4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 #include <linux/overflow.h>
36 #include <linux/uaccess.h>
37 #include <asm/tlbflush.h>
38 #include <asm/shmparam.h>
42 struct vfree_deferred
{
43 struct llist_head list
;
44 struct work_struct wq
;
46 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
48 static void __vunmap(const void *, int);
50 static void free_work(struct work_struct
*w
)
52 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
53 struct llist_node
*t
, *llnode
;
55 llist_for_each_safe(llnode
, t
, llist_del_all(&p
->list
))
56 __vunmap((void *)llnode
, 1);
59 /*** Page table manipulation functions ***/
61 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
65 pte
= pte_offset_kernel(pmd
, addr
);
67 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
68 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
69 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
72 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
77 pmd
= pmd_offset(pud
, addr
);
79 next
= pmd_addr_end(addr
, end
);
80 if (pmd_clear_huge(pmd
))
82 if (pmd_none_or_clear_bad(pmd
))
84 vunmap_pte_range(pmd
, addr
, next
);
85 } while (pmd
++, addr
= next
, addr
!= end
);
88 static void vunmap_pud_range(p4d_t
*p4d
, unsigned long addr
, unsigned long end
)
93 pud
= pud_offset(p4d
, addr
);
95 next
= pud_addr_end(addr
, end
);
96 if (pud_clear_huge(pud
))
98 if (pud_none_or_clear_bad(pud
))
100 vunmap_pmd_range(pud
, addr
, next
);
101 } while (pud
++, addr
= next
, addr
!= end
);
104 static void vunmap_p4d_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
109 p4d
= p4d_offset(pgd
, addr
);
111 next
= p4d_addr_end(addr
, end
);
112 if (p4d_clear_huge(p4d
))
114 if (p4d_none_or_clear_bad(p4d
))
116 vunmap_pud_range(p4d
, addr
, next
);
117 } while (p4d
++, addr
= next
, addr
!= end
);
120 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
126 pgd
= pgd_offset_k(addr
);
128 next
= pgd_addr_end(addr
, end
);
129 if (pgd_none_or_clear_bad(pgd
))
131 vunmap_p4d_range(pgd
, addr
, next
);
132 } while (pgd
++, addr
= next
, addr
!= end
);
135 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
136 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
141 * nr is a running index into the array which helps higher level
142 * callers keep track of where we're up to.
145 pte
= pte_alloc_kernel(pmd
, addr
);
149 struct page
*page
= pages
[*nr
];
151 if (WARN_ON(!pte_none(*pte
)))
155 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
157 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
161 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
162 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
167 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
171 next
= pmd_addr_end(addr
, end
);
172 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
174 } while (pmd
++, addr
= next
, addr
!= end
);
178 static int vmap_pud_range(p4d_t
*p4d
, unsigned long addr
,
179 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
184 pud
= pud_alloc(&init_mm
, p4d
, addr
);
188 next
= pud_addr_end(addr
, end
);
189 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
191 } while (pud
++, addr
= next
, addr
!= end
);
195 static int vmap_p4d_range(pgd_t
*pgd
, unsigned long addr
,
196 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
201 p4d
= p4d_alloc(&init_mm
, pgd
, addr
);
205 next
= p4d_addr_end(addr
, end
);
206 if (vmap_pud_range(p4d
, addr
, next
, prot
, pages
, nr
))
208 } while (p4d
++, addr
= next
, addr
!= end
);
213 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
214 * will have pfns corresponding to the "pages" array.
216 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
219 pgprot_t prot
, struct page
**pages
)
223 unsigned long addr
= start
;
228 pgd
= pgd_offset_k(addr
);
230 next
= pgd_addr_end(addr
, end
);
231 err
= vmap_p4d_range(pgd
, addr
, next
, prot
, pages
, &nr
);
234 } while (pgd
++, addr
= next
, addr
!= end
);
239 static int vmap_page_range(unsigned long start
, unsigned long end
,
240 pgprot_t prot
, struct page
**pages
)
244 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
245 flush_cache_vmap(start
, end
);
249 int is_vmalloc_or_module_addr(const void *x
)
252 * ARM, x86-64 and sparc64 put modules in a special place,
253 * and fall back on vmalloc() if that fails. Others
254 * just put it in the vmalloc space.
256 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
257 unsigned long addr
= (unsigned long)x
;
258 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
261 return is_vmalloc_addr(x
);
265 * Walk a vmap address to the struct page it maps.
267 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
269 unsigned long addr
= (unsigned long) vmalloc_addr
;
270 struct page
*page
= NULL
;
271 pgd_t
*pgd
= pgd_offset_k(addr
);
278 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
279 * architectures that do not vmalloc module space
281 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
285 p4d
= p4d_offset(pgd
, addr
);
288 pud
= pud_offset(p4d
, addr
);
291 * Don't dereference bad PUD or PMD (below) entries. This will also
292 * identify huge mappings, which we may encounter on architectures
293 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
294 * identified as vmalloc addresses by is_vmalloc_addr(), but are
295 * not [unambiguously] associated with a struct page, so there is
296 * no correct value to return for them.
298 WARN_ON_ONCE(pud_bad(*pud
));
299 if (pud_none(*pud
) || pud_bad(*pud
))
301 pmd
= pmd_offset(pud
, addr
);
302 WARN_ON_ONCE(pmd_bad(*pmd
));
303 if (pmd_none(*pmd
) || pmd_bad(*pmd
))
306 ptep
= pte_offset_map(pmd
, addr
);
308 if (pte_present(pte
))
309 page
= pte_page(pte
);
313 EXPORT_SYMBOL(vmalloc_to_page
);
316 * Map a vmalloc()-space virtual address to the physical page frame number.
318 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
320 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
322 EXPORT_SYMBOL(vmalloc_to_pfn
);
325 /*** Global kva allocator ***/
327 #define VM_LAZY_FREE 0x02
328 #define VM_VM_AREA 0x04
330 static DEFINE_SPINLOCK(vmap_area_lock
);
331 /* Export for kexec only */
332 LIST_HEAD(vmap_area_list
);
333 static LLIST_HEAD(vmap_purge_list
);
334 static struct rb_root vmap_area_root
= RB_ROOT
;
336 /* The vmap cache globals are protected by vmap_area_lock */
337 static struct rb_node
*free_vmap_cache
;
338 static unsigned long cached_hole_size
;
339 static unsigned long cached_vstart
;
340 static unsigned long cached_align
;
342 static unsigned long vmap_area_pcpu_hole
;
344 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
346 struct rb_node
*n
= vmap_area_root
.rb_node
;
349 struct vmap_area
*va
;
351 va
= rb_entry(n
, struct vmap_area
, rb_node
);
352 if (addr
< va
->va_start
)
354 else if (addr
>= va
->va_end
)
363 static void __insert_vmap_area(struct vmap_area
*va
)
365 struct rb_node
**p
= &vmap_area_root
.rb_node
;
366 struct rb_node
*parent
= NULL
;
370 struct vmap_area
*tmp_va
;
373 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
374 if (va
->va_start
< tmp_va
->va_end
)
376 else if (va
->va_end
> tmp_va
->va_start
)
382 rb_link_node(&va
->rb_node
, parent
, p
);
383 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
385 /* address-sort this list */
386 tmp
= rb_prev(&va
->rb_node
);
388 struct vmap_area
*prev
;
389 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
390 list_add_rcu(&va
->list
, &prev
->list
);
392 list_add_rcu(&va
->list
, &vmap_area_list
);
395 static void purge_vmap_area_lazy(void);
397 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
400 * Allocate a region of KVA of the specified size and alignment, within the
403 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
405 unsigned long vstart
, unsigned long vend
,
406 int node
, gfp_t gfp_mask
)
408 struct vmap_area
*va
;
412 struct vmap_area
*first
;
415 BUG_ON(offset_in_page(size
));
416 BUG_ON(!is_power_of_2(align
));
420 va
= kmalloc_node(sizeof(struct vmap_area
),
421 gfp_mask
& GFP_RECLAIM_MASK
, node
);
423 return ERR_PTR(-ENOMEM
);
426 * Only scan the relevant parts containing pointers to other objects
427 * to avoid false negatives.
429 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
432 spin_lock(&vmap_area_lock
);
434 * Invalidate cache if we have more permissive parameters.
435 * cached_hole_size notes the largest hole noticed _below_
436 * the vmap_area cached in free_vmap_cache: if size fits
437 * into that hole, we want to scan from vstart to reuse
438 * the hole instead of allocating above free_vmap_cache.
439 * Note that __free_vmap_area may update free_vmap_cache
440 * without updating cached_hole_size or cached_align.
442 if (!free_vmap_cache
||
443 size
< cached_hole_size
||
444 vstart
< cached_vstart
||
445 align
< cached_align
) {
447 cached_hole_size
= 0;
448 free_vmap_cache
= NULL
;
450 /* record if we encounter less permissive parameters */
451 cached_vstart
= vstart
;
452 cached_align
= align
;
454 /* find starting point for our search */
455 if (free_vmap_cache
) {
456 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
457 addr
= ALIGN(first
->va_end
, align
);
460 if (addr
+ size
< addr
)
464 addr
= ALIGN(vstart
, align
);
465 if (addr
+ size
< addr
)
468 n
= vmap_area_root
.rb_node
;
472 struct vmap_area
*tmp
;
473 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
474 if (tmp
->va_end
>= addr
) {
476 if (tmp
->va_start
<= addr
)
487 /* from the starting point, walk areas until a suitable hole is found */
488 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
489 if (addr
+ cached_hole_size
< first
->va_start
)
490 cached_hole_size
= first
->va_start
- addr
;
491 addr
= ALIGN(first
->va_end
, align
);
492 if (addr
+ size
< addr
)
495 if (list_is_last(&first
->list
, &vmap_area_list
))
498 first
= list_next_entry(first
, list
);
503 * Check also calculated address against the vstart,
504 * because it can be 0 because of big align request.
506 if (addr
+ size
> vend
|| addr
< vstart
)
510 va
->va_end
= addr
+ size
;
512 __insert_vmap_area(va
);
513 free_vmap_cache
= &va
->rb_node
;
514 spin_unlock(&vmap_area_lock
);
516 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
517 BUG_ON(va
->va_start
< vstart
);
518 BUG_ON(va
->va_end
> vend
);
523 spin_unlock(&vmap_area_lock
);
525 purge_vmap_area_lazy();
530 if (gfpflags_allow_blocking(gfp_mask
)) {
531 unsigned long freed
= 0;
532 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
539 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit())
540 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
543 return ERR_PTR(-EBUSY
);
546 int register_vmap_purge_notifier(struct notifier_block
*nb
)
548 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
550 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
552 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
554 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
556 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
558 static void __free_vmap_area(struct vmap_area
*va
)
560 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
562 if (free_vmap_cache
) {
563 if (va
->va_end
< cached_vstart
) {
564 free_vmap_cache
= NULL
;
566 struct vmap_area
*cache
;
567 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
568 if (va
->va_start
<= cache
->va_start
) {
569 free_vmap_cache
= rb_prev(&va
->rb_node
);
571 * We don't try to update cached_hole_size or
572 * cached_align, but it won't go very wrong.
577 rb_erase(&va
->rb_node
, &vmap_area_root
);
578 RB_CLEAR_NODE(&va
->rb_node
);
579 list_del_rcu(&va
->list
);
582 * Track the highest possible candidate for pcpu area
583 * allocation. Areas outside of vmalloc area can be returned
584 * here too, consider only end addresses which fall inside
585 * vmalloc area proper.
587 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
588 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
590 kfree_rcu(va
, rcu_head
);
594 * Free a region of KVA allocated by alloc_vmap_area
596 static void free_vmap_area(struct vmap_area
*va
)
598 spin_lock(&vmap_area_lock
);
599 __free_vmap_area(va
);
600 spin_unlock(&vmap_area_lock
);
604 * Clear the pagetable entries of a given vmap_area
606 static void unmap_vmap_area(struct vmap_area
*va
)
608 vunmap_page_range(va
->va_start
, va
->va_end
);
611 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
614 * Unmap page tables and force a TLB flush immediately if pagealloc
615 * debugging is enabled. This catches use after free bugs similarly to
616 * those in linear kernel virtual address space after a page has been
619 * All the lazy freeing logic is still retained, in order to minimise
620 * intrusiveness of this debugging feature.
622 * This is going to be *slow* (linear kernel virtual address debugging
623 * doesn't do a broadcast TLB flush so it is a lot faster).
625 if (debug_pagealloc_enabled()) {
626 vunmap_page_range(start
, end
);
627 flush_tlb_kernel_range(start
, end
);
632 * lazy_max_pages is the maximum amount of virtual address space we gather up
633 * before attempting to purge with a TLB flush.
635 * There is a tradeoff here: a larger number will cover more kernel page tables
636 * and take slightly longer to purge, but it will linearly reduce the number of
637 * global TLB flushes that must be performed. It would seem natural to scale
638 * this number up linearly with the number of CPUs (because vmapping activity
639 * could also scale linearly with the number of CPUs), however it is likely
640 * that in practice, workloads might be constrained in other ways that mean
641 * vmap activity will not scale linearly with CPUs. Also, I want to be
642 * conservative and not introduce a big latency on huge systems, so go with
643 * a less aggressive log scale. It will still be an improvement over the old
644 * code, and it will be simple to change the scale factor if we find that it
645 * becomes a problem on bigger systems.
647 static unsigned long lazy_max_pages(void)
651 log
= fls(num_online_cpus());
653 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
656 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
659 * Serialize vmap purging. There is no actual criticial section protected
660 * by this look, but we want to avoid concurrent calls for performance
661 * reasons and to make the pcpu_get_vm_areas more deterministic.
663 static DEFINE_MUTEX(vmap_purge_lock
);
665 /* for per-CPU blocks */
666 static void purge_fragmented_blocks_allcpus(void);
669 * called before a call to iounmap() if the caller wants vm_area_struct's
672 void set_iounmap_nonlazy(void)
674 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
678 * Purges all lazily-freed vmap areas.
680 static bool __purge_vmap_area_lazy(unsigned long start
, unsigned long end
)
682 struct llist_node
*valist
;
683 struct vmap_area
*va
;
684 struct vmap_area
*n_va
;
685 bool do_free
= false;
687 lockdep_assert_held(&vmap_purge_lock
);
689 valist
= llist_del_all(&vmap_purge_list
);
690 llist_for_each_entry(va
, valist
, purge_list
) {
691 if (va
->va_start
< start
)
692 start
= va
->va_start
;
693 if (va
->va_end
> end
)
701 flush_tlb_kernel_range(start
, end
);
703 spin_lock(&vmap_area_lock
);
704 llist_for_each_entry_safe(va
, n_va
, valist
, purge_list
) {
705 int nr
= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
707 __free_vmap_area(va
);
708 atomic_sub(nr
, &vmap_lazy_nr
);
709 cond_resched_lock(&vmap_area_lock
);
711 spin_unlock(&vmap_area_lock
);
716 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
717 * is already purging.
719 static void try_purge_vmap_area_lazy(void)
721 if (mutex_trylock(&vmap_purge_lock
)) {
722 __purge_vmap_area_lazy(ULONG_MAX
, 0);
723 mutex_unlock(&vmap_purge_lock
);
728 * Kick off a purge of the outstanding lazy areas.
730 static void purge_vmap_area_lazy(void)
732 mutex_lock(&vmap_purge_lock
);
733 purge_fragmented_blocks_allcpus();
734 __purge_vmap_area_lazy(ULONG_MAX
, 0);
735 mutex_unlock(&vmap_purge_lock
);
739 * Free a vmap area, caller ensuring that the area has been unmapped
740 * and flush_cache_vunmap had been called for the correct range
743 static void free_vmap_area_noflush(struct vmap_area
*va
)
747 nr_lazy
= atomic_add_return((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
,
750 /* After this point, we may free va at any time */
751 llist_add(&va
->purge_list
, &vmap_purge_list
);
753 if (unlikely(nr_lazy
> lazy_max_pages()))
754 try_purge_vmap_area_lazy();
758 * Free and unmap a vmap area
760 static void free_unmap_vmap_area(struct vmap_area
*va
)
762 flush_cache_vunmap(va
->va_start
, va
->va_end
);
764 free_vmap_area_noflush(va
);
767 static struct vmap_area
*find_vmap_area(unsigned long addr
)
769 struct vmap_area
*va
;
771 spin_lock(&vmap_area_lock
);
772 va
= __find_vmap_area(addr
);
773 spin_unlock(&vmap_area_lock
);
778 /*** Per cpu kva allocator ***/
781 * vmap space is limited especially on 32 bit architectures. Ensure there is
782 * room for at least 16 percpu vmap blocks per CPU.
785 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
786 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
787 * instead (we just need a rough idea)
789 #if BITS_PER_LONG == 32
790 #define VMALLOC_SPACE (128UL*1024*1024)
792 #define VMALLOC_SPACE (128UL*1024*1024*1024)
795 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
796 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
797 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
798 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
799 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
800 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
801 #define VMAP_BBMAP_BITS \
802 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
803 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
804 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
806 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
808 static bool vmap_initialized __read_mostly
= false;
810 struct vmap_block_queue
{
812 struct list_head free
;
817 struct vmap_area
*va
;
818 unsigned long free
, dirty
;
819 unsigned long dirty_min
, dirty_max
; /*< dirty range */
820 struct list_head free_list
;
821 struct rcu_head rcu_head
;
822 struct list_head purge
;
825 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
826 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
829 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
830 * in the free path. Could get rid of this if we change the API to return a
831 * "cookie" from alloc, to be passed to free. But no big deal yet.
833 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
834 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
837 * We should probably have a fallback mechanism to allocate virtual memory
838 * out of partially filled vmap blocks. However vmap block sizing should be
839 * fairly reasonable according to the vmalloc size, so it shouldn't be a
843 static unsigned long addr_to_vb_idx(unsigned long addr
)
845 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
846 addr
/= VMAP_BLOCK_SIZE
;
850 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
854 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
855 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
860 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
861 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
862 * @order: how many 2^order pages should be occupied in newly allocated block
863 * @gfp_mask: flags for the page level allocator
865 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
867 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
869 struct vmap_block_queue
*vbq
;
870 struct vmap_block
*vb
;
871 struct vmap_area
*va
;
872 unsigned long vb_idx
;
876 node
= numa_node_id();
878 vb
= kmalloc_node(sizeof(struct vmap_block
),
879 gfp_mask
& GFP_RECLAIM_MASK
, node
);
881 return ERR_PTR(-ENOMEM
);
883 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
884 VMALLOC_START
, VMALLOC_END
,
891 err
= radix_tree_preload(gfp_mask
);
898 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
899 spin_lock_init(&vb
->lock
);
901 /* At least something should be left free */
902 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
903 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
905 vb
->dirty_min
= VMAP_BBMAP_BITS
;
907 INIT_LIST_HEAD(&vb
->free_list
);
909 vb_idx
= addr_to_vb_idx(va
->va_start
);
910 spin_lock(&vmap_block_tree_lock
);
911 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
912 spin_unlock(&vmap_block_tree_lock
);
914 radix_tree_preload_end();
916 vbq
= &get_cpu_var(vmap_block_queue
);
917 spin_lock(&vbq
->lock
);
918 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
919 spin_unlock(&vbq
->lock
);
920 put_cpu_var(vmap_block_queue
);
925 static void free_vmap_block(struct vmap_block
*vb
)
927 struct vmap_block
*tmp
;
928 unsigned long vb_idx
;
930 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
931 spin_lock(&vmap_block_tree_lock
);
932 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
933 spin_unlock(&vmap_block_tree_lock
);
936 free_vmap_area_noflush(vb
->va
);
937 kfree_rcu(vb
, rcu_head
);
940 static void purge_fragmented_blocks(int cpu
)
943 struct vmap_block
*vb
;
944 struct vmap_block
*n_vb
;
945 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
948 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
950 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
953 spin_lock(&vb
->lock
);
954 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
955 vb
->free
= 0; /* prevent further allocs after releasing lock */
956 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
958 vb
->dirty_max
= VMAP_BBMAP_BITS
;
959 spin_lock(&vbq
->lock
);
960 list_del_rcu(&vb
->free_list
);
961 spin_unlock(&vbq
->lock
);
962 spin_unlock(&vb
->lock
);
963 list_add_tail(&vb
->purge
, &purge
);
965 spin_unlock(&vb
->lock
);
969 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
970 list_del(&vb
->purge
);
975 static void purge_fragmented_blocks_allcpus(void)
979 for_each_possible_cpu(cpu
)
980 purge_fragmented_blocks(cpu
);
983 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
985 struct vmap_block_queue
*vbq
;
986 struct vmap_block
*vb
;
990 BUG_ON(offset_in_page(size
));
991 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
992 if (WARN_ON(size
== 0)) {
994 * Allocating 0 bytes isn't what caller wants since
995 * get_order(0) returns funny result. Just warn and terminate
1000 order
= get_order(size
);
1003 vbq
= &get_cpu_var(vmap_block_queue
);
1004 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1005 unsigned long pages_off
;
1007 spin_lock(&vb
->lock
);
1008 if (vb
->free
< (1UL << order
)) {
1009 spin_unlock(&vb
->lock
);
1013 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
1014 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
1015 vb
->free
-= 1UL << order
;
1016 if (vb
->free
== 0) {
1017 spin_lock(&vbq
->lock
);
1018 list_del_rcu(&vb
->free_list
);
1019 spin_unlock(&vbq
->lock
);
1022 spin_unlock(&vb
->lock
);
1026 put_cpu_var(vmap_block_queue
);
1029 /* Allocate new block if nothing was found */
1031 vaddr
= new_vmap_block(order
, gfp_mask
);
1036 static void vb_free(const void *addr
, unsigned long size
)
1038 unsigned long offset
;
1039 unsigned long vb_idx
;
1041 struct vmap_block
*vb
;
1043 BUG_ON(offset_in_page(size
));
1044 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1046 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
1048 order
= get_order(size
);
1050 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1051 offset
>>= PAGE_SHIFT
;
1053 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1055 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1059 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1061 spin_lock(&vb
->lock
);
1063 /* Expand dirty range */
1064 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1065 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1067 vb
->dirty
+= 1UL << order
;
1068 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1070 spin_unlock(&vb
->lock
);
1071 free_vmap_block(vb
);
1073 spin_unlock(&vb
->lock
);
1077 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1079 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1080 * to amortize TLB flushing overheads. What this means is that any page you
1081 * have now, may, in a former life, have been mapped into kernel virtual
1082 * address by the vmap layer and so there might be some CPUs with TLB entries
1083 * still referencing that page (additional to the regular 1:1 kernel mapping).
1085 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1086 * be sure that none of the pages we have control over will have any aliases
1087 * from the vmap layer.
1089 void vm_unmap_aliases(void)
1091 unsigned long start
= ULONG_MAX
, end
= 0;
1095 if (unlikely(!vmap_initialized
))
1100 for_each_possible_cpu(cpu
) {
1101 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1102 struct vmap_block
*vb
;
1105 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1106 spin_lock(&vb
->lock
);
1108 unsigned long va_start
= vb
->va
->va_start
;
1111 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1112 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1114 start
= min(s
, start
);
1119 spin_unlock(&vb
->lock
);
1124 mutex_lock(&vmap_purge_lock
);
1125 purge_fragmented_blocks_allcpus();
1126 if (!__purge_vmap_area_lazy(start
, end
) && flush
)
1127 flush_tlb_kernel_range(start
, end
);
1128 mutex_unlock(&vmap_purge_lock
);
1130 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1133 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1134 * @mem: the pointer returned by vm_map_ram
1135 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1137 void vm_unmap_ram(const void *mem
, unsigned int count
)
1139 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1140 unsigned long addr
= (unsigned long)mem
;
1141 struct vmap_area
*va
;
1145 BUG_ON(addr
< VMALLOC_START
);
1146 BUG_ON(addr
> VMALLOC_END
);
1147 BUG_ON(!PAGE_ALIGNED(addr
));
1149 debug_check_no_locks_freed(mem
, size
);
1150 vmap_debug_free_range(addr
, addr
+size
);
1152 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1157 va
= find_vmap_area(addr
);
1159 free_unmap_vmap_area(va
);
1161 EXPORT_SYMBOL(vm_unmap_ram
);
1164 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1165 * @pages: an array of pointers to the pages to be mapped
1166 * @count: number of pages
1167 * @node: prefer to allocate data structures on this node
1168 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1170 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1171 * faster than vmap so it's good. But if you mix long-life and short-life
1172 * objects with vm_map_ram(), it could consume lots of address space through
1173 * fragmentation (especially on a 32bit machine). You could see failures in
1174 * the end. Please use this function for short-lived objects.
1176 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1178 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1180 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1184 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1185 mem
= vb_alloc(size
, GFP_KERNEL
);
1188 addr
= (unsigned long)mem
;
1190 struct vmap_area
*va
;
1191 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1192 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1196 addr
= va
->va_start
;
1199 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1200 vm_unmap_ram(mem
, count
);
1205 EXPORT_SYMBOL(vm_map_ram
);
1207 static struct vm_struct
*vmlist __initdata
;
1209 * vm_area_add_early - add vmap area early during boot
1210 * @vm: vm_struct to add
1212 * This function is used to add fixed kernel vm area to vmlist before
1213 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1214 * should contain proper values and the other fields should be zero.
1216 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1218 void __init
vm_area_add_early(struct vm_struct
*vm
)
1220 struct vm_struct
*tmp
, **p
;
1222 BUG_ON(vmap_initialized
);
1223 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1224 if (tmp
->addr
>= vm
->addr
) {
1225 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1228 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1235 * vm_area_register_early - register vmap area early during boot
1236 * @vm: vm_struct to register
1237 * @align: requested alignment
1239 * This function is used to register kernel vm area before
1240 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1241 * proper values on entry and other fields should be zero. On return,
1242 * vm->addr contains the allocated address.
1244 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1246 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1248 static size_t vm_init_off __initdata
;
1251 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1252 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1254 vm
->addr
= (void *)addr
;
1256 vm_area_add_early(vm
);
1259 void __init
vmalloc_init(void)
1261 struct vmap_area
*va
;
1262 struct vm_struct
*tmp
;
1265 for_each_possible_cpu(i
) {
1266 struct vmap_block_queue
*vbq
;
1267 struct vfree_deferred
*p
;
1269 vbq
= &per_cpu(vmap_block_queue
, i
);
1270 spin_lock_init(&vbq
->lock
);
1271 INIT_LIST_HEAD(&vbq
->free
);
1272 p
= &per_cpu(vfree_deferred
, i
);
1273 init_llist_head(&p
->list
);
1274 INIT_WORK(&p
->wq
, free_work
);
1277 /* Import existing vmlist entries. */
1278 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1279 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1280 va
->flags
= VM_VM_AREA
;
1281 va
->va_start
= (unsigned long)tmp
->addr
;
1282 va
->va_end
= va
->va_start
+ tmp
->size
;
1284 __insert_vmap_area(va
);
1287 vmap_area_pcpu_hole
= VMALLOC_END
;
1289 vmap_initialized
= true;
1293 * map_kernel_range_noflush - map kernel VM area with the specified pages
1294 * @addr: start of the VM area to map
1295 * @size: size of the VM area to map
1296 * @prot: page protection flags to use
1297 * @pages: pages to map
1299 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1300 * specify should have been allocated using get_vm_area() and its
1304 * This function does NOT do any cache flushing. The caller is
1305 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1306 * before calling this function.
1309 * The number of pages mapped on success, -errno on failure.
1311 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1312 pgprot_t prot
, struct page
**pages
)
1314 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1318 * unmap_kernel_range_noflush - unmap kernel VM area
1319 * @addr: start of the VM area to unmap
1320 * @size: size of the VM area to unmap
1322 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1323 * specify should have been allocated using get_vm_area() and its
1327 * This function does NOT do any cache flushing. The caller is
1328 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1329 * before calling this function and flush_tlb_kernel_range() after.
1331 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1333 vunmap_page_range(addr
, addr
+ size
);
1335 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1338 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1339 * @addr: start of the VM area to unmap
1340 * @size: size of the VM area to unmap
1342 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1343 * the unmapping and tlb after.
1345 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1347 unsigned long end
= addr
+ size
;
1349 flush_cache_vunmap(addr
, end
);
1350 vunmap_page_range(addr
, end
);
1351 flush_tlb_kernel_range(addr
, end
);
1353 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1355 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1357 unsigned long addr
= (unsigned long)area
->addr
;
1358 unsigned long end
= addr
+ get_vm_area_size(area
);
1361 err
= vmap_page_range(addr
, end
, prot
, pages
);
1363 return err
> 0 ? 0 : err
;
1365 EXPORT_SYMBOL_GPL(map_vm_area
);
1367 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1368 unsigned long flags
, const void *caller
)
1370 spin_lock(&vmap_area_lock
);
1372 vm
->addr
= (void *)va
->va_start
;
1373 vm
->size
= va
->va_end
- va
->va_start
;
1374 vm
->caller
= caller
;
1376 va
->flags
|= VM_VM_AREA
;
1377 spin_unlock(&vmap_area_lock
);
1380 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1383 * Before removing VM_UNINITIALIZED,
1384 * we should make sure that vm has proper values.
1385 * Pair with smp_rmb() in show_numa_info().
1388 vm
->flags
&= ~VM_UNINITIALIZED
;
1391 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1392 unsigned long align
, unsigned long flags
, unsigned long start
,
1393 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1395 struct vmap_area
*va
;
1396 struct vm_struct
*area
;
1398 BUG_ON(in_interrupt());
1399 size
= PAGE_ALIGN(size
);
1400 if (unlikely(!size
))
1403 if (flags
& VM_IOREMAP
)
1404 align
= 1ul << clamp_t(int, get_count_order_long(size
),
1405 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1407 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1408 if (unlikely(!area
))
1411 if (!(flags
& VM_NO_GUARD
))
1414 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1420 setup_vmalloc_vm(area
, va
, flags
, caller
);
1425 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1426 unsigned long start
, unsigned long end
)
1428 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1429 GFP_KERNEL
, __builtin_return_address(0));
1431 EXPORT_SYMBOL_GPL(__get_vm_area
);
1433 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1434 unsigned long start
, unsigned long end
,
1437 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1438 GFP_KERNEL
, caller
);
1442 * get_vm_area - reserve a contiguous kernel virtual area
1443 * @size: size of the area
1444 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1446 * Search an area of @size in the kernel virtual mapping area,
1447 * and reserved it for out purposes. Returns the area descriptor
1448 * on success or %NULL on failure.
1450 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1452 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1453 NUMA_NO_NODE
, GFP_KERNEL
,
1454 __builtin_return_address(0));
1457 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1460 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1461 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1465 * find_vm_area - find a continuous kernel virtual area
1466 * @addr: base address
1468 * Search for the kernel VM area starting at @addr, and return it.
1469 * It is up to the caller to do all required locking to keep the returned
1472 struct vm_struct
*find_vm_area(const void *addr
)
1474 struct vmap_area
*va
;
1476 va
= find_vmap_area((unsigned long)addr
);
1477 if (va
&& va
->flags
& VM_VM_AREA
)
1484 * remove_vm_area - find and remove a continuous kernel virtual area
1485 * @addr: base address
1487 * Search for the kernel VM area starting at @addr, and remove it.
1488 * This function returns the found VM area, but using it is NOT safe
1489 * on SMP machines, except for its size or flags.
1491 struct vm_struct
*remove_vm_area(const void *addr
)
1493 struct vmap_area
*va
;
1497 va
= find_vmap_area((unsigned long)addr
);
1498 if (va
&& va
->flags
& VM_VM_AREA
) {
1499 struct vm_struct
*vm
= va
->vm
;
1501 spin_lock(&vmap_area_lock
);
1503 va
->flags
&= ~VM_VM_AREA
;
1504 va
->flags
|= VM_LAZY_FREE
;
1505 spin_unlock(&vmap_area_lock
);
1507 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1508 kasan_free_shadow(vm
);
1509 free_unmap_vmap_area(va
);
1516 static void __vunmap(const void *addr
, int deallocate_pages
)
1518 struct vm_struct
*area
;
1523 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1527 area
= find_vm_area(addr
);
1528 if (unlikely(!area
)) {
1529 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1534 debug_check_no_locks_freed(addr
, get_vm_area_size(area
));
1535 debug_check_no_obj_freed(addr
, get_vm_area_size(area
));
1537 remove_vm_area(addr
);
1538 if (deallocate_pages
) {
1541 for (i
= 0; i
< area
->nr_pages
; i
++) {
1542 struct page
*page
= area
->pages
[i
];
1545 __free_pages(page
, 0);
1548 kvfree(area
->pages
);
1555 static inline void __vfree_deferred(const void *addr
)
1558 * Use raw_cpu_ptr() because this can be called from preemptible
1559 * context. Preemption is absolutely fine here, because the llist_add()
1560 * implementation is lockless, so it works even if we are adding to
1561 * nother cpu's list. schedule_work() should be fine with this too.
1563 struct vfree_deferred
*p
= raw_cpu_ptr(&vfree_deferred
);
1565 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1566 schedule_work(&p
->wq
);
1570 * vfree_atomic - release memory allocated by vmalloc()
1571 * @addr: memory base address
1573 * This one is just like vfree() but can be called in any atomic context
1576 void vfree_atomic(const void *addr
)
1580 kmemleak_free(addr
);
1584 __vfree_deferred(addr
);
1588 * vfree - release memory allocated by vmalloc()
1589 * @addr: memory base address
1591 * Free the virtually continuous memory area starting at @addr, as
1592 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1593 * NULL, no operation is performed.
1595 * Must not be called in NMI context (strictly speaking, only if we don't
1596 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1597 * conventions for vfree() arch-depenedent would be a really bad idea)
1599 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1601 void vfree(const void *addr
)
1605 kmemleak_free(addr
);
1609 if (unlikely(in_interrupt()))
1610 __vfree_deferred(addr
);
1614 EXPORT_SYMBOL(vfree
);
1617 * vunmap - release virtual mapping obtained by vmap()
1618 * @addr: memory base address
1620 * Free the virtually contiguous memory area starting at @addr,
1621 * which was created from the page array passed to vmap().
1623 * Must not be called in interrupt context.
1625 void vunmap(const void *addr
)
1627 BUG_ON(in_interrupt());
1632 EXPORT_SYMBOL(vunmap
);
1635 * vmap - map an array of pages into virtually contiguous space
1636 * @pages: array of page pointers
1637 * @count: number of pages to map
1638 * @flags: vm_area->flags
1639 * @prot: page protection for the mapping
1641 * Maps @count pages from @pages into contiguous kernel virtual
1644 void *vmap(struct page
**pages
, unsigned int count
,
1645 unsigned long flags
, pgprot_t prot
)
1647 struct vm_struct
*area
;
1648 unsigned long size
; /* In bytes */
1652 if (count
> totalram_pages
)
1655 size
= (unsigned long)count
<< PAGE_SHIFT
;
1656 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
1660 if (map_vm_area(area
, prot
, pages
)) {
1667 EXPORT_SYMBOL(vmap
);
1669 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1670 gfp_t gfp_mask
, pgprot_t prot
,
1671 int node
, const void *caller
);
1672 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1673 pgprot_t prot
, int node
)
1675 struct page
**pages
;
1676 unsigned int nr_pages
, array_size
, i
;
1677 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1678 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
1679 const gfp_t highmem_mask
= (gfp_mask
& (GFP_DMA
| GFP_DMA32
)) ?
1683 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1684 array_size
= (nr_pages
* sizeof(struct page
*));
1686 /* Please note that the recursion is strictly bounded. */
1687 if (array_size
> PAGE_SIZE
) {
1688 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|highmem_mask
,
1689 PAGE_KERNEL
, node
, area
->caller
);
1691 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1695 remove_vm_area(area
->addr
);
1700 area
->pages
= pages
;
1701 area
->nr_pages
= nr_pages
;
1703 for (i
= 0; i
< area
->nr_pages
; i
++) {
1706 if (node
== NUMA_NO_NODE
)
1707 page
= alloc_page(alloc_mask
|highmem_mask
);
1709 page
= alloc_pages_node(node
, alloc_mask
|highmem_mask
, 0);
1711 if (unlikely(!page
)) {
1712 /* Successfully allocated i pages, free them in __vunmap() */
1716 area
->pages
[i
] = page
;
1717 if (gfpflags_allow_blocking(gfp_mask
|highmem_mask
))
1721 if (map_vm_area(area
, prot
, pages
))
1726 warn_alloc(gfp_mask
, NULL
,
1727 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1728 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1734 * __vmalloc_node_range - allocate virtually contiguous memory
1735 * @size: allocation size
1736 * @align: desired alignment
1737 * @start: vm area range start
1738 * @end: vm area range end
1739 * @gfp_mask: flags for the page level allocator
1740 * @prot: protection mask for the allocated pages
1741 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1742 * @node: node to use for allocation or NUMA_NO_NODE
1743 * @caller: caller's return address
1745 * Allocate enough pages to cover @size from the page level
1746 * allocator with @gfp_mask flags. Map them into contiguous
1747 * kernel virtual space, using a pagetable protection of @prot.
1749 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1750 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1751 pgprot_t prot
, unsigned long vm_flags
, int node
,
1754 struct vm_struct
*area
;
1756 unsigned long real_size
= size
;
1758 size
= PAGE_ALIGN(size
);
1759 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1762 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
1763 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
1767 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
1772 * First make sure the mappings are removed from all page-tables
1773 * before they are freed.
1775 vmalloc_sync_unmappings();
1778 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1779 * flag. It means that vm_struct is not fully initialized.
1780 * Now, it is fully initialized, so remove this flag here.
1782 clear_vm_uninitialized_flag(area
);
1784 kmemleak_vmalloc(area
, size
, gfp_mask
);
1789 warn_alloc(gfp_mask
, NULL
,
1790 "vmalloc: allocation failure: %lu bytes", real_size
);
1795 * __vmalloc_node - allocate virtually contiguous memory
1796 * @size: allocation size
1797 * @align: desired alignment
1798 * @gfp_mask: flags for the page level allocator
1799 * @prot: protection mask for the allocated pages
1800 * @node: node to use for allocation or NUMA_NO_NODE
1801 * @caller: caller's return address
1803 * Allocate enough pages to cover @size from the page level
1804 * allocator with @gfp_mask flags. Map them into contiguous
1805 * kernel virtual space, using a pagetable protection of @prot.
1807 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1808 * and __GFP_NOFAIL are not supported
1810 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1814 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1815 gfp_t gfp_mask
, pgprot_t prot
,
1816 int node
, const void *caller
)
1818 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1819 gfp_mask
, prot
, 0, node
, caller
);
1822 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1824 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1825 __builtin_return_address(0));
1827 EXPORT_SYMBOL(__vmalloc
);
1829 static inline void *__vmalloc_node_flags(unsigned long size
,
1830 int node
, gfp_t flags
)
1832 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1833 node
, __builtin_return_address(0));
1837 void *__vmalloc_node_flags_caller(unsigned long size
, int node
, gfp_t flags
,
1840 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
, node
, caller
);
1844 * vmalloc - allocate virtually contiguous memory
1845 * @size: allocation size
1846 * Allocate enough pages to cover @size from the page level
1847 * allocator and map them into contiguous kernel virtual space.
1849 * For tight control over page level allocator and protection flags
1850 * use __vmalloc() instead.
1852 void *vmalloc(unsigned long size
)
1854 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1857 EXPORT_SYMBOL(vmalloc
);
1860 * vzalloc - allocate virtually contiguous memory with zero fill
1861 * @size: allocation size
1862 * Allocate enough pages to cover @size from the page level
1863 * allocator and map them into contiguous kernel virtual space.
1864 * The memory allocated is set to zero.
1866 * For tight control over page level allocator and protection flags
1867 * use __vmalloc() instead.
1869 void *vzalloc(unsigned long size
)
1871 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1872 GFP_KERNEL
| __GFP_ZERO
);
1874 EXPORT_SYMBOL(vzalloc
);
1877 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1878 * @size: allocation size
1880 * The resulting memory area is zeroed so it can be mapped to userspace
1881 * without leaking data.
1883 void *vmalloc_user(unsigned long size
)
1885 struct vm_struct
*area
;
1888 ret
= __vmalloc_node(size
, SHMLBA
,
1889 GFP_KERNEL
| __GFP_ZERO
,
1890 PAGE_KERNEL
, NUMA_NO_NODE
,
1891 __builtin_return_address(0));
1893 area
= find_vm_area(ret
);
1894 area
->flags
|= VM_USERMAP
;
1898 EXPORT_SYMBOL(vmalloc_user
);
1901 * vmalloc_node - allocate memory on a specific node
1902 * @size: allocation size
1905 * Allocate enough pages to cover @size from the page level
1906 * allocator and map them into contiguous kernel virtual space.
1908 * For tight control over page level allocator and protection flags
1909 * use __vmalloc() instead.
1911 void *vmalloc_node(unsigned long size
, int node
)
1913 return __vmalloc_node(size
, 1, GFP_KERNEL
, PAGE_KERNEL
,
1914 node
, __builtin_return_address(0));
1916 EXPORT_SYMBOL(vmalloc_node
);
1919 * vzalloc_node - allocate memory on a specific node with zero fill
1920 * @size: allocation size
1923 * Allocate enough pages to cover @size from the page level
1924 * allocator and map them into contiguous kernel virtual space.
1925 * The memory allocated is set to zero.
1927 * For tight control over page level allocator and protection flags
1928 * use __vmalloc_node() instead.
1930 void *vzalloc_node(unsigned long size
, int node
)
1932 return __vmalloc_node_flags(size
, node
,
1933 GFP_KERNEL
| __GFP_ZERO
);
1935 EXPORT_SYMBOL(vzalloc_node
);
1937 #ifndef PAGE_KERNEL_EXEC
1938 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1942 * vmalloc_exec - allocate virtually contiguous, executable memory
1943 * @size: allocation size
1945 * Kernel-internal function to allocate enough pages to cover @size
1946 * the page level allocator and map them into contiguous and
1947 * executable kernel virtual space.
1949 * For tight control over page level allocator and protection flags
1950 * use __vmalloc() instead.
1953 void *vmalloc_exec(unsigned long size
)
1955 return __vmalloc_node(size
, 1, GFP_KERNEL
, PAGE_KERNEL_EXEC
,
1956 NUMA_NO_NODE
, __builtin_return_address(0));
1959 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1960 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1961 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1962 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1965 * 64b systems should always have either DMA or DMA32 zones. For others
1966 * GFP_DMA32 should do the right thing and use the normal zone.
1968 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1972 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1973 * @size: allocation size
1975 * Allocate enough 32bit PA addressable pages to cover @size from the
1976 * page level allocator and map them into contiguous kernel virtual space.
1978 void *vmalloc_32(unsigned long size
)
1980 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1981 NUMA_NO_NODE
, __builtin_return_address(0));
1983 EXPORT_SYMBOL(vmalloc_32
);
1986 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1987 * @size: allocation size
1989 * The resulting memory area is 32bit addressable and zeroed so it can be
1990 * mapped to userspace without leaking data.
1992 void *vmalloc_32_user(unsigned long size
)
1994 struct vm_struct
*area
;
1997 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1998 NUMA_NO_NODE
, __builtin_return_address(0));
2000 area
= find_vm_area(ret
);
2001 area
->flags
|= VM_USERMAP
;
2005 EXPORT_SYMBOL(vmalloc_32_user
);
2008 * small helper routine , copy contents to buf from addr.
2009 * If the page is not present, fill zero.
2012 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
2018 unsigned long offset
, length
;
2020 offset
= offset_in_page(addr
);
2021 length
= PAGE_SIZE
- offset
;
2024 p
= vmalloc_to_page(addr
);
2026 * To do safe access to this _mapped_ area, we need
2027 * lock. But adding lock here means that we need to add
2028 * overhead of vmalloc()/vfree() calles for this _debug_
2029 * interface, rarely used. Instead of that, we'll use
2030 * kmap() and get small overhead in this access function.
2034 * we can expect USER0 is not used (see vread/vwrite's
2035 * function description)
2037 void *map
= kmap_atomic(p
);
2038 memcpy(buf
, map
+ offset
, length
);
2041 memset(buf
, 0, length
);
2051 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
2057 unsigned long offset
, length
;
2059 offset
= offset_in_page(addr
);
2060 length
= PAGE_SIZE
- offset
;
2063 p
= vmalloc_to_page(addr
);
2065 * To do safe access to this _mapped_ area, we need
2066 * lock. But adding lock here means that we need to add
2067 * overhead of vmalloc()/vfree() calles for this _debug_
2068 * interface, rarely used. Instead of that, we'll use
2069 * kmap() and get small overhead in this access function.
2073 * we can expect USER0 is not used (see vread/vwrite's
2074 * function description)
2076 void *map
= kmap_atomic(p
);
2077 memcpy(map
+ offset
, buf
, length
);
2089 * vread() - read vmalloc area in a safe way.
2090 * @buf: buffer for reading data
2091 * @addr: vm address.
2092 * @count: number of bytes to be read.
2094 * Returns # of bytes which addr and buf should be increased.
2095 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2096 * includes any intersect with alive vmalloc area.
2098 * This function checks that addr is a valid vmalloc'ed area, and
2099 * copy data from that area to a given buffer. If the given memory range
2100 * of [addr...addr+count) includes some valid address, data is copied to
2101 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2102 * IOREMAP area is treated as memory hole and no copy is done.
2104 * If [addr...addr+count) doesn't includes any intersects with alive
2105 * vm_struct area, returns 0. @buf should be kernel's buffer.
2107 * Note: In usual ops, vread() is never necessary because the caller
2108 * should know vmalloc() area is valid and can use memcpy().
2109 * This is for routines which have to access vmalloc area without
2110 * any informaion, as /dev/kmem.
2114 long vread(char *buf
, char *addr
, unsigned long count
)
2116 struct vmap_area
*va
;
2117 struct vm_struct
*vm
;
2118 char *vaddr
, *buf_start
= buf
;
2119 unsigned long buflen
= count
;
2122 /* Don't allow overflow */
2123 if ((unsigned long) addr
+ count
< count
)
2124 count
= -(unsigned long) addr
;
2126 spin_lock(&vmap_area_lock
);
2127 list_for_each_entry(va
, &vmap_area_list
, list
) {
2131 if (!(va
->flags
& VM_VM_AREA
))
2135 vaddr
= (char *) vm
->addr
;
2136 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2138 while (addr
< vaddr
) {
2146 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2149 if (!(vm
->flags
& VM_IOREMAP
))
2150 aligned_vread(buf
, addr
, n
);
2151 else /* IOREMAP area is treated as memory hole */
2158 spin_unlock(&vmap_area_lock
);
2160 if (buf
== buf_start
)
2162 /* zero-fill memory holes */
2163 if (buf
!= buf_start
+ buflen
)
2164 memset(buf
, 0, buflen
- (buf
- buf_start
));
2170 * vwrite() - write vmalloc area in a safe way.
2171 * @buf: buffer for source data
2172 * @addr: vm address.
2173 * @count: number of bytes to be read.
2175 * Returns # of bytes which addr and buf should be incresed.
2176 * (same number to @count).
2177 * If [addr...addr+count) doesn't includes any intersect with valid
2178 * vmalloc area, returns 0.
2180 * This function checks that addr is a valid vmalloc'ed area, and
2181 * copy data from a buffer to the given addr. If specified range of
2182 * [addr...addr+count) includes some valid address, data is copied from
2183 * proper area of @buf. If there are memory holes, no copy to hole.
2184 * IOREMAP area is treated as memory hole and no copy is done.
2186 * If [addr...addr+count) doesn't includes any intersects with alive
2187 * vm_struct area, returns 0. @buf should be kernel's buffer.
2189 * Note: In usual ops, vwrite() is never necessary because the caller
2190 * should know vmalloc() area is valid and can use memcpy().
2191 * This is for routines which have to access vmalloc area without
2192 * any informaion, as /dev/kmem.
2195 long vwrite(char *buf
, char *addr
, unsigned long count
)
2197 struct vmap_area
*va
;
2198 struct vm_struct
*vm
;
2200 unsigned long n
, buflen
;
2203 /* Don't allow overflow */
2204 if ((unsigned long) addr
+ count
< count
)
2205 count
= -(unsigned long) addr
;
2208 spin_lock(&vmap_area_lock
);
2209 list_for_each_entry(va
, &vmap_area_list
, list
) {
2213 if (!(va
->flags
& VM_VM_AREA
))
2217 vaddr
= (char *) vm
->addr
;
2218 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2220 while (addr
< vaddr
) {
2227 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2230 if (!(vm
->flags
& VM_IOREMAP
)) {
2231 aligned_vwrite(buf
, addr
, n
);
2239 spin_unlock(&vmap_area_lock
);
2246 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2247 * @vma: vma to cover
2248 * @uaddr: target user address to start at
2249 * @kaddr: virtual address of vmalloc kernel memory
2250 * @pgoff: offset from @kaddr to start at
2251 * @size: size of map area
2253 * Returns: 0 for success, -Exxx on failure
2255 * This function checks that @kaddr is a valid vmalloc'ed area,
2256 * and that it is big enough to cover the range starting at
2257 * @uaddr in @vma. Will return failure if that criteria isn't
2260 * Similar to remap_pfn_range() (see mm/memory.c)
2262 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2263 void *kaddr
, unsigned long pgoff
,
2266 struct vm_struct
*area
;
2268 unsigned long end_index
;
2270 if (check_shl_overflow(pgoff
, PAGE_SHIFT
, &off
))
2273 size
= PAGE_ALIGN(size
);
2275 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2278 area
= find_vm_area(kaddr
);
2282 if (!(area
->flags
& VM_USERMAP
))
2285 if (check_add_overflow(size
, off
, &end_index
) ||
2286 end_index
> get_vm_area_size(area
))
2291 struct page
*page
= vmalloc_to_page(kaddr
);
2294 ret
= vm_insert_page(vma
, uaddr
, page
);
2303 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2307 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2310 * remap_vmalloc_range - map vmalloc pages to userspace
2311 * @vma: vma to cover (map full range of vma)
2312 * @addr: vmalloc memory
2313 * @pgoff: number of pages into addr before first page to map
2315 * Returns: 0 for success, -Exxx on failure
2317 * This function checks that addr is a valid vmalloc'ed area, and
2318 * that it is big enough to cover the vma. Will return failure if
2319 * that criteria isn't met.
2321 * Similar to remap_pfn_range() (see mm/memory.c)
2323 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2324 unsigned long pgoff
)
2326 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2328 vma
->vm_end
- vma
->vm_start
);
2330 EXPORT_SYMBOL(remap_vmalloc_range
);
2333 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2336 * The purpose of this function is to make sure the vmalloc area
2337 * mappings are identical in all page-tables in the system.
2339 void __weak
vmalloc_sync_mappings(void)
2343 void __weak
vmalloc_sync_unmappings(void)
2347 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2359 * alloc_vm_area - allocate a range of kernel address space
2360 * @size: size of the area
2361 * @ptes: returns the PTEs for the address space
2363 * Returns: NULL on failure, vm_struct on success
2365 * This function reserves a range of kernel address space, and
2366 * allocates pagetables to map that range. No actual mappings
2369 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2370 * allocated for the VM area are returned.
2372 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2374 struct vm_struct
*area
;
2376 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2377 __builtin_return_address(0));
2382 * This ensures that page tables are constructed for this region
2383 * of kernel virtual address space and mapped into init_mm.
2385 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2386 size
, f
, ptes
? &ptes
: NULL
)) {
2393 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2395 void free_vm_area(struct vm_struct
*area
)
2397 struct vm_struct
*ret
;
2398 ret
= remove_vm_area(area
->addr
);
2399 BUG_ON(ret
!= area
);
2402 EXPORT_SYMBOL_GPL(free_vm_area
);
2405 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2407 return rb_entry_safe(n
, struct vmap_area
, rb_node
);
2411 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2412 * @end: target address
2413 * @pnext: out arg for the next vmap_area
2414 * @pprev: out arg for the previous vmap_area
2416 * Returns: %true if either or both of next and prev are found,
2417 * %false if no vmap_area exists
2419 * Find vmap_areas end addresses of which enclose @end. ie. if not
2420 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2422 static bool pvm_find_next_prev(unsigned long end
,
2423 struct vmap_area
**pnext
,
2424 struct vmap_area
**pprev
)
2426 struct rb_node
*n
= vmap_area_root
.rb_node
;
2427 struct vmap_area
*va
= NULL
;
2430 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2431 if (end
< va
->va_end
)
2433 else if (end
> va
->va_end
)
2442 if (va
->va_end
> end
) {
2444 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2447 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2453 * pvm_determine_end - find the highest aligned address between two vmap_areas
2454 * @pnext: in/out arg for the next vmap_area
2455 * @pprev: in/out arg for the previous vmap_area
2458 * Returns: determined end address
2460 * Find the highest aligned address between *@pnext and *@pprev below
2461 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2462 * down address is between the end addresses of the two vmap_areas.
2464 * Please note that the address returned by this function may fall
2465 * inside *@pnext vmap_area. The caller is responsible for checking
2468 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2469 struct vmap_area
**pprev
,
2470 unsigned long align
)
2472 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2476 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2480 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2482 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2489 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2490 * @offsets: array containing offset of each area
2491 * @sizes: array containing size of each area
2492 * @nr_vms: the number of areas to allocate
2493 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2495 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2496 * vm_structs on success, %NULL on failure
2498 * Percpu allocator wants to use congruent vm areas so that it can
2499 * maintain the offsets among percpu areas. This function allocates
2500 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2501 * be scattered pretty far, distance between two areas easily going up
2502 * to gigabytes. To avoid interacting with regular vmallocs, these
2503 * areas are allocated from top.
2505 * Despite its complicated look, this allocator is rather simple. It
2506 * does everything top-down and scans areas from the end looking for
2507 * matching slot. While scanning, if any of the areas overlaps with
2508 * existing vmap_area, the base address is pulled down to fit the
2509 * area. Scanning is repeated till all the areas fit and then all
2510 * necessary data structures are inserted and the result is returned.
2512 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2513 const size_t *sizes
, int nr_vms
,
2516 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2517 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2518 struct vmap_area
**vas
, *prev
, *next
;
2519 struct vm_struct
**vms
;
2520 int area
, area2
, last_area
, term_area
;
2521 unsigned long base
, start
, end
, last_end
;
2522 bool purged
= false;
2524 /* verify parameters and allocate data structures */
2525 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
2526 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2527 start
= offsets
[area
];
2528 end
= start
+ sizes
[area
];
2530 /* is everything aligned properly? */
2531 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2532 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2534 /* detect the area with the highest address */
2535 if (start
> offsets
[last_area
])
2538 for (area2
= area
+ 1; area2
< nr_vms
; area2
++) {
2539 unsigned long start2
= offsets
[area2
];
2540 unsigned long end2
= start2
+ sizes
[area2
];
2542 BUG_ON(start2
< end
&& start
< end2
);
2545 last_end
= offsets
[last_area
] + sizes
[last_area
];
2547 if (vmalloc_end
- vmalloc_start
< last_end
) {
2552 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2553 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2557 for (area
= 0; area
< nr_vms
; area
++) {
2558 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2559 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2560 if (!vas
[area
] || !vms
[area
])
2564 spin_lock(&vmap_area_lock
);
2566 /* start scanning - we scan from the top, begin with the last area */
2567 area
= term_area
= last_area
;
2568 start
= offsets
[area
];
2569 end
= start
+ sizes
[area
];
2571 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2572 base
= vmalloc_end
- last_end
;
2575 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2578 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2579 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2582 * base might have underflowed, add last_end before
2585 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2586 spin_unlock(&vmap_area_lock
);
2588 purge_vmap_area_lazy();
2596 * If next overlaps, move base downwards so that it's
2597 * right below next and then recheck.
2599 if (next
&& next
->va_start
< base
+ end
) {
2600 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2606 * If prev overlaps, shift down next and prev and move
2607 * base so that it's right below new next and then
2610 if (prev
&& prev
->va_end
> base
+ start
) {
2612 prev
= node_to_va(rb_prev(&next
->rb_node
));
2613 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2619 * This area fits, move on to the previous one. If
2620 * the previous one is the terminal one, we're done.
2622 area
= (area
+ nr_vms
- 1) % nr_vms
;
2623 if (area
== term_area
)
2625 start
= offsets
[area
];
2626 end
= start
+ sizes
[area
];
2627 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2630 /* we've found a fitting base, insert all va's */
2631 for (area
= 0; area
< nr_vms
; area
++) {
2632 struct vmap_area
*va
= vas
[area
];
2634 va
->va_start
= base
+ offsets
[area
];
2635 va
->va_end
= va
->va_start
+ sizes
[area
];
2636 __insert_vmap_area(va
);
2639 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2641 spin_unlock(&vmap_area_lock
);
2643 /* insert all vm's */
2644 for (area
= 0; area
< nr_vms
; area
++)
2645 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2652 for (area
= 0; area
< nr_vms
; area
++) {
2663 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2664 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2665 * @nr_vms: the number of allocated areas
2667 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2669 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2673 for (i
= 0; i
< nr_vms
; i
++)
2674 free_vm_area(vms
[i
]);
2677 #endif /* CONFIG_SMP */
2679 #ifdef CONFIG_PROC_FS
2680 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2681 __acquires(&vmap_area_lock
)
2683 spin_lock(&vmap_area_lock
);
2684 return seq_list_start(&vmap_area_list
, *pos
);
2687 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2689 return seq_list_next(p
, &vmap_area_list
, pos
);
2692 static void s_stop(struct seq_file
*m
, void *p
)
2693 __releases(&vmap_area_lock
)
2695 spin_unlock(&vmap_area_lock
);
2698 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2700 if (IS_ENABLED(CONFIG_NUMA
)) {
2701 unsigned int nr
, *counters
= m
->private;
2706 if (v
->flags
& VM_UNINITIALIZED
)
2708 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2711 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2713 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2714 counters
[page_to_nid(v
->pages
[nr
])]++;
2716 for_each_node_state(nr
, N_HIGH_MEMORY
)
2718 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2722 static int s_show(struct seq_file
*m
, void *p
)
2724 struct vmap_area
*va
;
2725 struct vm_struct
*v
;
2727 va
= list_entry(p
, struct vmap_area
, list
);
2730 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2731 * behalf of vmap area is being tear down or vm_map_ram allocation.
2733 if (!(va
->flags
& VM_VM_AREA
)) {
2734 seq_printf(m
, "0x%pK-0x%pK %7ld %s\n",
2735 (void *)va
->va_start
, (void *)va
->va_end
,
2736 va
->va_end
- va
->va_start
,
2737 va
->flags
& VM_LAZY_FREE
? "unpurged vm_area" : "vm_map_ram");
2744 seq_printf(m
, "0x%pK-0x%pK %7ld",
2745 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2748 seq_printf(m
, " %pS", v
->caller
);
2751 seq_printf(m
, " pages=%d", v
->nr_pages
);
2754 seq_printf(m
, " phys=%pa", &v
->phys_addr
);
2756 if (v
->flags
& VM_IOREMAP
)
2757 seq_puts(m
, " ioremap");
2759 if (v
->flags
& VM_ALLOC
)
2760 seq_puts(m
, " vmalloc");
2762 if (v
->flags
& VM_MAP
)
2763 seq_puts(m
, " vmap");
2765 if (v
->flags
& VM_USERMAP
)
2766 seq_puts(m
, " user");
2768 if (is_vmalloc_addr(v
->pages
))
2769 seq_puts(m
, " vpages");
2771 show_numa_info(m
, v
);
2776 static const struct seq_operations vmalloc_op
= {
2783 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2785 if (IS_ENABLED(CONFIG_NUMA
))
2786 return seq_open_private(file
, &vmalloc_op
,
2787 nr_node_ids
* sizeof(unsigned int));
2789 return seq_open(file
, &vmalloc_op
);
2792 static const struct file_operations proc_vmalloc_operations
= {
2793 .open
= vmalloc_open
,
2795 .llseek
= seq_lseek
,
2796 .release
= seq_release_private
,
2799 static int __init
proc_vmalloc_init(void)
2801 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2804 module_init(proc_vmalloc_init
);