Linux 4.14.215
[linux/fpc-iii.git] / mm / shmem.c
blob24005c3b345ca80687f841e483bd2a8ad053b4fc
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 static struct vfsmount *shm_mnt;
43 #ifdef CONFIG_SHMEM
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
84 #include "internal.h"
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages / 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 #endif
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 return sb->s_fs_info;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
158 static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 return 0;
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 static inline int shmem_acct_block(unsigned long flags, long pages)
179 if (!(flags & VM_NORESERVE))
180 return 0;
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 if (shmem_acct_block(info->flags, pages))
198 return false;
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
207 return true;
209 unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
233 bool vma_is_shmem(struct vm_area_struct *vma)
235 return vma->vm_ops == &shmem_vm_ops;
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 static int shmem_reserve_inode(struct super_block *sb)
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
253 return 0;
256 static void shmem_free_inode(struct super_block *sb)
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 * It has to be called with the spinlock held.
278 static void shmem_recalc_inode(struct inode *inode)
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
291 bool shmem_charge(struct inode *inode, long pages)
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
299 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
300 inode->i_mapping->nrpages += pages;
302 spin_lock_irqsave(&info->lock, flags);
303 info->alloced += pages;
304 inode->i_blocks += pages * BLOCKS_PER_PAGE;
305 shmem_recalc_inode(inode);
306 spin_unlock_irqrestore(&info->lock, flags);
308 return true;
311 void shmem_uncharge(struct inode *inode, long pages)
313 struct shmem_inode_info *info = SHMEM_I(inode);
314 unsigned long flags;
316 /* nrpages adjustment done by __delete_from_page_cache() or caller */
318 spin_lock_irqsave(&info->lock, flags);
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
322 spin_unlock_irqrestore(&info->lock, flags);
324 shmem_inode_unacct_blocks(inode, pages);
328 * Replace item expected in radix tree by a new item, while holding tree lock.
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
333 struct radix_tree_node *node;
334 void **pslot;
335 void *item;
337 VM_BUG_ON(!expected);
338 VM_BUG_ON(!replacement);
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
341 return -ENOENT;
342 if (item != expected)
343 return -ENOENT;
344 __radix_tree_replace(&mapping->page_tree, node, pslot,
345 replacement, NULL, NULL);
346 return 0;
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
356 static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
359 void *item;
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
381 #define SHMEM_HUGE_NEVER 0
382 #define SHMEM_HUGE_ALWAYS 1
383 #define SHMEM_HUGE_WITHIN_SIZE 2
384 #define SHMEM_HUGE_ADVISE 3
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
396 #define SHMEM_HUGE_DENY (-1)
397 #define SHMEM_HUGE_FORCE (-2)
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
402 int shmem_huge __read_mostly;
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
422 static const char *shmem_format_huge(int huge)
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
442 #endif
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
447 LIST_HEAD(list), *pos, *next;
448 LIST_HEAD(to_remove);
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475 list_move(&info->shrinklist, &to_remove);
476 removed++;
477 goto next;
480 list_move(&info->shrinklist, &list);
481 next:
482 if (!--batch)
483 break;
485 spin_unlock(&sbinfo->shrinklist_lock);
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
494 list_for_each_safe(pos, next, &list) {
495 int ret;
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
500 if (nr_to_split && split >= nr_to_split)
501 goto leave;
503 page = find_get_page(inode->i_mapping,
504 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505 if (!page)
506 goto drop;
508 /* No huge page at the end of the file: nothing to split */
509 if (!PageTransHuge(page)) {
510 put_page(page);
511 goto drop;
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
518 * Waiting for the lock may lead to deadlock in the
519 * reclaim path.
521 if (!trylock_page(page)) {
522 put_page(page);
523 goto leave;
526 ret = split_huge_page(page);
527 unlock_page(page);
528 put_page(page);
530 /* If split failed leave the inode on the list */
531 if (ret)
532 goto leave;
534 split++;
535 drop:
536 list_del_init(&info->shrinklist);
537 removed++;
538 leave:
539 iput(inode);
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_splice_tail(&list, &sbinfo->shrinklist);
544 sbinfo->shrinklist_len -= removed;
545 spin_unlock(&sbinfo->shrinklist_lock);
547 return split;
550 static long shmem_unused_huge_scan(struct super_block *sb,
551 struct shrink_control *sc)
553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
555 if (!READ_ONCE(sbinfo->shrinklist_len))
556 return SHRINK_STOP;
558 return shmem_unused_huge_shrink(sbinfo, sc, 0);
561 static long shmem_unused_huge_count(struct super_block *sb,
562 struct shrink_control *sc)
564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565 return READ_ONCE(sbinfo->shrinklist_len);
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569 #define shmem_huge SHMEM_HUGE_DENY
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572 struct shrink_control *sc, unsigned long nr_to_split)
574 return 0;
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
579 * Like add_to_page_cache_locked, but error if expected item has gone.
581 static int shmem_add_to_page_cache(struct page *page,
582 struct address_space *mapping,
583 pgoff_t index, void *expected)
585 int error, nr = hpage_nr_pages(page);
587 VM_BUG_ON_PAGE(PageTail(page), page);
588 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
589 VM_BUG_ON_PAGE(!PageLocked(page), page);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
591 VM_BUG_ON(expected && PageTransHuge(page));
593 page_ref_add(page, nr);
594 page->mapping = mapping;
595 page->index = index;
597 spin_lock_irq(&mapping->tree_lock);
598 if (PageTransHuge(page)) {
599 void __rcu **results;
600 pgoff_t idx;
601 int i;
603 error = 0;
604 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605 &results, &idx, index, 1) &&
606 idx < index + HPAGE_PMD_NR) {
607 error = -EEXIST;
610 if (!error) {
611 for (i = 0; i < HPAGE_PMD_NR; i++) {
612 error = radix_tree_insert(&mapping->page_tree,
613 index + i, page + i);
614 VM_BUG_ON(error);
616 count_vm_event(THP_FILE_ALLOC);
618 } else if (!expected) {
619 error = radix_tree_insert(&mapping->page_tree, index, page);
620 } else {
621 error = shmem_radix_tree_replace(mapping, index, expected,
622 page);
625 if (!error) {
626 mapping->nrpages += nr;
627 if (PageTransHuge(page))
628 __inc_node_page_state(page, NR_SHMEM_THPS);
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631 spin_unlock_irq(&mapping->tree_lock);
632 } else {
633 page->mapping = NULL;
634 spin_unlock_irq(&mapping->tree_lock);
635 page_ref_sub(page, nr);
637 return error;
641 * Like delete_from_page_cache, but substitutes swap for page.
643 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
645 struct address_space *mapping = page->mapping;
646 int error;
648 VM_BUG_ON_PAGE(PageCompound(page), page);
650 spin_lock_irq(&mapping->tree_lock);
651 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652 page->mapping = NULL;
653 mapping->nrpages--;
654 __dec_node_page_state(page, NR_FILE_PAGES);
655 __dec_node_page_state(page, NR_SHMEM);
656 spin_unlock_irq(&mapping->tree_lock);
657 put_page(page);
658 BUG_ON(error);
662 * Remove swap entry from radix tree, free the swap and its page cache.
664 static int shmem_free_swap(struct address_space *mapping,
665 pgoff_t index, void *radswap)
667 void *old;
669 spin_lock_irq(&mapping->tree_lock);
670 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
671 spin_unlock_irq(&mapping->tree_lock);
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
688 struct radix_tree_iter iter;
689 void **slot;
690 struct page *page;
691 unsigned long swapped = 0;
693 rcu_read_lock();
695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696 if (iter.index >= end)
697 break;
699 page = radix_tree_deref_slot(slot);
701 if (radix_tree_deref_retry(page)) {
702 slot = radix_tree_iter_retry(&iter);
703 continue;
706 if (radix_tree_exceptional_entry(page))
707 swapped++;
709 if (need_resched()) {
710 slot = radix_tree_iter_resume(slot, &iter);
711 cond_resched_rcu();
715 rcu_read_unlock();
717 return swapped << PAGE_SHIFT;
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
727 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
729 struct inode *inode = file_inode(vma->vm_file);
730 struct shmem_inode_info *info = SHMEM_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 unsigned long swapped;
734 /* Be careful as we don't hold info->lock */
735 swapped = READ_ONCE(info->swapped);
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
740 * already track.
742 if (!swapped)
743 return 0;
745 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746 return swapped << PAGE_SHIFT;
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping,
750 linear_page_index(vma, vma->vm_start),
751 linear_page_index(vma, vma->vm_end));
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
757 void shmem_unlock_mapping(struct address_space *mapping)
759 struct pagevec pvec;
760 pgoff_t indices[PAGEVEC_SIZE];
761 pgoff_t index = 0;
763 pagevec_init(&pvec, 0);
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
767 while (!mapping_unevictable(mapping)) {
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
772 pvec.nr = find_get_entries(mapping, index,
773 PAGEVEC_SIZE, pvec.pages, indices);
774 if (!pvec.nr)
775 break;
776 index = indices[pvec.nr - 1] + 1;
777 pagevec_remove_exceptionals(&pvec);
778 check_move_unevictable_pages(pvec.pages, pvec.nr);
779 pagevec_release(&pvec);
780 cond_resched();
785 * Remove range of pages and swap entries from radix tree, and free them.
786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
788 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789 bool unfalloc)
791 struct address_space *mapping = inode->i_mapping;
792 struct shmem_inode_info *info = SHMEM_I(inode);
793 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
797 struct pagevec pvec;
798 pgoff_t indices[PAGEVEC_SIZE];
799 long nr_swaps_freed = 0;
800 pgoff_t index;
801 int i;
803 if (lend == -1)
804 end = -1; /* unsigned, so actually very big */
806 pagevec_init(&pvec, 0);
807 index = start;
808 while (index < end) {
809 pvec.nr = find_get_entries(mapping, index,
810 min(end - index, (pgoff_t)PAGEVEC_SIZE),
811 pvec.pages, indices);
812 if (!pvec.nr)
813 break;
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 struct page *page = pvec.pages[i];
817 index = indices[i];
818 if (index >= end)
819 break;
821 if (radix_tree_exceptional_entry(page)) {
822 if (unfalloc)
823 continue;
824 nr_swaps_freed += !shmem_free_swap(mapping,
825 index, page);
826 continue;
829 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
831 if (!trylock_page(page))
832 continue;
834 if (PageTransTail(page)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 } else if (PageTransHuge(page)) {
840 if (index == round_down(end, HPAGE_PMD_NR)) {
842 * Range ends in the middle of THP:
843 * zero out the page
845 clear_highpage(page);
846 unlock_page(page);
847 continue;
849 index += HPAGE_PMD_NR - 1;
850 i += HPAGE_PMD_NR - 1;
853 if (!unfalloc || !PageUptodate(page)) {
854 VM_BUG_ON_PAGE(PageTail(page), page);
855 if (page_mapping(page) == mapping) {
856 VM_BUG_ON_PAGE(PageWriteback(page), page);
857 truncate_inode_page(mapping, page);
860 unlock_page(page);
862 pagevec_remove_exceptionals(&pvec);
863 pagevec_release(&pvec);
864 cond_resched();
865 index++;
868 if (partial_start) {
869 struct page *page = NULL;
870 shmem_getpage(inode, start - 1, &page, SGP_READ);
871 if (page) {
872 unsigned int top = PAGE_SIZE;
873 if (start > end) {
874 top = partial_end;
875 partial_end = 0;
877 zero_user_segment(page, partial_start, top);
878 set_page_dirty(page);
879 unlock_page(page);
880 put_page(page);
883 if (partial_end) {
884 struct page *page = NULL;
885 shmem_getpage(inode, end, &page, SGP_READ);
886 if (page) {
887 zero_user_segment(page, 0, partial_end);
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
893 if (start >= end)
894 return;
896 index = start;
897 while (index < end) {
898 cond_resched();
900 pvec.nr = find_get_entries(mapping, index,
901 min(end - index, (pgoff_t)PAGEVEC_SIZE),
902 pvec.pages, indices);
903 if (!pvec.nr) {
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index == start || end != -1)
906 break;
907 /* But if truncating, restart to make sure all gone */
908 index = start;
909 continue;
911 for (i = 0; i < pagevec_count(&pvec); i++) {
912 struct page *page = pvec.pages[i];
914 index = indices[i];
915 if (index >= end)
916 break;
918 if (radix_tree_exceptional_entry(page)) {
919 if (unfalloc)
920 continue;
921 if (shmem_free_swap(mapping, index, page)) {
922 /* Swap was replaced by page: retry */
923 index--;
924 break;
926 nr_swaps_freed++;
927 continue;
930 lock_page(page);
932 if (PageTransTail(page)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page);
935 unlock_page(page);
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
941 if (index != round_down(end, HPAGE_PMD_NR))
942 start++;
943 continue;
944 } else if (PageTransHuge(page)) {
945 if (index == round_down(end, HPAGE_PMD_NR)) {
947 * Range ends in the middle of THP:
948 * zero out the page
950 clear_highpage(page);
951 unlock_page(page);
952 continue;
954 index += HPAGE_PMD_NR - 1;
955 i += HPAGE_PMD_NR - 1;
958 if (!unfalloc || !PageUptodate(page)) {
959 VM_BUG_ON_PAGE(PageTail(page), page);
960 if (page_mapping(page) == mapping) {
961 VM_BUG_ON_PAGE(PageWriteback(page), page);
962 truncate_inode_page(mapping, page);
963 } else {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
970 unlock_page(page);
972 pagevec_remove_exceptionals(&pvec);
973 pagevec_release(&pvec);
974 index++;
977 spin_lock_irq(&info->lock);
978 info->swapped -= nr_swaps_freed;
979 shmem_recalc_inode(inode);
980 spin_unlock_irq(&info->lock);
983 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
985 shmem_undo_range(inode, lstart, lend, false);
986 inode->i_ctime = inode->i_mtime = current_time(inode);
988 EXPORT_SYMBOL_GPL(shmem_truncate_range);
990 static int shmem_getattr(const struct path *path, struct kstat *stat,
991 u32 request_mask, unsigned int query_flags)
993 struct inode *inode = path->dentry->d_inode;
994 struct shmem_inode_info *info = SHMEM_I(inode);
996 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
997 spin_lock_irq(&info->lock);
998 shmem_recalc_inode(inode);
999 spin_unlock_irq(&info->lock);
1001 generic_fillattr(inode, stat);
1002 return 0;
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1007 struct inode *inode = d_inode(dentry);
1008 struct shmem_inode_info *info = SHMEM_I(inode);
1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010 int error;
1012 error = setattr_prepare(dentry, attr);
1013 if (error)
1014 return error;
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1025 if (newsize != oldsize) {
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
1030 i_size_write(inode, newsize);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1033 if (newsize <= oldsize) {
1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
1041 /* unmap again to remove racily COWed private pages */
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1056 if (list_empty_careful(&info->shrinklist)) {
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1061 spin_unlock(&sbinfo->shrinklist_lock);
1066 setattr_copy(inode, attr);
1067 if (attr->ia_valid & ATTR_MODE)
1068 error = posix_acl_chmod(inode, inode->i_mode);
1069 return error;
1072 static void shmem_evict_inode(struct inode *inode)
1074 struct shmem_inode_info *info = SHMEM_I(inode);
1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
1080 shmem_truncate_range(inode, 0, (loff_t)-1);
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1087 spin_unlock(&sbinfo->shrinklist_lock);
1089 if (!list_empty(&info->swaplist)) {
1090 mutex_lock(&shmem_swaplist_mutex);
1091 list_del_init(&info->swaplist);
1092 mutex_unlock(&shmem_swaplist_mutex);
1096 simple_xattrs_free(&info->xattrs);
1097 WARN_ON(inode->i_blocks);
1098 shmem_free_inode(inode->i_sb);
1099 clear_inode(inode);
1102 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1104 struct radix_tree_iter iter;
1105 void **slot;
1106 unsigned long found = -1;
1107 unsigned int checked = 0;
1109 rcu_read_lock();
1110 radix_tree_for_each_slot(slot, root, &iter, 0) {
1111 if (*slot == item) {
1112 found = iter.index;
1113 break;
1115 checked++;
1116 if ((checked % 4096) != 0)
1117 continue;
1118 slot = radix_tree_iter_resume(slot, &iter);
1119 cond_resched_rcu();
1122 rcu_read_unlock();
1123 return found;
1127 * If swap found in inode, free it and move page from swapcache to filecache.
1129 static int shmem_unuse_inode(struct shmem_inode_info *info,
1130 swp_entry_t swap, struct page **pagep)
1132 struct address_space *mapping = info->vfs_inode.i_mapping;
1133 void *radswap;
1134 pgoff_t index;
1135 gfp_t gfp;
1136 int error = 0;
1138 radswap = swp_to_radix_entry(swap);
1139 index = find_swap_entry(&mapping->page_tree, radswap);
1140 if (index == -1)
1141 return -EAGAIN; /* tell shmem_unuse we found nothing */
1144 * Move _head_ to start search for next from here.
1145 * But be careful: shmem_evict_inode checks list_empty without taking
1146 * mutex, and there's an instant in list_move_tail when info->swaplist
1147 * would appear empty, if it were the only one on shmem_swaplist.
1149 if (shmem_swaplist.next != &info->swaplist)
1150 list_move_tail(&shmem_swaplist, &info->swaplist);
1152 gfp = mapping_gfp_mask(mapping);
1153 if (shmem_should_replace_page(*pagep, gfp)) {
1154 mutex_unlock(&shmem_swaplist_mutex);
1155 error = shmem_replace_page(pagep, gfp, info, index);
1156 mutex_lock(&shmem_swaplist_mutex);
1158 * We needed to drop mutex to make that restrictive page
1159 * allocation, but the inode might have been freed while we
1160 * dropped it: although a racing shmem_evict_inode() cannot
1161 * complete without emptying the radix_tree, our page lock
1162 * on this swapcache page is not enough to prevent that -
1163 * free_swap_and_cache() of our swap entry will only
1164 * trylock_page(), removing swap from radix_tree whatever.
1166 * We must not proceed to shmem_add_to_page_cache() if the
1167 * inode has been freed, but of course we cannot rely on
1168 * inode or mapping or info to check that. However, we can
1169 * safely check if our swap entry is still in use (and here
1170 * it can't have got reused for another page): if it's still
1171 * in use, then the inode cannot have been freed yet, and we
1172 * can safely proceed (if it's no longer in use, that tells
1173 * nothing about the inode, but we don't need to unuse swap).
1175 if (!page_swapcount(*pagep))
1176 error = -ENOENT;
1180 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182 * beneath us (pagelock doesn't help until the page is in pagecache).
1184 if (!error)
1185 error = shmem_add_to_page_cache(*pagep, mapping, index,
1186 radswap);
1187 if (error != -ENOMEM) {
1189 * Truncation and eviction use free_swap_and_cache(), which
1190 * only does trylock page: if we raced, best clean up here.
1192 delete_from_swap_cache(*pagep);
1193 set_page_dirty(*pagep);
1194 if (!error) {
1195 spin_lock_irq(&info->lock);
1196 info->swapped--;
1197 spin_unlock_irq(&info->lock);
1198 swap_free(swap);
1201 return error;
1205 * Search through swapped inodes to find and replace swap by page.
1207 int shmem_unuse(swp_entry_t swap, struct page *page)
1209 struct list_head *this, *next;
1210 struct shmem_inode_info *info;
1211 struct mem_cgroup *memcg;
1212 int error = 0;
1215 * There's a faint possibility that swap page was replaced before
1216 * caller locked it: caller will come back later with the right page.
1218 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1219 goto out;
1222 * Charge page using GFP_KERNEL while we can wait, before taking
1223 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224 * Charged back to the user (not to caller) when swap account is used.
1226 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1227 false);
1228 if (error)
1229 goto out;
1230 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1231 error = -EAGAIN;
1233 mutex_lock(&shmem_swaplist_mutex);
1234 list_for_each_safe(this, next, &shmem_swaplist) {
1235 info = list_entry(this, struct shmem_inode_info, swaplist);
1236 if (info->swapped)
1237 error = shmem_unuse_inode(info, swap, &page);
1238 else
1239 list_del_init(&info->swaplist);
1240 cond_resched();
1241 if (error != -EAGAIN)
1242 break;
1243 /* found nothing in this: move on to search the next */
1245 mutex_unlock(&shmem_swaplist_mutex);
1247 if (error) {
1248 if (error != -ENOMEM)
1249 error = 0;
1250 mem_cgroup_cancel_charge(page, memcg, false);
1251 } else
1252 mem_cgroup_commit_charge(page, memcg, true, false);
1253 out:
1254 unlock_page(page);
1255 put_page(page);
1256 return error;
1260 * Move the page from the page cache to the swap cache.
1262 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1264 struct shmem_inode_info *info;
1265 struct address_space *mapping;
1266 struct inode *inode;
1267 swp_entry_t swap;
1268 pgoff_t index;
1270 VM_BUG_ON_PAGE(PageCompound(page), page);
1271 BUG_ON(!PageLocked(page));
1272 mapping = page->mapping;
1273 index = page->index;
1274 inode = mapping->host;
1275 info = SHMEM_I(inode);
1276 if (info->flags & VM_LOCKED)
1277 goto redirty;
1278 if (!total_swap_pages)
1279 goto redirty;
1282 * Our capabilities prevent regular writeback or sync from ever calling
1283 * shmem_writepage; but a stacking filesystem might use ->writepage of
1284 * its underlying filesystem, in which case tmpfs should write out to
1285 * swap only in response to memory pressure, and not for the writeback
1286 * threads or sync.
1288 if (!wbc->for_reclaim) {
1289 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1290 goto redirty;
1294 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295 * value into swapfile.c, the only way we can correctly account for a
1296 * fallocated page arriving here is now to initialize it and write it.
1298 * That's okay for a page already fallocated earlier, but if we have
1299 * not yet completed the fallocation, then (a) we want to keep track
1300 * of this page in case we have to undo it, and (b) it may not be a
1301 * good idea to continue anyway, once we're pushing into swap. So
1302 * reactivate the page, and let shmem_fallocate() quit when too many.
1304 if (!PageUptodate(page)) {
1305 if (inode->i_private) {
1306 struct shmem_falloc *shmem_falloc;
1307 spin_lock(&inode->i_lock);
1308 shmem_falloc = inode->i_private;
1309 if (shmem_falloc &&
1310 !shmem_falloc->waitq &&
1311 index >= shmem_falloc->start &&
1312 index < shmem_falloc->next)
1313 shmem_falloc->nr_unswapped++;
1314 else
1315 shmem_falloc = NULL;
1316 spin_unlock(&inode->i_lock);
1317 if (shmem_falloc)
1318 goto redirty;
1320 clear_highpage(page);
1321 flush_dcache_page(page);
1322 SetPageUptodate(page);
1325 swap = get_swap_page(page);
1326 if (!swap.val)
1327 goto redirty;
1329 if (mem_cgroup_try_charge_swap(page, swap))
1330 goto free_swap;
1333 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1334 * if it's not already there. Do it now before the page is
1335 * moved to swap cache, when its pagelock no longer protects
1336 * the inode from eviction. But don't unlock the mutex until
1337 * we've incremented swapped, because shmem_unuse_inode() will
1338 * prune a !swapped inode from the swaplist under this mutex.
1340 mutex_lock(&shmem_swaplist_mutex);
1341 if (list_empty(&info->swaplist))
1342 list_add_tail(&info->swaplist, &shmem_swaplist);
1344 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1345 spin_lock_irq(&info->lock);
1346 shmem_recalc_inode(inode);
1347 info->swapped++;
1348 spin_unlock_irq(&info->lock);
1350 swap_shmem_alloc(swap);
1351 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1353 mutex_unlock(&shmem_swaplist_mutex);
1354 BUG_ON(page_mapped(page));
1355 swap_writepage(page, wbc);
1356 return 0;
1359 mutex_unlock(&shmem_swaplist_mutex);
1360 free_swap:
1361 put_swap_page(page, swap);
1362 redirty:
1363 set_page_dirty(page);
1364 if (wbc->for_reclaim)
1365 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1366 unlock_page(page);
1367 return 0;
1370 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1371 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1373 char buffer[64];
1375 if (!mpol || mpol->mode == MPOL_DEFAULT)
1376 return; /* show nothing */
1378 mpol_to_str(buffer, sizeof(buffer), mpol);
1380 seq_printf(seq, ",mpol=%s", buffer);
1383 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1385 struct mempolicy *mpol = NULL;
1386 if (sbinfo->mpol) {
1387 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1388 mpol = sbinfo->mpol;
1389 mpol_get(mpol);
1390 spin_unlock(&sbinfo->stat_lock);
1392 return mpol;
1394 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1395 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1398 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1400 return NULL;
1402 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1403 #ifndef CONFIG_NUMA
1404 #define vm_policy vm_private_data
1405 #endif
1407 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1408 struct shmem_inode_info *info, pgoff_t index)
1410 /* Create a pseudo vma that just contains the policy */
1411 vma->vm_start = 0;
1412 /* Bias interleave by inode number to distribute better across nodes */
1413 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1414 vma->vm_ops = NULL;
1415 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1418 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1420 /* Drop reference taken by mpol_shared_policy_lookup() */
1421 mpol_cond_put(vma->vm_policy);
1424 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1425 struct shmem_inode_info *info, pgoff_t index)
1427 struct vm_area_struct pvma;
1428 struct page *page;
1430 shmem_pseudo_vma_init(&pvma, info, index);
1431 page = swapin_readahead(swap, gfp, &pvma, 0);
1432 shmem_pseudo_vma_destroy(&pvma);
1434 return page;
1437 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1438 struct shmem_inode_info *info, pgoff_t index)
1440 struct vm_area_struct pvma;
1441 struct inode *inode = &info->vfs_inode;
1442 struct address_space *mapping = inode->i_mapping;
1443 pgoff_t idx, hindex;
1444 void __rcu **results;
1445 struct page *page;
1447 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1448 return NULL;
1450 hindex = round_down(index, HPAGE_PMD_NR);
1451 rcu_read_lock();
1452 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1453 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1454 rcu_read_unlock();
1455 return NULL;
1457 rcu_read_unlock();
1459 shmem_pseudo_vma_init(&pvma, info, hindex);
1460 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1461 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1462 shmem_pseudo_vma_destroy(&pvma);
1463 if (page)
1464 prep_transhuge_page(page);
1465 return page;
1468 static struct page *shmem_alloc_page(gfp_t gfp,
1469 struct shmem_inode_info *info, pgoff_t index)
1471 struct vm_area_struct pvma;
1472 struct page *page;
1474 shmem_pseudo_vma_init(&pvma, info, index);
1475 page = alloc_page_vma(gfp, &pvma, 0);
1476 shmem_pseudo_vma_destroy(&pvma);
1478 return page;
1481 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1482 struct inode *inode,
1483 pgoff_t index, bool huge)
1485 struct shmem_inode_info *info = SHMEM_I(inode);
1486 struct page *page;
1487 int nr;
1488 int err = -ENOSPC;
1490 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1491 huge = false;
1492 nr = huge ? HPAGE_PMD_NR : 1;
1494 if (!shmem_inode_acct_block(inode, nr))
1495 goto failed;
1497 if (huge)
1498 page = shmem_alloc_hugepage(gfp, info, index);
1499 else
1500 page = shmem_alloc_page(gfp, info, index);
1501 if (page) {
1502 __SetPageLocked(page);
1503 __SetPageSwapBacked(page);
1504 return page;
1507 err = -ENOMEM;
1508 shmem_inode_unacct_blocks(inode, nr);
1509 failed:
1510 return ERR_PTR(err);
1514 * When a page is moved from swapcache to shmem filecache (either by the
1515 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1516 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1517 * ignorance of the mapping it belongs to. If that mapping has special
1518 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1519 * we may need to copy to a suitable page before moving to filecache.
1521 * In a future release, this may well be extended to respect cpuset and
1522 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1523 * but for now it is a simple matter of zone.
1525 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1527 return page_zonenum(page) > gfp_zone(gfp);
1530 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1531 struct shmem_inode_info *info, pgoff_t index)
1533 struct page *oldpage, *newpage;
1534 struct address_space *swap_mapping;
1535 swp_entry_t entry;
1536 pgoff_t swap_index;
1537 int error;
1539 oldpage = *pagep;
1540 entry.val = page_private(oldpage);
1541 swap_index = swp_offset(entry);
1542 swap_mapping = page_mapping(oldpage);
1545 * We have arrived here because our zones are constrained, so don't
1546 * limit chance of success by further cpuset and node constraints.
1548 gfp &= ~GFP_CONSTRAINT_MASK;
1549 newpage = shmem_alloc_page(gfp, info, index);
1550 if (!newpage)
1551 return -ENOMEM;
1553 get_page(newpage);
1554 copy_highpage(newpage, oldpage);
1555 flush_dcache_page(newpage);
1557 __SetPageLocked(newpage);
1558 __SetPageSwapBacked(newpage);
1559 SetPageUptodate(newpage);
1560 set_page_private(newpage, entry.val);
1561 SetPageSwapCache(newpage);
1564 * Our caller will very soon move newpage out of swapcache, but it's
1565 * a nice clean interface for us to replace oldpage by newpage there.
1567 spin_lock_irq(&swap_mapping->tree_lock);
1568 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1569 newpage);
1570 if (!error) {
1571 __inc_node_page_state(newpage, NR_FILE_PAGES);
1572 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1574 spin_unlock_irq(&swap_mapping->tree_lock);
1576 if (unlikely(error)) {
1578 * Is this possible? I think not, now that our callers check
1579 * both PageSwapCache and page_private after getting page lock;
1580 * but be defensive. Reverse old to newpage for clear and free.
1582 oldpage = newpage;
1583 } else {
1584 mem_cgroup_migrate(oldpage, newpage);
1585 lru_cache_add_anon(newpage);
1586 *pagep = newpage;
1589 ClearPageSwapCache(oldpage);
1590 set_page_private(oldpage, 0);
1592 unlock_page(oldpage);
1593 put_page(oldpage);
1594 put_page(oldpage);
1595 return error;
1599 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1601 * If we allocate a new one we do not mark it dirty. That's up to the
1602 * vm. If we swap it in we mark it dirty since we also free the swap
1603 * entry since a page cannot live in both the swap and page cache.
1605 * fault_mm and fault_type are only supplied by shmem_fault:
1606 * otherwise they are NULL.
1608 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1609 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1610 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1612 struct address_space *mapping = inode->i_mapping;
1613 struct shmem_inode_info *info = SHMEM_I(inode);
1614 struct shmem_sb_info *sbinfo;
1615 struct mm_struct *charge_mm;
1616 struct mem_cgroup *memcg;
1617 struct page *page;
1618 swp_entry_t swap;
1619 enum sgp_type sgp_huge = sgp;
1620 pgoff_t hindex = index;
1621 int error;
1622 int once = 0;
1623 int alloced = 0;
1625 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1626 return -EFBIG;
1627 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1628 sgp = SGP_CACHE;
1629 repeat:
1630 swap.val = 0;
1631 page = find_lock_entry(mapping, index);
1632 if (radix_tree_exceptional_entry(page)) {
1633 swap = radix_to_swp_entry(page);
1634 page = NULL;
1637 if (sgp <= SGP_CACHE &&
1638 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1639 error = -EINVAL;
1640 goto unlock;
1643 if (page && sgp == SGP_WRITE)
1644 mark_page_accessed(page);
1646 /* fallocated page? */
1647 if (page && !PageUptodate(page)) {
1648 if (sgp != SGP_READ)
1649 goto clear;
1650 unlock_page(page);
1651 put_page(page);
1652 page = NULL;
1654 if (page || (sgp == SGP_READ && !swap.val)) {
1655 *pagep = page;
1656 return 0;
1660 * Fast cache lookup did not find it:
1661 * bring it back from swap or allocate.
1663 sbinfo = SHMEM_SB(inode->i_sb);
1664 charge_mm = vma ? vma->vm_mm : current->mm;
1666 if (swap.val) {
1667 /* Look it up and read it in.. */
1668 page = lookup_swap_cache(swap, NULL, 0);
1669 if (!page) {
1670 /* Or update major stats only when swapin succeeds?? */
1671 if (fault_type) {
1672 *fault_type |= VM_FAULT_MAJOR;
1673 count_vm_event(PGMAJFAULT);
1674 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1676 /* Here we actually start the io */
1677 page = shmem_swapin(swap, gfp, info, index);
1678 if (!page) {
1679 error = -ENOMEM;
1680 goto failed;
1684 /* We have to do this with page locked to prevent races */
1685 lock_page(page);
1686 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1687 !shmem_confirm_swap(mapping, index, swap)) {
1688 error = -EEXIST; /* try again */
1689 goto unlock;
1691 if (!PageUptodate(page)) {
1692 error = -EIO;
1693 goto failed;
1695 wait_on_page_writeback(page);
1697 if (shmem_should_replace_page(page, gfp)) {
1698 error = shmem_replace_page(&page, gfp, info, index);
1699 if (error)
1700 goto failed;
1703 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1704 false);
1705 if (!error) {
1706 error = shmem_add_to_page_cache(page, mapping, index,
1707 swp_to_radix_entry(swap));
1709 * We already confirmed swap under page lock, and make
1710 * no memory allocation here, so usually no possibility
1711 * of error; but free_swap_and_cache() only trylocks a
1712 * page, so it is just possible that the entry has been
1713 * truncated or holepunched since swap was confirmed.
1714 * shmem_undo_range() will have done some of the
1715 * unaccounting, now delete_from_swap_cache() will do
1716 * the rest.
1717 * Reset swap.val? No, leave it so "failed" goes back to
1718 * "repeat": reading a hole and writing should succeed.
1720 if (error) {
1721 mem_cgroup_cancel_charge(page, memcg, false);
1722 delete_from_swap_cache(page);
1725 if (error)
1726 goto failed;
1728 mem_cgroup_commit_charge(page, memcg, true, false);
1730 spin_lock_irq(&info->lock);
1731 info->swapped--;
1732 shmem_recalc_inode(inode);
1733 spin_unlock_irq(&info->lock);
1735 if (sgp == SGP_WRITE)
1736 mark_page_accessed(page);
1738 delete_from_swap_cache(page);
1739 set_page_dirty(page);
1740 swap_free(swap);
1742 } else {
1743 if (vma && userfaultfd_missing(vma)) {
1744 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1745 return 0;
1748 /* shmem_symlink() */
1749 if (mapping->a_ops != &shmem_aops)
1750 goto alloc_nohuge;
1751 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1752 goto alloc_nohuge;
1753 if (shmem_huge == SHMEM_HUGE_FORCE)
1754 goto alloc_huge;
1755 switch (sbinfo->huge) {
1756 loff_t i_size;
1757 pgoff_t off;
1758 case SHMEM_HUGE_NEVER:
1759 goto alloc_nohuge;
1760 case SHMEM_HUGE_WITHIN_SIZE:
1761 off = round_up(index, HPAGE_PMD_NR);
1762 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1763 if (i_size >= HPAGE_PMD_SIZE &&
1764 i_size >> PAGE_SHIFT >= off)
1765 goto alloc_huge;
1766 /* fallthrough */
1767 case SHMEM_HUGE_ADVISE:
1768 if (sgp_huge == SGP_HUGE)
1769 goto alloc_huge;
1770 /* TODO: implement fadvise() hints */
1771 goto alloc_nohuge;
1774 alloc_huge:
1775 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1776 if (IS_ERR(page)) {
1777 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1778 index, false);
1780 if (IS_ERR(page)) {
1781 int retry = 5;
1782 error = PTR_ERR(page);
1783 page = NULL;
1784 if (error != -ENOSPC)
1785 goto failed;
1787 * Try to reclaim some spece by splitting a huge page
1788 * beyond i_size on the filesystem.
1790 while (retry--) {
1791 int ret;
1792 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1793 if (ret == SHRINK_STOP)
1794 break;
1795 if (ret)
1796 goto alloc_nohuge;
1798 goto failed;
1801 if (PageTransHuge(page))
1802 hindex = round_down(index, HPAGE_PMD_NR);
1803 else
1804 hindex = index;
1806 if (sgp == SGP_WRITE)
1807 __SetPageReferenced(page);
1809 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1810 PageTransHuge(page));
1811 if (error)
1812 goto unacct;
1813 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1814 compound_order(page));
1815 if (!error) {
1816 error = shmem_add_to_page_cache(page, mapping, hindex,
1817 NULL);
1818 radix_tree_preload_end();
1820 if (error) {
1821 mem_cgroup_cancel_charge(page, memcg,
1822 PageTransHuge(page));
1823 goto unacct;
1825 mem_cgroup_commit_charge(page, memcg, false,
1826 PageTransHuge(page));
1827 lru_cache_add_anon(page);
1829 spin_lock_irq(&info->lock);
1830 info->alloced += 1 << compound_order(page);
1831 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1832 shmem_recalc_inode(inode);
1833 spin_unlock_irq(&info->lock);
1834 alloced = true;
1836 if (PageTransHuge(page) &&
1837 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1838 hindex + HPAGE_PMD_NR - 1) {
1840 * Part of the huge page is beyond i_size: subject
1841 * to shrink under memory pressure.
1843 spin_lock(&sbinfo->shrinklist_lock);
1845 * _careful to defend against unlocked access to
1846 * ->shrink_list in shmem_unused_huge_shrink()
1848 if (list_empty_careful(&info->shrinklist)) {
1849 list_add_tail(&info->shrinklist,
1850 &sbinfo->shrinklist);
1851 sbinfo->shrinklist_len++;
1853 spin_unlock(&sbinfo->shrinklist_lock);
1857 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1859 if (sgp == SGP_FALLOC)
1860 sgp = SGP_WRITE;
1861 clear:
1863 * Let SGP_WRITE caller clear ends if write does not fill page;
1864 * but SGP_FALLOC on a page fallocated earlier must initialize
1865 * it now, lest undo on failure cancel our earlier guarantee.
1867 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1868 struct page *head = compound_head(page);
1869 int i;
1871 for (i = 0; i < (1 << compound_order(head)); i++) {
1872 clear_highpage(head + i);
1873 flush_dcache_page(head + i);
1875 SetPageUptodate(head);
1879 /* Perhaps the file has been truncated since we checked */
1880 if (sgp <= SGP_CACHE &&
1881 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1882 if (alloced) {
1883 ClearPageDirty(page);
1884 delete_from_page_cache(page);
1885 spin_lock_irq(&info->lock);
1886 shmem_recalc_inode(inode);
1887 spin_unlock_irq(&info->lock);
1889 error = -EINVAL;
1890 goto unlock;
1892 *pagep = page + index - hindex;
1893 return 0;
1896 * Error recovery.
1898 unacct:
1899 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1901 if (PageTransHuge(page)) {
1902 unlock_page(page);
1903 put_page(page);
1904 goto alloc_nohuge;
1906 failed:
1907 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1908 error = -EEXIST;
1909 unlock:
1910 if (page) {
1911 unlock_page(page);
1912 put_page(page);
1914 if (error == -ENOSPC && !once++) {
1915 spin_lock_irq(&info->lock);
1916 shmem_recalc_inode(inode);
1917 spin_unlock_irq(&info->lock);
1918 goto repeat;
1920 if (error == -EEXIST) /* from above or from radix_tree_insert */
1921 goto repeat;
1922 return error;
1926 * This is like autoremove_wake_function, but it removes the wait queue
1927 * entry unconditionally - even if something else had already woken the
1928 * target.
1930 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1932 int ret = default_wake_function(wait, mode, sync, key);
1933 list_del_init(&wait->entry);
1934 return ret;
1937 static int shmem_fault(struct vm_fault *vmf)
1939 struct vm_area_struct *vma = vmf->vma;
1940 struct inode *inode = file_inode(vma->vm_file);
1941 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1942 enum sgp_type sgp;
1943 int error;
1944 int ret = VM_FAULT_LOCKED;
1947 * Trinity finds that probing a hole which tmpfs is punching can
1948 * prevent the hole-punch from ever completing: which in turn
1949 * locks writers out with its hold on i_mutex. So refrain from
1950 * faulting pages into the hole while it's being punched. Although
1951 * shmem_undo_range() does remove the additions, it may be unable to
1952 * keep up, as each new page needs its own unmap_mapping_range() call,
1953 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1955 * It does not matter if we sometimes reach this check just before the
1956 * hole-punch begins, so that one fault then races with the punch:
1957 * we just need to make racing faults a rare case.
1959 * The implementation below would be much simpler if we just used a
1960 * standard mutex or completion: but we cannot take i_mutex in fault,
1961 * and bloating every shmem inode for this unlikely case would be sad.
1963 if (unlikely(inode->i_private)) {
1964 struct shmem_falloc *shmem_falloc;
1966 spin_lock(&inode->i_lock);
1967 shmem_falloc = inode->i_private;
1968 if (shmem_falloc &&
1969 shmem_falloc->waitq &&
1970 vmf->pgoff >= shmem_falloc->start &&
1971 vmf->pgoff < shmem_falloc->next) {
1972 wait_queue_head_t *shmem_falloc_waitq;
1973 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1975 ret = VM_FAULT_NOPAGE;
1976 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1977 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1978 /* It's polite to up mmap_sem if we can */
1979 up_read(&vma->vm_mm->mmap_sem);
1980 ret = VM_FAULT_RETRY;
1983 shmem_falloc_waitq = shmem_falloc->waitq;
1984 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1985 TASK_UNINTERRUPTIBLE);
1986 spin_unlock(&inode->i_lock);
1987 schedule();
1990 * shmem_falloc_waitq points into the shmem_fallocate()
1991 * stack of the hole-punching task: shmem_falloc_waitq
1992 * is usually invalid by the time we reach here, but
1993 * finish_wait() does not dereference it in that case;
1994 * though i_lock needed lest racing with wake_up_all().
1996 spin_lock(&inode->i_lock);
1997 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1998 spin_unlock(&inode->i_lock);
1999 return ret;
2001 spin_unlock(&inode->i_lock);
2004 sgp = SGP_CACHE;
2006 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2007 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2008 sgp = SGP_NOHUGE;
2009 else if (vma->vm_flags & VM_HUGEPAGE)
2010 sgp = SGP_HUGE;
2012 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2013 gfp, vma, vmf, &ret);
2014 if (error)
2015 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2016 return ret;
2019 unsigned long shmem_get_unmapped_area(struct file *file,
2020 unsigned long uaddr, unsigned long len,
2021 unsigned long pgoff, unsigned long flags)
2023 unsigned long (*get_area)(struct file *,
2024 unsigned long, unsigned long, unsigned long, unsigned long);
2025 unsigned long addr;
2026 unsigned long offset;
2027 unsigned long inflated_len;
2028 unsigned long inflated_addr;
2029 unsigned long inflated_offset;
2031 if (len > TASK_SIZE)
2032 return -ENOMEM;
2034 get_area = current->mm->get_unmapped_area;
2035 addr = get_area(file, uaddr, len, pgoff, flags);
2037 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2038 return addr;
2039 if (IS_ERR_VALUE(addr))
2040 return addr;
2041 if (addr & ~PAGE_MASK)
2042 return addr;
2043 if (addr > TASK_SIZE - len)
2044 return addr;
2046 if (shmem_huge == SHMEM_HUGE_DENY)
2047 return addr;
2048 if (len < HPAGE_PMD_SIZE)
2049 return addr;
2050 if (flags & MAP_FIXED)
2051 return addr;
2053 * Our priority is to support MAP_SHARED mapped hugely;
2054 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2055 * But if caller specified an address hint and we allocated area there
2056 * successfully, respect that as before.
2058 if (uaddr == addr)
2059 return addr;
2061 if (shmem_huge != SHMEM_HUGE_FORCE) {
2062 struct super_block *sb;
2064 if (file) {
2065 VM_BUG_ON(file->f_op != &shmem_file_operations);
2066 sb = file_inode(file)->i_sb;
2067 } else {
2069 * Called directly from mm/mmap.c, or drivers/char/mem.c
2070 * for "/dev/zero", to create a shared anonymous object.
2072 if (IS_ERR(shm_mnt))
2073 return addr;
2074 sb = shm_mnt->mnt_sb;
2076 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2077 return addr;
2080 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2081 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2082 return addr;
2083 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2084 return addr;
2086 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2087 if (inflated_len > TASK_SIZE)
2088 return addr;
2089 if (inflated_len < len)
2090 return addr;
2092 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2093 if (IS_ERR_VALUE(inflated_addr))
2094 return addr;
2095 if (inflated_addr & ~PAGE_MASK)
2096 return addr;
2098 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2099 inflated_addr += offset - inflated_offset;
2100 if (inflated_offset > offset)
2101 inflated_addr += HPAGE_PMD_SIZE;
2103 if (inflated_addr > TASK_SIZE - len)
2104 return addr;
2105 return inflated_addr;
2108 #ifdef CONFIG_NUMA
2109 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2111 struct inode *inode = file_inode(vma->vm_file);
2112 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2115 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2116 unsigned long addr)
2118 struct inode *inode = file_inode(vma->vm_file);
2119 pgoff_t index;
2121 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2122 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2124 #endif
2126 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2128 struct inode *inode = file_inode(file);
2129 struct shmem_inode_info *info = SHMEM_I(inode);
2130 int retval = -ENOMEM;
2133 * What serializes the accesses to info->flags?
2134 * ipc_lock_object() when called from shmctl_do_lock(),
2135 * no serialization needed when called from shm_destroy().
2137 if (lock && !(info->flags & VM_LOCKED)) {
2138 if (!user_shm_lock(inode->i_size, user))
2139 goto out_nomem;
2140 info->flags |= VM_LOCKED;
2141 mapping_set_unevictable(file->f_mapping);
2143 if (!lock && (info->flags & VM_LOCKED) && user) {
2144 user_shm_unlock(inode->i_size, user);
2145 info->flags &= ~VM_LOCKED;
2146 mapping_clear_unevictable(file->f_mapping);
2148 retval = 0;
2150 out_nomem:
2151 return retval;
2154 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2156 file_accessed(file);
2157 vma->vm_ops = &shmem_vm_ops;
2158 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2159 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2160 (vma->vm_end & HPAGE_PMD_MASK)) {
2161 khugepaged_enter(vma, vma->vm_flags);
2163 return 0;
2166 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2167 umode_t mode, dev_t dev, unsigned long flags)
2169 struct inode *inode;
2170 struct shmem_inode_info *info;
2171 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2173 if (shmem_reserve_inode(sb))
2174 return NULL;
2176 inode = new_inode(sb);
2177 if (inode) {
2178 inode->i_ino = get_next_ino();
2179 inode_init_owner(inode, dir, mode);
2180 inode->i_blocks = 0;
2181 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2182 inode->i_generation = get_seconds();
2183 info = SHMEM_I(inode);
2184 memset(info, 0, (char *)inode - (char *)info);
2185 spin_lock_init(&info->lock);
2186 info->seals = F_SEAL_SEAL;
2187 info->flags = flags & VM_NORESERVE;
2188 INIT_LIST_HEAD(&info->shrinklist);
2189 INIT_LIST_HEAD(&info->swaplist);
2190 simple_xattrs_init(&info->xattrs);
2191 cache_no_acl(inode);
2193 switch (mode & S_IFMT) {
2194 default:
2195 inode->i_op = &shmem_special_inode_operations;
2196 init_special_inode(inode, mode, dev);
2197 break;
2198 case S_IFREG:
2199 inode->i_mapping->a_ops = &shmem_aops;
2200 inode->i_op = &shmem_inode_operations;
2201 inode->i_fop = &shmem_file_operations;
2202 mpol_shared_policy_init(&info->policy,
2203 shmem_get_sbmpol(sbinfo));
2204 break;
2205 case S_IFDIR:
2206 inc_nlink(inode);
2207 /* Some things misbehave if size == 0 on a directory */
2208 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2209 inode->i_op = &shmem_dir_inode_operations;
2210 inode->i_fop = &simple_dir_operations;
2211 break;
2212 case S_IFLNK:
2214 * Must not load anything in the rbtree,
2215 * mpol_free_shared_policy will not be called.
2217 mpol_shared_policy_init(&info->policy, NULL);
2218 break;
2221 lockdep_annotate_inode_mutex_key(inode);
2222 } else
2223 shmem_free_inode(sb);
2224 return inode;
2227 bool shmem_mapping(struct address_space *mapping)
2229 return mapping->a_ops == &shmem_aops;
2232 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2233 pmd_t *dst_pmd,
2234 struct vm_area_struct *dst_vma,
2235 unsigned long dst_addr,
2236 unsigned long src_addr,
2237 bool zeropage,
2238 struct page **pagep)
2240 struct inode *inode = file_inode(dst_vma->vm_file);
2241 struct shmem_inode_info *info = SHMEM_I(inode);
2242 struct address_space *mapping = inode->i_mapping;
2243 gfp_t gfp = mapping_gfp_mask(mapping);
2244 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2245 struct mem_cgroup *memcg;
2246 spinlock_t *ptl;
2247 void *page_kaddr;
2248 struct page *page;
2249 pte_t _dst_pte, *dst_pte;
2250 int ret;
2251 pgoff_t offset, max_off;
2253 ret = -ENOMEM;
2254 if (!shmem_inode_acct_block(inode, 1))
2255 goto out;
2257 if (!*pagep) {
2258 page = shmem_alloc_page(gfp, info, pgoff);
2259 if (!page)
2260 goto out_unacct_blocks;
2262 if (!zeropage) { /* mcopy_atomic */
2263 page_kaddr = kmap_atomic(page);
2264 ret = copy_from_user(page_kaddr,
2265 (const void __user *)src_addr,
2266 PAGE_SIZE);
2267 kunmap_atomic(page_kaddr);
2269 /* fallback to copy_from_user outside mmap_sem */
2270 if (unlikely(ret)) {
2271 *pagep = page;
2272 shmem_inode_unacct_blocks(inode, 1);
2273 /* don't free the page */
2274 return -ENOENT;
2276 } else { /* mfill_zeropage_atomic */
2277 clear_highpage(page);
2279 } else {
2280 page = *pagep;
2281 *pagep = NULL;
2284 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2285 __SetPageLocked(page);
2286 __SetPageSwapBacked(page);
2287 __SetPageUptodate(page);
2289 ret = -EFAULT;
2290 offset = linear_page_index(dst_vma, dst_addr);
2291 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2292 if (unlikely(offset >= max_off))
2293 goto out_release;
2295 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2296 if (ret)
2297 goto out_release;
2299 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2300 if (!ret) {
2301 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2302 radix_tree_preload_end();
2304 if (ret)
2305 goto out_release_uncharge;
2307 mem_cgroup_commit_charge(page, memcg, false, false);
2309 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2310 if (dst_vma->vm_flags & VM_WRITE)
2311 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2312 else {
2314 * We don't set the pte dirty if the vma has no
2315 * VM_WRITE permission, so mark the page dirty or it
2316 * could be freed from under us. We could do it
2317 * unconditionally before unlock_page(), but doing it
2318 * only if VM_WRITE is not set is faster.
2320 set_page_dirty(page);
2323 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2325 ret = -EFAULT;
2326 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2327 if (unlikely(offset >= max_off))
2328 goto out_release_uncharge_unlock;
2330 ret = -EEXIST;
2331 if (!pte_none(*dst_pte))
2332 goto out_release_uncharge_unlock;
2334 lru_cache_add_anon(page);
2336 spin_lock_irq(&info->lock);
2337 info->alloced++;
2338 inode->i_blocks += BLOCKS_PER_PAGE;
2339 shmem_recalc_inode(inode);
2340 spin_unlock_irq(&info->lock);
2342 inc_mm_counter(dst_mm, mm_counter_file(page));
2343 page_add_file_rmap(page, false);
2344 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2346 /* No need to invalidate - it was non-present before */
2347 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2348 pte_unmap_unlock(dst_pte, ptl);
2349 unlock_page(page);
2350 ret = 0;
2351 out:
2352 return ret;
2353 out_release_uncharge_unlock:
2354 pte_unmap_unlock(dst_pte, ptl);
2355 ClearPageDirty(page);
2356 delete_from_page_cache(page);
2357 out_release_uncharge:
2358 mem_cgroup_cancel_charge(page, memcg, false);
2359 out_release:
2360 unlock_page(page);
2361 put_page(page);
2362 out_unacct_blocks:
2363 shmem_inode_unacct_blocks(inode, 1);
2364 goto out;
2367 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2368 pmd_t *dst_pmd,
2369 struct vm_area_struct *dst_vma,
2370 unsigned long dst_addr,
2371 unsigned long src_addr,
2372 struct page **pagep)
2374 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2375 dst_addr, src_addr, false, pagep);
2378 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2379 pmd_t *dst_pmd,
2380 struct vm_area_struct *dst_vma,
2381 unsigned long dst_addr)
2383 struct page *page = NULL;
2385 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2386 dst_addr, 0, true, &page);
2389 #ifdef CONFIG_TMPFS
2390 static const struct inode_operations shmem_symlink_inode_operations;
2391 static const struct inode_operations shmem_short_symlink_operations;
2393 #ifdef CONFIG_TMPFS_XATTR
2394 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2395 #else
2396 #define shmem_initxattrs NULL
2397 #endif
2399 static int
2400 shmem_write_begin(struct file *file, struct address_space *mapping,
2401 loff_t pos, unsigned len, unsigned flags,
2402 struct page **pagep, void **fsdata)
2404 struct inode *inode = mapping->host;
2405 struct shmem_inode_info *info = SHMEM_I(inode);
2406 pgoff_t index = pos >> PAGE_SHIFT;
2408 /* i_mutex is held by caller */
2409 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2410 if (info->seals & F_SEAL_WRITE)
2411 return -EPERM;
2412 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2413 return -EPERM;
2416 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2419 static int
2420 shmem_write_end(struct file *file, struct address_space *mapping,
2421 loff_t pos, unsigned len, unsigned copied,
2422 struct page *page, void *fsdata)
2424 struct inode *inode = mapping->host;
2426 if (pos + copied > inode->i_size)
2427 i_size_write(inode, pos + copied);
2429 if (!PageUptodate(page)) {
2430 struct page *head = compound_head(page);
2431 if (PageTransCompound(page)) {
2432 int i;
2434 for (i = 0; i < HPAGE_PMD_NR; i++) {
2435 if (head + i == page)
2436 continue;
2437 clear_highpage(head + i);
2438 flush_dcache_page(head + i);
2441 if (copied < PAGE_SIZE) {
2442 unsigned from = pos & (PAGE_SIZE - 1);
2443 zero_user_segments(page, 0, from,
2444 from + copied, PAGE_SIZE);
2446 SetPageUptodate(head);
2448 set_page_dirty(page);
2449 unlock_page(page);
2450 put_page(page);
2452 return copied;
2455 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2457 struct file *file = iocb->ki_filp;
2458 struct inode *inode = file_inode(file);
2459 struct address_space *mapping = inode->i_mapping;
2460 pgoff_t index;
2461 unsigned long offset;
2462 enum sgp_type sgp = SGP_READ;
2463 int error = 0;
2464 ssize_t retval = 0;
2465 loff_t *ppos = &iocb->ki_pos;
2468 * Might this read be for a stacking filesystem? Then when reading
2469 * holes of a sparse file, we actually need to allocate those pages,
2470 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2472 if (!iter_is_iovec(to))
2473 sgp = SGP_CACHE;
2475 index = *ppos >> PAGE_SHIFT;
2476 offset = *ppos & ~PAGE_MASK;
2478 for (;;) {
2479 struct page *page = NULL;
2480 pgoff_t end_index;
2481 unsigned long nr, ret;
2482 loff_t i_size = i_size_read(inode);
2484 end_index = i_size >> PAGE_SHIFT;
2485 if (index > end_index)
2486 break;
2487 if (index == end_index) {
2488 nr = i_size & ~PAGE_MASK;
2489 if (nr <= offset)
2490 break;
2493 error = shmem_getpage(inode, index, &page, sgp);
2494 if (error) {
2495 if (error == -EINVAL)
2496 error = 0;
2497 break;
2499 if (page) {
2500 if (sgp == SGP_CACHE)
2501 set_page_dirty(page);
2502 unlock_page(page);
2506 * We must evaluate after, since reads (unlike writes)
2507 * are called without i_mutex protection against truncate
2509 nr = PAGE_SIZE;
2510 i_size = i_size_read(inode);
2511 end_index = i_size >> PAGE_SHIFT;
2512 if (index == end_index) {
2513 nr = i_size & ~PAGE_MASK;
2514 if (nr <= offset) {
2515 if (page)
2516 put_page(page);
2517 break;
2520 nr -= offset;
2522 if (page) {
2524 * If users can be writing to this page using arbitrary
2525 * virtual addresses, take care about potential aliasing
2526 * before reading the page on the kernel side.
2528 if (mapping_writably_mapped(mapping))
2529 flush_dcache_page(page);
2531 * Mark the page accessed if we read the beginning.
2533 if (!offset)
2534 mark_page_accessed(page);
2535 } else {
2536 page = ZERO_PAGE(0);
2537 get_page(page);
2541 * Ok, we have the page, and it's up-to-date, so
2542 * now we can copy it to user space...
2544 ret = copy_page_to_iter(page, offset, nr, to);
2545 retval += ret;
2546 offset += ret;
2547 index += offset >> PAGE_SHIFT;
2548 offset &= ~PAGE_MASK;
2550 put_page(page);
2551 if (!iov_iter_count(to))
2552 break;
2553 if (ret < nr) {
2554 error = -EFAULT;
2555 break;
2557 cond_resched();
2560 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2561 file_accessed(file);
2562 return retval ? retval : error;
2566 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2568 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2569 pgoff_t index, pgoff_t end, int whence)
2571 struct page *page;
2572 struct pagevec pvec;
2573 pgoff_t indices[PAGEVEC_SIZE];
2574 bool done = false;
2575 int i;
2577 pagevec_init(&pvec, 0);
2578 pvec.nr = 1; /* start small: we may be there already */
2579 while (!done) {
2580 pvec.nr = find_get_entries(mapping, index,
2581 pvec.nr, pvec.pages, indices);
2582 if (!pvec.nr) {
2583 if (whence == SEEK_DATA)
2584 index = end;
2585 break;
2587 for (i = 0; i < pvec.nr; i++, index++) {
2588 if (index < indices[i]) {
2589 if (whence == SEEK_HOLE) {
2590 done = true;
2591 break;
2593 index = indices[i];
2595 page = pvec.pages[i];
2596 if (page && !radix_tree_exceptional_entry(page)) {
2597 if (!PageUptodate(page))
2598 page = NULL;
2600 if (index >= end ||
2601 (page && whence == SEEK_DATA) ||
2602 (!page && whence == SEEK_HOLE)) {
2603 done = true;
2604 break;
2607 pagevec_remove_exceptionals(&pvec);
2608 pagevec_release(&pvec);
2609 pvec.nr = PAGEVEC_SIZE;
2610 cond_resched();
2612 return index;
2615 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2617 struct address_space *mapping = file->f_mapping;
2618 struct inode *inode = mapping->host;
2619 pgoff_t start, end;
2620 loff_t new_offset;
2622 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2623 return generic_file_llseek_size(file, offset, whence,
2624 MAX_LFS_FILESIZE, i_size_read(inode));
2625 inode_lock(inode);
2626 /* We're holding i_mutex so we can access i_size directly */
2628 if (offset < 0 || offset >= inode->i_size)
2629 offset = -ENXIO;
2630 else {
2631 start = offset >> PAGE_SHIFT;
2632 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2633 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2634 new_offset <<= PAGE_SHIFT;
2635 if (new_offset > offset) {
2636 if (new_offset < inode->i_size)
2637 offset = new_offset;
2638 else if (whence == SEEK_DATA)
2639 offset = -ENXIO;
2640 else
2641 offset = inode->i_size;
2645 if (offset >= 0)
2646 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2647 inode_unlock(inode);
2648 return offset;
2652 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2653 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2655 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2656 #define LAST_SCAN 4 /* about 150ms max */
2658 static void shmem_tag_pins(struct address_space *mapping)
2660 struct radix_tree_iter iter;
2661 void **slot;
2662 pgoff_t start;
2663 struct page *page;
2664 unsigned int tagged = 0;
2666 lru_add_drain();
2667 start = 0;
2669 spin_lock_irq(&mapping->tree_lock);
2670 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2671 page = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
2672 if (!page || radix_tree_exception(page)) {
2673 if (radix_tree_deref_retry(page)) {
2674 slot = radix_tree_iter_retry(&iter);
2675 continue;
2677 } else if (page_count(page) - page_mapcount(page) > 1) {
2678 radix_tree_tag_set(&mapping->page_tree, iter.index,
2679 SHMEM_TAG_PINNED);
2682 if (++tagged % 1024)
2683 continue;
2685 slot = radix_tree_iter_resume(slot, &iter);
2686 spin_unlock_irq(&mapping->tree_lock);
2687 cond_resched();
2688 spin_lock_irq(&mapping->tree_lock);
2690 spin_unlock_irq(&mapping->tree_lock);
2694 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2695 * via get_user_pages(), drivers might have some pending I/O without any active
2696 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2697 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2698 * them to be dropped.
2699 * The caller must guarantee that no new user will acquire writable references
2700 * to those pages to avoid races.
2702 static int shmem_wait_for_pins(struct address_space *mapping)
2704 struct radix_tree_iter iter;
2705 void **slot;
2706 pgoff_t start;
2707 struct page *page;
2708 int error, scan;
2710 shmem_tag_pins(mapping);
2712 error = 0;
2713 for (scan = 0; scan <= LAST_SCAN; scan++) {
2714 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2715 break;
2717 if (!scan)
2718 lru_add_drain_all();
2719 else if (schedule_timeout_killable((HZ << scan) / 200))
2720 scan = LAST_SCAN;
2722 start = 0;
2723 rcu_read_lock();
2724 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2725 start, SHMEM_TAG_PINNED) {
2727 page = radix_tree_deref_slot(slot);
2728 if (radix_tree_exception(page)) {
2729 if (radix_tree_deref_retry(page)) {
2730 slot = radix_tree_iter_retry(&iter);
2731 continue;
2734 page = NULL;
2737 if (page &&
2738 page_count(page) - page_mapcount(page) != 1) {
2739 if (scan < LAST_SCAN)
2740 goto continue_resched;
2743 * On the last scan, we clean up all those tags
2744 * we inserted; but make a note that we still
2745 * found pages pinned.
2747 error = -EBUSY;
2750 spin_lock_irq(&mapping->tree_lock);
2751 radix_tree_tag_clear(&mapping->page_tree,
2752 iter.index, SHMEM_TAG_PINNED);
2753 spin_unlock_irq(&mapping->tree_lock);
2754 continue_resched:
2755 if (need_resched()) {
2756 slot = radix_tree_iter_resume(slot, &iter);
2757 cond_resched_rcu();
2760 rcu_read_unlock();
2763 return error;
2766 #define F_ALL_SEALS (F_SEAL_SEAL | \
2767 F_SEAL_SHRINK | \
2768 F_SEAL_GROW | \
2769 F_SEAL_WRITE)
2771 int shmem_add_seals(struct file *file, unsigned int seals)
2773 struct inode *inode = file_inode(file);
2774 struct shmem_inode_info *info = SHMEM_I(inode);
2775 int error;
2778 * SEALING
2779 * Sealing allows multiple parties to share a shmem-file but restrict
2780 * access to a specific subset of file operations. Seals can only be
2781 * added, but never removed. This way, mutually untrusted parties can
2782 * share common memory regions with a well-defined policy. A malicious
2783 * peer can thus never perform unwanted operations on a shared object.
2785 * Seals are only supported on special shmem-files and always affect
2786 * the whole underlying inode. Once a seal is set, it may prevent some
2787 * kinds of access to the file. Currently, the following seals are
2788 * defined:
2789 * SEAL_SEAL: Prevent further seals from being set on this file
2790 * SEAL_SHRINK: Prevent the file from shrinking
2791 * SEAL_GROW: Prevent the file from growing
2792 * SEAL_WRITE: Prevent write access to the file
2794 * As we don't require any trust relationship between two parties, we
2795 * must prevent seals from being removed. Therefore, sealing a file
2796 * only adds a given set of seals to the file, it never touches
2797 * existing seals. Furthermore, the "setting seals"-operation can be
2798 * sealed itself, which basically prevents any further seal from being
2799 * added.
2801 * Semantics of sealing are only defined on volatile files. Only
2802 * anonymous shmem files support sealing. More importantly, seals are
2803 * never written to disk. Therefore, there's no plan to support it on
2804 * other file types.
2807 if (file->f_op != &shmem_file_operations)
2808 return -EINVAL;
2809 if (!(file->f_mode & FMODE_WRITE))
2810 return -EPERM;
2811 if (seals & ~(unsigned int)F_ALL_SEALS)
2812 return -EINVAL;
2814 inode_lock(inode);
2816 if (info->seals & F_SEAL_SEAL) {
2817 error = -EPERM;
2818 goto unlock;
2821 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2822 error = mapping_deny_writable(file->f_mapping);
2823 if (error)
2824 goto unlock;
2826 error = shmem_wait_for_pins(file->f_mapping);
2827 if (error) {
2828 mapping_allow_writable(file->f_mapping);
2829 goto unlock;
2833 info->seals |= seals;
2834 error = 0;
2836 unlock:
2837 inode_unlock(inode);
2838 return error;
2840 EXPORT_SYMBOL_GPL(shmem_add_seals);
2842 int shmem_get_seals(struct file *file)
2844 if (file->f_op != &shmem_file_operations)
2845 return -EINVAL;
2847 return SHMEM_I(file_inode(file))->seals;
2849 EXPORT_SYMBOL_GPL(shmem_get_seals);
2851 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2853 long error;
2855 switch (cmd) {
2856 case F_ADD_SEALS:
2857 /* disallow upper 32bit */
2858 if (arg > UINT_MAX)
2859 return -EINVAL;
2861 error = shmem_add_seals(file, arg);
2862 break;
2863 case F_GET_SEALS:
2864 error = shmem_get_seals(file);
2865 break;
2866 default:
2867 error = -EINVAL;
2868 break;
2871 return error;
2874 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2875 loff_t len)
2877 struct inode *inode = file_inode(file);
2878 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2879 struct shmem_inode_info *info = SHMEM_I(inode);
2880 struct shmem_falloc shmem_falloc;
2881 pgoff_t start, index, end;
2882 int error;
2884 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2885 return -EOPNOTSUPP;
2887 inode_lock(inode);
2889 if (mode & FALLOC_FL_PUNCH_HOLE) {
2890 struct address_space *mapping = file->f_mapping;
2891 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2892 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2893 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2895 /* protected by i_mutex */
2896 if (info->seals & F_SEAL_WRITE) {
2897 error = -EPERM;
2898 goto out;
2901 shmem_falloc.waitq = &shmem_falloc_waitq;
2902 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2903 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2904 spin_lock(&inode->i_lock);
2905 inode->i_private = &shmem_falloc;
2906 spin_unlock(&inode->i_lock);
2908 if ((u64)unmap_end > (u64)unmap_start)
2909 unmap_mapping_range(mapping, unmap_start,
2910 1 + unmap_end - unmap_start, 0);
2911 shmem_truncate_range(inode, offset, offset + len - 1);
2912 /* No need to unmap again: hole-punching leaves COWed pages */
2914 spin_lock(&inode->i_lock);
2915 inode->i_private = NULL;
2916 wake_up_all(&shmem_falloc_waitq);
2917 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2918 spin_unlock(&inode->i_lock);
2919 error = 0;
2920 goto out;
2923 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2924 error = inode_newsize_ok(inode, offset + len);
2925 if (error)
2926 goto out;
2928 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2929 error = -EPERM;
2930 goto out;
2933 start = offset >> PAGE_SHIFT;
2934 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2935 /* Try to avoid a swapstorm if len is impossible to satisfy */
2936 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2937 error = -ENOSPC;
2938 goto out;
2941 shmem_falloc.waitq = NULL;
2942 shmem_falloc.start = start;
2943 shmem_falloc.next = start;
2944 shmem_falloc.nr_falloced = 0;
2945 shmem_falloc.nr_unswapped = 0;
2946 spin_lock(&inode->i_lock);
2947 inode->i_private = &shmem_falloc;
2948 spin_unlock(&inode->i_lock);
2950 for (index = start; index < end; index++) {
2951 struct page *page;
2954 * Good, the fallocate(2) manpage permits EINTR: we may have
2955 * been interrupted because we are using up too much memory.
2957 if (signal_pending(current))
2958 error = -EINTR;
2959 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2960 error = -ENOMEM;
2961 else
2962 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2963 if (error) {
2964 /* Remove the !PageUptodate pages we added */
2965 if (index > start) {
2966 shmem_undo_range(inode,
2967 (loff_t)start << PAGE_SHIFT,
2968 ((loff_t)index << PAGE_SHIFT) - 1, true);
2970 goto undone;
2974 * Inform shmem_writepage() how far we have reached.
2975 * No need for lock or barrier: we have the page lock.
2977 shmem_falloc.next++;
2978 if (!PageUptodate(page))
2979 shmem_falloc.nr_falloced++;
2982 * If !PageUptodate, leave it that way so that freeable pages
2983 * can be recognized if we need to rollback on error later.
2984 * But set_page_dirty so that memory pressure will swap rather
2985 * than free the pages we are allocating (and SGP_CACHE pages
2986 * might still be clean: we now need to mark those dirty too).
2988 set_page_dirty(page);
2989 unlock_page(page);
2990 put_page(page);
2991 cond_resched();
2994 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2995 i_size_write(inode, offset + len);
2996 inode->i_ctime = current_time(inode);
2997 undone:
2998 spin_lock(&inode->i_lock);
2999 inode->i_private = NULL;
3000 spin_unlock(&inode->i_lock);
3001 out:
3002 inode_unlock(inode);
3003 return error;
3006 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3008 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3010 buf->f_type = TMPFS_MAGIC;
3011 buf->f_bsize = PAGE_SIZE;
3012 buf->f_namelen = NAME_MAX;
3013 if (sbinfo->max_blocks) {
3014 buf->f_blocks = sbinfo->max_blocks;
3015 buf->f_bavail =
3016 buf->f_bfree = sbinfo->max_blocks -
3017 percpu_counter_sum(&sbinfo->used_blocks);
3019 if (sbinfo->max_inodes) {
3020 buf->f_files = sbinfo->max_inodes;
3021 buf->f_ffree = sbinfo->free_inodes;
3023 /* else leave those fields 0 like simple_statfs */
3024 return 0;
3028 * File creation. Allocate an inode, and we're done..
3030 static int
3031 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3033 struct inode *inode;
3034 int error = -ENOSPC;
3036 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3037 if (inode) {
3038 error = simple_acl_create(dir, inode);
3039 if (error)
3040 goto out_iput;
3041 error = security_inode_init_security(inode, dir,
3042 &dentry->d_name,
3043 shmem_initxattrs, NULL);
3044 if (error && error != -EOPNOTSUPP)
3045 goto out_iput;
3047 error = 0;
3048 dir->i_size += BOGO_DIRENT_SIZE;
3049 dir->i_ctime = dir->i_mtime = current_time(dir);
3050 d_instantiate(dentry, inode);
3051 dget(dentry); /* Extra count - pin the dentry in core */
3053 return error;
3054 out_iput:
3055 iput(inode);
3056 return error;
3059 static int
3060 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3062 struct inode *inode;
3063 int error = -ENOSPC;
3065 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3066 if (inode) {
3067 error = security_inode_init_security(inode, dir,
3068 NULL,
3069 shmem_initxattrs, NULL);
3070 if (error && error != -EOPNOTSUPP)
3071 goto out_iput;
3072 error = simple_acl_create(dir, inode);
3073 if (error)
3074 goto out_iput;
3075 d_tmpfile(dentry, inode);
3077 return error;
3078 out_iput:
3079 iput(inode);
3080 return error;
3083 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3085 int error;
3087 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3088 return error;
3089 inc_nlink(dir);
3090 return 0;
3093 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3094 bool excl)
3096 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3100 * Link a file..
3102 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3104 struct inode *inode = d_inode(old_dentry);
3105 int ret = 0;
3108 * No ordinary (disk based) filesystem counts links as inodes;
3109 * but each new link needs a new dentry, pinning lowmem, and
3110 * tmpfs dentries cannot be pruned until they are unlinked.
3111 * But if an O_TMPFILE file is linked into the tmpfs, the
3112 * first link must skip that, to get the accounting right.
3114 if (inode->i_nlink) {
3115 ret = shmem_reserve_inode(inode->i_sb);
3116 if (ret)
3117 goto out;
3120 dir->i_size += BOGO_DIRENT_SIZE;
3121 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3122 inc_nlink(inode);
3123 ihold(inode); /* New dentry reference */
3124 dget(dentry); /* Extra pinning count for the created dentry */
3125 d_instantiate(dentry, inode);
3126 out:
3127 return ret;
3130 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3132 struct inode *inode = d_inode(dentry);
3134 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3135 shmem_free_inode(inode->i_sb);
3137 dir->i_size -= BOGO_DIRENT_SIZE;
3138 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3139 drop_nlink(inode);
3140 dput(dentry); /* Undo the count from "create" - this does all the work */
3141 return 0;
3144 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3146 if (!simple_empty(dentry))
3147 return -ENOTEMPTY;
3149 drop_nlink(d_inode(dentry));
3150 drop_nlink(dir);
3151 return shmem_unlink(dir, dentry);
3154 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3156 bool old_is_dir = d_is_dir(old_dentry);
3157 bool new_is_dir = d_is_dir(new_dentry);
3159 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3160 if (old_is_dir) {
3161 drop_nlink(old_dir);
3162 inc_nlink(new_dir);
3163 } else {
3164 drop_nlink(new_dir);
3165 inc_nlink(old_dir);
3168 old_dir->i_ctime = old_dir->i_mtime =
3169 new_dir->i_ctime = new_dir->i_mtime =
3170 d_inode(old_dentry)->i_ctime =
3171 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3173 return 0;
3176 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3178 struct dentry *whiteout;
3179 int error;
3181 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3182 if (!whiteout)
3183 return -ENOMEM;
3185 error = shmem_mknod(old_dir, whiteout,
3186 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3187 dput(whiteout);
3188 if (error)
3189 return error;
3192 * Cheat and hash the whiteout while the old dentry is still in
3193 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3195 * d_lookup() will consistently find one of them at this point,
3196 * not sure which one, but that isn't even important.
3198 d_rehash(whiteout);
3199 return 0;
3203 * The VFS layer already does all the dentry stuff for rename,
3204 * we just have to decrement the usage count for the target if
3205 * it exists so that the VFS layer correctly free's it when it
3206 * gets overwritten.
3208 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3210 struct inode *inode = d_inode(old_dentry);
3211 int they_are_dirs = S_ISDIR(inode->i_mode);
3213 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3214 return -EINVAL;
3216 if (flags & RENAME_EXCHANGE)
3217 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3219 if (!simple_empty(new_dentry))
3220 return -ENOTEMPTY;
3222 if (flags & RENAME_WHITEOUT) {
3223 int error;
3225 error = shmem_whiteout(old_dir, old_dentry);
3226 if (error)
3227 return error;
3230 if (d_really_is_positive(new_dentry)) {
3231 (void) shmem_unlink(new_dir, new_dentry);
3232 if (they_are_dirs) {
3233 drop_nlink(d_inode(new_dentry));
3234 drop_nlink(old_dir);
3236 } else if (they_are_dirs) {
3237 drop_nlink(old_dir);
3238 inc_nlink(new_dir);
3241 old_dir->i_size -= BOGO_DIRENT_SIZE;
3242 new_dir->i_size += BOGO_DIRENT_SIZE;
3243 old_dir->i_ctime = old_dir->i_mtime =
3244 new_dir->i_ctime = new_dir->i_mtime =
3245 inode->i_ctime = current_time(old_dir);
3246 return 0;
3249 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3251 int error;
3252 int len;
3253 struct inode *inode;
3254 struct page *page;
3255 struct shmem_inode_info *info;
3257 len = strlen(symname) + 1;
3258 if (len > PAGE_SIZE)
3259 return -ENAMETOOLONG;
3261 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3262 if (!inode)
3263 return -ENOSPC;
3265 error = security_inode_init_security(inode, dir, &dentry->d_name,
3266 shmem_initxattrs, NULL);
3267 if (error) {
3268 if (error != -EOPNOTSUPP) {
3269 iput(inode);
3270 return error;
3272 error = 0;
3275 info = SHMEM_I(inode);
3276 inode->i_size = len-1;
3277 if (len <= SHORT_SYMLINK_LEN) {
3278 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3279 if (!inode->i_link) {
3280 iput(inode);
3281 return -ENOMEM;
3283 inode->i_op = &shmem_short_symlink_operations;
3284 } else {
3285 inode_nohighmem(inode);
3286 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3287 if (error) {
3288 iput(inode);
3289 return error;
3291 inode->i_mapping->a_ops = &shmem_aops;
3292 inode->i_op = &shmem_symlink_inode_operations;
3293 memcpy(page_address(page), symname, len);
3294 SetPageUptodate(page);
3295 set_page_dirty(page);
3296 unlock_page(page);
3297 put_page(page);
3299 dir->i_size += BOGO_DIRENT_SIZE;
3300 dir->i_ctime = dir->i_mtime = current_time(dir);
3301 d_instantiate(dentry, inode);
3302 dget(dentry);
3303 return 0;
3306 static void shmem_put_link(void *arg)
3308 mark_page_accessed(arg);
3309 put_page(arg);
3312 static const char *shmem_get_link(struct dentry *dentry,
3313 struct inode *inode,
3314 struct delayed_call *done)
3316 struct page *page = NULL;
3317 int error;
3318 if (!dentry) {
3319 page = find_get_page(inode->i_mapping, 0);
3320 if (!page)
3321 return ERR_PTR(-ECHILD);
3322 if (!PageUptodate(page)) {
3323 put_page(page);
3324 return ERR_PTR(-ECHILD);
3326 } else {
3327 error = shmem_getpage(inode, 0, &page, SGP_READ);
3328 if (error)
3329 return ERR_PTR(error);
3330 unlock_page(page);
3332 set_delayed_call(done, shmem_put_link, page);
3333 return page_address(page);
3336 #ifdef CONFIG_TMPFS_XATTR
3338 * Superblocks without xattr inode operations may get some security.* xattr
3339 * support from the LSM "for free". As soon as we have any other xattrs
3340 * like ACLs, we also need to implement the security.* handlers at
3341 * filesystem level, though.
3345 * Callback for security_inode_init_security() for acquiring xattrs.
3347 static int shmem_initxattrs(struct inode *inode,
3348 const struct xattr *xattr_array,
3349 void *fs_info)
3351 struct shmem_inode_info *info = SHMEM_I(inode);
3352 const struct xattr *xattr;
3353 struct simple_xattr *new_xattr;
3354 size_t len;
3356 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3357 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3358 if (!new_xattr)
3359 return -ENOMEM;
3361 len = strlen(xattr->name) + 1;
3362 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3363 GFP_KERNEL);
3364 if (!new_xattr->name) {
3365 kfree(new_xattr);
3366 return -ENOMEM;
3369 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3370 XATTR_SECURITY_PREFIX_LEN);
3371 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3372 xattr->name, len);
3374 simple_xattr_list_add(&info->xattrs, new_xattr);
3377 return 0;
3380 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3381 struct dentry *unused, struct inode *inode,
3382 const char *name, void *buffer, size_t size)
3384 struct shmem_inode_info *info = SHMEM_I(inode);
3386 name = xattr_full_name(handler, name);
3387 return simple_xattr_get(&info->xattrs, name, buffer, size);
3390 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3391 struct dentry *unused, struct inode *inode,
3392 const char *name, const void *value,
3393 size_t size, int flags)
3395 struct shmem_inode_info *info = SHMEM_I(inode);
3397 name = xattr_full_name(handler, name);
3398 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3401 static const struct xattr_handler shmem_security_xattr_handler = {
3402 .prefix = XATTR_SECURITY_PREFIX,
3403 .get = shmem_xattr_handler_get,
3404 .set = shmem_xattr_handler_set,
3407 static const struct xattr_handler shmem_trusted_xattr_handler = {
3408 .prefix = XATTR_TRUSTED_PREFIX,
3409 .get = shmem_xattr_handler_get,
3410 .set = shmem_xattr_handler_set,
3413 static const struct xattr_handler *shmem_xattr_handlers[] = {
3414 #ifdef CONFIG_TMPFS_POSIX_ACL
3415 &posix_acl_access_xattr_handler,
3416 &posix_acl_default_xattr_handler,
3417 #endif
3418 &shmem_security_xattr_handler,
3419 &shmem_trusted_xattr_handler,
3420 NULL
3423 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3425 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3426 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3428 #endif /* CONFIG_TMPFS_XATTR */
3430 static const struct inode_operations shmem_short_symlink_operations = {
3431 .get_link = simple_get_link,
3432 #ifdef CONFIG_TMPFS_XATTR
3433 .listxattr = shmem_listxattr,
3434 #endif
3437 static const struct inode_operations shmem_symlink_inode_operations = {
3438 .get_link = shmem_get_link,
3439 #ifdef CONFIG_TMPFS_XATTR
3440 .listxattr = shmem_listxattr,
3441 #endif
3444 static struct dentry *shmem_get_parent(struct dentry *child)
3446 return ERR_PTR(-ESTALE);
3449 static int shmem_match(struct inode *ino, void *vfh)
3451 __u32 *fh = vfh;
3452 __u64 inum = fh[2];
3453 inum = (inum << 32) | fh[1];
3454 return ino->i_ino == inum && fh[0] == ino->i_generation;
3457 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3458 struct fid *fid, int fh_len, int fh_type)
3460 struct inode *inode;
3461 struct dentry *dentry = NULL;
3462 u64 inum;
3464 if (fh_len < 3)
3465 return NULL;
3467 inum = fid->raw[2];
3468 inum = (inum << 32) | fid->raw[1];
3470 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3471 shmem_match, fid->raw);
3472 if (inode) {
3473 dentry = d_find_alias(inode);
3474 iput(inode);
3477 return dentry;
3480 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3481 struct inode *parent)
3483 if (*len < 3) {
3484 *len = 3;
3485 return FILEID_INVALID;
3488 if (inode_unhashed(inode)) {
3489 /* Unfortunately insert_inode_hash is not idempotent,
3490 * so as we hash inodes here rather than at creation
3491 * time, we need a lock to ensure we only try
3492 * to do it once
3494 static DEFINE_SPINLOCK(lock);
3495 spin_lock(&lock);
3496 if (inode_unhashed(inode))
3497 __insert_inode_hash(inode,
3498 inode->i_ino + inode->i_generation);
3499 spin_unlock(&lock);
3502 fh[0] = inode->i_generation;
3503 fh[1] = inode->i_ino;
3504 fh[2] = ((__u64)inode->i_ino) >> 32;
3506 *len = 3;
3507 return 1;
3510 static const struct export_operations shmem_export_ops = {
3511 .get_parent = shmem_get_parent,
3512 .encode_fh = shmem_encode_fh,
3513 .fh_to_dentry = shmem_fh_to_dentry,
3516 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3517 bool remount)
3519 char *this_char, *value, *rest;
3520 struct mempolicy *mpol = NULL;
3521 uid_t uid;
3522 gid_t gid;
3524 while (options != NULL) {
3525 this_char = options;
3526 for (;;) {
3528 * NUL-terminate this option: unfortunately,
3529 * mount options form a comma-separated list,
3530 * but mpol's nodelist may also contain commas.
3532 options = strchr(options, ',');
3533 if (options == NULL)
3534 break;
3535 options++;
3536 if (!isdigit(*options)) {
3537 options[-1] = '\0';
3538 break;
3541 if (!*this_char)
3542 continue;
3543 if ((value = strchr(this_char,'=')) != NULL) {
3544 *value++ = 0;
3545 } else {
3546 pr_err("tmpfs: No value for mount option '%s'\n",
3547 this_char);
3548 goto error;
3551 if (!strcmp(this_char,"size")) {
3552 unsigned long long size;
3553 size = memparse(value,&rest);
3554 if (*rest == '%') {
3555 size <<= PAGE_SHIFT;
3556 size *= totalram_pages;
3557 do_div(size, 100);
3558 rest++;
3560 if (*rest)
3561 goto bad_val;
3562 sbinfo->max_blocks =
3563 DIV_ROUND_UP(size, PAGE_SIZE);
3564 } else if (!strcmp(this_char,"nr_blocks")) {
3565 sbinfo->max_blocks = memparse(value, &rest);
3566 if (*rest)
3567 goto bad_val;
3568 } else if (!strcmp(this_char,"nr_inodes")) {
3569 sbinfo->max_inodes = memparse(value, &rest);
3570 if (*rest)
3571 goto bad_val;
3572 } else if (!strcmp(this_char,"mode")) {
3573 if (remount)
3574 continue;
3575 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3576 if (*rest)
3577 goto bad_val;
3578 } else if (!strcmp(this_char,"uid")) {
3579 if (remount)
3580 continue;
3581 uid = simple_strtoul(value, &rest, 0);
3582 if (*rest)
3583 goto bad_val;
3584 sbinfo->uid = make_kuid(current_user_ns(), uid);
3585 if (!uid_valid(sbinfo->uid))
3586 goto bad_val;
3587 } else if (!strcmp(this_char,"gid")) {
3588 if (remount)
3589 continue;
3590 gid = simple_strtoul(value, &rest, 0);
3591 if (*rest)
3592 goto bad_val;
3593 sbinfo->gid = make_kgid(current_user_ns(), gid);
3594 if (!gid_valid(sbinfo->gid))
3595 goto bad_val;
3596 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3597 } else if (!strcmp(this_char, "huge")) {
3598 int huge;
3599 huge = shmem_parse_huge(value);
3600 if (huge < 0)
3601 goto bad_val;
3602 if (!has_transparent_hugepage() &&
3603 huge != SHMEM_HUGE_NEVER)
3604 goto bad_val;
3605 sbinfo->huge = huge;
3606 #endif
3607 #ifdef CONFIG_NUMA
3608 } else if (!strcmp(this_char,"mpol")) {
3609 mpol_put(mpol);
3610 mpol = NULL;
3611 if (mpol_parse_str(value, &mpol))
3612 goto bad_val;
3613 #endif
3614 } else {
3615 pr_err("tmpfs: Bad mount option %s\n", this_char);
3616 goto error;
3619 sbinfo->mpol = mpol;
3620 return 0;
3622 bad_val:
3623 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3624 value, this_char);
3625 error:
3626 mpol_put(mpol);
3627 return 1;
3631 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3633 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3634 struct shmem_sb_info config = *sbinfo;
3635 unsigned long inodes;
3636 int error = -EINVAL;
3638 config.mpol = NULL;
3639 if (shmem_parse_options(data, &config, true))
3640 return error;
3642 spin_lock(&sbinfo->stat_lock);
3643 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3644 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3645 goto out;
3646 if (config.max_inodes < inodes)
3647 goto out;
3649 * Those tests disallow limited->unlimited while any are in use;
3650 * but we must separately disallow unlimited->limited, because
3651 * in that case we have no record of how much is already in use.
3653 if (config.max_blocks && !sbinfo->max_blocks)
3654 goto out;
3655 if (config.max_inodes && !sbinfo->max_inodes)
3656 goto out;
3658 error = 0;
3659 sbinfo->huge = config.huge;
3660 sbinfo->max_blocks = config.max_blocks;
3661 sbinfo->max_inodes = config.max_inodes;
3662 sbinfo->free_inodes = config.max_inodes - inodes;
3665 * Preserve previous mempolicy unless mpol remount option was specified.
3667 if (config.mpol) {
3668 mpol_put(sbinfo->mpol);
3669 sbinfo->mpol = config.mpol; /* transfers initial ref */
3671 out:
3672 spin_unlock(&sbinfo->stat_lock);
3673 return error;
3676 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3678 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3680 if (sbinfo->max_blocks != shmem_default_max_blocks())
3681 seq_printf(seq, ",size=%luk",
3682 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3683 if (sbinfo->max_inodes != shmem_default_max_inodes())
3684 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3685 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3686 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3687 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3688 seq_printf(seq, ",uid=%u",
3689 from_kuid_munged(&init_user_ns, sbinfo->uid));
3690 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3691 seq_printf(seq, ",gid=%u",
3692 from_kgid_munged(&init_user_ns, sbinfo->gid));
3693 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3694 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3695 if (sbinfo->huge)
3696 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3697 #endif
3698 shmem_show_mpol(seq, sbinfo->mpol);
3699 return 0;
3702 #define MFD_NAME_PREFIX "memfd:"
3703 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3704 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3706 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3708 SYSCALL_DEFINE2(memfd_create,
3709 const char __user *, uname,
3710 unsigned int, flags)
3712 struct shmem_inode_info *info;
3713 struct file *file;
3714 int fd, error;
3715 char *name;
3716 long len;
3718 if (!(flags & MFD_HUGETLB)) {
3719 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3720 return -EINVAL;
3721 } else {
3722 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3723 if (flags & MFD_ALLOW_SEALING)
3724 return -EINVAL;
3725 /* Allow huge page size encoding in flags. */
3726 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3727 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3728 return -EINVAL;
3731 /* length includes terminating zero */
3732 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3733 if (len <= 0)
3734 return -EFAULT;
3735 if (len > MFD_NAME_MAX_LEN + 1)
3736 return -EINVAL;
3738 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3739 if (!name)
3740 return -ENOMEM;
3742 strcpy(name, MFD_NAME_PREFIX);
3743 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3744 error = -EFAULT;
3745 goto err_name;
3748 /* terminating-zero may have changed after strnlen_user() returned */
3749 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3750 error = -EFAULT;
3751 goto err_name;
3754 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3755 if (fd < 0) {
3756 error = fd;
3757 goto err_name;
3760 if (flags & MFD_HUGETLB) {
3761 struct user_struct *user = NULL;
3763 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3764 HUGETLB_ANONHUGE_INODE,
3765 (flags >> MFD_HUGE_SHIFT) &
3766 MFD_HUGE_MASK);
3767 } else
3768 file = shmem_file_setup(name, 0, VM_NORESERVE);
3769 if (IS_ERR(file)) {
3770 error = PTR_ERR(file);
3771 goto err_fd;
3773 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3774 file->f_flags |= O_RDWR | O_LARGEFILE;
3776 if (flags & MFD_ALLOW_SEALING) {
3778 * flags check at beginning of function ensures
3779 * this is not a hugetlbfs (MFD_HUGETLB) file.
3781 info = SHMEM_I(file_inode(file));
3782 info->seals &= ~F_SEAL_SEAL;
3785 fd_install(fd, file);
3786 kfree(name);
3787 return fd;
3789 err_fd:
3790 put_unused_fd(fd);
3791 err_name:
3792 kfree(name);
3793 return error;
3796 #endif /* CONFIG_TMPFS */
3798 static void shmem_put_super(struct super_block *sb)
3800 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3802 percpu_counter_destroy(&sbinfo->used_blocks);
3803 mpol_put(sbinfo->mpol);
3804 kfree(sbinfo);
3805 sb->s_fs_info = NULL;
3808 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3810 struct inode *inode;
3811 struct shmem_sb_info *sbinfo;
3812 int err = -ENOMEM;
3814 /* Round up to L1_CACHE_BYTES to resist false sharing */
3815 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3816 L1_CACHE_BYTES), GFP_KERNEL);
3817 if (!sbinfo)
3818 return -ENOMEM;
3820 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3821 sbinfo->uid = current_fsuid();
3822 sbinfo->gid = current_fsgid();
3823 sb->s_fs_info = sbinfo;
3825 #ifdef CONFIG_TMPFS
3827 * Per default we only allow half of the physical ram per
3828 * tmpfs instance, limiting inodes to one per page of lowmem;
3829 * but the internal instance is left unlimited.
3831 if (!(sb->s_flags & MS_KERNMOUNT)) {
3832 sbinfo->max_blocks = shmem_default_max_blocks();
3833 sbinfo->max_inodes = shmem_default_max_inodes();
3834 if (shmem_parse_options(data, sbinfo, false)) {
3835 err = -EINVAL;
3836 goto failed;
3838 } else {
3839 sb->s_flags |= MS_NOUSER;
3841 sb->s_export_op = &shmem_export_ops;
3842 sb->s_flags |= MS_NOSEC;
3843 #else
3844 sb->s_flags |= MS_NOUSER;
3845 #endif
3847 spin_lock_init(&sbinfo->stat_lock);
3848 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3849 goto failed;
3850 sbinfo->free_inodes = sbinfo->max_inodes;
3851 spin_lock_init(&sbinfo->shrinklist_lock);
3852 INIT_LIST_HEAD(&sbinfo->shrinklist);
3854 sb->s_maxbytes = MAX_LFS_FILESIZE;
3855 sb->s_blocksize = PAGE_SIZE;
3856 sb->s_blocksize_bits = PAGE_SHIFT;
3857 sb->s_magic = TMPFS_MAGIC;
3858 sb->s_op = &shmem_ops;
3859 sb->s_time_gran = 1;
3860 #ifdef CONFIG_TMPFS_XATTR
3861 sb->s_xattr = shmem_xattr_handlers;
3862 #endif
3863 #ifdef CONFIG_TMPFS_POSIX_ACL
3864 sb->s_flags |= MS_POSIXACL;
3865 #endif
3866 uuid_gen(&sb->s_uuid);
3868 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3869 if (!inode)
3870 goto failed;
3871 inode->i_uid = sbinfo->uid;
3872 inode->i_gid = sbinfo->gid;
3873 sb->s_root = d_make_root(inode);
3874 if (!sb->s_root)
3875 goto failed;
3876 return 0;
3878 failed:
3879 shmem_put_super(sb);
3880 return err;
3883 static struct kmem_cache *shmem_inode_cachep;
3885 static struct inode *shmem_alloc_inode(struct super_block *sb)
3887 struct shmem_inode_info *info;
3888 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3889 if (!info)
3890 return NULL;
3891 return &info->vfs_inode;
3894 static void shmem_destroy_callback(struct rcu_head *head)
3896 struct inode *inode = container_of(head, struct inode, i_rcu);
3897 if (S_ISLNK(inode->i_mode))
3898 kfree(inode->i_link);
3899 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3902 static void shmem_destroy_inode(struct inode *inode)
3904 if (S_ISREG(inode->i_mode))
3905 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3906 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3909 static void shmem_init_inode(void *foo)
3911 struct shmem_inode_info *info = foo;
3912 inode_init_once(&info->vfs_inode);
3915 static int shmem_init_inodecache(void)
3917 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3918 sizeof(struct shmem_inode_info),
3919 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3920 return 0;
3923 static void shmem_destroy_inodecache(void)
3925 kmem_cache_destroy(shmem_inode_cachep);
3928 static const struct address_space_operations shmem_aops = {
3929 .writepage = shmem_writepage,
3930 .set_page_dirty = __set_page_dirty_no_writeback,
3931 #ifdef CONFIG_TMPFS
3932 .write_begin = shmem_write_begin,
3933 .write_end = shmem_write_end,
3934 #endif
3935 #ifdef CONFIG_MIGRATION
3936 .migratepage = migrate_page,
3937 #endif
3938 .error_remove_page = generic_error_remove_page,
3941 static const struct file_operations shmem_file_operations = {
3942 .mmap = shmem_mmap,
3943 .get_unmapped_area = shmem_get_unmapped_area,
3944 #ifdef CONFIG_TMPFS
3945 .llseek = shmem_file_llseek,
3946 .read_iter = shmem_file_read_iter,
3947 .write_iter = generic_file_write_iter,
3948 .fsync = noop_fsync,
3949 .splice_read = generic_file_splice_read,
3950 .splice_write = iter_file_splice_write,
3951 .fallocate = shmem_fallocate,
3952 #endif
3955 static const struct inode_operations shmem_inode_operations = {
3956 .getattr = shmem_getattr,
3957 .setattr = shmem_setattr,
3958 #ifdef CONFIG_TMPFS_XATTR
3959 .listxattr = shmem_listxattr,
3960 .set_acl = simple_set_acl,
3961 #endif
3964 static const struct inode_operations shmem_dir_inode_operations = {
3965 #ifdef CONFIG_TMPFS
3966 .create = shmem_create,
3967 .lookup = simple_lookup,
3968 .link = shmem_link,
3969 .unlink = shmem_unlink,
3970 .symlink = shmem_symlink,
3971 .mkdir = shmem_mkdir,
3972 .rmdir = shmem_rmdir,
3973 .mknod = shmem_mknod,
3974 .rename = shmem_rename2,
3975 .tmpfile = shmem_tmpfile,
3976 #endif
3977 #ifdef CONFIG_TMPFS_XATTR
3978 .listxattr = shmem_listxattr,
3979 #endif
3980 #ifdef CONFIG_TMPFS_POSIX_ACL
3981 .setattr = shmem_setattr,
3982 .set_acl = simple_set_acl,
3983 #endif
3986 static const struct inode_operations shmem_special_inode_operations = {
3987 #ifdef CONFIG_TMPFS_XATTR
3988 .listxattr = shmem_listxattr,
3989 #endif
3990 #ifdef CONFIG_TMPFS_POSIX_ACL
3991 .setattr = shmem_setattr,
3992 .set_acl = simple_set_acl,
3993 #endif
3996 static const struct super_operations shmem_ops = {
3997 .alloc_inode = shmem_alloc_inode,
3998 .destroy_inode = shmem_destroy_inode,
3999 #ifdef CONFIG_TMPFS
4000 .statfs = shmem_statfs,
4001 .remount_fs = shmem_remount_fs,
4002 .show_options = shmem_show_options,
4003 #endif
4004 .evict_inode = shmem_evict_inode,
4005 .drop_inode = generic_delete_inode,
4006 .put_super = shmem_put_super,
4007 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4008 .nr_cached_objects = shmem_unused_huge_count,
4009 .free_cached_objects = shmem_unused_huge_scan,
4010 #endif
4013 static const struct vm_operations_struct shmem_vm_ops = {
4014 .fault = shmem_fault,
4015 .map_pages = filemap_map_pages,
4016 #ifdef CONFIG_NUMA
4017 .set_policy = shmem_set_policy,
4018 .get_policy = shmem_get_policy,
4019 #endif
4022 static struct dentry *shmem_mount(struct file_system_type *fs_type,
4023 int flags, const char *dev_name, void *data)
4025 return mount_nodev(fs_type, flags, data, shmem_fill_super);
4028 static struct file_system_type shmem_fs_type = {
4029 .owner = THIS_MODULE,
4030 .name = "tmpfs",
4031 .mount = shmem_mount,
4032 .kill_sb = kill_litter_super,
4033 .fs_flags = FS_USERNS_MOUNT,
4036 int __init shmem_init(void)
4038 int error;
4040 /* If rootfs called this, don't re-init */
4041 if (shmem_inode_cachep)
4042 return 0;
4044 error = shmem_init_inodecache();
4045 if (error)
4046 goto out3;
4048 error = register_filesystem(&shmem_fs_type);
4049 if (error) {
4050 pr_err("Could not register tmpfs\n");
4051 goto out2;
4054 shm_mnt = kern_mount(&shmem_fs_type);
4055 if (IS_ERR(shm_mnt)) {
4056 error = PTR_ERR(shm_mnt);
4057 pr_err("Could not kern_mount tmpfs\n");
4058 goto out1;
4061 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4062 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4063 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4064 else
4065 shmem_huge = 0; /* just in case it was patched */
4066 #endif
4067 return 0;
4069 out1:
4070 unregister_filesystem(&shmem_fs_type);
4071 out2:
4072 shmem_destroy_inodecache();
4073 out3:
4074 shm_mnt = ERR_PTR(error);
4075 return error;
4078 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4079 static ssize_t shmem_enabled_show(struct kobject *kobj,
4080 struct kobj_attribute *attr, char *buf)
4082 int values[] = {
4083 SHMEM_HUGE_ALWAYS,
4084 SHMEM_HUGE_WITHIN_SIZE,
4085 SHMEM_HUGE_ADVISE,
4086 SHMEM_HUGE_NEVER,
4087 SHMEM_HUGE_DENY,
4088 SHMEM_HUGE_FORCE,
4090 int i, count;
4092 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4093 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4095 count += sprintf(buf + count, fmt,
4096 shmem_format_huge(values[i]));
4098 buf[count - 1] = '\n';
4099 return count;
4102 static ssize_t shmem_enabled_store(struct kobject *kobj,
4103 struct kobj_attribute *attr, const char *buf, size_t count)
4105 char tmp[16];
4106 int huge;
4108 if (count + 1 > sizeof(tmp))
4109 return -EINVAL;
4110 memcpy(tmp, buf, count);
4111 tmp[count] = '\0';
4112 if (count && tmp[count - 1] == '\n')
4113 tmp[count - 1] = '\0';
4115 huge = shmem_parse_huge(tmp);
4116 if (huge == -EINVAL)
4117 return -EINVAL;
4118 if (!has_transparent_hugepage() &&
4119 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4120 return -EINVAL;
4122 shmem_huge = huge;
4123 if (shmem_huge > SHMEM_HUGE_DENY)
4124 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4125 return count;
4128 struct kobj_attribute shmem_enabled_attr =
4129 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4130 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4132 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4133 bool shmem_huge_enabled(struct vm_area_struct *vma)
4135 struct inode *inode = file_inode(vma->vm_file);
4136 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4137 loff_t i_size;
4138 pgoff_t off;
4140 if (shmem_huge == SHMEM_HUGE_FORCE)
4141 return true;
4142 if (shmem_huge == SHMEM_HUGE_DENY)
4143 return false;
4144 switch (sbinfo->huge) {
4145 case SHMEM_HUGE_NEVER:
4146 return false;
4147 case SHMEM_HUGE_ALWAYS:
4148 return true;
4149 case SHMEM_HUGE_WITHIN_SIZE:
4150 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4151 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4152 if (i_size >= HPAGE_PMD_SIZE &&
4153 i_size >> PAGE_SHIFT >= off)
4154 return true;
4155 case SHMEM_HUGE_ADVISE:
4156 /* TODO: implement fadvise() hints */
4157 return (vma->vm_flags & VM_HUGEPAGE);
4158 default:
4159 VM_BUG_ON(1);
4160 return false;
4163 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4165 #else /* !CONFIG_SHMEM */
4168 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4170 * This is intended for small system where the benefits of the full
4171 * shmem code (swap-backed and resource-limited) are outweighed by
4172 * their complexity. On systems without swap this code should be
4173 * effectively equivalent, but much lighter weight.
4176 static struct file_system_type shmem_fs_type = {
4177 .name = "tmpfs",
4178 .mount = ramfs_mount,
4179 .kill_sb = kill_litter_super,
4180 .fs_flags = FS_USERNS_MOUNT,
4183 int __init shmem_init(void)
4185 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4187 shm_mnt = kern_mount(&shmem_fs_type);
4188 BUG_ON(IS_ERR(shm_mnt));
4190 return 0;
4193 int shmem_unuse(swp_entry_t swap, struct page *page)
4195 return 0;
4198 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4200 return 0;
4203 void shmem_unlock_mapping(struct address_space *mapping)
4207 #ifdef CONFIG_MMU
4208 unsigned long shmem_get_unmapped_area(struct file *file,
4209 unsigned long addr, unsigned long len,
4210 unsigned long pgoff, unsigned long flags)
4212 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4214 #endif
4216 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4218 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4220 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4222 #define shmem_vm_ops generic_file_vm_ops
4223 #define shmem_file_operations ramfs_file_operations
4224 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4225 #define shmem_acct_size(flags, size) 0
4226 #define shmem_unacct_size(flags, size) do {} while (0)
4228 #endif /* CONFIG_SHMEM */
4230 /* common code */
4232 static const struct dentry_operations anon_ops = {
4233 .d_dname = simple_dname
4236 static struct file *__shmem_file_setup(const char *name, loff_t size,
4237 unsigned long flags, unsigned int i_flags)
4239 struct file *res;
4240 struct inode *inode;
4241 struct path path;
4242 struct super_block *sb;
4243 struct qstr this;
4245 if (IS_ERR(shm_mnt))
4246 return ERR_CAST(shm_mnt);
4248 if (size < 0 || size > MAX_LFS_FILESIZE)
4249 return ERR_PTR(-EINVAL);
4251 if (shmem_acct_size(flags, size))
4252 return ERR_PTR(-ENOMEM);
4254 res = ERR_PTR(-ENOMEM);
4255 this.name = name;
4256 this.len = strlen(name);
4257 this.hash = 0; /* will go */
4258 sb = shm_mnt->mnt_sb;
4259 path.mnt = mntget(shm_mnt);
4260 path.dentry = d_alloc_pseudo(sb, &this);
4261 if (!path.dentry)
4262 goto put_memory;
4263 d_set_d_op(path.dentry, &anon_ops);
4265 res = ERR_PTR(-ENOSPC);
4266 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4267 if (!inode)
4268 goto put_memory;
4270 inode->i_flags |= i_flags;
4271 d_instantiate(path.dentry, inode);
4272 inode->i_size = size;
4273 clear_nlink(inode); /* It is unlinked */
4274 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4275 if (IS_ERR(res))
4276 goto put_path;
4278 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4279 &shmem_file_operations);
4280 if (IS_ERR(res))
4281 goto put_path;
4283 return res;
4285 put_memory:
4286 shmem_unacct_size(flags, size);
4287 put_path:
4288 path_put(&path);
4289 return res;
4293 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4294 * kernel internal. There will be NO LSM permission checks against the
4295 * underlying inode. So users of this interface must do LSM checks at a
4296 * higher layer. The users are the big_key and shm implementations. LSM
4297 * checks are provided at the key or shm level rather than the inode.
4298 * @name: name for dentry (to be seen in /proc/<pid>/maps
4299 * @size: size to be set for the file
4300 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4302 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4304 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4308 * shmem_file_setup - get an unlinked file living in tmpfs
4309 * @name: name for dentry (to be seen in /proc/<pid>/maps
4310 * @size: size to be set for the file
4311 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4313 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4315 return __shmem_file_setup(name, size, flags, 0);
4317 EXPORT_SYMBOL_GPL(shmem_file_setup);
4320 * shmem_zero_setup - setup a shared anonymous mapping
4321 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4323 int shmem_zero_setup(struct vm_area_struct *vma)
4325 struct file *file;
4326 loff_t size = vma->vm_end - vma->vm_start;
4329 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4330 * between XFS directory reading and selinux: since this file is only
4331 * accessible to the user through its mapping, use S_PRIVATE flag to
4332 * bypass file security, in the same way as shmem_kernel_file_setup().
4334 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4335 if (IS_ERR(file))
4336 return PTR_ERR(file);
4338 if (vma->vm_file)
4339 fput(vma->vm_file);
4340 vma->vm_file = file;
4341 vma->vm_ops = &shmem_vm_ops;
4343 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4344 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4345 (vma->vm_end & HPAGE_PMD_MASK)) {
4346 khugepaged_enter(vma, vma->vm_flags);
4349 return 0;
4353 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4354 * @mapping: the page's address_space
4355 * @index: the page index
4356 * @gfp: the page allocator flags to use if allocating
4358 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4359 * with any new page allocations done using the specified allocation flags.
4360 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4361 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4362 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4364 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4365 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4367 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4368 pgoff_t index, gfp_t gfp)
4370 #ifdef CONFIG_SHMEM
4371 struct inode *inode = mapping->host;
4372 struct page *page;
4373 int error;
4375 BUG_ON(mapping->a_ops != &shmem_aops);
4376 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4377 gfp, NULL, NULL, NULL);
4378 if (error)
4379 page = ERR_PTR(error);
4380 else
4381 unlock_page(page);
4382 return page;
4383 #else
4385 * The tiny !SHMEM case uses ramfs without swap
4387 return read_cache_page_gfp(mapping, index, gfp);
4388 #endif
4390 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);