
2606 get_file(new->vm_file
);
2608 if (new->vm_ops
&& new->vm_ops
->open
)
2609 new->vm_ops
->open(new);
2612 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2613 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2615 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2621 /* Clean everything up if vma_adjust failed. */
2622 if (new->vm_ops
&& new->vm_ops
->close
)
2623 new->vm_ops
->close(new);
2626 unlink_anon_vmas(new);
2628 mpol_put(vma_policy(new));
2630 kmem_cache_free(vm_area_cachep
, new);
2635 * Split a vma into two pieces at address 'addr', a new vma is allocated
2636 * either for the first part or the tail.
2638 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2639 unsigned long addr
, int new_below
)
2641 if (mm
->map_count
>= sysctl_max_map_count
)
2644 return __split_vma(mm
, vma
, addr
, new_below
);
2647 /* Munmap is split into 2 main parts -- this part which finds
2648 * what needs doing, and the areas themselves, which do the
2649 * work. This now handles partial unmappings.
2650 * Jeremy Fitzhardinge <jeremy@goop.org>
2652 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2653 struct list_head
*uf
)
2656 struct vm_area_struct
*vma
, *prev
, *last
;
2658 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2661 len
= PAGE_ALIGN(len
);
2665 /* Find the first overlapping VMA */
2666 vma
= find_vma(mm
, start
);
2669 prev
= vma
->vm_prev
;
2670 /* we have start < vma->vm_end */
2672 /* if it doesn't overlap, we have nothing.. */
2674 if (vma
->vm_start
>= end
)
2678 * If we need to split any vma, do it now to save pain later.
2680 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2681 * unmapped vm_area_struct will remain in use: so lower split_vma
2682 * places tmp vma above, and higher split_vma places tmp vma below.
2684 if (start
> vma
->vm_start
) {
2688 * Make sure that map_count on return from munmap() will
2689 * not exceed its limit; but let map_count go just above
2690 * its limit temporarily, to help free resources as expected.
2692 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2695 error
= __split_vma(mm
, vma
, start
, 0);
2701 /* Does it split the last one? */
2702 last
= find_vma(mm
, end
);
2703 if (last
&& end
> last
->vm_start
) {
2704 int error
= __split_vma(mm
, last
, end
, 1);
2708 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2712 * If userfaultfd_unmap_prep returns an error the vmas
2713 * will remain splitted, but userland will get a
2714 * highly unexpected error anyway. This is no
2715 * different than the case where the first of the two
2716 * __split_vma fails, but we don't undo the first
2717 * split, despite we could. This is unlikely enough
2718 * failure that it's not worth optimizing it for.
2720 int error
= userfaultfd_unmap_prep(vma
, start
, end
, uf
);
2726 * unlock any mlock()ed ranges before detaching vmas
2728 if (mm
->locked_vm
) {
2729 struct vm_area_struct
*tmp
= vma
;
2730 while (tmp
&& tmp
->vm_start
< end
) {
2731 if (tmp
->vm_flags
& VM_LOCKED
) {
2732 mm
->locked_vm
-= vma_pages(tmp
);
2733 munlock_vma_pages_all(tmp
);
2740 * Remove the vma's, and unmap the actual pages
2742 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2743 unmap_region(mm
, vma
, prev
, start
, end
);
2745 arch_unmap(mm
, vma
, start
, end
);
2747 /* Fix up all other VM information */
2748 remove_vma_list(mm
, vma
);
2753 int vm_munmap(unsigned long start
, size_t len
)
2756 struct mm_struct
*mm
= current
->mm
;
2759 if (down_write_killable(&mm
->mmap_sem
))
2762 ret
= do_munmap(mm
, start
, len
, &uf
);
2763 up_write(&mm
->mmap_sem
);
2764 userfaultfd_unmap_complete(mm
, &uf
);
2767 EXPORT_SYMBOL(vm_munmap
);
2769 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2771 profile_munmap(addr
);
2772 return vm_munmap(addr
, len
);
2777 * Emulation of deprecated remap_file_pages() syscall.
2779 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2780 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2783 struct mm_struct
*mm
= current
->mm
;
2784 struct vm_area_struct
*vma
;
2785 unsigned long populate
= 0;
2786 unsigned long ret
= -EINVAL
;
2789 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2790 current
->comm
, current
->pid
);
2794 start
= start
& PAGE_MASK
;
2795 size
= size
& PAGE_MASK
;
2797 if (start
+ size
<= start
)
2800 /* Does pgoff wrap? */
2801 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2804 if (down_write_killable(&mm
->mmap_sem
))
2807 vma
= find_vma(mm
, start
);
2809 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2812 if (start
< vma
->vm_start
)
2815 if (start
+ size
> vma
->vm_end
) {
2816 struct vm_area_struct
*next
;
2818 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2819 /* hole between vmas ? */
2820 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2823 if (next
->vm_file
!= vma
->vm_file
)
2826 if (next
->vm_flags
!= vma
->vm_flags
)
2829 if (start
+ size
<= next
->vm_end
)
2837 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2838 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2839 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2841 flags
&= MAP_NONBLOCK
;
2842 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2843 if (vma
->vm_flags
& VM_LOCKED
) {
2844 struct vm_area_struct
*tmp
;
2845 flags
|= MAP_LOCKED
;
2847 /* drop PG_Mlocked flag for over-mapped range */
2848 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2849 tmp
= tmp
->vm_next
) {
2851 * Split pmd and munlock page on the border
2854 vma_adjust_trans_huge(tmp
, start
, start
+ size
, 0);
2856 munlock_vma_pages_range(tmp
,
2857 max(tmp
->vm_start
, start
),
2858 min(tmp
->vm_end
, start
+ size
));
2862 file
= get_file(vma
->vm_file
);
2863 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2864 prot
, flags
, pgoff
, &populate
, NULL
);
2867 up_write(&mm
->mmap_sem
);
2869 mm_populate(ret
, populate
);
2870 if (!IS_ERR_VALUE(ret
))
2875 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2877 #ifdef CONFIG_DEBUG_VM
2878 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2880 up_read(&mm
->mmap_sem
);
2886 * this is really a simplified "do_mmap". it only handles
2887 * anonymous maps. eventually we may be able to do some
2888 * brk-specific accounting here.
2890 static int do_brk_flags(unsigned long addr
, unsigned long len
, unsigned long flags
, struct list_head
*uf
)
2892 struct mm_struct
*mm
= current
->mm
;
2893 struct vm_area_struct
*vma
, *prev
;
2894 struct rb_node
**rb_link
, *rb_parent
;
2895 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2898 /* Until we need other flags, refuse anything except VM_EXEC. */
2899 if ((flags
& (~VM_EXEC
)) != 0)
2901 flags
|= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2903 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2904 if (offset_in_page(error
))
2907 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2912 * mm->mmap_sem is required to protect against another thread
2913 * changing the mappings in case we sleep.
2915 verify_mm_writelocked(mm
);
2918 * Clear old maps. this also does some error checking for us
2920 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2922 if (do_munmap(mm
, addr
, len
, uf
))
2926 /* Check against address space limits *after* clearing old maps... */
2927 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2930 if (mm
->map_count
> sysctl_max_map_count
)
2933 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2936 /* Can we just expand an old private anonymous mapping? */
2937 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2938 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2943 * create a vma struct for an anonymous mapping
2945 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2947 vm_unacct_memory(len
>> PAGE_SHIFT
);
2951 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2953 vma
->vm_start
= addr
;
2954 vma
->vm_end
= addr
+ len
;
2955 vma
->vm_pgoff
= pgoff
;
2956 vma
->vm_flags
= flags
;
2957 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2958 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2960 perf_event_mmap(vma
);
2961 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2962 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2963 if (flags
& VM_LOCKED
)
2964 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2965 vma
->vm_flags
|= VM_SOFTDIRTY
;
2969 int vm_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
)
2971 struct mm_struct
*mm
= current
->mm
;
2977 len
= PAGE_ALIGN(request
);
2983 if (down_write_killable(&mm
->mmap_sem
))
2986 ret
= do_brk_flags(addr
, len
, flags
, &uf
);
2987 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2988 up_write(&mm
->mmap_sem
);
2989 userfaultfd_unmap_complete(mm
, &uf
);
2990 if (populate
&& !ret
)
2991 mm_populate(addr
, len
);
2994 EXPORT_SYMBOL(vm_brk_flags
);
2996 int vm_brk(unsigned long addr
, unsigned long len
)
2998 return vm_brk_flags(addr
, len
, 0);
3000 EXPORT_SYMBOL(vm_brk
);
3002 /* Release all mmaps. */
3003 void exit_mmap(struct mm_struct
*mm
)
3005 struct mmu_gather tlb
;
3006 struct vm_area_struct
*vma
;
3007 unsigned long nr_accounted
= 0;
3009 /* mm's last user has gone, and its about to be pulled down */
3010 mmu_notifier_release(mm
);
3012 if (unlikely(mm_is_oom_victim(mm
))) {
3014 * Manually reap the mm to free as much memory as possible.
3015 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3016 * this mm from further consideration. Taking mm->mmap_sem for
3017 * write after setting MMF_OOM_SKIP will guarantee that the oom
3018 * reaper will not run on this mm again after mmap_sem is
3021 * Nothing can be holding mm->mmap_sem here and the above call
3022 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3023 * __oom_reap_task_mm() will not block.
3025 * This needs to be done before calling munlock_vma_pages_all(),
3026 * which clears VM_LOCKED, otherwise the oom reaper cannot
3029 mutex_lock(&oom_lock
);
3030 __oom_reap_task_mm(mm
);
3031 mutex_unlock(&oom_lock
);
3033 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
3034 down_write(&mm
->mmap_sem
);
3035 up_write(&mm
->mmap_sem
);
3038 if (mm
->locked_vm
) {
3041 if (vma
->vm_flags
& VM_LOCKED
)
3042 munlock_vma_pages_all(vma
);
3050 if (!vma
) /* Can happen if dup_mmap() received an OOM */
3055 tlb_gather_mmu(&tlb
, mm
, 0, -1);
3056 /* update_hiwater_rss(mm) here? but nobody should be looking */
3057 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3058 unmap_vmas(&tlb
, vma
, 0, -1);
3059 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
3060 tlb_finish_mmu(&tlb
, 0, -1);
3063 * Walk the list again, actually closing and freeing it,
3064 * with preemption enabled, without holding any MM locks.
3067 if (vma
->vm_flags
& VM_ACCOUNT
)
3068 nr_accounted
+= vma_pages(vma
);
3069 vma
= remove_vma(vma
);
3072 vm_unacct_memory(nr_accounted
);
3075 /* Insert vm structure into process list sorted by address
3076 * and into the inode's i_mmap tree. If vm_file is non-NULL
3077 * then i_mmap_rwsem is taken here.
3079 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
3081 struct vm_area_struct
*prev
;
3082 struct rb_node
**rb_link
, *rb_parent
;
3084 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
3085 &prev
, &rb_link
, &rb_parent
))
3087 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
3088 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
3092 * The vm_pgoff of a purely anonymous vma should be irrelevant
3093 * until its first write fault, when page's anon_vma and index
3094 * are set. But now set the vm_pgoff it will almost certainly
3095 * end up with (unless mremap moves it elsewhere before that
3096 * first wfault), so /proc/pid/maps tells a consistent story.
3098 * By setting it to reflect the virtual start address of the
3099 * vma, merges and splits can happen in a seamless way, just
3100 * using the existing file pgoff checks and manipulations.
3101 * Similarly in do_mmap_pgoff and in do_brk.
3103 if (vma_is_anonymous(vma
)) {
3104 BUG_ON(vma
->anon_vma
);
3105 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
3108 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3113 * Copy the vma structure to a new location in the same mm,
3114 * prior to moving page table entries, to effect an mremap move.
3116 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
3117 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
3118 bool *need_rmap_locks
)
3120 struct vm_area_struct
*vma
= *vmap
;
3121 unsigned long vma_start
= vma
->vm_start
;
3122 struct mm_struct
*mm
= vma
->vm_mm
;
3123 struct vm_area_struct
*new_vma
, *prev
;
3124 struct rb_node
**rb_link
, *rb_parent
;
3125 bool faulted_in_anon_vma
= true;
3128 * If anonymous vma has not yet been faulted, update new pgoff
3129 * to match new location, to increase its chance of merging.
3131 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3132 pgoff
= addr
>> PAGE_SHIFT
;
3133 faulted_in_anon_vma
= false;
3136 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3137 return NULL
; /* should never get here */
3138 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3139 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3140 vma
->vm_userfaultfd_ctx
);
3143 * Source vma may have been merged into new_vma
3145 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3146 vma_start
< new_vma
->vm_end
)) {
3148 * The only way we can get a vma_merge with
3149 * self during an mremap is if the vma hasn't
3150 * been faulted in yet and we were allowed to
3151 * reset the dst vma->vm_pgoff to the
3152 * destination address of the mremap to allow
3153 * the merge to happen. mremap must change the
3154 * vm_pgoff linearity between src and dst vmas
3155 * (in turn preventing a vma_merge) to be
3156 * safe. It is only safe to keep the vm_pgoff
3157 * linear if there are no pages mapped yet.
3159 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3160 *vmap
= vma
= new_vma
;
3162 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3164 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
3168 new_vma
->vm_start
= addr
;
3169 new_vma
->vm_end
= addr
+ len
;
3170 new_vma
->vm_pgoff
= pgoff
;
3171 if (vma_dup_policy(vma
, new_vma
))
3173 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
3174 if (anon_vma_clone(new_vma
, vma
))
3175 goto out_free_mempol
;
3176 if (new_vma
->vm_file
)
3177 get_file(new_vma
->vm_file
);
3178 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3179 new_vma
->vm_ops
->open(new_vma
);
3180 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3181 *need_rmap_locks
= false;
3186 mpol_put(vma_policy(new_vma
));
3188 kmem_cache_free(vm_area_cachep
, new_vma
);
3194 * Return true if the calling process may expand its vm space by the passed
3197 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
3199 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
3202 if (is_data_mapping(flags
) &&
3203 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
3204 /* Workaround for Valgrind */
3205 if (rlimit(RLIMIT_DATA
) == 0 &&
3206 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
3208 if (!ignore_rlimit_data
) {
3209 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3210 current
->comm
, current
->pid
,
3211 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
3212 rlimit(RLIMIT_DATA
));
3220 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
3222 mm
->total_vm
+= npages
;
3224 if (is_exec_mapping(flags
))
3225 mm
->exec_vm
+= npages
;
3226 else if (is_stack_mapping(flags
))
3227 mm
->stack_vm
+= npages
;
3228 else if (is_data_mapping(flags
))
3229 mm
->data_vm
+= npages
;
3232 static int special_mapping_fault(struct vm_fault
*vmf
);
3235 * Having a close hook prevents vma merging regardless of flags.
3237 static void special_mapping_close(struct vm_area_struct
*vma
)
3241 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3243 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3246 static int special_mapping_mremap(struct vm_area_struct
*new_vma
)
3248 struct vm_special_mapping
*sm
= new_vma
->vm_private_data
;
3250 if (WARN_ON_ONCE(current
->mm
!= new_vma
->vm_mm
))
3254 return sm
->mremap(sm
, new_vma
);
3259 static const struct vm_operations_struct special_mapping_vmops
= {
3260 .close
= special_mapping_close
,
3261 .fault
= special_mapping_fault
,
3262 .mremap
= special_mapping_mremap
,
3263 .name
= special_mapping_name
,
3266 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3267 .close
= special_mapping_close
,
3268 .fault
= special_mapping_fault
,
3271 static int special_mapping_fault(struct vm_fault
*vmf
)
3273 struct vm_area_struct
*vma
= vmf
->vma
;
3275 struct page
**pages
;
3277 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
3278 pages
= vma
->vm_private_data
;
3280 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
3283 return sm
->fault(sm
, vmf
->vma
, vmf
);
3288 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3292 struct page
*page
= *pages
;
3298 return VM_FAULT_SIGBUS
;
3301 static struct vm_area_struct
*__install_special_mapping(
3302 struct mm_struct
*mm
,
3303 unsigned long addr
, unsigned long len
,
3304 unsigned long vm_flags
, void *priv
,
3305 const struct vm_operations_struct
*ops
)
3308 struct vm_area_struct
*vma
;
3310 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3311 if (unlikely(vma
== NULL
))
3312 return ERR_PTR(-ENOMEM
);
3314 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3316 vma
->vm_start
= addr
;
3317 vma
->vm_end
= addr
+ len
;
3319 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3320 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3323 vma
->vm_private_data
= priv
;
3325 ret
= insert_vm_struct(mm
, vma
);
3329 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3331 perf_event_mmap(vma
);
3336 kmem_cache_free(vm_area_cachep
, vma
);
3337 return ERR_PTR(ret
);
3340 bool vma_is_special_mapping(const struct vm_area_struct
*vma
,
3341 const struct vm_special_mapping
*sm
)
3343 return vma
->vm_private_data
== sm
&&
3344 (vma
->vm_ops
== &special_mapping_vmops
||
3345 vma
->vm_ops
== &legacy_special_mapping_vmops
);
3349 * Called with mm->mmap_sem held for writing.
3350 * Insert a new vma covering the given region, with the given flags.
3351 * Its pages are supplied by the given array of struct page *.
3352 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3353 * The region past the last page supplied will always produce SIGBUS.
3354 * The array pointer and the pages it points to are assumed to stay alive
3355 * for as long as this mapping might exist.
3357 struct vm_area_struct
*_install_special_mapping(
3358 struct mm_struct
*mm
,
3359 unsigned long addr
, unsigned long len
,
3360 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3362 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3363 &special_mapping_vmops
);
3366 int install_special_mapping(struct mm_struct
*mm
,
3367 unsigned long addr
, unsigned long len
,
3368 unsigned long vm_flags
, struct page
**pages
)
3370 struct vm_area_struct
*vma
= __install_special_mapping(
3371 mm
, addr
, len
, vm_flags
, (void *)pages
,
3372 &legacy_special_mapping_vmops
);
3374 return PTR_ERR_OR_ZERO(vma
);
3377 static DEFINE_MUTEX(mm_all_locks_mutex
);
3379 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3381 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3383 * The LSB of head.next can't change from under us
3384 * because we hold the mm_all_locks_mutex.
3386 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3388 * We can safely modify head.next after taking the
3389 * anon_vma->root->rwsem. If some other vma in this mm shares
3390 * the same anon_vma we won't take it again.
3392 * No need of atomic instructions here, head.next
3393 * can't change from under us thanks to the
3394 * anon_vma->root->rwsem.
3396 if (__test_and_set_bit(0, (unsigned long *)
3397 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3402 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3404 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3406 * AS_MM_ALL_LOCKS can't change from under us because
3407 * we hold the mm_all_locks_mutex.
3409 * Operations on ->flags have to be atomic because
3410 * even if AS_MM_ALL_LOCKS is stable thanks to the
3411 * mm_all_locks_mutex, there may be other cpus
3412 * changing other bitflags in parallel to us.
3414 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3416 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3421 * This operation locks against the VM for all pte/vma/mm related
3422 * operations that could ever happen on a certain mm. This includes
3423 * vmtruncate, try_to_unmap, and all page faults.
3425 * The caller must take the mmap_sem in write mode before calling
3426 * mm_take_all_locks(). The caller isn't allowed to release the
3427 * mmap_sem until mm_drop_all_locks() returns.
3429 * mmap_sem in write mode is required in order to block all operations
3430 * that could modify pagetables and free pages without need of
3431 * altering the vma layout. It's also needed in write mode to avoid new
3432 * anon_vmas to be associated with existing vmas.
3434 * A single task can't take more than one mm_take_all_locks() in a row
3435 * or it would deadlock.
3437 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3438 * mapping->flags avoid to take the same lock twice, if more than one
3439 * vma in this mm is backed by the same anon_vma or address_space.
3441 * We take locks in following order, accordingly to comment at beginning
3443 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3445 * - all i_mmap_rwsem locks;
3446 * - all anon_vma->rwseml
3448 * We can take all locks within these types randomly because the VM code
3449 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3450 * mm_all_locks_mutex.
3452 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3453 * that may have to take thousand of locks.
3455 * mm_take_all_locks() can fail if it's interrupted by signals.
3457 int mm_take_all_locks(struct mm_struct
*mm
)
3459 struct vm_area_struct
*vma
;
3460 struct anon_vma_chain
*avc
;
3462 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3464 mutex_lock(&mm_all_locks_mutex
);
3466 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3467 if (signal_pending(current
))
3469 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3470 is_vm_hugetlb_page(vma
))
3471 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3474 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3475 if (signal_pending(current
))
3477 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3478 !is_vm_hugetlb_page(vma
))
3479 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3482 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3483 if (signal_pending(current
))
3486 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3487 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3493 mm_drop_all_locks(mm
);
3497 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3499 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3501 * The LSB of head.next can't change to 0 from under
3502 * us because we hold the mm_all_locks_mutex.
3504 * We must however clear the bitflag before unlocking
3505 * the vma so the users using the anon_vma->rb_root will
3506 * never see our bitflag.
3508 * No need of atomic instructions here, head.next
3509 * can't change from under us until we release the
3510 * anon_vma->root->rwsem.
3512 if (!__test_and_clear_bit(0, (unsigned long *)
3513 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3515 anon_vma_unlock_write(anon_vma
);
3519 static void vm_unlock_mapping(struct address_space
*mapping
)
3521 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3523 * AS_MM_ALL_LOCKS can't change to 0 from under us
3524 * because we hold the mm_all_locks_mutex.
3526 i_mmap_unlock_write(mapping
);
3527 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3534 * The mmap_sem cannot be released by the caller until
3535 * mm_drop_all_locks() returns.
3537 void mm_drop_all_locks(struct mm_struct
*mm
)
3539 struct vm_area_struct
*vma
;
3540 struct anon_vma_chain
*avc
;
3542 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3543 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3545 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3547 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3548 vm_unlock_anon_vma(avc
->anon_vma
);
3549 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3550 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3553 mutex_unlock(&mm_all_locks_mutex
);
3557 * initialise the percpu counter for VM
3559 void __init
mmap_init(void)
3563 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3568 * Initialise sysctl_user_reserve_kbytes.
3570 * This is intended to prevent a user from starting a single memory hogging
3571 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3574 * The default value is min(3% of free memory, 128MB)
3575 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3577 static int init_user_reserve(void)
3579 unsigned long free_kbytes
;
3581 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3583 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3586 subsys_initcall(init_user_reserve
);
3589 * Initialise sysctl_admin_reserve_kbytes.
3591 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3592 * to log in and kill a memory hogging process.
3594 * Systems with more than 256MB will reserve 8MB, enough to recover
3595 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3596 * only reserve 3% of free pages by default.
3598 static int init_admin_reserve(void)
3600 unsigned long free_kbytes
;
3602 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3604 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3607 subsys_initcall(init_admin_reserve
);
3610 * Reinititalise user and admin reserves if memory is added or removed.
3612 * The default user reserve max is 128MB, and the default max for the
3613 * admin reserve is 8MB. These are usually, but not always, enough to
3614 * enable recovery from a memory hogging process using login/sshd, a shell,
3615 * and tools like top. It may make sense to increase or even disable the
3616 * reserve depending on the existence of swap or variations in the recovery
3617 * tools. So, the admin may have changed them.
3619 * If memory is added and the reserves have been eliminated or increased above
3620 * the default max, then we'll trust the admin.
3622 * If memory is removed and there isn't enough free memory, then we
3623 * need to reset the reserves.
3625 * Otherwise keep the reserve set by the admin.
3627 static int reserve_mem_notifier(struct notifier_block
*nb
,
3628 unsigned long action
, void *data
)
3630 unsigned long tmp
, free_kbytes
;
3634 /* Default max is 128MB. Leave alone if modified by operator. */
3635 tmp
= sysctl_user_reserve_kbytes
;
3636 if (0 < tmp
&& tmp
< (1UL << 17))
3637 init_user_reserve();
3639 /* Default max is 8MB. Leave alone if modified by operator. */
3640 tmp
= sysctl_admin_reserve_kbytes
;
3641 if (0 < tmp
&& tmp
< (1UL << 13))
3642 init_admin_reserve();
3646 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3648 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3649 init_user_reserve();
3650 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3651 sysctl_user_reserve_kbytes
);
3654 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3655 init_admin_reserve();
3656 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3657 sysctl_admin_reserve_kbytes
);
3666 static struct notifier_block reserve_mem_nb
= {
3667 .notifier_call
= reserve_mem_notifier
,
3670 static int __meminit
init_reserve_notifier(void)
3672 if (register_hotmemory_notifier(&reserve_mem_nb
))
3673 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3677 subsys_initcall(init_reserve_notifier
);