2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
41 #include <asm/cmpxchg.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled
= false;
56 AUDIT_POST_PAGE_FAULT
,
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
79 module_param(dbg
, bool, 0644);
83 #define ASSERT(x) do { } while (0)
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
92 #define PTE_PREFETCH_NUM 8
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
97 #define PT64_LEVEL_BITS 9
99 #define PT64_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
102 #define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
106 #define PT32_LEVEL_BITS 10
108 #define PT32_LEVEL_SHIFT(level) \
109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
139 #define ACC_EXEC_MASK 1
140 #define ACC_WRITE_MASK PT_WRITABLE_MASK
141 #define ACC_USER_MASK PT_USER_MASK
142 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144 #include <trace/events/kvm.h>
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
149 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
157 struct pte_list_desc
{
158 u64
*sptes
[PTE_LIST_EXT
];
159 struct pte_list_desc
*more
;
162 struct kvm_shadow_walk_iterator
{
170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
181 static struct kmem_cache
*pte_list_desc_cache
;
182 static struct kmem_cache
*mmu_page_header_cache
;
183 static struct percpu_counter kvm_total_used_mmu_pages
;
185 static u64 __read_mostly shadow_nx_mask
;
186 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask
;
188 static u64 __read_mostly shadow_accessed_mask
;
189 static u64 __read_mostly shadow_dirty_mask
;
190 static u64 __read_mostly shadow_mmio_mask
;
192 static void mmu_spte_set(u64
*sptep
, u64 spte
);
193 static void mmu_free_roots(struct kvm_vcpu
*vcpu
);
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
197 shadow_mmio_mask
= mmio_mask
;
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
210 #define MMIO_SPTE_GEN_LOW_SHIFT 2
211 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
213 #define MMIO_GEN_SHIFT 20
214 #define MMIO_GEN_LOW_SHIFT 10
215 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
218 static u64
generation_mmio_spte_mask(unsigned int gen
)
222 WARN_ON(gen
& ~MMIO_GEN_MASK
);
224 mask
= (gen
& MMIO_GEN_LOW_MASK
) << MMIO_SPTE_GEN_LOW_SHIFT
;
225 mask
|= ((u64
)gen
>> MMIO_GEN_LOW_SHIFT
) << MMIO_SPTE_GEN_HIGH_SHIFT
;
229 static unsigned int get_mmio_spte_generation(u64 spte
)
233 spte
&= ~shadow_mmio_mask
;
235 gen
= (spte
>> MMIO_SPTE_GEN_LOW_SHIFT
) & MMIO_GEN_LOW_MASK
;
236 gen
|= (spte
>> MMIO_SPTE_GEN_HIGH_SHIFT
) << MMIO_GEN_LOW_SHIFT
;
240 static unsigned int kvm_current_mmio_generation(struct kvm
*kvm
)
242 return kvm_memslots(kvm
)->generation
& MMIO_GEN_MASK
;
245 static void mark_mmio_spte(struct kvm
*kvm
, u64
*sptep
, u64 gfn
,
248 unsigned int gen
= kvm_current_mmio_generation(kvm
);
249 u64 mask
= generation_mmio_spte_mask(gen
);
251 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
252 mask
|= shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
;
254 trace_mark_mmio_spte(sptep
, gfn
, access
, gen
);
255 mmu_spte_set(sptep
, mask
);
258 static bool is_mmio_spte(u64 spte
)
260 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
263 static gfn_t
get_mmio_spte_gfn(u64 spte
)
265 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
266 return (spte
& ~mask
) >> PAGE_SHIFT
;
269 static unsigned get_mmio_spte_access(u64 spte
)
271 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
272 return (spte
& ~mask
) & ~PAGE_MASK
;
275 static bool set_mmio_spte(struct kvm
*kvm
, u64
*sptep
, gfn_t gfn
,
276 pfn_t pfn
, unsigned access
)
278 if (unlikely(is_noslot_pfn(pfn
))) {
279 mark_mmio_spte(kvm
, sptep
, gfn
, access
);
286 static bool check_mmio_spte(struct kvm
*kvm
, u64 spte
)
288 unsigned int kvm_gen
, spte_gen
;
290 kvm_gen
= kvm_current_mmio_generation(kvm
);
291 spte_gen
= get_mmio_spte_generation(spte
);
293 trace_check_mmio_spte(spte
, kvm_gen
, spte_gen
);
294 return likely(kvm_gen
== spte_gen
);
297 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
298 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
300 shadow_user_mask
= user_mask
;
301 shadow_accessed_mask
= accessed_mask
;
302 shadow_dirty_mask
= dirty_mask
;
303 shadow_nx_mask
= nx_mask
;
304 shadow_x_mask
= x_mask
;
306 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
308 static int is_cpuid_PSE36(void)
313 static int is_nx(struct kvm_vcpu
*vcpu
)
315 return vcpu
->arch
.efer
& EFER_NX
;
318 static int is_shadow_present_pte(u64 pte
)
320 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
323 static int is_large_pte(u64 pte
)
325 return pte
& PT_PAGE_SIZE_MASK
;
328 static int is_rmap_spte(u64 pte
)
330 return is_shadow_present_pte(pte
);
333 static int is_last_spte(u64 pte
, int level
)
335 if (level
== PT_PAGE_TABLE_LEVEL
)
337 if (is_large_pte(pte
))
342 static pfn_t
spte_to_pfn(u64 pte
)
344 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
347 static gfn_t
pse36_gfn_delta(u32 gpte
)
349 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
351 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
355 static void __set_spte(u64
*sptep
, u64 spte
)
360 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
365 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
367 return xchg(sptep
, spte
);
370 static u64
__get_spte_lockless(u64
*sptep
)
372 return ACCESS_ONCE(*sptep
);
375 static bool __check_direct_spte_mmio_pf(u64 spte
)
377 /* It is valid if the spte is zapped. */
389 static void count_spte_clear(u64
*sptep
, u64 spte
)
391 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
393 if (is_shadow_present_pte(spte
))
396 /* Ensure the spte is completely set before we increase the count */
398 sp
->clear_spte_count
++;
401 static void __set_spte(u64
*sptep
, u64 spte
)
403 union split_spte
*ssptep
, sspte
;
405 ssptep
= (union split_spte
*)sptep
;
406 sspte
= (union split_spte
)spte
;
408 ssptep
->spte_high
= sspte
.spte_high
;
411 * If we map the spte from nonpresent to present, We should store
412 * the high bits firstly, then set present bit, so cpu can not
413 * fetch this spte while we are setting the spte.
417 ssptep
->spte_low
= sspte
.spte_low
;
420 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
422 union split_spte
*ssptep
, sspte
;
424 ssptep
= (union split_spte
*)sptep
;
425 sspte
= (union split_spte
)spte
;
427 ssptep
->spte_low
= sspte
.spte_low
;
430 * If we map the spte from present to nonpresent, we should clear
431 * present bit firstly to avoid vcpu fetch the old high bits.
435 ssptep
->spte_high
= sspte
.spte_high
;
436 count_spte_clear(sptep
, spte
);
439 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
441 union split_spte
*ssptep
, sspte
, orig
;
443 ssptep
= (union split_spte
*)sptep
;
444 sspte
= (union split_spte
)spte
;
446 /* xchg acts as a barrier before the setting of the high bits */
447 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
448 orig
.spte_high
= ssptep
->spte_high
;
449 ssptep
->spte_high
= sspte
.spte_high
;
450 count_spte_clear(sptep
, spte
);
456 * The idea using the light way get the spte on x86_32 guest is from
457 * gup_get_pte(arch/x86/mm/gup.c).
459 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
460 * coalesces them and we are running out of the MMU lock. Therefore
461 * we need to protect against in-progress updates of the spte.
463 * Reading the spte while an update is in progress may get the old value
464 * for the high part of the spte. The race is fine for a present->non-present
465 * change (because the high part of the spte is ignored for non-present spte),
466 * but for a present->present change we must reread the spte.
468 * All such changes are done in two steps (present->non-present and
469 * non-present->present), hence it is enough to count the number of
470 * present->non-present updates: if it changed while reading the spte,
471 * we might have hit the race. This is done using clear_spte_count.
473 static u64
__get_spte_lockless(u64
*sptep
)
475 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
476 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
480 count
= sp
->clear_spte_count
;
483 spte
.spte_low
= orig
->spte_low
;
486 spte
.spte_high
= orig
->spte_high
;
489 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
490 count
!= sp
->clear_spte_count
))
496 static bool __check_direct_spte_mmio_pf(u64 spte
)
498 union split_spte sspte
= (union split_spte
)spte
;
499 u32 high_mmio_mask
= shadow_mmio_mask
>> 32;
501 /* It is valid if the spte is zapped. */
505 /* It is valid if the spte is being zapped. */
506 if (sspte
.spte_low
== 0ull &&
507 (sspte
.spte_high
& high_mmio_mask
) == high_mmio_mask
)
514 static bool spte_is_locklessly_modifiable(u64 spte
)
516 return (spte
& (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
)) ==
517 (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
);
520 static bool spte_has_volatile_bits(u64 spte
)
523 * Always atomicly update spte if it can be updated
524 * out of mmu-lock, it can ensure dirty bit is not lost,
525 * also, it can help us to get a stable is_writable_pte()
526 * to ensure tlb flush is not missed.
528 if (spte_is_locklessly_modifiable(spte
))
531 if (!shadow_accessed_mask
)
534 if (!is_shadow_present_pte(spte
))
537 if ((spte
& shadow_accessed_mask
) &&
538 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
544 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
546 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
549 /* Rules for using mmu_spte_set:
550 * Set the sptep from nonpresent to present.
551 * Note: the sptep being assigned *must* be either not present
552 * or in a state where the hardware will not attempt to update
555 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
557 WARN_ON(is_shadow_present_pte(*sptep
));
558 __set_spte(sptep
, new_spte
);
561 /* Rules for using mmu_spte_update:
562 * Update the state bits, it means the mapped pfn is not changged.
564 * Whenever we overwrite a writable spte with a read-only one we
565 * should flush remote TLBs. Otherwise rmap_write_protect
566 * will find a read-only spte, even though the writable spte
567 * might be cached on a CPU's TLB, the return value indicates this
570 static bool mmu_spte_update(u64
*sptep
, u64 new_spte
)
572 u64 old_spte
= *sptep
;
575 WARN_ON(!is_rmap_spte(new_spte
));
577 if (!is_shadow_present_pte(old_spte
)) {
578 mmu_spte_set(sptep
, new_spte
);
582 if (!spte_has_volatile_bits(old_spte
))
583 __update_clear_spte_fast(sptep
, new_spte
);
585 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
588 * For the spte updated out of mmu-lock is safe, since
589 * we always atomicly update it, see the comments in
590 * spte_has_volatile_bits().
592 if (spte_is_locklessly_modifiable(old_spte
) &&
593 !is_writable_pte(new_spte
))
596 if (!shadow_accessed_mask
)
599 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
600 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
601 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
602 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
608 * Rules for using mmu_spte_clear_track_bits:
609 * It sets the sptep from present to nonpresent, and track the
610 * state bits, it is used to clear the last level sptep.
612 static int mmu_spte_clear_track_bits(u64
*sptep
)
615 u64 old_spte
= *sptep
;
617 if (!spte_has_volatile_bits(old_spte
))
618 __update_clear_spte_fast(sptep
, 0ull);
620 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
622 if (!is_rmap_spte(old_spte
))
625 pfn
= spte_to_pfn(old_spte
);
628 * KVM does not hold the refcount of the page used by
629 * kvm mmu, before reclaiming the page, we should
630 * unmap it from mmu first.
632 WARN_ON(!kvm_is_reserved_pfn(pfn
) && !page_count(pfn_to_page(pfn
)));
634 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
635 kvm_set_pfn_accessed(pfn
);
636 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
637 kvm_set_pfn_dirty(pfn
);
642 * Rules for using mmu_spte_clear_no_track:
643 * Directly clear spte without caring the state bits of sptep,
644 * it is used to set the upper level spte.
646 static void mmu_spte_clear_no_track(u64
*sptep
)
648 __update_clear_spte_fast(sptep
, 0ull);
651 static u64
mmu_spte_get_lockless(u64
*sptep
)
653 return __get_spte_lockless(sptep
);
656 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
659 * Prevent page table teardown by making any free-er wait during
660 * kvm_flush_remote_tlbs() IPI to all active vcpus.
663 vcpu
->mode
= READING_SHADOW_PAGE_TABLES
;
665 * Make sure a following spte read is not reordered ahead of the write
671 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
674 * Make sure the write to vcpu->mode is not reordered in front of
675 * reads to sptes. If it does, kvm_commit_zap_page() can see us
676 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
679 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
683 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
684 struct kmem_cache
*base_cache
, int min
)
688 if (cache
->nobjs
>= min
)
690 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
691 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
694 cache
->objects
[cache
->nobjs
++] = obj
;
699 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache
*cache
)
704 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
705 struct kmem_cache
*cache
)
708 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
711 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
716 if (cache
->nobjs
>= min
)
718 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
719 page
= (void *)__get_free_page(GFP_KERNEL
);
722 cache
->objects
[cache
->nobjs
++] = page
;
727 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
730 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
733 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
737 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
738 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
741 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
744 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
745 mmu_page_header_cache
, 4);
750 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
752 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
753 pte_list_desc_cache
);
754 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
755 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
756 mmu_page_header_cache
);
759 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
764 p
= mc
->objects
[--mc
->nobjs
];
768 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
770 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
);
773 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
775 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
778 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
780 if (!sp
->role
.direct
)
781 return sp
->gfns
[index
];
783 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
786 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
789 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
791 sp
->gfns
[index
] = gfn
;
795 * Return the pointer to the large page information for a given gfn,
796 * handling slots that are not large page aligned.
798 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
799 struct kvm_memory_slot
*slot
,
804 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
805 return &slot
->arch
.lpage_info
[level
- 2][idx
];
808 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
810 struct kvm_memory_slot
*slot
;
811 struct kvm_lpage_info
*linfo
;
814 slot
= gfn_to_memslot(kvm
, gfn
);
815 for (i
= PT_DIRECTORY_LEVEL
;
816 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
817 linfo
= lpage_info_slot(gfn
, slot
, i
);
818 linfo
->write_count
+= 1;
820 kvm
->arch
.indirect_shadow_pages
++;
823 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
825 struct kvm_memory_slot
*slot
;
826 struct kvm_lpage_info
*linfo
;
829 slot
= gfn_to_memslot(kvm
, gfn
);
830 for (i
= PT_DIRECTORY_LEVEL
;
831 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
832 linfo
= lpage_info_slot(gfn
, slot
, i
);
833 linfo
->write_count
-= 1;
834 WARN_ON(linfo
->write_count
< 0);
836 kvm
->arch
.indirect_shadow_pages
--;
839 static int has_wrprotected_page(struct kvm
*kvm
,
843 struct kvm_memory_slot
*slot
;
844 struct kvm_lpage_info
*linfo
;
846 slot
= gfn_to_memslot(kvm
, gfn
);
848 linfo
= lpage_info_slot(gfn
, slot
, level
);
849 return linfo
->write_count
;
855 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
857 unsigned long page_size
;
860 page_size
= kvm_host_page_size(kvm
, gfn
);
862 for (i
= PT_PAGE_TABLE_LEVEL
;
863 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
864 if (page_size
>= KVM_HPAGE_SIZE(i
))
873 static struct kvm_memory_slot
*
874 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
877 struct kvm_memory_slot
*slot
;
879 slot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
880 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
||
881 (no_dirty_log
&& slot
->dirty_bitmap
))
887 static bool mapping_level_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
889 return !gfn_to_memslot_dirty_bitmap(vcpu
, large_gfn
, true);
892 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
894 int host_level
, level
, max_level
;
896 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
898 if (host_level
== PT_PAGE_TABLE_LEVEL
)
901 max_level
= min(kvm_x86_ops
->get_lpage_level(), host_level
);
903 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
904 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
911 * Pte mapping structures:
913 * If pte_list bit zero is zero, then pte_list point to the spte.
915 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
916 * pte_list_desc containing more mappings.
918 * Returns the number of pte entries before the spte was added or zero if
919 * the spte was not added.
922 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
923 unsigned long *pte_list
)
925 struct pte_list_desc
*desc
;
929 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
930 *pte_list
= (unsigned long)spte
;
931 } else if (!(*pte_list
& 1)) {
932 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
933 desc
= mmu_alloc_pte_list_desc(vcpu
);
934 desc
->sptes
[0] = (u64
*)*pte_list
;
935 desc
->sptes
[1] = spte
;
936 *pte_list
= (unsigned long)desc
| 1;
939 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
940 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
941 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
943 count
+= PTE_LIST_EXT
;
945 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
946 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
949 for (i
= 0; desc
->sptes
[i
]; ++i
)
951 desc
->sptes
[i
] = spte
;
957 pte_list_desc_remove_entry(unsigned long *pte_list
, struct pte_list_desc
*desc
,
958 int i
, struct pte_list_desc
*prev_desc
)
962 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
964 desc
->sptes
[i
] = desc
->sptes
[j
];
965 desc
->sptes
[j
] = NULL
;
968 if (!prev_desc
&& !desc
->more
)
969 *pte_list
= (unsigned long)desc
->sptes
[0];
972 prev_desc
->more
= desc
->more
;
974 *pte_list
= (unsigned long)desc
->more
| 1;
975 mmu_free_pte_list_desc(desc
);
978 static void pte_list_remove(u64
*spte
, unsigned long *pte_list
)
980 struct pte_list_desc
*desc
;
981 struct pte_list_desc
*prev_desc
;
985 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
987 } else if (!(*pte_list
& 1)) {
988 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
989 if ((u64
*)*pte_list
!= spte
) {
990 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
995 rmap_printk("pte_list_remove: %p many->many\n", spte
);
996 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
999 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1000 if (desc
->sptes
[i
] == spte
) {
1001 pte_list_desc_remove_entry(pte_list
,
1009 pr_err("pte_list_remove: %p many->many\n", spte
);
1014 typedef void (*pte_list_walk_fn
) (u64
*spte
);
1015 static void pte_list_walk(unsigned long *pte_list
, pte_list_walk_fn fn
)
1017 struct pte_list_desc
*desc
;
1023 if (!(*pte_list
& 1))
1024 return fn((u64
*)*pte_list
);
1026 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
1028 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1034 static unsigned long *__gfn_to_rmap(gfn_t gfn
, int level
,
1035 struct kvm_memory_slot
*slot
)
1039 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
1040 return &slot
->arch
.rmap
[level
- PT_PAGE_TABLE_LEVEL
][idx
];
1044 * Take gfn and return the reverse mapping to it.
1046 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
1048 struct kvm_memory_slot
*slot
;
1050 slot
= gfn_to_memslot(kvm
, gfn
);
1051 return __gfn_to_rmap(gfn
, level
, slot
);
1054 static bool rmap_can_add(struct kvm_vcpu
*vcpu
)
1056 struct kvm_mmu_memory_cache
*cache
;
1058 cache
= &vcpu
->arch
.mmu_pte_list_desc_cache
;
1059 return mmu_memory_cache_free_objects(cache
);
1062 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1064 struct kvm_mmu_page
*sp
;
1065 unsigned long *rmapp
;
1067 sp
= page_header(__pa(spte
));
1068 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
1069 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1070 return pte_list_add(vcpu
, spte
, rmapp
);
1073 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
1075 struct kvm_mmu_page
*sp
;
1077 unsigned long *rmapp
;
1079 sp
= page_header(__pa(spte
));
1080 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
1081 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
->role
.level
);
1082 pte_list_remove(spte
, rmapp
);
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1089 struct rmap_iterator
{
1090 /* private fields */
1091 struct pte_list_desc
*desc
; /* holds the sptep if not NULL */
1092 int pos
; /* index of the sptep */
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1100 * Returns sptep if found, NULL otherwise.
1102 static u64
*rmap_get_first(unsigned long rmap
, struct rmap_iterator
*iter
)
1112 iter
->desc
= (struct pte_list_desc
*)(rmap
& ~1ul);
1114 return iter
->desc
->sptes
[iter
->pos
];
1118 * Must be used with a valid iterator: e.g. after rmap_get_first().
1120 * Returns sptep if found, NULL otherwise.
1122 static u64
*rmap_get_next(struct rmap_iterator
*iter
)
1125 if (iter
->pos
< PTE_LIST_EXT
- 1) {
1129 sptep
= iter
->desc
->sptes
[iter
->pos
];
1134 iter
->desc
= iter
->desc
->more
;
1138 /* desc->sptes[0] cannot be NULL */
1139 return iter
->desc
->sptes
[iter
->pos
];
1146 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1148 if (mmu_spte_clear_track_bits(sptep
))
1149 rmap_remove(kvm
, sptep
);
1153 static bool __drop_large_spte(struct kvm
*kvm
, u64
*sptep
)
1155 if (is_large_pte(*sptep
)) {
1156 WARN_ON(page_header(__pa(sptep
))->role
.level
==
1157 PT_PAGE_TABLE_LEVEL
);
1158 drop_spte(kvm
, sptep
);
1166 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1168 if (__drop_large_spte(vcpu
->kvm
, sptep
))
1169 kvm_flush_remote_tlbs(vcpu
->kvm
);
1173 * Write-protect on the specified @sptep, @pt_protect indicates whether
1174 * spte write-protection is caused by protecting shadow page table.
1176 * Note: write protection is difference between dirty logging and spte
1178 * - for dirty logging, the spte can be set to writable at anytime if
1179 * its dirty bitmap is properly set.
1180 * - for spte protection, the spte can be writable only after unsync-ing
1183 * Return true if tlb need be flushed.
1185 static bool spte_write_protect(struct kvm
*kvm
, u64
*sptep
, bool pt_protect
)
1189 if (!is_writable_pte(spte
) &&
1190 !(pt_protect
&& spte_is_locklessly_modifiable(spte
)))
1193 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep
, *sptep
);
1196 spte
&= ~SPTE_MMU_WRITEABLE
;
1197 spte
= spte
& ~PT_WRITABLE_MASK
;
1199 return mmu_spte_update(sptep
, spte
);
1202 static bool __rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
,
1206 struct rmap_iterator iter
;
1209 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1210 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1212 flush
|= spte_write_protect(kvm
, sptep
, pt_protect
);
1213 sptep
= rmap_get_next(&iter
);
1220 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1221 * @kvm: kvm instance
1222 * @slot: slot to protect
1223 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1224 * @mask: indicates which pages we should protect
1226 * Used when we do not need to care about huge page mappings: e.g. during dirty
1227 * logging we do not have any such mappings.
1229 void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1230 struct kvm_memory_slot
*slot
,
1231 gfn_t gfn_offset
, unsigned long mask
)
1233 unsigned long *rmapp
;
1236 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1237 PT_PAGE_TABLE_LEVEL
, slot
);
1238 __rmap_write_protect(kvm
, rmapp
, false);
1240 /* clear the first set bit */
1245 static bool rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
1247 struct kvm_memory_slot
*slot
;
1248 unsigned long *rmapp
;
1250 bool write_protected
= false;
1252 slot
= gfn_to_memslot(kvm
, gfn
);
1254 for (i
= PT_PAGE_TABLE_LEVEL
;
1255 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
1256 rmapp
= __gfn_to_rmap(gfn
, i
, slot
);
1257 write_protected
|= __rmap_write_protect(kvm
, rmapp
, true);
1260 return write_protected
;
1263 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1264 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1268 struct rmap_iterator iter
;
1269 int need_tlb_flush
= 0;
1271 while ((sptep
= rmap_get_first(*rmapp
, &iter
))) {
1272 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1273 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1274 sptep
, *sptep
, gfn
, level
);
1276 drop_spte(kvm
, sptep
);
1280 return need_tlb_flush
;
1283 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1284 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1288 struct rmap_iterator iter
;
1291 pte_t
*ptep
= (pte_t
*)data
;
1294 WARN_ON(pte_huge(*ptep
));
1295 new_pfn
= pte_pfn(*ptep
);
1297 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1298 BUG_ON(!is_shadow_present_pte(*sptep
));
1299 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1300 sptep
, *sptep
, gfn
, level
);
1304 if (pte_write(*ptep
)) {
1305 drop_spte(kvm
, sptep
);
1306 sptep
= rmap_get_first(*rmapp
, &iter
);
1308 new_spte
= *sptep
& ~PT64_BASE_ADDR_MASK
;
1309 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1311 new_spte
&= ~PT_WRITABLE_MASK
;
1312 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1313 new_spte
&= ~shadow_accessed_mask
;
1315 mmu_spte_clear_track_bits(sptep
);
1316 mmu_spte_set(sptep
, new_spte
);
1317 sptep
= rmap_get_next(&iter
);
1322 kvm_flush_remote_tlbs(kvm
);
1327 static int kvm_handle_hva_range(struct kvm
*kvm
,
1328 unsigned long start
,
1331 int (*handler
)(struct kvm
*kvm
,
1332 unsigned long *rmapp
,
1333 struct kvm_memory_slot
*slot
,
1336 unsigned long data
))
1340 struct kvm_memslots
*slots
;
1341 struct kvm_memory_slot
*memslot
;
1343 slots
= kvm_memslots(kvm
);
1345 kvm_for_each_memslot(memslot
, slots
) {
1346 unsigned long hva_start
, hva_end
;
1347 gfn_t gfn_start
, gfn_end
;
1349 hva_start
= max(start
, memslot
->userspace_addr
);
1350 hva_end
= min(end
, memslot
->userspace_addr
+
1351 (memslot
->npages
<< PAGE_SHIFT
));
1352 if (hva_start
>= hva_end
)
1355 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1356 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1358 gfn_start
= hva_to_gfn_memslot(hva_start
, memslot
);
1359 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1361 for (j
= PT_PAGE_TABLE_LEVEL
;
1362 j
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++j
) {
1363 unsigned long idx
, idx_end
;
1364 unsigned long *rmapp
;
1365 gfn_t gfn
= gfn_start
;
1368 * {idx(page_j) | page_j intersects with
1369 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1371 idx
= gfn_to_index(gfn_start
, memslot
->base_gfn
, j
);
1372 idx_end
= gfn_to_index(gfn_end
- 1, memslot
->base_gfn
, j
);
1374 rmapp
= __gfn_to_rmap(gfn_start
, j
, memslot
);
1376 for (; idx
<= idx_end
;
1377 ++idx
, gfn
+= (1UL << KVM_HPAGE_GFN_SHIFT(j
)))
1378 ret
|= handler(kvm
, rmapp
++, memslot
,
1386 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1388 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
1389 struct kvm_memory_slot
*slot
,
1390 gfn_t gfn
, int level
,
1391 unsigned long data
))
1393 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, data
, handler
);
1396 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1398 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1401 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1403 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_unmap_rmapp
);
1406 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1408 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1411 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1412 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1416 struct rmap_iterator
uninitialized_var(iter
);
1419 BUG_ON(!shadow_accessed_mask
);
1421 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1422 sptep
= rmap_get_next(&iter
)) {
1423 BUG_ON(!is_shadow_present_pte(*sptep
));
1425 if (*sptep
& shadow_accessed_mask
) {
1427 clear_bit((ffs(shadow_accessed_mask
) - 1),
1428 (unsigned long *)sptep
);
1431 trace_kvm_age_page(gfn
, level
, slot
, young
);
1435 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1436 struct kvm_memory_slot
*slot
, gfn_t gfn
,
1437 int level
, unsigned long data
)
1440 struct rmap_iterator iter
;
1444 * If there's no access bit in the secondary pte set by the
1445 * hardware it's up to gup-fast/gup to set the access bit in
1446 * the primary pte or in the page structure.
1448 if (!shadow_accessed_mask
)
1451 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1452 sptep
= rmap_get_next(&iter
)) {
1453 BUG_ON(!is_shadow_present_pte(*sptep
));
1455 if (*sptep
& shadow_accessed_mask
) {
1464 #define RMAP_RECYCLE_THRESHOLD 1000
1466 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1468 unsigned long *rmapp
;
1469 struct kvm_mmu_page
*sp
;
1471 sp
= page_header(__pa(spte
));
1473 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1475 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, NULL
, gfn
, sp
->role
.level
, 0);
1476 kvm_flush_remote_tlbs(vcpu
->kvm
);
1479 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1482 * In case of absence of EPT Access and Dirty Bits supports,
1483 * emulate the accessed bit for EPT, by checking if this page has
1484 * an EPT mapping, and clearing it if it does. On the next access,
1485 * a new EPT mapping will be established.
1486 * This has some overhead, but not as much as the cost of swapping
1487 * out actively used pages or breaking up actively used hugepages.
1489 if (!shadow_accessed_mask
) {
1491 * We are holding the kvm->mmu_lock, and we are blowing up
1492 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1493 * This is correct as long as we don't decouple the mmu_lock
1494 * protected regions (like invalidate_range_start|end does).
1496 kvm
->mmu_notifier_seq
++;
1497 return kvm_handle_hva_range(kvm
, start
, end
, 0,
1501 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_age_rmapp
);
1504 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1506 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1510 static int is_empty_shadow_page(u64
*spt
)
1515 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1516 if (is_shadow_present_pte(*pos
)) {
1517 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1526 * This value is the sum of all of the kvm instances's
1527 * kvm->arch.n_used_mmu_pages values. We need a global,
1528 * aggregate version in order to make the slab shrinker
1531 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1533 kvm
->arch
.n_used_mmu_pages
+= nr
;
1534 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1537 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1539 ASSERT(is_empty_shadow_page(sp
->spt
));
1540 hlist_del(&sp
->hash_link
);
1541 list_del(&sp
->link
);
1542 free_page((unsigned long)sp
->spt
);
1543 if (!sp
->role
.direct
)
1544 free_page((unsigned long)sp
->gfns
);
1545 kmem_cache_free(mmu_page_header_cache
, sp
);
1548 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1550 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1553 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1554 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1559 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1562 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1565 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1568 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1571 mmu_page_remove_parent_pte(sp
, parent_pte
);
1572 mmu_spte_clear_no_track(parent_pte
);
1575 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1576 u64
*parent_pte
, int direct
)
1578 struct kvm_mmu_page
*sp
;
1580 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
);
1581 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1583 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1584 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1587 * The active_mmu_pages list is the FIFO list, do not move the
1588 * page until it is zapped. kvm_zap_obsolete_pages depends on
1589 * this feature. See the comments in kvm_zap_obsolete_pages().
1591 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1592 sp
->parent_ptes
= 0;
1593 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1594 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1598 static void mark_unsync(u64
*spte
);
1599 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1601 pte_list_walk(&sp
->parent_ptes
, mark_unsync
);
1604 static void mark_unsync(u64
*spte
)
1606 struct kvm_mmu_page
*sp
;
1609 sp
= page_header(__pa(spte
));
1610 index
= spte
- sp
->spt
;
1611 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1613 if (sp
->unsync_children
++)
1615 kvm_mmu_mark_parents_unsync(sp
);
1618 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1619 struct kvm_mmu_page
*sp
)
1624 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1628 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1629 struct kvm_mmu_page
*sp
, u64
*spte
,
1635 #define KVM_PAGE_ARRAY_NR 16
1637 struct kvm_mmu_pages
{
1638 struct mmu_page_and_offset
{
1639 struct kvm_mmu_page
*sp
;
1641 } page
[KVM_PAGE_ARRAY_NR
];
1645 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1651 for (i
=0; i
< pvec
->nr
; i
++)
1652 if (pvec
->page
[i
].sp
== sp
)
1655 pvec
->page
[pvec
->nr
].sp
= sp
;
1656 pvec
->page
[pvec
->nr
].idx
= idx
;
1658 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1661 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1662 struct kvm_mmu_pages
*pvec
)
1664 int i
, ret
, nr_unsync_leaf
= 0;
1666 for_each_set_bit(i
, sp
->unsync_child_bitmap
, 512) {
1667 struct kvm_mmu_page
*child
;
1668 u64 ent
= sp
->spt
[i
];
1670 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1671 goto clear_child_bitmap
;
1673 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1675 if (child
->unsync_children
) {
1676 if (mmu_pages_add(pvec
, child
, i
))
1679 ret
= __mmu_unsync_walk(child
, pvec
);
1681 goto clear_child_bitmap
;
1683 nr_unsync_leaf
+= ret
;
1686 } else if (child
->unsync
) {
1688 if (mmu_pages_add(pvec
, child
, i
))
1691 goto clear_child_bitmap
;
1696 __clear_bit(i
, sp
->unsync_child_bitmap
);
1697 sp
->unsync_children
--;
1698 WARN_ON((int)sp
->unsync_children
< 0);
1702 return nr_unsync_leaf
;
1705 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1706 struct kvm_mmu_pages
*pvec
)
1708 if (!sp
->unsync_children
)
1711 mmu_pages_add(pvec
, sp
, 0);
1712 return __mmu_unsync_walk(sp
, pvec
);
1715 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1717 WARN_ON(!sp
->unsync
);
1718 trace_kvm_mmu_sync_page(sp
);
1720 --kvm
->stat
.mmu_unsync
;
1723 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1724 struct list_head
*invalid_list
);
1725 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1726 struct list_head
*invalid_list
);
1729 * NOTE: we should pay more attention on the zapped-obsolete page
1730 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1731 * since it has been deleted from active_mmu_pages but still can be found
1734 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1735 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1736 * all the obsolete pages.
1738 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1739 hlist_for_each_entry(_sp, \
1740 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1741 if ((_sp)->gfn != (_gfn)) {} else
1743 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1744 for_each_gfn_sp(_kvm, _sp, _gfn) \
1745 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1747 /* @sp->gfn should be write-protected at the call site */
1748 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1749 struct list_head
*invalid_list
, bool clear_unsync
)
1751 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1752 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1757 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1759 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1760 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1764 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1768 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1769 struct kvm_mmu_page
*sp
)
1771 LIST_HEAD(invalid_list
);
1774 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1776 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1781 #ifdef CONFIG_KVM_MMU_AUDIT
1782 #include "mmu_audit.c"
1784 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, int point
) { }
1785 static void mmu_audit_disable(void) { }
1788 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1789 struct list_head
*invalid_list
)
1791 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1794 /* @gfn should be write-protected at the call site */
1795 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1797 struct kvm_mmu_page
*s
;
1798 LIST_HEAD(invalid_list
);
1801 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
1805 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1806 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1807 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1808 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1809 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1815 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1817 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1820 struct mmu_page_path
{
1821 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1822 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1825 #define for_each_sp(pvec, sp, parents, i) \
1826 for (i = mmu_pages_next(&pvec, &parents, -1), \
1827 sp = pvec.page[i].sp; \
1828 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1829 i = mmu_pages_next(&pvec, &parents, i))
1831 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1832 struct mmu_page_path
*parents
,
1837 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1838 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1840 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1841 parents
->idx
[0] = pvec
->page
[n
].idx
;
1845 parents
->parent
[sp
->role
.level
-2] = sp
;
1846 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1852 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1854 struct kvm_mmu_page
*sp
;
1855 unsigned int level
= 0;
1858 unsigned int idx
= parents
->idx
[level
];
1860 sp
= parents
->parent
[level
];
1864 --sp
->unsync_children
;
1865 WARN_ON((int)sp
->unsync_children
< 0);
1866 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1868 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1871 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1872 struct mmu_page_path
*parents
,
1873 struct kvm_mmu_pages
*pvec
)
1875 parents
->parent
[parent
->role
.level
-1] = NULL
;
1879 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1880 struct kvm_mmu_page
*parent
)
1883 struct kvm_mmu_page
*sp
;
1884 struct mmu_page_path parents
;
1885 struct kvm_mmu_pages pages
;
1886 LIST_HEAD(invalid_list
);
1888 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1889 while (mmu_unsync_walk(parent
, &pages
)) {
1890 bool protected = false;
1892 for_each_sp(pages
, sp
, parents
, i
)
1893 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1896 kvm_flush_remote_tlbs(vcpu
->kvm
);
1898 for_each_sp(pages
, sp
, parents
, i
) {
1899 kvm_sync_page(vcpu
, sp
, &invalid_list
);
1900 mmu_pages_clear_parents(&parents
);
1902 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1903 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1904 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1908 static void init_shadow_page_table(struct kvm_mmu_page
*sp
)
1912 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1916 static void __clear_sp_write_flooding_count(struct kvm_mmu_page
*sp
)
1918 sp
->write_flooding_count
= 0;
1921 static void clear_sp_write_flooding_count(u64
*spte
)
1923 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
1925 __clear_sp_write_flooding_count(sp
);
1928 static bool is_obsolete_sp(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1930 return unlikely(sp
->mmu_valid_gen
!= kvm
->arch
.mmu_valid_gen
);
1933 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1941 union kvm_mmu_page_role role
;
1943 struct kvm_mmu_page
*sp
;
1944 bool need_sync
= false;
1946 role
= vcpu
->arch
.mmu
.base_role
;
1948 role
.direct
= direct
;
1951 role
.access
= access
;
1952 if (!vcpu
->arch
.mmu
.direct_map
1953 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1954 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1955 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1956 role
.quadrant
= quadrant
;
1958 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
) {
1959 if (is_obsolete_sp(vcpu
->kvm
, sp
))
1962 if (!need_sync
&& sp
->unsync
)
1965 if (sp
->role
.word
!= role
.word
)
1968 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
1971 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1972 if (sp
->unsync_children
) {
1973 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
1974 kvm_mmu_mark_parents_unsync(sp
);
1975 } else if (sp
->unsync
)
1976 kvm_mmu_mark_parents_unsync(sp
);
1978 __clear_sp_write_flooding_count(sp
);
1979 trace_kvm_mmu_get_page(sp
, false);
1982 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1983 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
1988 hlist_add_head(&sp
->hash_link
,
1989 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
1991 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1992 kvm_flush_remote_tlbs(vcpu
->kvm
);
1993 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
1994 kvm_sync_pages(vcpu
, gfn
);
1996 account_shadowed(vcpu
->kvm
, gfn
);
1998 sp
->mmu_valid_gen
= vcpu
->kvm
->arch
.mmu_valid_gen
;
1999 init_shadow_page_table(sp
);
2000 trace_kvm_mmu_get_page(sp
, true);
2004 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
2005 struct kvm_vcpu
*vcpu
, u64 addr
)
2007 iterator
->addr
= addr
;
2008 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
2009 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
2011 if (iterator
->level
== PT64_ROOT_LEVEL
&&
2012 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
2013 !vcpu
->arch
.mmu
.direct_map
)
2016 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
2017 iterator
->shadow_addr
2018 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
2019 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
2021 if (!iterator
->shadow_addr
)
2022 iterator
->level
= 0;
2026 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
2028 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
2031 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
2032 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
2036 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
2039 if (is_last_spte(spte
, iterator
->level
)) {
2040 iterator
->level
= 0;
2044 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
2048 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
2050 return __shadow_walk_next(iterator
, *iterator
->sptep
);
2053 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
, bool accessed
)
2057 BUILD_BUG_ON(VMX_EPT_READABLE_MASK
!= PT_PRESENT_MASK
||
2058 VMX_EPT_WRITABLE_MASK
!= PT_WRITABLE_MASK
);
2060 spte
= __pa(sp
->spt
) | PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
2061 shadow_user_mask
| shadow_x_mask
;
2064 spte
|= shadow_accessed_mask
;
2066 mmu_spte_set(sptep
, spte
);
2069 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2070 unsigned direct_access
)
2072 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
2073 struct kvm_mmu_page
*child
;
2076 * For the direct sp, if the guest pte's dirty bit
2077 * changed form clean to dirty, it will corrupt the
2078 * sp's access: allow writable in the read-only sp,
2079 * so we should update the spte at this point to get
2080 * a new sp with the correct access.
2082 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
2083 if (child
->role
.access
== direct_access
)
2086 drop_parent_pte(child
, sptep
);
2087 kvm_flush_remote_tlbs(vcpu
->kvm
);
2091 static bool mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2095 struct kvm_mmu_page
*child
;
2098 if (is_shadow_present_pte(pte
)) {
2099 if (is_last_spte(pte
, sp
->role
.level
)) {
2100 drop_spte(kvm
, spte
);
2101 if (is_large_pte(pte
))
2104 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2105 drop_parent_pte(child
, spte
);
2110 if (is_mmio_spte(pte
))
2111 mmu_spte_clear_no_track(spte
);
2116 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
2117 struct kvm_mmu_page
*sp
)
2121 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2122 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
2125 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
2127 mmu_page_remove_parent_pte(sp
, parent_pte
);
2130 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2133 struct rmap_iterator iter
;
2135 while ((sptep
= rmap_get_first(sp
->parent_ptes
, &iter
)))
2136 drop_parent_pte(sp
, sptep
);
2139 static int mmu_zap_unsync_children(struct kvm
*kvm
,
2140 struct kvm_mmu_page
*parent
,
2141 struct list_head
*invalid_list
)
2144 struct mmu_page_path parents
;
2145 struct kvm_mmu_pages pages
;
2147 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
2150 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2151 while (mmu_unsync_walk(parent
, &pages
)) {
2152 struct kvm_mmu_page
*sp
;
2154 for_each_sp(pages
, sp
, parents
, i
) {
2155 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2156 mmu_pages_clear_parents(&parents
);
2159 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2165 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2166 struct list_head
*invalid_list
)
2170 trace_kvm_mmu_prepare_zap_page(sp
);
2171 ++kvm
->stat
.mmu_shadow_zapped
;
2172 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
2173 kvm_mmu_page_unlink_children(kvm
, sp
);
2174 kvm_mmu_unlink_parents(kvm
, sp
);
2176 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
2177 unaccount_shadowed(kvm
, sp
->gfn
);
2180 kvm_unlink_unsync_page(kvm
, sp
);
2181 if (!sp
->root_count
) {
2184 list_move(&sp
->link
, invalid_list
);
2185 kvm_mod_used_mmu_pages(kvm
, -1);
2187 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
2190 * The obsolete pages can not be used on any vcpus.
2191 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2193 if (!sp
->role
.invalid
&& !is_obsolete_sp(kvm
, sp
))
2194 kvm_reload_remote_mmus(kvm
);
2197 sp
->role
.invalid
= 1;
2201 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
2202 struct list_head
*invalid_list
)
2204 struct kvm_mmu_page
*sp
, *nsp
;
2206 if (list_empty(invalid_list
))
2210 * wmb: make sure everyone sees our modifications to the page tables
2211 * rmb: make sure we see changes to vcpu->mode
2216 * Wait for all vcpus to exit guest mode and/or lockless shadow
2219 kvm_flush_remote_tlbs(kvm
);
2221 list_for_each_entry_safe(sp
, nsp
, invalid_list
, link
) {
2222 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
2223 kvm_mmu_free_page(sp
);
2227 static bool prepare_zap_oldest_mmu_page(struct kvm
*kvm
,
2228 struct list_head
*invalid_list
)
2230 struct kvm_mmu_page
*sp
;
2232 if (list_empty(&kvm
->arch
.active_mmu_pages
))
2235 sp
= list_entry(kvm
->arch
.active_mmu_pages
.prev
,
2236 struct kvm_mmu_page
, link
);
2237 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2243 * Changing the number of mmu pages allocated to the vm
2244 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2246 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
2248 LIST_HEAD(invalid_list
);
2250 spin_lock(&kvm
->mmu_lock
);
2252 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
2253 /* Need to free some mmu pages to achieve the goal. */
2254 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
)
2255 if (!prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
2258 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2259 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
2262 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
2264 spin_unlock(&kvm
->mmu_lock
);
2267 int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
2269 struct kvm_mmu_page
*sp
;
2270 LIST_HEAD(invalid_list
);
2273 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
2275 spin_lock(&kvm
->mmu_lock
);
2276 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
) {
2277 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2280 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2282 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2283 spin_unlock(&kvm
->mmu_lock
);
2287 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page
);
2290 * The function is based on mtrr_type_lookup() in
2291 * arch/x86/kernel/cpu/mtrr/generic.c
2293 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
2298 u8 prev_match
, curr_match
;
2299 int num_var_ranges
= KVM_NR_VAR_MTRR
;
2301 if (!mtrr_state
->enabled
)
2304 /* Make end inclusive end, instead of exclusive */
2307 /* Look in fixed ranges. Just return the type as per start */
2308 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
2311 if (start
< 0x80000) {
2313 idx
+= (start
>> 16);
2314 return mtrr_state
->fixed_ranges
[idx
];
2315 } else if (start
< 0xC0000) {
2317 idx
+= ((start
- 0x80000) >> 14);
2318 return mtrr_state
->fixed_ranges
[idx
];
2319 } else if (start
< 0x1000000) {
2321 idx
+= ((start
- 0xC0000) >> 12);
2322 return mtrr_state
->fixed_ranges
[idx
];
2327 * Look in variable ranges
2328 * Look of multiple ranges matching this address and pick type
2329 * as per MTRR precedence
2331 if (!(mtrr_state
->enabled
& 2))
2332 return mtrr_state
->def_type
;
2335 for (i
= 0; i
< num_var_ranges
; ++i
) {
2336 unsigned short start_state
, end_state
;
2338 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
2341 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
2342 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
2343 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
2344 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
2346 start_state
= ((start
& mask
) == (base
& mask
));
2347 end_state
= ((end
& mask
) == (base
& mask
));
2348 if (start_state
!= end_state
)
2351 if ((start
& mask
) != (base
& mask
))
2354 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
2355 if (prev_match
== 0xFF) {
2356 prev_match
= curr_match
;
2360 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
2361 curr_match
== MTRR_TYPE_UNCACHABLE
)
2362 return MTRR_TYPE_UNCACHABLE
;
2364 if ((prev_match
== MTRR_TYPE_WRBACK
&&
2365 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
2366 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
2367 curr_match
== MTRR_TYPE_WRBACK
)) {
2368 prev_match
= MTRR_TYPE_WRTHROUGH
;
2369 curr_match
= MTRR_TYPE_WRTHROUGH
;
2372 if (prev_match
!= curr_match
)
2373 return MTRR_TYPE_UNCACHABLE
;
2376 if (prev_match
!= 0xFF)
2379 return mtrr_state
->def_type
;
2382 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2386 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
2387 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
2388 if (mtrr
== 0xfe || mtrr
== 0xff)
2389 mtrr
= MTRR_TYPE_WRBACK
;
2392 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
2394 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2396 trace_kvm_mmu_unsync_page(sp
);
2397 ++vcpu
->kvm
->stat
.mmu_unsync
;
2400 kvm_mmu_mark_parents_unsync(sp
);
2403 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2405 struct kvm_mmu_page
*s
;
2407 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2410 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2411 __kvm_unsync_page(vcpu
, s
);
2415 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2418 struct kvm_mmu_page
*s
;
2419 bool need_unsync
= false;
2421 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2425 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2432 kvm_unsync_pages(vcpu
, gfn
);
2436 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2437 unsigned pte_access
, int level
,
2438 gfn_t gfn
, pfn_t pfn
, bool speculative
,
2439 bool can_unsync
, bool host_writable
)
2444 if (set_mmio_spte(vcpu
->kvm
, sptep
, gfn
, pfn
, pte_access
))
2447 spte
= PT_PRESENT_MASK
;
2449 spte
|= shadow_accessed_mask
;
2451 if (pte_access
& ACC_EXEC_MASK
)
2452 spte
|= shadow_x_mask
;
2454 spte
|= shadow_nx_mask
;
2456 if (pte_access
& ACC_USER_MASK
)
2457 spte
|= shadow_user_mask
;
2459 if (level
> PT_PAGE_TABLE_LEVEL
)
2460 spte
|= PT_PAGE_SIZE_MASK
;
2462 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2463 kvm_is_reserved_pfn(pfn
));
2466 spte
|= SPTE_HOST_WRITEABLE
;
2468 pte_access
&= ~ACC_WRITE_MASK
;
2470 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2472 if (pte_access
& ACC_WRITE_MASK
) {
2475 * Other vcpu creates new sp in the window between
2476 * mapping_level() and acquiring mmu-lock. We can
2477 * allow guest to retry the access, the mapping can
2478 * be fixed if guest refault.
2480 if (level
> PT_PAGE_TABLE_LEVEL
&&
2481 has_wrprotected_page(vcpu
->kvm
, gfn
, level
))
2484 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
2487 * Optimization: for pte sync, if spte was writable the hash
2488 * lookup is unnecessary (and expensive). Write protection
2489 * is responsibility of mmu_get_page / kvm_sync_page.
2490 * Same reasoning can be applied to dirty page accounting.
2492 if (!can_unsync
&& is_writable_pte(*sptep
))
2495 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2496 pgprintk("%s: found shadow page for %llx, marking ro\n",
2499 pte_access
&= ~ACC_WRITE_MASK
;
2500 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
2504 if (pte_access
& ACC_WRITE_MASK
)
2505 mark_page_dirty(vcpu
->kvm
, gfn
);
2508 if (mmu_spte_update(sptep
, spte
))
2509 kvm_flush_remote_tlbs(vcpu
->kvm
);
2514 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2515 unsigned pte_access
, int write_fault
, int *emulate
,
2516 int level
, gfn_t gfn
, pfn_t pfn
, bool speculative
,
2519 int was_rmapped
= 0;
2522 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__
,
2523 *sptep
, write_fault
, gfn
);
2525 if (is_rmap_spte(*sptep
)) {
2527 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2528 * the parent of the now unreachable PTE.
2530 if (level
> PT_PAGE_TABLE_LEVEL
&&
2531 !is_large_pte(*sptep
)) {
2532 struct kvm_mmu_page
*child
;
2535 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2536 drop_parent_pte(child
, sptep
);
2537 kvm_flush_remote_tlbs(vcpu
->kvm
);
2538 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2539 pgprintk("hfn old %llx new %llx\n",
2540 spte_to_pfn(*sptep
), pfn
);
2541 drop_spte(vcpu
->kvm
, sptep
);
2542 kvm_flush_remote_tlbs(vcpu
->kvm
);
2547 if (set_spte(vcpu
, sptep
, pte_access
, level
, gfn
, pfn
, speculative
,
2548 true, host_writable
)) {
2551 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2554 if (unlikely(is_mmio_spte(*sptep
) && emulate
))
2557 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2558 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2559 is_large_pte(*sptep
)? "2MB" : "4kB",
2560 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2562 if (!was_rmapped
&& is_large_pte(*sptep
))
2563 ++vcpu
->kvm
->stat
.lpages
;
2565 if (is_shadow_present_pte(*sptep
)) {
2567 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2568 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2569 rmap_recycle(vcpu
, sptep
, gfn
);
2573 kvm_release_pfn_clean(pfn
);
2576 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2579 struct kvm_memory_slot
*slot
;
2581 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2583 return KVM_PFN_ERR_FAULT
;
2585 return gfn_to_pfn_memslot_atomic(slot
, gfn
);
2588 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2589 struct kvm_mmu_page
*sp
,
2590 u64
*start
, u64
*end
)
2592 struct page
*pages
[PTE_PREFETCH_NUM
];
2593 unsigned access
= sp
->role
.access
;
2597 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2598 if (!gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
))
2601 ret
= gfn_to_page_many_atomic(vcpu
->kvm
, gfn
, pages
, end
- start
);
2605 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2606 mmu_set_spte(vcpu
, start
, access
, 0, NULL
,
2607 sp
->role
.level
, gfn
, page_to_pfn(pages
[i
]),
2613 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2614 struct kvm_mmu_page
*sp
, u64
*sptep
)
2616 u64
*spte
, *start
= NULL
;
2619 WARN_ON(!sp
->role
.direct
);
2621 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2624 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2625 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2628 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2636 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2638 struct kvm_mmu_page
*sp
;
2641 * Since it's no accessed bit on EPT, it's no way to
2642 * distinguish between actually accessed translations
2643 * and prefetched, so disable pte prefetch if EPT is
2646 if (!shadow_accessed_mask
)
2649 sp
= page_header(__pa(sptep
));
2650 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2653 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2656 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2657 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2660 struct kvm_shadow_walk_iterator iterator
;
2661 struct kvm_mmu_page
*sp
;
2665 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2668 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2669 if (iterator
.level
== level
) {
2670 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
,
2671 write
, &emulate
, level
, gfn
, pfn
,
2672 prefault
, map_writable
);
2673 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2674 ++vcpu
->stat
.pf_fixed
;
2678 drop_large_spte(vcpu
, iterator
.sptep
);
2679 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2680 u64 base_addr
= iterator
.addr
;
2682 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2683 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2684 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2686 1, ACC_ALL
, iterator
.sptep
);
2688 link_shadow_page(iterator
.sptep
, sp
, true);
2694 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2698 info
.si_signo
= SIGBUS
;
2700 info
.si_code
= BUS_MCEERR_AR
;
2701 info
.si_addr
= (void __user
*)address
;
2702 info
.si_addr_lsb
= PAGE_SHIFT
;
2704 send_sig_info(SIGBUS
, &info
, tsk
);
2707 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, pfn_t pfn
)
2710 * Do not cache the mmio info caused by writing the readonly gfn
2711 * into the spte otherwise read access on readonly gfn also can
2712 * caused mmio page fault and treat it as mmio access.
2713 * Return 1 to tell kvm to emulate it.
2715 if (pfn
== KVM_PFN_ERR_RO_FAULT
)
2718 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
2719 kvm_send_hwpoison_signal(gfn_to_hva(vcpu
->kvm
, gfn
), current
);
2726 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2727 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2731 int level
= *levelp
;
2734 * Check if it's a transparent hugepage. If this would be an
2735 * hugetlbfs page, level wouldn't be set to
2736 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2739 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
) &&
2740 level
== PT_PAGE_TABLE_LEVEL
&&
2741 PageTransCompound(pfn_to_page(pfn
)) &&
2742 !has_wrprotected_page(vcpu
->kvm
, gfn
, PT_DIRECTORY_LEVEL
)) {
2745 * mmu_notifier_retry was successful and we hold the
2746 * mmu_lock here, so the pmd can't become splitting
2747 * from under us, and in turn
2748 * __split_huge_page_refcount() can't run from under
2749 * us and we can safely transfer the refcount from
2750 * PG_tail to PG_head as we switch the pfn to tail to
2753 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2754 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2755 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2759 kvm_release_pfn_clean(pfn
);
2767 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2768 pfn_t pfn
, unsigned access
, int *ret_val
)
2772 /* The pfn is invalid, report the error! */
2773 if (unlikely(is_error_pfn(pfn
))) {
2774 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2778 if (unlikely(is_noslot_pfn(pfn
)))
2779 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2786 static bool page_fault_can_be_fast(u32 error_code
)
2789 * Do not fix the mmio spte with invalid generation number which
2790 * need to be updated by slow page fault path.
2792 if (unlikely(error_code
& PFERR_RSVD_MASK
))
2796 * #PF can be fast only if the shadow page table is present and it
2797 * is caused by write-protect, that means we just need change the
2798 * W bit of the spte which can be done out of mmu-lock.
2800 if (!(error_code
& PFERR_PRESENT_MASK
) ||
2801 !(error_code
& PFERR_WRITE_MASK
))
2808 fast_pf_fix_direct_spte(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
2809 u64
*sptep
, u64 spte
)
2813 WARN_ON(!sp
->role
.direct
);
2816 * The gfn of direct spte is stable since it is calculated
2819 gfn
= kvm_mmu_page_get_gfn(sp
, sptep
- sp
->spt
);
2821 if (cmpxchg64(sptep
, spte
, spte
| PT_WRITABLE_MASK
) == spte
)
2822 mark_page_dirty(vcpu
->kvm
, gfn
);
2829 * - true: let the vcpu to access on the same address again.
2830 * - false: let the real page fault path to fix it.
2832 static bool fast_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
, int level
,
2835 struct kvm_shadow_walk_iterator iterator
;
2836 struct kvm_mmu_page
*sp
;
2840 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2843 if (!page_fault_can_be_fast(error_code
))
2846 walk_shadow_page_lockless_begin(vcpu
);
2847 for_each_shadow_entry_lockless(vcpu
, gva
, iterator
, spte
)
2848 if (!is_shadow_present_pte(spte
) || iterator
.level
< level
)
2852 * If the mapping has been changed, let the vcpu fault on the
2853 * same address again.
2855 if (!is_rmap_spte(spte
)) {
2860 sp
= page_header(__pa(iterator
.sptep
));
2861 if (!is_last_spte(spte
, sp
->role
.level
))
2865 * Check if it is a spurious fault caused by TLB lazily flushed.
2867 * Need not check the access of upper level table entries since
2868 * they are always ACC_ALL.
2870 if (is_writable_pte(spte
)) {
2876 * Currently, to simplify the code, only the spte write-protected
2877 * by dirty-log can be fast fixed.
2879 if (!spte_is_locklessly_modifiable(spte
))
2883 * Do not fix write-permission on the large spte since we only dirty
2884 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2885 * that means other pages are missed if its slot is dirty-logged.
2887 * Instead, we let the slow page fault path create a normal spte to
2890 * See the comments in kvm_arch_commit_memory_region().
2892 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2896 * Currently, fast page fault only works for direct mapping since
2897 * the gfn is not stable for indirect shadow page.
2898 * See Documentation/virtual/kvm/locking.txt to get more detail.
2900 ret
= fast_pf_fix_direct_spte(vcpu
, sp
, iterator
.sptep
, spte
);
2902 trace_fast_page_fault(vcpu
, gva
, error_code
, iterator
.sptep
,
2904 walk_shadow_page_lockless_end(vcpu
);
2909 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2910 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2911 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
);
2913 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, u32 error_code
,
2914 gfn_t gfn
, bool prefault
)
2920 unsigned long mmu_seq
;
2921 bool map_writable
, write
= error_code
& PFERR_WRITE_MASK
;
2923 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2924 if (likely(!force_pt_level
)) {
2925 level
= mapping_level(vcpu
, gfn
);
2927 * This path builds a PAE pagetable - so we can map
2928 * 2mb pages at maximum. Therefore check if the level
2929 * is larger than that.
2931 if (level
> PT_DIRECTORY_LEVEL
)
2932 level
= PT_DIRECTORY_LEVEL
;
2934 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2936 level
= PT_PAGE_TABLE_LEVEL
;
2938 if (fast_page_fault(vcpu
, v
, level
, error_code
))
2941 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2944 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
2947 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
2950 spin_lock(&vcpu
->kvm
->mmu_lock
);
2951 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
2953 make_mmu_pages_available(vcpu
);
2954 if (likely(!force_pt_level
))
2955 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
2956 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
2958 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2964 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2965 kvm_release_pfn_clean(pfn
);
2970 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2973 struct kvm_mmu_page
*sp
;
2974 LIST_HEAD(invalid_list
);
2976 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2979 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
2980 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
2981 vcpu
->arch
.mmu
.direct_map
)) {
2982 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2984 spin_lock(&vcpu
->kvm
->mmu_lock
);
2985 sp
= page_header(root
);
2987 if (!sp
->root_count
&& sp
->role
.invalid
) {
2988 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
2989 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2991 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2992 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2996 spin_lock(&vcpu
->kvm
->mmu_lock
);
2997 for (i
= 0; i
< 4; ++i
) {
2998 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3001 root
&= PT64_BASE_ADDR_MASK
;
3002 sp
= page_header(root
);
3004 if (!sp
->root_count
&& sp
->role
.invalid
)
3005 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
3008 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
3010 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3011 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3012 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3015 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
3019 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
3020 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3027 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
3029 struct kvm_mmu_page
*sp
;
3032 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3033 spin_lock(&vcpu
->kvm
->mmu_lock
);
3034 make_mmu_pages_available(vcpu
);
3035 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
3038 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3039 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
3040 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
3041 for (i
= 0; i
< 4; ++i
) {
3042 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3044 ASSERT(!VALID_PAGE(root
));
3045 spin_lock(&vcpu
->kvm
->mmu_lock
);
3046 make_mmu_pages_available(vcpu
);
3047 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
3049 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
3051 root
= __pa(sp
->spt
);
3053 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3054 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
3056 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3063 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
3065 struct kvm_mmu_page
*sp
;
3070 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
3072 if (mmu_check_root(vcpu
, root_gfn
))
3076 * Do we shadow a long mode page table? If so we need to
3077 * write-protect the guests page table root.
3079 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3080 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3082 ASSERT(!VALID_PAGE(root
));
3084 spin_lock(&vcpu
->kvm
->mmu_lock
);
3085 make_mmu_pages_available(vcpu
);
3086 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
3088 root
= __pa(sp
->spt
);
3090 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3091 vcpu
->arch
.mmu
.root_hpa
= root
;
3096 * We shadow a 32 bit page table. This may be a legacy 2-level
3097 * or a PAE 3-level page table. In either case we need to be aware that
3098 * the shadow page table may be a PAE or a long mode page table.
3100 pm_mask
= PT_PRESENT_MASK
;
3101 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
3102 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
3104 for (i
= 0; i
< 4; ++i
) {
3105 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3107 ASSERT(!VALID_PAGE(root
));
3108 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
3109 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
3110 if (!is_present_gpte(pdptr
)) {
3111 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
3114 root_gfn
= pdptr
>> PAGE_SHIFT
;
3115 if (mmu_check_root(vcpu
, root_gfn
))
3118 spin_lock(&vcpu
->kvm
->mmu_lock
);
3119 make_mmu_pages_available(vcpu
);
3120 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
3123 root
= __pa(sp
->spt
);
3125 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3127 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
3129 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3132 * If we shadow a 32 bit page table with a long mode page
3133 * table we enter this path.
3135 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3136 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
3138 * The additional page necessary for this is only
3139 * allocated on demand.
3144 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
3145 if (lm_root
== NULL
)
3148 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
3150 vcpu
->arch
.mmu
.lm_root
= lm_root
;
3153 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
3159 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
3161 if (vcpu
->arch
.mmu
.direct_map
)
3162 return mmu_alloc_direct_roots(vcpu
);
3164 return mmu_alloc_shadow_roots(vcpu
);
3167 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3170 struct kvm_mmu_page
*sp
;
3172 if (vcpu
->arch
.mmu
.direct_map
)
3175 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3178 vcpu_clear_mmio_info(vcpu
, MMIO_GVA_ANY
);
3179 kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
3180 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3181 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3182 sp
= page_header(root
);
3183 mmu_sync_children(vcpu
, sp
);
3184 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3187 for (i
= 0; i
< 4; ++i
) {
3188 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3190 if (root
&& VALID_PAGE(root
)) {
3191 root
&= PT64_BASE_ADDR_MASK
;
3192 sp
= page_header(root
);
3193 mmu_sync_children(vcpu
, sp
);
3196 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3199 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3201 spin_lock(&vcpu
->kvm
->mmu_lock
);
3202 mmu_sync_roots(vcpu
);
3203 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3205 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots
);
3207 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3208 u32 access
, struct x86_exception
*exception
)
3211 exception
->error_code
= 0;
3215 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3217 struct x86_exception
*exception
)
3220 exception
->error_code
= 0;
3221 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
, exception
);
3224 static bool quickly_check_mmio_pf(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3227 return vcpu_match_mmio_gpa(vcpu
, addr
);
3229 return vcpu_match_mmio_gva(vcpu
, addr
);
3234 * On direct hosts, the last spte is only allows two states
3235 * for mmio page fault:
3236 * - It is the mmio spte
3237 * - It is zapped or it is being zapped.
3239 * This function completely checks the spte when the last spte
3240 * is not the mmio spte.
3242 static bool check_direct_spte_mmio_pf(u64 spte
)
3244 return __check_direct_spte_mmio_pf(spte
);
3247 static u64
walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
)
3249 struct kvm_shadow_walk_iterator iterator
;
3252 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3255 walk_shadow_page_lockless_begin(vcpu
);
3256 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
)
3257 if (!is_shadow_present_pte(spte
))
3259 walk_shadow_page_lockless_end(vcpu
);
3264 int handle_mmio_page_fault_common(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3268 if (quickly_check_mmio_pf(vcpu
, addr
, direct
))
3269 return RET_MMIO_PF_EMULATE
;
3271 spte
= walk_shadow_page_get_mmio_spte(vcpu
, addr
);
3273 if (is_mmio_spte(spte
)) {
3274 gfn_t gfn
= get_mmio_spte_gfn(spte
);
3275 unsigned access
= get_mmio_spte_access(spte
);
3277 if (!check_mmio_spte(vcpu
->kvm
, spte
))
3278 return RET_MMIO_PF_INVALID
;
3283 trace_handle_mmio_page_fault(addr
, gfn
, access
);
3284 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
3285 return RET_MMIO_PF_EMULATE
;
3289 * It's ok if the gva is remapped by other cpus on shadow guest,
3290 * it's a BUG if the gfn is not a mmio page.
3292 if (direct
&& !check_direct_spte_mmio_pf(spte
))
3293 return RET_MMIO_PF_BUG
;
3296 * If the page table is zapped by other cpus, let CPU fault again on
3299 return RET_MMIO_PF_RETRY
;
3301 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common
);
3303 static int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
,
3304 u32 error_code
, bool direct
)
3308 ret
= handle_mmio_page_fault_common(vcpu
, addr
, direct
);
3309 WARN_ON(ret
== RET_MMIO_PF_BUG
);
3313 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
3314 u32 error_code
, bool prefault
)
3319 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
3321 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3322 r
= handle_mmio_page_fault(vcpu
, gva
, error_code
, true);
3324 if (likely(r
!= RET_MMIO_PF_INVALID
))
3328 r
= mmu_topup_memory_caches(vcpu
);
3333 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3335 gfn
= gva
>> PAGE_SHIFT
;
3337 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
3338 error_code
, gfn
, prefault
);
3341 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3343 struct kvm_arch_async_pf arch
;
3345 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3347 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3348 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3350 return kvm_setup_async_pf(vcpu
, gva
, gfn_to_hva(vcpu
->kvm
, gfn
), &arch
);
3353 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
3355 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
) ||
3356 kvm_event_needs_reinjection(vcpu
)))
3359 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3362 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3363 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
3367 *pfn
= gfn_to_pfn_async(vcpu
->kvm
, gfn
, &async
, write
, writable
);
3370 return false; /* *pfn has correct page already */
3372 if (!prefault
&& can_do_async_pf(vcpu
)) {
3373 trace_kvm_try_async_get_page(gva
, gfn
);
3374 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3375 trace_kvm_async_pf_doublefault(gva
, gfn
);
3376 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3378 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3382 *pfn
= gfn_to_pfn_prot(vcpu
->kvm
, gfn
, write
, writable
);
3387 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3394 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3395 unsigned long mmu_seq
;
3396 int write
= error_code
& PFERR_WRITE_MASK
;
3400 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3402 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3403 r
= handle_mmio_page_fault(vcpu
, gpa
, error_code
, true);
3405 if (likely(r
!= RET_MMIO_PF_INVALID
))
3409 r
= mmu_topup_memory_caches(vcpu
);
3413 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
3414 if (likely(!force_pt_level
)) {
3415 level
= mapping_level(vcpu
, gfn
);
3416 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3418 level
= PT_PAGE_TABLE_LEVEL
;
3420 if (fast_page_fault(vcpu
, gpa
, level
, error_code
))
3423 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3426 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3429 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3432 spin_lock(&vcpu
->kvm
->mmu_lock
);
3433 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3435 make_mmu_pages_available(vcpu
);
3436 if (likely(!force_pt_level
))
3437 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3438 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
3439 level
, gfn
, pfn
, prefault
);
3440 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3445 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3446 kvm_release_pfn_clean(pfn
);
3450 static void nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3451 struct kvm_mmu
*context
)
3453 context
->page_fault
= nonpaging_page_fault
;
3454 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3455 context
->sync_page
= nonpaging_sync_page
;
3456 context
->invlpg
= nonpaging_invlpg
;
3457 context
->update_pte
= nonpaging_update_pte
;
3458 context
->root_level
= 0;
3459 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3460 context
->root_hpa
= INVALID_PAGE
;
3461 context
->direct_map
= true;
3462 context
->nx
= false;
3465 void kvm_mmu_new_cr3(struct kvm_vcpu
*vcpu
)
3467 mmu_free_roots(vcpu
);
3470 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3472 return kvm_read_cr3(vcpu
);
3475 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3476 struct x86_exception
*fault
)
3478 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3481 static bool sync_mmio_spte(struct kvm
*kvm
, u64
*sptep
, gfn_t gfn
,
3482 unsigned access
, int *nr_present
)
3484 if (unlikely(is_mmio_spte(*sptep
))) {
3485 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3486 mmu_spte_clear_no_track(sptep
);
3491 mark_mmio_spte(kvm
, sptep
, gfn
, access
);
3498 static inline bool is_last_gpte(struct kvm_mmu
*mmu
, unsigned level
, unsigned gpte
)
3503 index
|= (gpte
& PT_PAGE_SIZE_MASK
) >> (PT_PAGE_SIZE_SHIFT
- 2);
3504 return mmu
->last_pte_bitmap
& (1 << index
);
3507 #define PTTYPE_EPT 18 /* arbitrary */
3508 #define PTTYPE PTTYPE_EPT
3509 #include "paging_tmpl.h"
3513 #include "paging_tmpl.h"
3517 #include "paging_tmpl.h"
3520 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3521 struct kvm_mmu
*context
)
3523 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3524 u64 exb_bit_rsvd
= 0;
3525 u64 gbpages_bit_rsvd
= 0;
3526 u64 nonleaf_bit8_rsvd
= 0;
3528 context
->bad_mt_xwr
= 0;
3531 exb_bit_rsvd
= rsvd_bits(63, 63);
3532 if (!guest_cpuid_has_gbpages(vcpu
))
3533 gbpages_bit_rsvd
= rsvd_bits(7, 7);
3536 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3537 * leaf entries) on AMD CPUs only.
3539 if (guest_cpuid_is_amd(vcpu
))
3540 nonleaf_bit8_rsvd
= rsvd_bits(8, 8);
3542 switch (context
->root_level
) {
3543 case PT32_ROOT_LEVEL
:
3544 /* no rsvd bits for 2 level 4K page table entries */
3545 context
->rsvd_bits_mask
[0][1] = 0;
3546 context
->rsvd_bits_mask
[0][0] = 0;
3547 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3549 if (!is_pse(vcpu
)) {
3550 context
->rsvd_bits_mask
[1][1] = 0;
3554 if (is_cpuid_PSE36())
3555 /* 36bits PSE 4MB page */
3556 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3558 /* 32 bits PSE 4MB page */
3559 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3561 case PT32E_ROOT_LEVEL
:
3562 context
->rsvd_bits_mask
[0][2] =
3563 rsvd_bits(maxphyaddr
, 63) |
3564 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3565 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3566 rsvd_bits(maxphyaddr
, 62); /* PDE */
3567 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3568 rsvd_bits(maxphyaddr
, 62); /* PTE */
3569 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3570 rsvd_bits(maxphyaddr
, 62) |
3571 rsvd_bits(13, 20); /* large page */
3572 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3574 case PT64_ROOT_LEVEL
:
3575 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3576 nonleaf_bit8_rsvd
| rsvd_bits(7, 7) | rsvd_bits(maxphyaddr
, 51);
3577 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3578 nonleaf_bit8_rsvd
| gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51);
3579 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3580 rsvd_bits(maxphyaddr
, 51);
3581 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3582 rsvd_bits(maxphyaddr
, 51);
3583 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3584 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3585 gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51) |
3587 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3588 rsvd_bits(maxphyaddr
, 51) |
3589 rsvd_bits(13, 20); /* large page */
3590 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3595 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu
*vcpu
,
3596 struct kvm_mmu
*context
, bool execonly
)
3598 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3601 context
->rsvd_bits_mask
[0][3] =
3602 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 7);
3603 context
->rsvd_bits_mask
[0][2] =
3604 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3605 context
->rsvd_bits_mask
[0][1] =
3606 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3607 context
->rsvd_bits_mask
[0][0] = rsvd_bits(maxphyaddr
, 51);
3610 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3611 context
->rsvd_bits_mask
[1][2] =
3612 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 29);
3613 context
->rsvd_bits_mask
[1][1] =
3614 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 20);
3615 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3617 for (pte
= 0; pte
< 64; pte
++) {
3618 int rwx_bits
= pte
& 7;
3620 if (mt
== 0x2 || mt
== 0x3 || mt
== 0x7 ||
3621 rwx_bits
== 0x2 || rwx_bits
== 0x6 ||
3622 (rwx_bits
== 0x4 && !execonly
))
3623 context
->bad_mt_xwr
|= (1ull << pte
);
3627 void update_permission_bitmask(struct kvm_vcpu
*vcpu
,
3628 struct kvm_mmu
*mmu
, bool ept
)
3630 unsigned bit
, byte
, pfec
;
3632 bool fault
, x
, w
, u
, wf
, uf
, ff
, smapf
, cr4_smap
, cr4_smep
, smap
= 0;
3634 cr4_smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3635 cr4_smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
3636 for (byte
= 0; byte
< ARRAY_SIZE(mmu
->permissions
); ++byte
) {
3639 wf
= pfec
& PFERR_WRITE_MASK
;
3640 uf
= pfec
& PFERR_USER_MASK
;
3641 ff
= pfec
& PFERR_FETCH_MASK
;
3643 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3644 * subject to SMAP restrictions, and cleared otherwise. The
3645 * bit is only meaningful if the SMAP bit is set in CR4.
3647 smapf
= !(pfec
& PFERR_RSVD_MASK
);
3648 for (bit
= 0; bit
< 8; ++bit
) {
3649 x
= bit
& ACC_EXEC_MASK
;
3650 w
= bit
& ACC_WRITE_MASK
;
3651 u
= bit
& ACC_USER_MASK
;
3654 /* Not really needed: !nx will cause pte.nx to fault */
3656 /* Allow supervisor writes if !cr0.wp */
3657 w
|= !is_write_protection(vcpu
) && !uf
;
3658 /* Disallow supervisor fetches of user code if cr4.smep */
3659 x
&= !(cr4_smep
&& u
&& !uf
);
3662 * SMAP:kernel-mode data accesses from user-mode
3663 * mappings should fault. A fault is considered
3664 * as a SMAP violation if all of the following
3665 * conditions are ture:
3666 * - X86_CR4_SMAP is set in CR4
3667 * - An user page is accessed
3668 * - Page fault in kernel mode
3669 * - if CPL = 3 or X86_EFLAGS_AC is clear
3671 * Here, we cover the first three conditions.
3672 * The fourth is computed dynamically in
3673 * permission_fault() and is in smapf.
3675 * Also, SMAP does not affect instruction
3676 * fetches, add the !ff check here to make it
3679 smap
= cr4_smap
&& u
&& !uf
&& !ff
;
3681 /* Not really needed: no U/S accesses on ept */
3684 fault
= (ff
&& !x
) || (uf
&& !u
) || (wf
&& !w
) ||
3686 map
|= fault
<< bit
;
3688 mmu
->permissions
[byte
] = map
;
3692 static void update_last_pte_bitmap(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
3695 unsigned level
, root_level
= mmu
->root_level
;
3696 const unsigned ps_set_index
= 1 << 2; /* bit 2 of index: ps */
3698 if (root_level
== PT32E_ROOT_LEVEL
)
3700 /* PT_PAGE_TABLE_LEVEL always terminates */
3701 map
= 1 | (1 << ps_set_index
);
3702 for (level
= PT_DIRECTORY_LEVEL
; level
<= root_level
; ++level
) {
3703 if (level
<= PT_PDPE_LEVEL
3704 && (mmu
->root_level
>= PT32E_ROOT_LEVEL
|| is_pse(vcpu
)))
3705 map
|= 1 << (ps_set_index
| (level
- 1));
3707 mmu
->last_pte_bitmap
= map
;
3710 static void paging64_init_context_common(struct kvm_vcpu
*vcpu
,
3711 struct kvm_mmu
*context
,
3714 context
->nx
= is_nx(vcpu
);
3715 context
->root_level
= level
;
3717 reset_rsvds_bits_mask(vcpu
, context
);
3718 update_permission_bitmask(vcpu
, context
, false);
3719 update_last_pte_bitmap(vcpu
, context
);
3721 ASSERT(is_pae(vcpu
));
3722 context
->page_fault
= paging64_page_fault
;
3723 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3724 context
->sync_page
= paging64_sync_page
;
3725 context
->invlpg
= paging64_invlpg
;
3726 context
->update_pte
= paging64_update_pte
;
3727 context
->shadow_root_level
= level
;
3728 context
->root_hpa
= INVALID_PAGE
;
3729 context
->direct_map
= false;
3732 static void paging64_init_context(struct kvm_vcpu
*vcpu
,
3733 struct kvm_mmu
*context
)
3735 paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
3738 static void paging32_init_context(struct kvm_vcpu
*vcpu
,
3739 struct kvm_mmu
*context
)
3741 context
->nx
= false;
3742 context
->root_level
= PT32_ROOT_LEVEL
;
3744 reset_rsvds_bits_mask(vcpu
, context
);
3745 update_permission_bitmask(vcpu
, context
, false);
3746 update_last_pte_bitmap(vcpu
, context
);
3748 context
->page_fault
= paging32_page_fault
;
3749 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3750 context
->sync_page
= paging32_sync_page
;
3751 context
->invlpg
= paging32_invlpg
;
3752 context
->update_pte
= paging32_update_pte
;
3753 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3754 context
->root_hpa
= INVALID_PAGE
;
3755 context
->direct_map
= false;
3758 static void paging32E_init_context(struct kvm_vcpu
*vcpu
,
3759 struct kvm_mmu
*context
)
3761 paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
3764 static void init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
3766 struct kvm_mmu
*context
= vcpu
->arch
.walk_mmu
;
3768 context
->base_role
.word
= 0;
3769 context
->page_fault
= tdp_page_fault
;
3770 context
->sync_page
= nonpaging_sync_page
;
3771 context
->invlpg
= nonpaging_invlpg
;
3772 context
->update_pte
= nonpaging_update_pte
;
3773 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3774 context
->root_hpa
= INVALID_PAGE
;
3775 context
->direct_map
= true;
3776 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
3777 context
->get_cr3
= get_cr3
;
3778 context
->get_pdptr
= kvm_pdptr_read
;
3779 context
->inject_page_fault
= kvm_inject_page_fault
;
3781 if (!is_paging(vcpu
)) {
3782 context
->nx
= false;
3783 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3784 context
->root_level
= 0;
3785 } else if (is_long_mode(vcpu
)) {
3786 context
->nx
= is_nx(vcpu
);
3787 context
->root_level
= PT64_ROOT_LEVEL
;
3788 reset_rsvds_bits_mask(vcpu
, context
);
3789 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3790 } else if (is_pae(vcpu
)) {
3791 context
->nx
= is_nx(vcpu
);
3792 context
->root_level
= PT32E_ROOT_LEVEL
;
3793 reset_rsvds_bits_mask(vcpu
, context
);
3794 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3796 context
->nx
= false;
3797 context
->root_level
= PT32_ROOT_LEVEL
;
3798 reset_rsvds_bits_mask(vcpu
, context
);
3799 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3802 update_permission_bitmask(vcpu
, context
, false);
3803 update_last_pte_bitmap(vcpu
, context
);
3806 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3808 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3810 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3812 if (!is_paging(vcpu
))
3813 nonpaging_init_context(vcpu
, context
);
3814 else if (is_long_mode(vcpu
))
3815 paging64_init_context(vcpu
, context
);
3816 else if (is_pae(vcpu
))
3817 paging32E_init_context(vcpu
, context
);
3819 paging32_init_context(vcpu
, context
);
3821 vcpu
->arch
.mmu
.base_role
.nxe
= is_nx(vcpu
);
3822 vcpu
->arch
.mmu
.base_role
.cr4_pae
= !!is_pae(vcpu
);
3823 vcpu
->arch
.mmu
.base_role
.cr0_wp
= is_write_protection(vcpu
);
3824 vcpu
->arch
.mmu
.base_role
.smep_andnot_wp
3825 = smep
&& !is_write_protection(vcpu
);
3827 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
3829 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
,
3833 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3835 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3838 context
->page_fault
= ept_page_fault
;
3839 context
->gva_to_gpa
= ept_gva_to_gpa
;
3840 context
->sync_page
= ept_sync_page
;
3841 context
->invlpg
= ept_invlpg
;
3842 context
->update_pte
= ept_update_pte
;
3843 context
->root_level
= context
->shadow_root_level
;
3844 context
->root_hpa
= INVALID_PAGE
;
3845 context
->direct_map
= false;
3847 update_permission_bitmask(vcpu
, context
, true);
3848 reset_rsvds_bits_mask_ept(vcpu
, context
, execonly
);
3850 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu
);
3852 static void init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
3854 kvm_init_shadow_mmu(vcpu
, vcpu
->arch
.walk_mmu
);
3855 vcpu
->arch
.walk_mmu
->set_cr3
= kvm_x86_ops
->set_cr3
;
3856 vcpu
->arch
.walk_mmu
->get_cr3
= get_cr3
;
3857 vcpu
->arch
.walk_mmu
->get_pdptr
= kvm_pdptr_read
;
3858 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
3861 static void init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
3863 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
3865 g_context
->get_cr3
= get_cr3
;
3866 g_context
->get_pdptr
= kvm_pdptr_read
;
3867 g_context
->inject_page_fault
= kvm_inject_page_fault
;
3870 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3871 * translation of l2_gpa to l1_gpa addresses is done using the
3872 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3873 * functions between mmu and nested_mmu are swapped.
3875 if (!is_paging(vcpu
)) {
3876 g_context
->nx
= false;
3877 g_context
->root_level
= 0;
3878 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
3879 } else if (is_long_mode(vcpu
)) {
3880 g_context
->nx
= is_nx(vcpu
);
3881 g_context
->root_level
= PT64_ROOT_LEVEL
;
3882 reset_rsvds_bits_mask(vcpu
, g_context
);
3883 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3884 } else if (is_pae(vcpu
)) {
3885 g_context
->nx
= is_nx(vcpu
);
3886 g_context
->root_level
= PT32E_ROOT_LEVEL
;
3887 reset_rsvds_bits_mask(vcpu
, g_context
);
3888 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3890 g_context
->nx
= false;
3891 g_context
->root_level
= PT32_ROOT_LEVEL
;
3892 reset_rsvds_bits_mask(vcpu
, g_context
);
3893 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
3896 update_permission_bitmask(vcpu
, g_context
, false);
3897 update_last_pte_bitmap(vcpu
, g_context
);
3900 static void init_kvm_mmu(struct kvm_vcpu
*vcpu
)
3902 if (mmu_is_nested(vcpu
))
3903 return init_kvm_nested_mmu(vcpu
);
3904 else if (tdp_enabled
)
3905 return init_kvm_tdp_mmu(vcpu
);
3907 return init_kvm_softmmu(vcpu
);
3910 void kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
3914 kvm_mmu_unload(vcpu
);
3917 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
3919 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
3923 r
= mmu_topup_memory_caches(vcpu
);
3926 r
= mmu_alloc_roots(vcpu
);
3927 kvm_mmu_sync_roots(vcpu
);
3930 /* set_cr3() should ensure TLB has been flushed */
3931 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
3935 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
3937 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
3939 mmu_free_roots(vcpu
);
3940 WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3942 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
3944 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
3945 struct kvm_mmu_page
*sp
, u64
*spte
,
3948 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
3949 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
3953 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
3954 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
3957 static bool need_remote_flush(u64 old
, u64
new)
3959 if (!is_shadow_present_pte(old
))
3961 if (!is_shadow_present_pte(new))
3963 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
3965 old
^= shadow_nx_mask
;
3966 new ^= shadow_nx_mask
;
3967 return (old
& ~new & PT64_PERM_MASK
) != 0;
3970 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
3971 bool remote_flush
, bool local_flush
)
3977 kvm_flush_remote_tlbs(vcpu
->kvm
);
3978 else if (local_flush
)
3979 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
3982 static u64
mmu_pte_write_fetch_gpte(struct kvm_vcpu
*vcpu
, gpa_t
*gpa
,
3983 const u8
*new, int *bytes
)
3989 * Assume that the pte write on a page table of the same type
3990 * as the current vcpu paging mode since we update the sptes only
3991 * when they have the same mode.
3993 if (is_pae(vcpu
) && *bytes
== 4) {
3994 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3997 r
= kvm_read_guest(vcpu
->kvm
, *gpa
, &gentry
, 8);
4000 new = (const u8
*)&gentry
;
4005 gentry
= *(const u32
*)new;
4008 gentry
= *(const u64
*)new;
4019 * If we're seeing too many writes to a page, it may no longer be a page table,
4020 * or we may be forking, in which case it is better to unmap the page.
4022 static bool detect_write_flooding(struct kvm_mmu_page
*sp
)
4025 * Skip write-flooding detected for the sp whose level is 1, because
4026 * it can become unsync, then the guest page is not write-protected.
4028 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
)
4031 return ++sp
->write_flooding_count
>= 3;
4035 * Misaligned accesses are too much trouble to fix up; also, they usually
4036 * indicate a page is not used as a page table.
4038 static bool detect_write_misaligned(struct kvm_mmu_page
*sp
, gpa_t gpa
,
4041 unsigned offset
, pte_size
, misaligned
;
4043 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4044 gpa
, bytes
, sp
->role
.word
);
4046 offset
= offset_in_page(gpa
);
4047 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
4050 * Sometimes, the OS only writes the last one bytes to update status
4051 * bits, for example, in linux, andb instruction is used in clear_bit().
4053 if (!(offset
& (pte_size
- 1)) && bytes
== 1)
4056 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
4057 misaligned
|= bytes
< 4;
4062 static u64
*get_written_sptes(struct kvm_mmu_page
*sp
, gpa_t gpa
, int *nspte
)
4064 unsigned page_offset
, quadrant
;
4068 page_offset
= offset_in_page(gpa
);
4069 level
= sp
->role
.level
;
4071 if (!sp
->role
.cr4_pae
) {
4072 page_offset
<<= 1; /* 32->64 */
4074 * A 32-bit pde maps 4MB while the shadow pdes map
4075 * only 2MB. So we need to double the offset again
4076 * and zap two pdes instead of one.
4078 if (level
== PT32_ROOT_LEVEL
) {
4079 page_offset
&= ~7; /* kill rounding error */
4083 quadrant
= page_offset
>> PAGE_SHIFT
;
4084 page_offset
&= ~PAGE_MASK
;
4085 if (quadrant
!= sp
->role
.quadrant
)
4089 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
4093 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4094 const u8
*new, int bytes
)
4096 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
4097 union kvm_mmu_page_role mask
= { .word
= 0 };
4098 struct kvm_mmu_page
*sp
;
4099 LIST_HEAD(invalid_list
);
4100 u64 entry
, gentry
, *spte
;
4102 bool remote_flush
, local_flush
, zap_page
;
4105 * If we don't have indirect shadow pages, it means no page is
4106 * write-protected, so we can exit simply.
4108 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
4111 zap_page
= remote_flush
= local_flush
= false;
4113 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
4115 gentry
= mmu_pte_write_fetch_gpte(vcpu
, &gpa
, new, &bytes
);
4118 * No need to care whether allocation memory is successful
4119 * or not since pte prefetch is skiped if it does not have
4120 * enough objects in the cache.
4122 mmu_topup_memory_caches(vcpu
);
4124 spin_lock(&vcpu
->kvm
->mmu_lock
);
4125 ++vcpu
->kvm
->stat
.mmu_pte_write
;
4126 kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
4128 mask
.cr0_wp
= mask
.cr4_pae
= mask
.nxe
= 1;
4129 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
) {
4130 if (detect_write_misaligned(sp
, gpa
, bytes
) ||
4131 detect_write_flooding(sp
)) {
4132 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
4134 ++vcpu
->kvm
->stat
.mmu_flooded
;
4138 spte
= get_written_sptes(sp
, gpa
, &npte
);
4145 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
4147 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
4148 & mask
.word
) && rmap_can_add(vcpu
))
4149 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
4150 if (need_remote_flush(entry
, *spte
))
4151 remote_flush
= true;
4155 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
4156 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4157 kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
4158 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4161 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
4166 if (vcpu
->arch
.mmu
.direct_map
)
4169 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
4171 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4175 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
4177 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
)
4179 LIST_HEAD(invalid_list
);
4181 if (likely(kvm_mmu_available_pages(vcpu
->kvm
) >= KVM_MIN_FREE_MMU_PAGES
))
4184 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
) {
4185 if (!prepare_zap_oldest_mmu_page(vcpu
->kvm
, &invalid_list
))
4188 ++vcpu
->kvm
->stat
.mmu_recycled
;
4190 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4193 static bool is_mmio_page_fault(struct kvm_vcpu
*vcpu
, gva_t addr
)
4195 if (vcpu
->arch
.mmu
.direct_map
|| mmu_is_nested(vcpu
))
4196 return vcpu_match_mmio_gpa(vcpu
, addr
);
4198 return vcpu_match_mmio_gva(vcpu
, addr
);
4201 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
4202 void *insn
, int insn_len
)
4204 int r
, emulation_type
= EMULTYPE_RETRY
;
4205 enum emulation_result er
;
4207 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
4216 if (is_mmio_page_fault(vcpu
, cr2
))
4219 er
= x86_emulate_instruction(vcpu
, cr2
, emulation_type
, insn
, insn_len
);
4224 case EMULATE_USER_EXIT
:
4225 ++vcpu
->stat
.mmio_exits
;
4235 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
4237 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
4239 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
4240 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
4241 ++vcpu
->stat
.invlpg
;
4243 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
4245 void kvm_enable_tdp(void)
4249 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
4251 void kvm_disable_tdp(void)
4253 tdp_enabled
= false;
4255 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
4257 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
4259 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
4260 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
4261 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
4264 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
4272 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4273 * Therefore we need to allocate shadow page tables in the first
4274 * 4GB of memory, which happens to fit the DMA32 zone.
4276 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
4280 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
4281 for (i
= 0; i
< 4; ++i
)
4282 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
4287 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
4291 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
4292 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4293 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
4294 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
4296 return alloc_mmu_pages(vcpu
);
4299 void kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
4302 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4307 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
4309 struct kvm_memory_slot
*memslot
;
4313 memslot
= id_to_memslot(kvm
->memslots
, slot
);
4314 last_gfn
= memslot
->base_gfn
+ memslot
->npages
- 1;
4316 spin_lock(&kvm
->mmu_lock
);
4318 for (i
= PT_PAGE_TABLE_LEVEL
;
4319 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
4320 unsigned long *rmapp
;
4321 unsigned long last_index
, index
;
4323 rmapp
= memslot
->arch
.rmap
[i
- PT_PAGE_TABLE_LEVEL
];
4324 last_index
= gfn_to_index(last_gfn
, memslot
->base_gfn
, i
);
4326 for (index
= 0; index
<= last_index
; ++index
, ++rmapp
) {
4328 __rmap_write_protect(kvm
, rmapp
, false);
4330 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
))
4331 cond_resched_lock(&kvm
->mmu_lock
);
4335 spin_unlock(&kvm
->mmu_lock
);
4338 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4339 * which do tlb flush out of mmu-lock should be serialized by
4340 * kvm->slots_lock otherwise tlb flush would be missed.
4342 lockdep_assert_held(&kvm
->slots_lock
);
4345 * We can flush all the TLBs out of the mmu lock without TLB
4346 * corruption since we just change the spte from writable to
4347 * readonly so that we only need to care the case of changing
4348 * spte from present to present (changing the spte from present
4349 * to nonpresent will flush all the TLBs immediately), in other
4350 * words, the only case we care is mmu_spte_update() where we
4351 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4352 * instead of PT_WRITABLE_MASK, that means it does not depend
4353 * on PT_WRITABLE_MASK anymore.
4355 kvm_flush_remote_tlbs(kvm
);
4358 #define BATCH_ZAP_PAGES 10
4359 static void kvm_zap_obsolete_pages(struct kvm
*kvm
)
4361 struct kvm_mmu_page
*sp
, *node
;
4365 list_for_each_entry_safe_reverse(sp
, node
,
4366 &kvm
->arch
.active_mmu_pages
, link
) {
4370 * No obsolete page exists before new created page since
4371 * active_mmu_pages is the FIFO list.
4373 if (!is_obsolete_sp(kvm
, sp
))
4377 * Since we are reversely walking the list and the invalid
4378 * list will be moved to the head, skip the invalid page
4379 * can help us to avoid the infinity list walking.
4381 if (sp
->role
.invalid
)
4385 * Need not flush tlb since we only zap the sp with invalid
4386 * generation number.
4388 if (batch
>= BATCH_ZAP_PAGES
&&
4389 cond_resched_lock(&kvm
->mmu_lock
)) {
4394 ret
= kvm_mmu_prepare_zap_page(kvm
, sp
,
4395 &kvm
->arch
.zapped_obsolete_pages
);
4403 * Should flush tlb before free page tables since lockless-walking
4404 * may use the pages.
4406 kvm_mmu_commit_zap_page(kvm
, &kvm
->arch
.zapped_obsolete_pages
);
4410 * Fast invalidate all shadow pages and use lock-break technique
4411 * to zap obsolete pages.
4413 * It's required when memslot is being deleted or VM is being
4414 * destroyed, in these cases, we should ensure that KVM MMU does
4415 * not use any resource of the being-deleted slot or all slots
4416 * after calling the function.
4418 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
)
4420 spin_lock(&kvm
->mmu_lock
);
4421 trace_kvm_mmu_invalidate_zap_all_pages(kvm
);
4422 kvm
->arch
.mmu_valid_gen
++;
4425 * Notify all vcpus to reload its shadow page table
4426 * and flush TLB. Then all vcpus will switch to new
4427 * shadow page table with the new mmu_valid_gen.
4429 * Note: we should do this under the protection of
4430 * mmu-lock, otherwise, vcpu would purge shadow page
4431 * but miss tlb flush.
4433 kvm_reload_remote_mmus(kvm
);
4435 kvm_zap_obsolete_pages(kvm
);
4436 spin_unlock(&kvm
->mmu_lock
);
4439 static bool kvm_has_zapped_obsolete_pages(struct kvm
*kvm
)
4441 return unlikely(!list_empty_careful(&kvm
->arch
.zapped_obsolete_pages
));
4444 void kvm_mmu_invalidate_mmio_sptes(struct kvm
*kvm
)
4447 * The very rare case: if the generation-number is round,
4448 * zap all shadow pages.
4450 if (unlikely(kvm_current_mmio_generation(kvm
) == 0)) {
4451 printk_ratelimited(KERN_INFO
"kvm: zapping shadow pages for mmio generation wraparound\n");
4452 kvm_mmu_invalidate_zap_all_pages(kvm
);
4456 static unsigned long
4457 mmu_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
4460 int nr_to_scan
= sc
->nr_to_scan
;
4461 unsigned long freed
= 0;
4463 spin_lock(&kvm_lock
);
4465 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4467 LIST_HEAD(invalid_list
);
4470 * Never scan more than sc->nr_to_scan VM instances.
4471 * Will not hit this condition practically since we do not try
4472 * to shrink more than one VM and it is very unlikely to see
4473 * !n_used_mmu_pages so many times.
4478 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4479 * here. We may skip a VM instance errorneosly, but we do not
4480 * want to shrink a VM that only started to populate its MMU
4483 if (!kvm
->arch
.n_used_mmu_pages
&&
4484 !kvm_has_zapped_obsolete_pages(kvm
))
4487 idx
= srcu_read_lock(&kvm
->srcu
);
4488 spin_lock(&kvm
->mmu_lock
);
4490 if (kvm_has_zapped_obsolete_pages(kvm
)) {
4491 kvm_mmu_commit_zap_page(kvm
,
4492 &kvm
->arch
.zapped_obsolete_pages
);
4496 if (prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
4498 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
4501 spin_unlock(&kvm
->mmu_lock
);
4502 srcu_read_unlock(&kvm
->srcu
, idx
);
4505 * unfair on small ones
4506 * per-vm shrinkers cry out
4507 * sadness comes quickly
4509 list_move_tail(&kvm
->vm_list
, &vm_list
);
4513 spin_unlock(&kvm_lock
);
4517 static unsigned long
4518 mmu_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
4520 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
4523 static struct shrinker mmu_shrinker
= {
4524 .count_objects
= mmu_shrink_count
,
4525 .scan_objects
= mmu_shrink_scan
,
4526 .seeks
= DEFAULT_SEEKS
* 10,
4529 static void mmu_destroy_caches(void)
4531 if (pte_list_desc_cache
)
4532 kmem_cache_destroy(pte_list_desc_cache
);
4533 if (mmu_page_header_cache
)
4534 kmem_cache_destroy(mmu_page_header_cache
);
4537 int kvm_mmu_module_init(void)
4539 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
4540 sizeof(struct pte_list_desc
),
4542 if (!pte_list_desc_cache
)
4545 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
4546 sizeof(struct kvm_mmu_page
),
4548 if (!mmu_page_header_cache
)
4551 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0, GFP_KERNEL
))
4554 register_shrinker(&mmu_shrinker
);
4559 mmu_destroy_caches();
4564 * Caculate mmu pages needed for kvm.
4566 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
4568 unsigned int nr_mmu_pages
;
4569 unsigned int nr_pages
= 0;
4570 struct kvm_memslots
*slots
;
4571 struct kvm_memory_slot
*memslot
;
4573 slots
= kvm_memslots(kvm
);
4575 kvm_for_each_memslot(memslot
, slots
)
4576 nr_pages
+= memslot
->npages
;
4578 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
4579 nr_mmu_pages
= max(nr_mmu_pages
,
4580 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
4582 return nr_mmu_pages
;
4585 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
4587 struct kvm_shadow_walk_iterator iterator
;
4591 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
4594 walk_shadow_page_lockless_begin(vcpu
);
4595 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
) {
4596 sptes
[iterator
.level
-1] = spte
;
4598 if (!is_shadow_present_pte(spte
))
4601 walk_shadow_page_lockless_end(vcpu
);
4605 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
4607 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
4611 kvm_mmu_unload(vcpu
);
4612 free_mmu_pages(vcpu
);
4613 mmu_free_memory_caches(vcpu
);
4616 void kvm_mmu_module_exit(void)
4618 mmu_destroy_caches();
4619 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
4620 unregister_shrinker(&mmu_shrinker
);
4621 mmu_audit_disable();