arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / arch / x86 / kvm / mmu.c
blob10fbed126b1121ae5fde2f7ccfbf04133b5f8771
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled = false;
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
63 #undef MMU_DEBUG
65 #ifdef MMU_DEBUG
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
70 #else
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
75 #endif
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
90 #endif
92 #define PTE_PREFETCH_NUM 8
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
97 #define PT64_LEVEL_BITS 9
99 #define PT64_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
102 #define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
106 #define PT32_LEVEL_BITS 10
108 #define PT32_LEVEL_SHIFT(level) \
109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
139 #define ACC_EXEC_MASK 1
140 #define ACC_WRITE_MASK PT_WRITABLE_MASK
141 #define ACC_USER_MASK PT_USER_MASK
142 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144 #include <trace/events/kvm.h>
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
149 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
157 struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
162 struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
165 u64 *sptep;
166 int level;
167 unsigned index;
170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
197 shadow_mmio_mask = mmio_mask;
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
210 #define MMIO_SPTE_GEN_LOW_SHIFT 2
211 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
213 #define MMIO_GEN_SHIFT 20
214 #define MMIO_GEN_LOW_SHIFT 10
215 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
218 static u64 generation_mmio_spte_mask(unsigned int gen)
220 u64 mask;
222 WARN_ON(gen & ~MMIO_GEN_MASK);
224 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
225 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
226 return mask;
229 static unsigned int get_mmio_spte_generation(u64 spte)
231 unsigned int gen;
233 spte &= ~shadow_mmio_mask;
235 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
236 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
237 return gen;
240 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
245 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
246 unsigned access)
248 unsigned int gen = kvm_current_mmio_generation(kvm);
249 u64 mask = generation_mmio_spte_mask(gen);
251 access &= ACC_WRITE_MASK | ACC_USER_MASK;
252 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254 trace_mark_mmio_spte(sptep, gfn, access, gen);
255 mmu_spte_set(sptep, mask);
258 static bool is_mmio_spte(u64 spte)
260 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
263 static gfn_t get_mmio_spte_gfn(u64 spte)
265 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
266 return (spte & ~mask) >> PAGE_SHIFT;
269 static unsigned get_mmio_spte_access(u64 spte)
271 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
272 return (spte & ~mask) & ~PAGE_MASK;
275 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
276 pfn_t pfn, unsigned access)
278 if (unlikely(is_noslot_pfn(pfn))) {
279 mark_mmio_spte(kvm, sptep, gfn, access);
280 return true;
283 return false;
286 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 unsigned int kvm_gen, spte_gen;
290 kvm_gen = kvm_current_mmio_generation(kvm);
291 spte_gen = get_mmio_spte_generation(spte);
293 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
294 return likely(kvm_gen == spte_gen);
297 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
298 u64 dirty_mask, u64 nx_mask, u64 x_mask)
300 shadow_user_mask = user_mask;
301 shadow_accessed_mask = accessed_mask;
302 shadow_dirty_mask = dirty_mask;
303 shadow_nx_mask = nx_mask;
304 shadow_x_mask = x_mask;
306 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
308 static int is_cpuid_PSE36(void)
310 return 1;
313 static int is_nx(struct kvm_vcpu *vcpu)
315 return vcpu->arch.efer & EFER_NX;
318 static int is_shadow_present_pte(u64 pte)
320 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
323 static int is_large_pte(u64 pte)
325 return pte & PT_PAGE_SIZE_MASK;
328 static int is_rmap_spte(u64 pte)
330 return is_shadow_present_pte(pte);
333 static int is_last_spte(u64 pte, int level)
335 if (level == PT_PAGE_TABLE_LEVEL)
336 return 1;
337 if (is_large_pte(pte))
338 return 1;
339 return 0;
342 static pfn_t spte_to_pfn(u64 pte)
344 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
347 static gfn_t pse36_gfn_delta(u32 gpte)
349 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
351 return (gpte & PT32_DIR_PSE36_MASK) << shift;
354 #ifdef CONFIG_X86_64
355 static void __set_spte(u64 *sptep, u64 spte)
357 *sptep = spte;
360 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
362 *sptep = spte;
365 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
367 return xchg(sptep, spte);
370 static u64 __get_spte_lockless(u64 *sptep)
372 return ACCESS_ONCE(*sptep);
375 static bool __check_direct_spte_mmio_pf(u64 spte)
377 /* It is valid if the spte is zapped. */
378 return spte == 0ull;
380 #else
381 union split_spte {
382 struct {
383 u32 spte_low;
384 u32 spte_high;
386 u64 spte;
389 static void count_spte_clear(u64 *sptep, u64 spte)
391 struct kvm_mmu_page *sp = page_header(__pa(sptep));
393 if (is_shadow_present_pte(spte))
394 return;
396 /* Ensure the spte is completely set before we increase the count */
397 smp_wmb();
398 sp->clear_spte_count++;
401 static void __set_spte(u64 *sptep, u64 spte)
403 union split_spte *ssptep, sspte;
405 ssptep = (union split_spte *)sptep;
406 sspte = (union split_spte)spte;
408 ssptep->spte_high = sspte.spte_high;
411 * If we map the spte from nonpresent to present, We should store
412 * the high bits firstly, then set present bit, so cpu can not
413 * fetch this spte while we are setting the spte.
415 smp_wmb();
417 ssptep->spte_low = sspte.spte_low;
420 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
422 union split_spte *ssptep, sspte;
424 ssptep = (union split_spte *)sptep;
425 sspte = (union split_spte)spte;
427 ssptep->spte_low = sspte.spte_low;
430 * If we map the spte from present to nonpresent, we should clear
431 * present bit firstly to avoid vcpu fetch the old high bits.
433 smp_wmb();
435 ssptep->spte_high = sspte.spte_high;
436 count_spte_clear(sptep, spte);
439 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
441 union split_spte *ssptep, sspte, orig;
443 ssptep = (union split_spte *)sptep;
444 sspte = (union split_spte)spte;
446 /* xchg acts as a barrier before the setting of the high bits */
447 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
448 orig.spte_high = ssptep->spte_high;
449 ssptep->spte_high = sspte.spte_high;
450 count_spte_clear(sptep, spte);
452 return orig.spte;
456 * The idea using the light way get the spte on x86_32 guest is from
457 * gup_get_pte(arch/x86/mm/gup.c).
459 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
460 * coalesces them and we are running out of the MMU lock. Therefore
461 * we need to protect against in-progress updates of the spte.
463 * Reading the spte while an update is in progress may get the old value
464 * for the high part of the spte. The race is fine for a present->non-present
465 * change (because the high part of the spte is ignored for non-present spte),
466 * but for a present->present change we must reread the spte.
468 * All such changes are done in two steps (present->non-present and
469 * non-present->present), hence it is enough to count the number of
470 * present->non-present updates: if it changed while reading the spte,
471 * we might have hit the race. This is done using clear_spte_count.
473 static u64 __get_spte_lockless(u64 *sptep)
475 struct kvm_mmu_page *sp = page_header(__pa(sptep));
476 union split_spte spte, *orig = (union split_spte *)sptep;
477 int count;
479 retry:
480 count = sp->clear_spte_count;
481 smp_rmb();
483 spte.spte_low = orig->spte_low;
484 smp_rmb();
486 spte.spte_high = orig->spte_high;
487 smp_rmb();
489 if (unlikely(spte.spte_low != orig->spte_low ||
490 count != sp->clear_spte_count))
491 goto retry;
493 return spte.spte;
496 static bool __check_direct_spte_mmio_pf(u64 spte)
498 union split_spte sspte = (union split_spte)spte;
499 u32 high_mmio_mask = shadow_mmio_mask >> 32;
501 /* It is valid if the spte is zapped. */
502 if (spte == 0ull)
503 return true;
505 /* It is valid if the spte is being zapped. */
506 if (sspte.spte_low == 0ull &&
507 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
508 return true;
510 return false;
512 #endif
514 static bool spte_is_locklessly_modifiable(u64 spte)
516 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
517 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
520 static bool spte_has_volatile_bits(u64 spte)
523 * Always atomicly update spte if it can be updated
524 * out of mmu-lock, it can ensure dirty bit is not lost,
525 * also, it can help us to get a stable is_writable_pte()
526 * to ensure tlb flush is not missed.
528 if (spte_is_locklessly_modifiable(spte))
529 return true;
531 if (!shadow_accessed_mask)
532 return false;
534 if (!is_shadow_present_pte(spte))
535 return false;
537 if ((spte & shadow_accessed_mask) &&
538 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
539 return false;
541 return true;
544 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
546 return (old_spte & bit_mask) && !(new_spte & bit_mask);
549 /* Rules for using mmu_spte_set:
550 * Set the sptep from nonpresent to present.
551 * Note: the sptep being assigned *must* be either not present
552 * or in a state where the hardware will not attempt to update
553 * the spte.
555 static void mmu_spte_set(u64 *sptep, u64 new_spte)
557 WARN_ON(is_shadow_present_pte(*sptep));
558 __set_spte(sptep, new_spte);
561 /* Rules for using mmu_spte_update:
562 * Update the state bits, it means the mapped pfn is not changged.
564 * Whenever we overwrite a writable spte with a read-only one we
565 * should flush remote TLBs. Otherwise rmap_write_protect
566 * will find a read-only spte, even though the writable spte
567 * might be cached on a CPU's TLB, the return value indicates this
568 * case.
570 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
572 u64 old_spte = *sptep;
573 bool ret = false;
575 WARN_ON(!is_rmap_spte(new_spte));
577 if (!is_shadow_present_pte(old_spte)) {
578 mmu_spte_set(sptep, new_spte);
579 return ret;
582 if (!spte_has_volatile_bits(old_spte))
583 __update_clear_spte_fast(sptep, new_spte);
584 else
585 old_spte = __update_clear_spte_slow(sptep, new_spte);
588 * For the spte updated out of mmu-lock is safe, since
589 * we always atomicly update it, see the comments in
590 * spte_has_volatile_bits().
592 if (spte_is_locklessly_modifiable(old_spte) &&
593 !is_writable_pte(new_spte))
594 ret = true;
596 if (!shadow_accessed_mask)
597 return ret;
599 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
600 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
601 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
602 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
604 return ret;
608 * Rules for using mmu_spte_clear_track_bits:
609 * It sets the sptep from present to nonpresent, and track the
610 * state bits, it is used to clear the last level sptep.
612 static int mmu_spte_clear_track_bits(u64 *sptep)
614 pfn_t pfn;
615 u64 old_spte = *sptep;
617 if (!spte_has_volatile_bits(old_spte))
618 __update_clear_spte_fast(sptep, 0ull);
619 else
620 old_spte = __update_clear_spte_slow(sptep, 0ull);
622 if (!is_rmap_spte(old_spte))
623 return 0;
625 pfn = spte_to_pfn(old_spte);
628 * KVM does not hold the refcount of the page used by
629 * kvm mmu, before reclaiming the page, we should
630 * unmap it from mmu first.
632 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
634 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
635 kvm_set_pfn_accessed(pfn);
636 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
637 kvm_set_pfn_dirty(pfn);
638 return 1;
642 * Rules for using mmu_spte_clear_no_track:
643 * Directly clear spte without caring the state bits of sptep,
644 * it is used to set the upper level spte.
646 static void mmu_spte_clear_no_track(u64 *sptep)
648 __update_clear_spte_fast(sptep, 0ull);
651 static u64 mmu_spte_get_lockless(u64 *sptep)
653 return __get_spte_lockless(sptep);
656 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
659 * Prevent page table teardown by making any free-er wait during
660 * kvm_flush_remote_tlbs() IPI to all active vcpus.
662 local_irq_disable();
663 vcpu->mode = READING_SHADOW_PAGE_TABLES;
665 * Make sure a following spte read is not reordered ahead of the write
666 * to vcpu->mode.
668 smp_mb();
671 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
674 * Make sure the write to vcpu->mode is not reordered in front of
675 * reads to sptes. If it does, kvm_commit_zap_page() can see us
676 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
678 smp_mb();
679 vcpu->mode = OUTSIDE_GUEST_MODE;
680 local_irq_enable();
683 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
684 struct kmem_cache *base_cache, int min)
686 void *obj;
688 if (cache->nobjs >= min)
689 return 0;
690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
692 if (!obj)
693 return -ENOMEM;
694 cache->objects[cache->nobjs++] = obj;
696 return 0;
699 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
701 return cache->nobjs;
704 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
705 struct kmem_cache *cache)
707 while (mc->nobjs)
708 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
711 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
712 int min)
714 void *page;
716 if (cache->nobjs >= min)
717 return 0;
718 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
719 page = (void *)__get_free_page(GFP_KERNEL);
720 if (!page)
721 return -ENOMEM;
722 cache->objects[cache->nobjs++] = page;
724 return 0;
727 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
729 while (mc->nobjs)
730 free_page((unsigned long)mc->objects[--mc->nobjs]);
733 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
735 int r;
737 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
738 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
739 if (r)
740 goto out;
741 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
742 if (r)
743 goto out;
744 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
745 mmu_page_header_cache, 4);
746 out:
747 return r;
750 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
752 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
753 pte_list_desc_cache);
754 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
755 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
756 mmu_page_header_cache);
759 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
761 void *p;
763 BUG_ON(!mc->nobjs);
764 p = mc->objects[--mc->nobjs];
765 return p;
768 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
770 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
773 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
775 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
778 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
780 if (!sp->role.direct)
781 return sp->gfns[index];
783 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
786 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
788 if (sp->role.direct)
789 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
790 else
791 sp->gfns[index] = gfn;
795 * Return the pointer to the large page information for a given gfn,
796 * handling slots that are not large page aligned.
798 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
799 struct kvm_memory_slot *slot,
800 int level)
802 unsigned long idx;
804 idx = gfn_to_index(gfn, slot->base_gfn, level);
805 return &slot->arch.lpage_info[level - 2][idx];
808 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
810 struct kvm_memory_slot *slot;
811 struct kvm_lpage_info *linfo;
812 int i;
814 slot = gfn_to_memslot(kvm, gfn);
815 for (i = PT_DIRECTORY_LEVEL;
816 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
817 linfo = lpage_info_slot(gfn, slot, i);
818 linfo->write_count += 1;
820 kvm->arch.indirect_shadow_pages++;
823 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
825 struct kvm_memory_slot *slot;
826 struct kvm_lpage_info *linfo;
827 int i;
829 slot = gfn_to_memslot(kvm, gfn);
830 for (i = PT_DIRECTORY_LEVEL;
831 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
832 linfo = lpage_info_slot(gfn, slot, i);
833 linfo->write_count -= 1;
834 WARN_ON(linfo->write_count < 0);
836 kvm->arch.indirect_shadow_pages--;
839 static int has_wrprotected_page(struct kvm *kvm,
840 gfn_t gfn,
841 int level)
843 struct kvm_memory_slot *slot;
844 struct kvm_lpage_info *linfo;
846 slot = gfn_to_memslot(kvm, gfn);
847 if (slot) {
848 linfo = lpage_info_slot(gfn, slot, level);
849 return linfo->write_count;
852 return 1;
855 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
857 unsigned long page_size;
858 int i, ret = 0;
860 page_size = kvm_host_page_size(kvm, gfn);
862 for (i = PT_PAGE_TABLE_LEVEL;
863 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
864 if (page_size >= KVM_HPAGE_SIZE(i))
865 ret = i;
866 else
867 break;
870 return ret;
873 static struct kvm_memory_slot *
874 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
875 bool no_dirty_log)
877 struct kvm_memory_slot *slot;
879 slot = gfn_to_memslot(vcpu->kvm, gfn);
880 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
881 (no_dirty_log && slot->dirty_bitmap))
882 slot = NULL;
884 return slot;
887 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
892 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894 int host_level, level, max_level;
896 host_level = host_mapping_level(vcpu->kvm, large_gfn);
898 if (host_level == PT_PAGE_TABLE_LEVEL)
899 return host_level;
901 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
904 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
905 break;
907 return level - 1;
911 * Pte mapping structures:
913 * If pte_list bit zero is zero, then pte_list point to the spte.
915 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
916 * pte_list_desc containing more mappings.
918 * Returns the number of pte entries before the spte was added or zero if
919 * the spte was not added.
922 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
923 unsigned long *pte_list)
925 struct pte_list_desc *desc;
926 int i, count = 0;
928 if (!*pte_list) {
929 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
930 *pte_list = (unsigned long)spte;
931 } else if (!(*pte_list & 1)) {
932 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
933 desc = mmu_alloc_pte_list_desc(vcpu);
934 desc->sptes[0] = (u64 *)*pte_list;
935 desc->sptes[1] = spte;
936 *pte_list = (unsigned long)desc | 1;
937 ++count;
938 } else {
939 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
940 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
942 desc = desc->more;
943 count += PTE_LIST_EXT;
945 if (desc->sptes[PTE_LIST_EXT-1]) {
946 desc->more = mmu_alloc_pte_list_desc(vcpu);
947 desc = desc->more;
949 for (i = 0; desc->sptes[i]; ++i)
950 ++count;
951 desc->sptes[i] = spte;
953 return count;
956 static void
957 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
958 int i, struct pte_list_desc *prev_desc)
960 int j;
962 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964 desc->sptes[i] = desc->sptes[j];
965 desc->sptes[j] = NULL;
966 if (j != 0)
967 return;
968 if (!prev_desc && !desc->more)
969 *pte_list = (unsigned long)desc->sptes[0];
970 else
971 if (prev_desc)
972 prev_desc->more = desc->more;
973 else
974 *pte_list = (unsigned long)desc->more | 1;
975 mmu_free_pte_list_desc(desc);
978 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980 struct pte_list_desc *desc;
981 struct pte_list_desc *prev_desc;
982 int i;
984 if (!*pte_list) {
985 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
986 BUG();
987 } else if (!(*pte_list & 1)) {
988 rmap_printk("pte_list_remove: %p 1->0\n", spte);
989 if ((u64 *)*pte_list != spte) {
990 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
991 BUG();
993 *pte_list = 0;
994 } else {
995 rmap_printk("pte_list_remove: %p many->many\n", spte);
996 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
997 prev_desc = NULL;
998 while (desc) {
999 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1000 if (desc->sptes[i] == spte) {
1001 pte_list_desc_remove_entry(pte_list,
1002 desc, i,
1003 prev_desc);
1004 return;
1006 prev_desc = desc;
1007 desc = desc->more;
1009 pr_err("pte_list_remove: %p many->many\n", spte);
1010 BUG();
1014 typedef void (*pte_list_walk_fn) (u64 *spte);
1015 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017 struct pte_list_desc *desc;
1018 int i;
1020 if (!*pte_list)
1021 return;
1023 if (!(*pte_list & 1))
1024 return fn((u64 *)*pte_list);
1026 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1027 while (desc) {
1028 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1029 fn(desc->sptes[i]);
1030 desc = desc->more;
1034 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1035 struct kvm_memory_slot *slot)
1037 unsigned long idx;
1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1044 * Take gfn and return the reverse mapping to it.
1046 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1048 struct kvm_memory_slot *slot;
1050 slot = gfn_to_memslot(kvm, gfn);
1051 return __gfn_to_rmap(gfn, level, slot);
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1056 struct kvm_mmu_memory_cache *cache;
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1064 struct kvm_mmu_page *sp;
1065 unsigned long *rmapp;
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1070 return pte_list_add(vcpu, spte, rmapp);
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
1077 unsigned long *rmapp;
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1082 pte_list_remove(spte, rmapp);
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1089 struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1100 * Returns sptep if found, NULL otherwise.
1102 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1104 if (!rmap)
1105 return NULL;
1107 if (!(rmap & 1)) {
1108 iter->desc = NULL;
1109 return (u64 *)rmap;
1112 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1113 iter->pos = 0;
1114 return iter->desc->sptes[iter->pos];
1118 * Must be used with a valid iterator: e.g. after rmap_get_first().
1120 * Returns sptep if found, NULL otherwise.
1122 static u64 *rmap_get_next(struct rmap_iterator *iter)
1124 if (iter->desc) {
1125 if (iter->pos < PTE_LIST_EXT - 1) {
1126 u64 *sptep;
1128 ++iter->pos;
1129 sptep = iter->desc->sptes[iter->pos];
1130 if (sptep)
1131 return sptep;
1134 iter->desc = iter->desc->more;
1136 if (iter->desc) {
1137 iter->pos = 0;
1138 /* desc->sptes[0] cannot be NULL */
1139 return iter->desc->sptes[iter->pos];
1143 return NULL;
1146 static void drop_spte(struct kvm *kvm, u64 *sptep)
1148 if (mmu_spte_clear_track_bits(sptep))
1149 rmap_remove(kvm, sptep);
1153 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155 if (is_large_pte(*sptep)) {
1156 WARN_ON(page_header(__pa(sptep))->role.level ==
1157 PT_PAGE_TABLE_LEVEL);
1158 drop_spte(kvm, sptep);
1159 --kvm->stat.lpages;
1160 return true;
1163 return false;
1166 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168 if (__drop_large_spte(vcpu->kvm, sptep))
1169 kvm_flush_remote_tlbs(vcpu->kvm);
1173 * Write-protect on the specified @sptep, @pt_protect indicates whether
1174 * spte write-protection is caused by protecting shadow page table.
1176 * Note: write protection is difference between dirty logging and spte
1177 * protection:
1178 * - for dirty logging, the spte can be set to writable at anytime if
1179 * its dirty bitmap is properly set.
1180 * - for spte protection, the spte can be writable only after unsync-ing
1181 * shadow page.
1183 * Return true if tlb need be flushed.
1185 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 u64 spte = *sptep;
1189 if (!is_writable_pte(spte) &&
1190 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1191 return false;
1193 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195 if (pt_protect)
1196 spte &= ~SPTE_MMU_WRITEABLE;
1197 spte = spte & ~PT_WRITABLE_MASK;
1199 return mmu_spte_update(sptep, spte);
1202 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1203 bool pt_protect)
1205 u64 *sptep;
1206 struct rmap_iterator iter;
1207 bool flush = false;
1209 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1210 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1212 flush |= spte_write_protect(kvm, sptep, pt_protect);
1213 sptep = rmap_get_next(&iter);
1216 return flush;
1220 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1221 * @kvm: kvm instance
1222 * @slot: slot to protect
1223 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1224 * @mask: indicates which pages we should protect
1226 * Used when we do not need to care about huge page mappings: e.g. during dirty
1227 * logging we do not have any such mappings.
1229 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1230 struct kvm_memory_slot *slot,
1231 gfn_t gfn_offset, unsigned long mask)
1233 unsigned long *rmapp;
1235 while (mask) {
1236 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1237 PT_PAGE_TABLE_LEVEL, slot);
1238 __rmap_write_protect(kvm, rmapp, false);
1240 /* clear the first set bit */
1241 mask &= mask - 1;
1245 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1247 struct kvm_memory_slot *slot;
1248 unsigned long *rmapp;
1249 int i;
1250 bool write_protected = false;
1252 slot = gfn_to_memslot(kvm, gfn);
1254 for (i = PT_PAGE_TABLE_LEVEL;
1255 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1256 rmapp = __gfn_to_rmap(gfn, i, slot);
1257 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1260 return write_protected;
1263 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1264 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1265 unsigned long data)
1267 u64 *sptep;
1268 struct rmap_iterator iter;
1269 int need_tlb_flush = 0;
1271 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1272 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1273 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1274 sptep, *sptep, gfn, level);
1276 drop_spte(kvm, sptep);
1277 need_tlb_flush = 1;
1280 return need_tlb_flush;
1283 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1284 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1285 unsigned long data)
1287 u64 *sptep;
1288 struct rmap_iterator iter;
1289 int need_flush = 0;
1290 u64 new_spte;
1291 pte_t *ptep = (pte_t *)data;
1292 pfn_t new_pfn;
1294 WARN_ON(pte_huge(*ptep));
1295 new_pfn = pte_pfn(*ptep);
1297 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1298 BUG_ON(!is_shadow_present_pte(*sptep));
1299 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1300 sptep, *sptep, gfn, level);
1302 need_flush = 1;
1304 if (pte_write(*ptep)) {
1305 drop_spte(kvm, sptep);
1306 sptep = rmap_get_first(*rmapp, &iter);
1307 } else {
1308 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1309 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1311 new_spte &= ~PT_WRITABLE_MASK;
1312 new_spte &= ~SPTE_HOST_WRITEABLE;
1313 new_spte &= ~shadow_accessed_mask;
1315 mmu_spte_clear_track_bits(sptep);
1316 mmu_spte_set(sptep, new_spte);
1317 sptep = rmap_get_next(&iter);
1321 if (need_flush)
1322 kvm_flush_remote_tlbs(kvm);
1324 return 0;
1327 static int kvm_handle_hva_range(struct kvm *kvm,
1328 unsigned long start,
1329 unsigned long end,
1330 unsigned long data,
1331 int (*handler)(struct kvm *kvm,
1332 unsigned long *rmapp,
1333 struct kvm_memory_slot *slot,
1334 gfn_t gfn,
1335 int level,
1336 unsigned long data))
1338 int j;
1339 int ret = 0;
1340 struct kvm_memslots *slots;
1341 struct kvm_memory_slot *memslot;
1343 slots = kvm_memslots(kvm);
1345 kvm_for_each_memslot(memslot, slots) {
1346 unsigned long hva_start, hva_end;
1347 gfn_t gfn_start, gfn_end;
1349 hva_start = max(start, memslot->userspace_addr);
1350 hva_end = min(end, memslot->userspace_addr +
1351 (memslot->npages << PAGE_SHIFT));
1352 if (hva_start >= hva_end)
1353 continue;
1355 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1356 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1358 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1359 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1361 for (j = PT_PAGE_TABLE_LEVEL;
1362 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1363 unsigned long idx, idx_end;
1364 unsigned long *rmapp;
1365 gfn_t gfn = gfn_start;
1368 * {idx(page_j) | page_j intersects with
1369 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1371 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1372 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1374 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1376 for (; idx <= idx_end;
1377 ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1378 ret |= handler(kvm, rmapp++, memslot,
1379 gfn, j, data);
1383 return ret;
1386 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1387 unsigned long data,
1388 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1389 struct kvm_memory_slot *slot,
1390 gfn_t gfn, int level,
1391 unsigned long data))
1393 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1396 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1398 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1401 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1403 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1406 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1408 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1411 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1412 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1413 unsigned long data)
1415 u64 *sptep;
1416 struct rmap_iterator uninitialized_var(iter);
1417 int young = 0;
1419 BUG_ON(!shadow_accessed_mask);
1421 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1422 sptep = rmap_get_next(&iter)) {
1423 BUG_ON(!is_shadow_present_pte(*sptep));
1425 if (*sptep & shadow_accessed_mask) {
1426 young = 1;
1427 clear_bit((ffs(shadow_accessed_mask) - 1),
1428 (unsigned long *)sptep);
1431 trace_kvm_age_page(gfn, level, slot, young);
1432 return young;
1435 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1436 struct kvm_memory_slot *slot, gfn_t gfn,
1437 int level, unsigned long data)
1439 u64 *sptep;
1440 struct rmap_iterator iter;
1441 int young = 0;
1444 * If there's no access bit in the secondary pte set by the
1445 * hardware it's up to gup-fast/gup to set the access bit in
1446 * the primary pte or in the page structure.
1448 if (!shadow_accessed_mask)
1449 goto out;
1451 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1452 sptep = rmap_get_next(&iter)) {
1453 BUG_ON(!is_shadow_present_pte(*sptep));
1455 if (*sptep & shadow_accessed_mask) {
1456 young = 1;
1457 break;
1460 out:
1461 return young;
1464 #define RMAP_RECYCLE_THRESHOLD 1000
1466 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1468 unsigned long *rmapp;
1469 struct kvm_mmu_page *sp;
1471 sp = page_header(__pa(spte));
1473 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1475 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1476 kvm_flush_remote_tlbs(vcpu->kvm);
1479 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1482 * In case of absence of EPT Access and Dirty Bits supports,
1483 * emulate the accessed bit for EPT, by checking if this page has
1484 * an EPT mapping, and clearing it if it does. On the next access,
1485 * a new EPT mapping will be established.
1486 * This has some overhead, but not as much as the cost of swapping
1487 * out actively used pages or breaking up actively used hugepages.
1489 if (!shadow_accessed_mask) {
1491 * We are holding the kvm->mmu_lock, and we are blowing up
1492 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1493 * This is correct as long as we don't decouple the mmu_lock
1494 * protected regions (like invalidate_range_start|end does).
1496 kvm->mmu_notifier_seq++;
1497 return kvm_handle_hva_range(kvm, start, end, 0,
1498 kvm_unmap_rmapp);
1501 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1504 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1506 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1509 #ifdef MMU_DEBUG
1510 static int is_empty_shadow_page(u64 *spt)
1512 u64 *pos;
1513 u64 *end;
1515 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1516 if (is_shadow_present_pte(*pos)) {
1517 printk(KERN_ERR "%s: %p %llx\n", __func__,
1518 pos, *pos);
1519 return 0;
1521 return 1;
1523 #endif
1526 * This value is the sum of all of the kvm instances's
1527 * kvm->arch.n_used_mmu_pages values. We need a global,
1528 * aggregate version in order to make the slab shrinker
1529 * faster
1531 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1533 kvm->arch.n_used_mmu_pages += nr;
1534 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1537 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1539 ASSERT(is_empty_shadow_page(sp->spt));
1540 hlist_del(&sp->hash_link);
1541 list_del(&sp->link);
1542 free_page((unsigned long)sp->spt);
1543 if (!sp->role.direct)
1544 free_page((unsigned long)sp->gfns);
1545 kmem_cache_free(mmu_page_header_cache, sp);
1548 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1550 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1553 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1554 struct kvm_mmu_page *sp, u64 *parent_pte)
1556 if (!parent_pte)
1557 return;
1559 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1562 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1563 u64 *parent_pte)
1565 pte_list_remove(parent_pte, &sp->parent_ptes);
1568 static void drop_parent_pte(struct kvm_mmu_page *sp,
1569 u64 *parent_pte)
1571 mmu_page_remove_parent_pte(sp, parent_pte);
1572 mmu_spte_clear_no_track(parent_pte);
1575 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1576 u64 *parent_pte, int direct)
1578 struct kvm_mmu_page *sp;
1580 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1581 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1582 if (!direct)
1583 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1584 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1587 * The active_mmu_pages list is the FIFO list, do not move the
1588 * page until it is zapped. kvm_zap_obsolete_pages depends on
1589 * this feature. See the comments in kvm_zap_obsolete_pages().
1591 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1592 sp->parent_ptes = 0;
1593 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1594 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1595 return sp;
1598 static void mark_unsync(u64 *spte);
1599 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1601 pte_list_walk(&sp->parent_ptes, mark_unsync);
1604 static void mark_unsync(u64 *spte)
1606 struct kvm_mmu_page *sp;
1607 unsigned int index;
1609 sp = page_header(__pa(spte));
1610 index = spte - sp->spt;
1611 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1612 return;
1613 if (sp->unsync_children++)
1614 return;
1615 kvm_mmu_mark_parents_unsync(sp);
1618 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1619 struct kvm_mmu_page *sp)
1621 return 1;
1624 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1628 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1629 struct kvm_mmu_page *sp, u64 *spte,
1630 const void *pte)
1632 WARN_ON(1);
1635 #define KVM_PAGE_ARRAY_NR 16
1637 struct kvm_mmu_pages {
1638 struct mmu_page_and_offset {
1639 struct kvm_mmu_page *sp;
1640 unsigned int idx;
1641 } page[KVM_PAGE_ARRAY_NR];
1642 unsigned int nr;
1645 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1646 int idx)
1648 int i;
1650 if (sp->unsync)
1651 for (i=0; i < pvec->nr; i++)
1652 if (pvec->page[i].sp == sp)
1653 return 0;
1655 pvec->page[pvec->nr].sp = sp;
1656 pvec->page[pvec->nr].idx = idx;
1657 pvec->nr++;
1658 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1661 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1662 struct kvm_mmu_pages *pvec)
1664 int i, ret, nr_unsync_leaf = 0;
1666 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1667 struct kvm_mmu_page *child;
1668 u64 ent = sp->spt[i];
1670 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1671 goto clear_child_bitmap;
1673 child = page_header(ent & PT64_BASE_ADDR_MASK);
1675 if (child->unsync_children) {
1676 if (mmu_pages_add(pvec, child, i))
1677 return -ENOSPC;
1679 ret = __mmu_unsync_walk(child, pvec);
1680 if (!ret)
1681 goto clear_child_bitmap;
1682 else if (ret > 0)
1683 nr_unsync_leaf += ret;
1684 else
1685 return ret;
1686 } else if (child->unsync) {
1687 nr_unsync_leaf++;
1688 if (mmu_pages_add(pvec, child, i))
1689 return -ENOSPC;
1690 } else
1691 goto clear_child_bitmap;
1693 continue;
1695 clear_child_bitmap:
1696 __clear_bit(i, sp->unsync_child_bitmap);
1697 sp->unsync_children--;
1698 WARN_ON((int)sp->unsync_children < 0);
1702 return nr_unsync_leaf;
1705 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1706 struct kvm_mmu_pages *pvec)
1708 if (!sp->unsync_children)
1709 return 0;
1711 mmu_pages_add(pvec, sp, 0);
1712 return __mmu_unsync_walk(sp, pvec);
1715 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1717 WARN_ON(!sp->unsync);
1718 trace_kvm_mmu_sync_page(sp);
1719 sp->unsync = 0;
1720 --kvm->stat.mmu_unsync;
1723 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1724 struct list_head *invalid_list);
1725 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1726 struct list_head *invalid_list);
1729 * NOTE: we should pay more attention on the zapped-obsolete page
1730 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1731 * since it has been deleted from active_mmu_pages but still can be found
1732 * at hast list.
1734 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1735 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1736 * all the obsolete pages.
1738 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1739 hlist_for_each_entry(_sp, \
1740 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1741 if ((_sp)->gfn != (_gfn)) {} else
1743 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1744 for_each_gfn_sp(_kvm, _sp, _gfn) \
1745 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1747 /* @sp->gfn should be write-protected at the call site */
1748 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1749 struct list_head *invalid_list, bool clear_unsync)
1751 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1752 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1753 return 1;
1756 if (clear_unsync)
1757 kvm_unlink_unsync_page(vcpu->kvm, sp);
1759 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1760 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1761 return 1;
1764 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1765 return 0;
1768 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1769 struct kvm_mmu_page *sp)
1771 LIST_HEAD(invalid_list);
1772 int ret;
1774 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1775 if (ret)
1776 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1778 return ret;
1781 #ifdef CONFIG_KVM_MMU_AUDIT
1782 #include "mmu_audit.c"
1783 #else
1784 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1785 static void mmu_audit_disable(void) { }
1786 #endif
1788 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1789 struct list_head *invalid_list)
1791 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1794 /* @gfn should be write-protected at the call site */
1795 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1797 struct kvm_mmu_page *s;
1798 LIST_HEAD(invalid_list);
1799 bool flush = false;
1801 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1802 if (!s->unsync)
1803 continue;
1805 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1806 kvm_unlink_unsync_page(vcpu->kvm, s);
1807 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1808 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1809 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1810 continue;
1812 flush = true;
1815 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1816 if (flush)
1817 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1820 struct mmu_page_path {
1821 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1822 unsigned int idx[PT64_ROOT_LEVEL-1];
1825 #define for_each_sp(pvec, sp, parents, i) \
1826 for (i = mmu_pages_next(&pvec, &parents, -1), \
1827 sp = pvec.page[i].sp; \
1828 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1829 i = mmu_pages_next(&pvec, &parents, i))
1831 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1832 struct mmu_page_path *parents,
1833 int i)
1835 int n;
1837 for (n = i+1; n < pvec->nr; n++) {
1838 struct kvm_mmu_page *sp = pvec->page[n].sp;
1840 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1841 parents->idx[0] = pvec->page[n].idx;
1842 return n;
1845 parents->parent[sp->role.level-2] = sp;
1846 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1849 return n;
1852 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1854 struct kvm_mmu_page *sp;
1855 unsigned int level = 0;
1857 do {
1858 unsigned int idx = parents->idx[level];
1860 sp = parents->parent[level];
1861 if (!sp)
1862 return;
1864 --sp->unsync_children;
1865 WARN_ON((int)sp->unsync_children < 0);
1866 __clear_bit(idx, sp->unsync_child_bitmap);
1867 level++;
1868 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1871 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1872 struct mmu_page_path *parents,
1873 struct kvm_mmu_pages *pvec)
1875 parents->parent[parent->role.level-1] = NULL;
1876 pvec->nr = 0;
1879 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1880 struct kvm_mmu_page *parent)
1882 int i;
1883 struct kvm_mmu_page *sp;
1884 struct mmu_page_path parents;
1885 struct kvm_mmu_pages pages;
1886 LIST_HEAD(invalid_list);
1888 kvm_mmu_pages_init(parent, &parents, &pages);
1889 while (mmu_unsync_walk(parent, &pages)) {
1890 bool protected = false;
1892 for_each_sp(pages, sp, parents, i)
1893 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1895 if (protected)
1896 kvm_flush_remote_tlbs(vcpu->kvm);
1898 for_each_sp(pages, sp, parents, i) {
1899 kvm_sync_page(vcpu, sp, &invalid_list);
1900 mmu_pages_clear_parents(&parents);
1902 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1903 cond_resched_lock(&vcpu->kvm->mmu_lock);
1904 kvm_mmu_pages_init(parent, &parents, &pages);
1908 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1910 int i;
1912 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1913 sp->spt[i] = 0ull;
1916 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1918 sp->write_flooding_count = 0;
1921 static void clear_sp_write_flooding_count(u64 *spte)
1923 struct kvm_mmu_page *sp = page_header(__pa(spte));
1925 __clear_sp_write_flooding_count(sp);
1928 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1930 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1933 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1934 gfn_t gfn,
1935 gva_t gaddr,
1936 unsigned level,
1937 int direct,
1938 unsigned access,
1939 u64 *parent_pte)
1941 union kvm_mmu_page_role role;
1942 unsigned quadrant;
1943 struct kvm_mmu_page *sp;
1944 bool need_sync = false;
1946 role = vcpu->arch.mmu.base_role;
1947 role.level = level;
1948 role.direct = direct;
1949 if (role.direct)
1950 role.cr4_pae = 0;
1951 role.access = access;
1952 if (!vcpu->arch.mmu.direct_map
1953 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1954 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1955 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1956 role.quadrant = quadrant;
1958 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1959 if (is_obsolete_sp(vcpu->kvm, sp))
1960 continue;
1962 if (!need_sync && sp->unsync)
1963 need_sync = true;
1965 if (sp->role.word != role.word)
1966 continue;
1968 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1969 break;
1971 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1972 if (sp->unsync_children) {
1973 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1974 kvm_mmu_mark_parents_unsync(sp);
1975 } else if (sp->unsync)
1976 kvm_mmu_mark_parents_unsync(sp);
1978 __clear_sp_write_flooding_count(sp);
1979 trace_kvm_mmu_get_page(sp, false);
1980 return sp;
1982 ++vcpu->kvm->stat.mmu_cache_miss;
1983 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1984 if (!sp)
1985 return sp;
1986 sp->gfn = gfn;
1987 sp->role = role;
1988 hlist_add_head(&sp->hash_link,
1989 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1990 if (!direct) {
1991 if (rmap_write_protect(vcpu->kvm, gfn))
1992 kvm_flush_remote_tlbs(vcpu->kvm);
1993 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1994 kvm_sync_pages(vcpu, gfn);
1996 account_shadowed(vcpu->kvm, gfn);
1998 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1999 init_shadow_page_table(sp);
2000 trace_kvm_mmu_get_page(sp, true);
2001 return sp;
2004 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2005 struct kvm_vcpu *vcpu, u64 addr)
2007 iterator->addr = addr;
2008 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2009 iterator->level = vcpu->arch.mmu.shadow_root_level;
2011 if (iterator->level == PT64_ROOT_LEVEL &&
2012 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2013 !vcpu->arch.mmu.direct_map)
2014 --iterator->level;
2016 if (iterator->level == PT32E_ROOT_LEVEL) {
2017 iterator->shadow_addr
2018 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2019 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2020 --iterator->level;
2021 if (!iterator->shadow_addr)
2022 iterator->level = 0;
2026 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2028 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2029 return false;
2031 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2032 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2033 return true;
2036 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2037 u64 spte)
2039 if (is_last_spte(spte, iterator->level)) {
2040 iterator->level = 0;
2041 return;
2044 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2045 --iterator->level;
2048 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2050 return __shadow_walk_next(iterator, *iterator->sptep);
2053 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2055 u64 spte;
2057 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2058 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2060 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2061 shadow_user_mask | shadow_x_mask;
2063 if (accessed)
2064 spte |= shadow_accessed_mask;
2066 mmu_spte_set(sptep, spte);
2069 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2070 unsigned direct_access)
2072 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2073 struct kvm_mmu_page *child;
2076 * For the direct sp, if the guest pte's dirty bit
2077 * changed form clean to dirty, it will corrupt the
2078 * sp's access: allow writable in the read-only sp,
2079 * so we should update the spte at this point to get
2080 * a new sp with the correct access.
2082 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2083 if (child->role.access == direct_access)
2084 return;
2086 drop_parent_pte(child, sptep);
2087 kvm_flush_remote_tlbs(vcpu->kvm);
2091 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2092 u64 *spte)
2094 u64 pte;
2095 struct kvm_mmu_page *child;
2097 pte = *spte;
2098 if (is_shadow_present_pte(pte)) {
2099 if (is_last_spte(pte, sp->role.level)) {
2100 drop_spte(kvm, spte);
2101 if (is_large_pte(pte))
2102 --kvm->stat.lpages;
2103 } else {
2104 child = page_header(pte & PT64_BASE_ADDR_MASK);
2105 drop_parent_pte(child, spte);
2107 return true;
2110 if (is_mmio_spte(pte))
2111 mmu_spte_clear_no_track(spte);
2113 return false;
2116 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2117 struct kvm_mmu_page *sp)
2119 unsigned i;
2121 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2122 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2125 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2127 mmu_page_remove_parent_pte(sp, parent_pte);
2130 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2132 u64 *sptep;
2133 struct rmap_iterator iter;
2135 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2136 drop_parent_pte(sp, sptep);
2139 static int mmu_zap_unsync_children(struct kvm *kvm,
2140 struct kvm_mmu_page *parent,
2141 struct list_head *invalid_list)
2143 int i, zapped = 0;
2144 struct mmu_page_path parents;
2145 struct kvm_mmu_pages pages;
2147 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2148 return 0;
2150 kvm_mmu_pages_init(parent, &parents, &pages);
2151 while (mmu_unsync_walk(parent, &pages)) {
2152 struct kvm_mmu_page *sp;
2154 for_each_sp(pages, sp, parents, i) {
2155 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2156 mmu_pages_clear_parents(&parents);
2157 zapped++;
2159 kvm_mmu_pages_init(parent, &parents, &pages);
2162 return zapped;
2165 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2166 struct list_head *invalid_list)
2168 int ret;
2170 trace_kvm_mmu_prepare_zap_page(sp);
2171 ++kvm->stat.mmu_shadow_zapped;
2172 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2173 kvm_mmu_page_unlink_children(kvm, sp);
2174 kvm_mmu_unlink_parents(kvm, sp);
2176 if (!sp->role.invalid && !sp->role.direct)
2177 unaccount_shadowed(kvm, sp->gfn);
2179 if (sp->unsync)
2180 kvm_unlink_unsync_page(kvm, sp);
2181 if (!sp->root_count) {
2182 /* Count self */
2183 ret++;
2184 list_move(&sp->link, invalid_list);
2185 kvm_mod_used_mmu_pages(kvm, -1);
2186 } else {
2187 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2190 * The obsolete pages can not be used on any vcpus.
2191 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2193 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2194 kvm_reload_remote_mmus(kvm);
2197 sp->role.invalid = 1;
2198 return ret;
2201 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2202 struct list_head *invalid_list)
2204 struct kvm_mmu_page *sp, *nsp;
2206 if (list_empty(invalid_list))
2207 return;
2210 * wmb: make sure everyone sees our modifications to the page tables
2211 * rmb: make sure we see changes to vcpu->mode
2213 smp_mb();
2216 * Wait for all vcpus to exit guest mode and/or lockless shadow
2217 * page table walks.
2219 kvm_flush_remote_tlbs(kvm);
2221 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2222 WARN_ON(!sp->role.invalid || sp->root_count);
2223 kvm_mmu_free_page(sp);
2227 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2228 struct list_head *invalid_list)
2230 struct kvm_mmu_page *sp;
2232 if (list_empty(&kvm->arch.active_mmu_pages))
2233 return false;
2235 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2236 struct kvm_mmu_page, link);
2237 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2239 return true;
2243 * Changing the number of mmu pages allocated to the vm
2244 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2246 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2248 LIST_HEAD(invalid_list);
2250 spin_lock(&kvm->mmu_lock);
2252 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2253 /* Need to free some mmu pages to achieve the goal. */
2254 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2255 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2256 break;
2258 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2259 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2262 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2264 spin_unlock(&kvm->mmu_lock);
2267 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2269 struct kvm_mmu_page *sp;
2270 LIST_HEAD(invalid_list);
2271 int r;
2273 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2274 r = 0;
2275 spin_lock(&kvm->mmu_lock);
2276 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2277 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2278 sp->role.word);
2279 r = 1;
2280 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2282 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2283 spin_unlock(&kvm->mmu_lock);
2285 return r;
2287 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2290 * The function is based on mtrr_type_lookup() in
2291 * arch/x86/kernel/cpu/mtrr/generic.c
2293 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2294 u64 start, u64 end)
2296 int i;
2297 u64 base, mask;
2298 u8 prev_match, curr_match;
2299 int num_var_ranges = KVM_NR_VAR_MTRR;
2301 if (!mtrr_state->enabled)
2302 return 0xFF;
2304 /* Make end inclusive end, instead of exclusive */
2305 end--;
2307 /* Look in fixed ranges. Just return the type as per start */
2308 if (mtrr_state->have_fixed && (start < 0x100000)) {
2309 int idx;
2311 if (start < 0x80000) {
2312 idx = 0;
2313 idx += (start >> 16);
2314 return mtrr_state->fixed_ranges[idx];
2315 } else if (start < 0xC0000) {
2316 idx = 1 * 8;
2317 idx += ((start - 0x80000) >> 14);
2318 return mtrr_state->fixed_ranges[idx];
2319 } else if (start < 0x1000000) {
2320 idx = 3 * 8;
2321 idx += ((start - 0xC0000) >> 12);
2322 return mtrr_state->fixed_ranges[idx];
2327 * Look in variable ranges
2328 * Look of multiple ranges matching this address and pick type
2329 * as per MTRR precedence
2331 if (!(mtrr_state->enabled & 2))
2332 return mtrr_state->def_type;
2334 prev_match = 0xFF;
2335 for (i = 0; i < num_var_ranges; ++i) {
2336 unsigned short start_state, end_state;
2338 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2339 continue;
2341 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2342 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2343 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2344 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2346 start_state = ((start & mask) == (base & mask));
2347 end_state = ((end & mask) == (base & mask));
2348 if (start_state != end_state)
2349 return 0xFE;
2351 if ((start & mask) != (base & mask))
2352 continue;
2354 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2355 if (prev_match == 0xFF) {
2356 prev_match = curr_match;
2357 continue;
2360 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2361 curr_match == MTRR_TYPE_UNCACHABLE)
2362 return MTRR_TYPE_UNCACHABLE;
2364 if ((prev_match == MTRR_TYPE_WRBACK &&
2365 curr_match == MTRR_TYPE_WRTHROUGH) ||
2366 (prev_match == MTRR_TYPE_WRTHROUGH &&
2367 curr_match == MTRR_TYPE_WRBACK)) {
2368 prev_match = MTRR_TYPE_WRTHROUGH;
2369 curr_match = MTRR_TYPE_WRTHROUGH;
2372 if (prev_match != curr_match)
2373 return MTRR_TYPE_UNCACHABLE;
2376 if (prev_match != 0xFF)
2377 return prev_match;
2379 return mtrr_state->def_type;
2382 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2384 u8 mtrr;
2386 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2387 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2388 if (mtrr == 0xfe || mtrr == 0xff)
2389 mtrr = MTRR_TYPE_WRBACK;
2390 return mtrr;
2392 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2394 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2396 trace_kvm_mmu_unsync_page(sp);
2397 ++vcpu->kvm->stat.mmu_unsync;
2398 sp->unsync = 1;
2400 kvm_mmu_mark_parents_unsync(sp);
2403 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2405 struct kvm_mmu_page *s;
2407 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2408 if (s->unsync)
2409 continue;
2410 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2411 __kvm_unsync_page(vcpu, s);
2415 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2416 bool can_unsync)
2418 struct kvm_mmu_page *s;
2419 bool need_unsync = false;
2421 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2422 if (!can_unsync)
2423 return 1;
2425 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2426 return 1;
2428 if (!s->unsync)
2429 need_unsync = true;
2431 if (need_unsync)
2432 kvm_unsync_pages(vcpu, gfn);
2433 return 0;
2436 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2437 unsigned pte_access, int level,
2438 gfn_t gfn, pfn_t pfn, bool speculative,
2439 bool can_unsync, bool host_writable)
2441 u64 spte;
2442 int ret = 0;
2444 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2445 return 0;
2447 spte = PT_PRESENT_MASK;
2448 if (!speculative)
2449 spte |= shadow_accessed_mask;
2451 if (pte_access & ACC_EXEC_MASK)
2452 spte |= shadow_x_mask;
2453 else
2454 spte |= shadow_nx_mask;
2456 if (pte_access & ACC_USER_MASK)
2457 spte |= shadow_user_mask;
2459 if (level > PT_PAGE_TABLE_LEVEL)
2460 spte |= PT_PAGE_SIZE_MASK;
2461 if (tdp_enabled)
2462 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2463 kvm_is_reserved_pfn(pfn));
2465 if (host_writable)
2466 spte |= SPTE_HOST_WRITEABLE;
2467 else
2468 pte_access &= ~ACC_WRITE_MASK;
2470 spte |= (u64)pfn << PAGE_SHIFT;
2472 if (pte_access & ACC_WRITE_MASK) {
2475 * Other vcpu creates new sp in the window between
2476 * mapping_level() and acquiring mmu-lock. We can
2477 * allow guest to retry the access, the mapping can
2478 * be fixed if guest refault.
2480 if (level > PT_PAGE_TABLE_LEVEL &&
2481 has_wrprotected_page(vcpu->kvm, gfn, level))
2482 goto done;
2484 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2487 * Optimization: for pte sync, if spte was writable the hash
2488 * lookup is unnecessary (and expensive). Write protection
2489 * is responsibility of mmu_get_page / kvm_sync_page.
2490 * Same reasoning can be applied to dirty page accounting.
2492 if (!can_unsync && is_writable_pte(*sptep))
2493 goto set_pte;
2495 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2496 pgprintk("%s: found shadow page for %llx, marking ro\n",
2497 __func__, gfn);
2498 ret = 1;
2499 pte_access &= ~ACC_WRITE_MASK;
2500 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2504 if (pte_access & ACC_WRITE_MASK)
2505 mark_page_dirty(vcpu->kvm, gfn);
2507 set_pte:
2508 if (mmu_spte_update(sptep, spte))
2509 kvm_flush_remote_tlbs(vcpu->kvm);
2510 done:
2511 return ret;
2514 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2515 unsigned pte_access, int write_fault, int *emulate,
2516 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2517 bool host_writable)
2519 int was_rmapped = 0;
2520 int rmap_count;
2522 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2523 *sptep, write_fault, gfn);
2525 if (is_rmap_spte(*sptep)) {
2527 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2528 * the parent of the now unreachable PTE.
2530 if (level > PT_PAGE_TABLE_LEVEL &&
2531 !is_large_pte(*sptep)) {
2532 struct kvm_mmu_page *child;
2533 u64 pte = *sptep;
2535 child = page_header(pte & PT64_BASE_ADDR_MASK);
2536 drop_parent_pte(child, sptep);
2537 kvm_flush_remote_tlbs(vcpu->kvm);
2538 } else if (pfn != spte_to_pfn(*sptep)) {
2539 pgprintk("hfn old %llx new %llx\n",
2540 spte_to_pfn(*sptep), pfn);
2541 drop_spte(vcpu->kvm, sptep);
2542 kvm_flush_remote_tlbs(vcpu->kvm);
2543 } else
2544 was_rmapped = 1;
2547 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2548 true, host_writable)) {
2549 if (write_fault)
2550 *emulate = 1;
2551 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2554 if (unlikely(is_mmio_spte(*sptep) && emulate))
2555 *emulate = 1;
2557 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2558 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2559 is_large_pte(*sptep)? "2MB" : "4kB",
2560 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2561 *sptep, sptep);
2562 if (!was_rmapped && is_large_pte(*sptep))
2563 ++vcpu->kvm->stat.lpages;
2565 if (is_shadow_present_pte(*sptep)) {
2566 if (!was_rmapped) {
2567 rmap_count = rmap_add(vcpu, sptep, gfn);
2568 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2569 rmap_recycle(vcpu, sptep, gfn);
2573 kvm_release_pfn_clean(pfn);
2576 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2577 bool no_dirty_log)
2579 struct kvm_memory_slot *slot;
2581 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2582 if (!slot)
2583 return KVM_PFN_ERR_FAULT;
2585 return gfn_to_pfn_memslot_atomic(slot, gfn);
2588 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2589 struct kvm_mmu_page *sp,
2590 u64 *start, u64 *end)
2592 struct page *pages[PTE_PREFETCH_NUM];
2593 unsigned access = sp->role.access;
2594 int i, ret;
2595 gfn_t gfn;
2597 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2598 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2599 return -1;
2601 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2602 if (ret <= 0)
2603 return -1;
2605 for (i = 0; i < ret; i++, gfn++, start++)
2606 mmu_set_spte(vcpu, start, access, 0, NULL,
2607 sp->role.level, gfn, page_to_pfn(pages[i]),
2608 true, true);
2610 return 0;
2613 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2614 struct kvm_mmu_page *sp, u64 *sptep)
2616 u64 *spte, *start = NULL;
2617 int i;
2619 WARN_ON(!sp->role.direct);
2621 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2622 spte = sp->spt + i;
2624 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2625 if (is_shadow_present_pte(*spte) || spte == sptep) {
2626 if (!start)
2627 continue;
2628 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2629 break;
2630 start = NULL;
2631 } else if (!start)
2632 start = spte;
2636 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2638 struct kvm_mmu_page *sp;
2641 * Since it's no accessed bit on EPT, it's no way to
2642 * distinguish between actually accessed translations
2643 * and prefetched, so disable pte prefetch if EPT is
2644 * enabled.
2646 if (!shadow_accessed_mask)
2647 return;
2649 sp = page_header(__pa(sptep));
2650 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2651 return;
2653 __direct_pte_prefetch(vcpu, sp, sptep);
2656 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2657 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2658 bool prefault)
2660 struct kvm_shadow_walk_iterator iterator;
2661 struct kvm_mmu_page *sp;
2662 int emulate = 0;
2663 gfn_t pseudo_gfn;
2665 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2666 return 0;
2668 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2669 if (iterator.level == level) {
2670 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2671 write, &emulate, level, gfn, pfn,
2672 prefault, map_writable);
2673 direct_pte_prefetch(vcpu, iterator.sptep);
2674 ++vcpu->stat.pf_fixed;
2675 break;
2678 drop_large_spte(vcpu, iterator.sptep);
2679 if (!is_shadow_present_pte(*iterator.sptep)) {
2680 u64 base_addr = iterator.addr;
2682 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2683 pseudo_gfn = base_addr >> PAGE_SHIFT;
2684 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2685 iterator.level - 1,
2686 1, ACC_ALL, iterator.sptep);
2688 link_shadow_page(iterator.sptep, sp, true);
2691 return emulate;
2694 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2696 siginfo_t info;
2698 info.si_signo = SIGBUS;
2699 info.si_errno = 0;
2700 info.si_code = BUS_MCEERR_AR;
2701 info.si_addr = (void __user *)address;
2702 info.si_addr_lsb = PAGE_SHIFT;
2704 send_sig_info(SIGBUS, &info, tsk);
2707 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2710 * Do not cache the mmio info caused by writing the readonly gfn
2711 * into the spte otherwise read access on readonly gfn also can
2712 * caused mmio page fault and treat it as mmio access.
2713 * Return 1 to tell kvm to emulate it.
2715 if (pfn == KVM_PFN_ERR_RO_FAULT)
2716 return 1;
2718 if (pfn == KVM_PFN_ERR_HWPOISON) {
2719 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2720 return 0;
2723 return -EFAULT;
2726 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2727 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2729 pfn_t pfn = *pfnp;
2730 gfn_t gfn = *gfnp;
2731 int level = *levelp;
2734 * Check if it's a transparent hugepage. If this would be an
2735 * hugetlbfs page, level wouldn't be set to
2736 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2737 * here.
2739 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2740 level == PT_PAGE_TABLE_LEVEL &&
2741 PageTransCompound(pfn_to_page(pfn)) &&
2742 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2743 unsigned long mask;
2745 * mmu_notifier_retry was successful and we hold the
2746 * mmu_lock here, so the pmd can't become splitting
2747 * from under us, and in turn
2748 * __split_huge_page_refcount() can't run from under
2749 * us and we can safely transfer the refcount from
2750 * PG_tail to PG_head as we switch the pfn to tail to
2751 * head.
2753 *levelp = level = PT_DIRECTORY_LEVEL;
2754 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2755 VM_BUG_ON((gfn & mask) != (pfn & mask));
2756 if (pfn & mask) {
2757 gfn &= ~mask;
2758 *gfnp = gfn;
2759 kvm_release_pfn_clean(pfn);
2760 pfn &= ~mask;
2761 kvm_get_pfn(pfn);
2762 *pfnp = pfn;
2767 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2768 pfn_t pfn, unsigned access, int *ret_val)
2770 bool ret = true;
2772 /* The pfn is invalid, report the error! */
2773 if (unlikely(is_error_pfn(pfn))) {
2774 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2775 goto exit;
2778 if (unlikely(is_noslot_pfn(pfn)))
2779 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2781 ret = false;
2782 exit:
2783 return ret;
2786 static bool page_fault_can_be_fast(u32 error_code)
2789 * Do not fix the mmio spte with invalid generation number which
2790 * need to be updated by slow page fault path.
2792 if (unlikely(error_code & PFERR_RSVD_MASK))
2793 return false;
2796 * #PF can be fast only if the shadow page table is present and it
2797 * is caused by write-protect, that means we just need change the
2798 * W bit of the spte which can be done out of mmu-lock.
2800 if (!(error_code & PFERR_PRESENT_MASK) ||
2801 !(error_code & PFERR_WRITE_MASK))
2802 return false;
2804 return true;
2807 static bool
2808 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2809 u64 *sptep, u64 spte)
2811 gfn_t gfn;
2813 WARN_ON(!sp->role.direct);
2816 * The gfn of direct spte is stable since it is calculated
2817 * by sp->gfn.
2819 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2821 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2822 mark_page_dirty(vcpu->kvm, gfn);
2824 return true;
2828 * Return value:
2829 * - true: let the vcpu to access on the same address again.
2830 * - false: let the real page fault path to fix it.
2832 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2833 u32 error_code)
2835 struct kvm_shadow_walk_iterator iterator;
2836 struct kvm_mmu_page *sp;
2837 bool ret = false;
2838 u64 spte = 0ull;
2840 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2841 return false;
2843 if (!page_fault_can_be_fast(error_code))
2844 return false;
2846 walk_shadow_page_lockless_begin(vcpu);
2847 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2848 if (!is_shadow_present_pte(spte) || iterator.level < level)
2849 break;
2852 * If the mapping has been changed, let the vcpu fault on the
2853 * same address again.
2855 if (!is_rmap_spte(spte)) {
2856 ret = true;
2857 goto exit;
2860 sp = page_header(__pa(iterator.sptep));
2861 if (!is_last_spte(spte, sp->role.level))
2862 goto exit;
2865 * Check if it is a spurious fault caused by TLB lazily flushed.
2867 * Need not check the access of upper level table entries since
2868 * they are always ACC_ALL.
2870 if (is_writable_pte(spte)) {
2871 ret = true;
2872 goto exit;
2876 * Currently, to simplify the code, only the spte write-protected
2877 * by dirty-log can be fast fixed.
2879 if (!spte_is_locklessly_modifiable(spte))
2880 goto exit;
2883 * Do not fix write-permission on the large spte since we only dirty
2884 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2885 * that means other pages are missed if its slot is dirty-logged.
2887 * Instead, we let the slow page fault path create a normal spte to
2888 * fix the access.
2890 * See the comments in kvm_arch_commit_memory_region().
2892 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2893 goto exit;
2896 * Currently, fast page fault only works for direct mapping since
2897 * the gfn is not stable for indirect shadow page.
2898 * See Documentation/virtual/kvm/locking.txt to get more detail.
2900 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2901 exit:
2902 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2903 spte, ret);
2904 walk_shadow_page_lockless_end(vcpu);
2906 return ret;
2909 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2910 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2911 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2913 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2914 gfn_t gfn, bool prefault)
2916 int r;
2917 int level;
2918 int force_pt_level;
2919 pfn_t pfn;
2920 unsigned long mmu_seq;
2921 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2923 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2924 if (likely(!force_pt_level)) {
2925 level = mapping_level(vcpu, gfn);
2927 * This path builds a PAE pagetable - so we can map
2928 * 2mb pages at maximum. Therefore check if the level
2929 * is larger than that.
2931 if (level > PT_DIRECTORY_LEVEL)
2932 level = PT_DIRECTORY_LEVEL;
2934 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2935 } else
2936 level = PT_PAGE_TABLE_LEVEL;
2938 if (fast_page_fault(vcpu, v, level, error_code))
2939 return 0;
2941 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2942 smp_rmb();
2944 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2945 return 0;
2947 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2948 return r;
2950 spin_lock(&vcpu->kvm->mmu_lock);
2951 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2952 goto out_unlock;
2953 make_mmu_pages_available(vcpu);
2954 if (likely(!force_pt_level))
2955 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2956 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2957 prefault);
2958 spin_unlock(&vcpu->kvm->mmu_lock);
2961 return r;
2963 out_unlock:
2964 spin_unlock(&vcpu->kvm->mmu_lock);
2965 kvm_release_pfn_clean(pfn);
2966 return 0;
2970 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2972 int i;
2973 struct kvm_mmu_page *sp;
2974 LIST_HEAD(invalid_list);
2976 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2977 return;
2979 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2980 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2981 vcpu->arch.mmu.direct_map)) {
2982 hpa_t root = vcpu->arch.mmu.root_hpa;
2984 spin_lock(&vcpu->kvm->mmu_lock);
2985 sp = page_header(root);
2986 --sp->root_count;
2987 if (!sp->root_count && sp->role.invalid) {
2988 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2989 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2991 spin_unlock(&vcpu->kvm->mmu_lock);
2992 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2993 return;
2996 spin_lock(&vcpu->kvm->mmu_lock);
2997 for (i = 0; i < 4; ++i) {
2998 hpa_t root = vcpu->arch.mmu.pae_root[i];
3000 if (root) {
3001 root &= PT64_BASE_ADDR_MASK;
3002 sp = page_header(root);
3003 --sp->root_count;
3004 if (!sp->root_count && sp->role.invalid)
3005 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3006 &invalid_list);
3008 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3010 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3011 spin_unlock(&vcpu->kvm->mmu_lock);
3012 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3015 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3017 int ret = 0;
3019 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3020 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021 ret = 1;
3024 return ret;
3027 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3029 struct kvm_mmu_page *sp;
3030 unsigned i;
3032 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3033 spin_lock(&vcpu->kvm->mmu_lock);
3034 make_mmu_pages_available(vcpu);
3035 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3036 1, ACC_ALL, NULL);
3037 ++sp->root_count;
3038 spin_unlock(&vcpu->kvm->mmu_lock);
3039 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3040 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3041 for (i = 0; i < 4; ++i) {
3042 hpa_t root = vcpu->arch.mmu.pae_root[i];
3044 ASSERT(!VALID_PAGE(root));
3045 spin_lock(&vcpu->kvm->mmu_lock);
3046 make_mmu_pages_available(vcpu);
3047 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3048 i << 30,
3049 PT32_ROOT_LEVEL, 1, ACC_ALL,
3050 NULL);
3051 root = __pa(sp->spt);
3052 ++sp->root_count;
3053 spin_unlock(&vcpu->kvm->mmu_lock);
3054 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3056 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3057 } else
3058 BUG();
3060 return 0;
3063 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3065 struct kvm_mmu_page *sp;
3066 u64 pdptr, pm_mask;
3067 gfn_t root_gfn;
3068 int i;
3070 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3072 if (mmu_check_root(vcpu, root_gfn))
3073 return 1;
3076 * Do we shadow a long mode page table? If so we need to
3077 * write-protect the guests page table root.
3079 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3080 hpa_t root = vcpu->arch.mmu.root_hpa;
3082 ASSERT(!VALID_PAGE(root));
3084 spin_lock(&vcpu->kvm->mmu_lock);
3085 make_mmu_pages_available(vcpu);
3086 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3087 0, ACC_ALL, NULL);
3088 root = __pa(sp->spt);
3089 ++sp->root_count;
3090 spin_unlock(&vcpu->kvm->mmu_lock);
3091 vcpu->arch.mmu.root_hpa = root;
3092 return 0;
3096 * We shadow a 32 bit page table. This may be a legacy 2-level
3097 * or a PAE 3-level page table. In either case we need to be aware that
3098 * the shadow page table may be a PAE or a long mode page table.
3100 pm_mask = PT_PRESENT_MASK;
3101 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3102 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3104 for (i = 0; i < 4; ++i) {
3105 hpa_t root = vcpu->arch.mmu.pae_root[i];
3107 ASSERT(!VALID_PAGE(root));
3108 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3109 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3110 if (!is_present_gpte(pdptr)) {
3111 vcpu->arch.mmu.pae_root[i] = 0;
3112 continue;
3114 root_gfn = pdptr >> PAGE_SHIFT;
3115 if (mmu_check_root(vcpu, root_gfn))
3116 return 1;
3118 spin_lock(&vcpu->kvm->mmu_lock);
3119 make_mmu_pages_available(vcpu);
3120 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3121 PT32_ROOT_LEVEL, 0,
3122 ACC_ALL, NULL);
3123 root = __pa(sp->spt);
3124 ++sp->root_count;
3125 spin_unlock(&vcpu->kvm->mmu_lock);
3127 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3129 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3132 * If we shadow a 32 bit page table with a long mode page
3133 * table we enter this path.
3135 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3136 if (vcpu->arch.mmu.lm_root == NULL) {
3138 * The additional page necessary for this is only
3139 * allocated on demand.
3142 u64 *lm_root;
3144 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3145 if (lm_root == NULL)
3146 return 1;
3148 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3150 vcpu->arch.mmu.lm_root = lm_root;
3153 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3156 return 0;
3159 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3161 if (vcpu->arch.mmu.direct_map)
3162 return mmu_alloc_direct_roots(vcpu);
3163 else
3164 return mmu_alloc_shadow_roots(vcpu);
3167 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3169 int i;
3170 struct kvm_mmu_page *sp;
3172 if (vcpu->arch.mmu.direct_map)
3173 return;
3175 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3176 return;
3178 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3179 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3180 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3181 hpa_t root = vcpu->arch.mmu.root_hpa;
3182 sp = page_header(root);
3183 mmu_sync_children(vcpu, sp);
3184 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3185 return;
3187 for (i = 0; i < 4; ++i) {
3188 hpa_t root = vcpu->arch.mmu.pae_root[i];
3190 if (root && VALID_PAGE(root)) {
3191 root &= PT64_BASE_ADDR_MASK;
3192 sp = page_header(root);
3193 mmu_sync_children(vcpu, sp);
3196 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3199 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3201 spin_lock(&vcpu->kvm->mmu_lock);
3202 mmu_sync_roots(vcpu);
3203 spin_unlock(&vcpu->kvm->mmu_lock);
3205 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3207 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3208 u32 access, struct x86_exception *exception)
3210 if (exception)
3211 exception->error_code = 0;
3212 return vaddr;
3215 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3216 u32 access,
3217 struct x86_exception *exception)
3219 if (exception)
3220 exception->error_code = 0;
3221 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3224 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3226 if (direct)
3227 return vcpu_match_mmio_gpa(vcpu, addr);
3229 return vcpu_match_mmio_gva(vcpu, addr);
3234 * On direct hosts, the last spte is only allows two states
3235 * for mmio page fault:
3236 * - It is the mmio spte
3237 * - It is zapped or it is being zapped.
3239 * This function completely checks the spte when the last spte
3240 * is not the mmio spte.
3242 static bool check_direct_spte_mmio_pf(u64 spte)
3244 return __check_direct_spte_mmio_pf(spte);
3247 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3249 struct kvm_shadow_walk_iterator iterator;
3250 u64 spte = 0ull;
3252 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3253 return spte;
3255 walk_shadow_page_lockless_begin(vcpu);
3256 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3257 if (!is_shadow_present_pte(spte))
3258 break;
3259 walk_shadow_page_lockless_end(vcpu);
3261 return spte;
3264 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3266 u64 spte;
3268 if (quickly_check_mmio_pf(vcpu, addr, direct))
3269 return RET_MMIO_PF_EMULATE;
3271 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3273 if (is_mmio_spte(spte)) {
3274 gfn_t gfn = get_mmio_spte_gfn(spte);
3275 unsigned access = get_mmio_spte_access(spte);
3277 if (!check_mmio_spte(vcpu->kvm, spte))
3278 return RET_MMIO_PF_INVALID;
3280 if (direct)
3281 addr = 0;
3283 trace_handle_mmio_page_fault(addr, gfn, access);
3284 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3285 return RET_MMIO_PF_EMULATE;
3289 * It's ok if the gva is remapped by other cpus on shadow guest,
3290 * it's a BUG if the gfn is not a mmio page.
3292 if (direct && !check_direct_spte_mmio_pf(spte))
3293 return RET_MMIO_PF_BUG;
3296 * If the page table is zapped by other cpus, let CPU fault again on
3297 * the address.
3299 return RET_MMIO_PF_RETRY;
3301 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3303 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3304 u32 error_code, bool direct)
3306 int ret;
3308 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3309 WARN_ON(ret == RET_MMIO_PF_BUG);
3310 return ret;
3313 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3314 u32 error_code, bool prefault)
3316 gfn_t gfn;
3317 int r;
3319 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3321 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3322 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3324 if (likely(r != RET_MMIO_PF_INVALID))
3325 return r;
3328 r = mmu_topup_memory_caches(vcpu);
3329 if (r)
3330 return r;
3332 ASSERT(vcpu);
3333 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3335 gfn = gva >> PAGE_SHIFT;
3337 return nonpaging_map(vcpu, gva & PAGE_MASK,
3338 error_code, gfn, prefault);
3341 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3343 struct kvm_arch_async_pf arch;
3345 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3346 arch.gfn = gfn;
3347 arch.direct_map = vcpu->arch.mmu.direct_map;
3348 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3350 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3353 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3355 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3356 kvm_event_needs_reinjection(vcpu)))
3357 return false;
3359 return kvm_x86_ops->interrupt_allowed(vcpu);
3362 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3363 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3365 bool async;
3367 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3369 if (!async)
3370 return false; /* *pfn has correct page already */
3372 if (!prefault && can_do_async_pf(vcpu)) {
3373 trace_kvm_try_async_get_page(gva, gfn);
3374 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3375 trace_kvm_async_pf_doublefault(gva, gfn);
3376 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3377 return true;
3378 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3379 return true;
3382 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3384 return false;
3387 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3388 bool prefault)
3390 pfn_t pfn;
3391 int r;
3392 int level;
3393 int force_pt_level;
3394 gfn_t gfn = gpa >> PAGE_SHIFT;
3395 unsigned long mmu_seq;
3396 int write = error_code & PFERR_WRITE_MASK;
3397 bool map_writable;
3399 ASSERT(vcpu);
3400 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3402 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3403 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3405 if (likely(r != RET_MMIO_PF_INVALID))
3406 return r;
3409 r = mmu_topup_memory_caches(vcpu);
3410 if (r)
3411 return r;
3413 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3414 if (likely(!force_pt_level)) {
3415 level = mapping_level(vcpu, gfn);
3416 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3417 } else
3418 level = PT_PAGE_TABLE_LEVEL;
3420 if (fast_page_fault(vcpu, gpa, level, error_code))
3421 return 0;
3423 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3424 smp_rmb();
3426 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3427 return 0;
3429 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3430 return r;
3432 spin_lock(&vcpu->kvm->mmu_lock);
3433 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3434 goto out_unlock;
3435 make_mmu_pages_available(vcpu);
3436 if (likely(!force_pt_level))
3437 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3438 r = __direct_map(vcpu, gpa, write, map_writable,
3439 level, gfn, pfn, prefault);
3440 spin_unlock(&vcpu->kvm->mmu_lock);
3442 return r;
3444 out_unlock:
3445 spin_unlock(&vcpu->kvm->mmu_lock);
3446 kvm_release_pfn_clean(pfn);
3447 return 0;
3450 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3451 struct kvm_mmu *context)
3453 context->page_fault = nonpaging_page_fault;
3454 context->gva_to_gpa = nonpaging_gva_to_gpa;
3455 context->sync_page = nonpaging_sync_page;
3456 context->invlpg = nonpaging_invlpg;
3457 context->update_pte = nonpaging_update_pte;
3458 context->root_level = 0;
3459 context->shadow_root_level = PT32E_ROOT_LEVEL;
3460 context->root_hpa = INVALID_PAGE;
3461 context->direct_map = true;
3462 context->nx = false;
3465 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3467 mmu_free_roots(vcpu);
3470 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3472 return kvm_read_cr3(vcpu);
3475 static void inject_page_fault(struct kvm_vcpu *vcpu,
3476 struct x86_exception *fault)
3478 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3481 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3482 unsigned access, int *nr_present)
3484 if (unlikely(is_mmio_spte(*sptep))) {
3485 if (gfn != get_mmio_spte_gfn(*sptep)) {
3486 mmu_spte_clear_no_track(sptep);
3487 return true;
3490 (*nr_present)++;
3491 mark_mmio_spte(kvm, sptep, gfn, access);
3492 return true;
3495 return false;
3498 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3500 unsigned index;
3502 index = level - 1;
3503 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3504 return mmu->last_pte_bitmap & (1 << index);
3507 #define PTTYPE_EPT 18 /* arbitrary */
3508 #define PTTYPE PTTYPE_EPT
3509 #include "paging_tmpl.h"
3510 #undef PTTYPE
3512 #define PTTYPE 64
3513 #include "paging_tmpl.h"
3514 #undef PTTYPE
3516 #define PTTYPE 32
3517 #include "paging_tmpl.h"
3518 #undef PTTYPE
3520 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3521 struct kvm_mmu *context)
3523 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3524 u64 exb_bit_rsvd = 0;
3525 u64 gbpages_bit_rsvd = 0;
3526 u64 nonleaf_bit8_rsvd = 0;
3528 context->bad_mt_xwr = 0;
3530 if (!context->nx)
3531 exb_bit_rsvd = rsvd_bits(63, 63);
3532 if (!guest_cpuid_has_gbpages(vcpu))
3533 gbpages_bit_rsvd = rsvd_bits(7, 7);
3536 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3537 * leaf entries) on AMD CPUs only.
3539 if (guest_cpuid_is_amd(vcpu))
3540 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3542 switch (context->root_level) {
3543 case PT32_ROOT_LEVEL:
3544 /* no rsvd bits for 2 level 4K page table entries */
3545 context->rsvd_bits_mask[0][1] = 0;
3546 context->rsvd_bits_mask[0][0] = 0;
3547 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3549 if (!is_pse(vcpu)) {
3550 context->rsvd_bits_mask[1][1] = 0;
3551 break;
3554 if (is_cpuid_PSE36())
3555 /* 36bits PSE 4MB page */
3556 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3557 else
3558 /* 32 bits PSE 4MB page */
3559 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3560 break;
3561 case PT32E_ROOT_LEVEL:
3562 context->rsvd_bits_mask[0][2] =
3563 rsvd_bits(maxphyaddr, 63) |
3564 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3565 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566 rsvd_bits(maxphyaddr, 62); /* PDE */
3567 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568 rsvd_bits(maxphyaddr, 62); /* PTE */
3569 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3570 rsvd_bits(maxphyaddr, 62) |
3571 rsvd_bits(13, 20); /* large page */
3572 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3573 break;
3574 case PT64_ROOT_LEVEL:
3575 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3576 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3577 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3578 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3579 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3580 rsvd_bits(maxphyaddr, 51);
3581 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3582 rsvd_bits(maxphyaddr, 51);
3583 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3584 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3585 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3586 rsvd_bits(13, 29);
3587 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3588 rsvd_bits(maxphyaddr, 51) |
3589 rsvd_bits(13, 20); /* large page */
3590 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3591 break;
3595 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3596 struct kvm_mmu *context, bool execonly)
3598 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3599 int pte;
3601 context->rsvd_bits_mask[0][3] =
3602 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3603 context->rsvd_bits_mask[0][2] =
3604 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3605 context->rsvd_bits_mask[0][1] =
3606 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3607 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3609 /* large page */
3610 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3611 context->rsvd_bits_mask[1][2] =
3612 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3613 context->rsvd_bits_mask[1][1] =
3614 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3615 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3617 for (pte = 0; pte < 64; pte++) {
3618 int rwx_bits = pte & 7;
3619 int mt = pte >> 3;
3620 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3621 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3622 (rwx_bits == 0x4 && !execonly))
3623 context->bad_mt_xwr |= (1ull << pte);
3627 void update_permission_bitmask(struct kvm_vcpu *vcpu,
3628 struct kvm_mmu *mmu, bool ept)
3630 unsigned bit, byte, pfec;
3631 u8 map;
3632 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3634 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3635 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3636 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3637 pfec = byte << 1;
3638 map = 0;
3639 wf = pfec & PFERR_WRITE_MASK;
3640 uf = pfec & PFERR_USER_MASK;
3641 ff = pfec & PFERR_FETCH_MASK;
3643 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3644 * subject to SMAP restrictions, and cleared otherwise. The
3645 * bit is only meaningful if the SMAP bit is set in CR4.
3647 smapf = !(pfec & PFERR_RSVD_MASK);
3648 for (bit = 0; bit < 8; ++bit) {
3649 x = bit & ACC_EXEC_MASK;
3650 w = bit & ACC_WRITE_MASK;
3651 u = bit & ACC_USER_MASK;
3653 if (!ept) {
3654 /* Not really needed: !nx will cause pte.nx to fault */
3655 x |= !mmu->nx;
3656 /* Allow supervisor writes if !cr0.wp */
3657 w |= !is_write_protection(vcpu) && !uf;
3658 /* Disallow supervisor fetches of user code if cr4.smep */
3659 x &= !(cr4_smep && u && !uf);
3662 * SMAP:kernel-mode data accesses from user-mode
3663 * mappings should fault. A fault is considered
3664 * as a SMAP violation if all of the following
3665 * conditions are ture:
3666 * - X86_CR4_SMAP is set in CR4
3667 * - An user page is accessed
3668 * - Page fault in kernel mode
3669 * - if CPL = 3 or X86_EFLAGS_AC is clear
3671 * Here, we cover the first three conditions.
3672 * The fourth is computed dynamically in
3673 * permission_fault() and is in smapf.
3675 * Also, SMAP does not affect instruction
3676 * fetches, add the !ff check here to make it
3677 * clearer.
3679 smap = cr4_smap && u && !uf && !ff;
3680 } else
3681 /* Not really needed: no U/S accesses on ept */
3682 u = 1;
3684 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3685 (smapf && smap);
3686 map |= fault << bit;
3688 mmu->permissions[byte] = map;
3692 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3694 u8 map;
3695 unsigned level, root_level = mmu->root_level;
3696 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3698 if (root_level == PT32E_ROOT_LEVEL)
3699 --root_level;
3700 /* PT_PAGE_TABLE_LEVEL always terminates */
3701 map = 1 | (1 << ps_set_index);
3702 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3703 if (level <= PT_PDPE_LEVEL
3704 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3705 map |= 1 << (ps_set_index | (level - 1));
3707 mmu->last_pte_bitmap = map;
3710 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3711 struct kvm_mmu *context,
3712 int level)
3714 context->nx = is_nx(vcpu);
3715 context->root_level = level;
3717 reset_rsvds_bits_mask(vcpu, context);
3718 update_permission_bitmask(vcpu, context, false);
3719 update_last_pte_bitmap(vcpu, context);
3721 ASSERT(is_pae(vcpu));
3722 context->page_fault = paging64_page_fault;
3723 context->gva_to_gpa = paging64_gva_to_gpa;
3724 context->sync_page = paging64_sync_page;
3725 context->invlpg = paging64_invlpg;
3726 context->update_pte = paging64_update_pte;
3727 context->shadow_root_level = level;
3728 context->root_hpa = INVALID_PAGE;
3729 context->direct_map = false;
3732 static void paging64_init_context(struct kvm_vcpu *vcpu,
3733 struct kvm_mmu *context)
3735 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3738 static void paging32_init_context(struct kvm_vcpu *vcpu,
3739 struct kvm_mmu *context)
3741 context->nx = false;
3742 context->root_level = PT32_ROOT_LEVEL;
3744 reset_rsvds_bits_mask(vcpu, context);
3745 update_permission_bitmask(vcpu, context, false);
3746 update_last_pte_bitmap(vcpu, context);
3748 context->page_fault = paging32_page_fault;
3749 context->gva_to_gpa = paging32_gva_to_gpa;
3750 context->sync_page = paging32_sync_page;
3751 context->invlpg = paging32_invlpg;
3752 context->update_pte = paging32_update_pte;
3753 context->shadow_root_level = PT32E_ROOT_LEVEL;
3754 context->root_hpa = INVALID_PAGE;
3755 context->direct_map = false;
3758 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3759 struct kvm_mmu *context)
3761 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3764 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3766 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3768 context->base_role.word = 0;
3769 context->page_fault = tdp_page_fault;
3770 context->sync_page = nonpaging_sync_page;
3771 context->invlpg = nonpaging_invlpg;
3772 context->update_pte = nonpaging_update_pte;
3773 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3774 context->root_hpa = INVALID_PAGE;
3775 context->direct_map = true;
3776 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3777 context->get_cr3 = get_cr3;
3778 context->get_pdptr = kvm_pdptr_read;
3779 context->inject_page_fault = kvm_inject_page_fault;
3781 if (!is_paging(vcpu)) {
3782 context->nx = false;
3783 context->gva_to_gpa = nonpaging_gva_to_gpa;
3784 context->root_level = 0;
3785 } else if (is_long_mode(vcpu)) {
3786 context->nx = is_nx(vcpu);
3787 context->root_level = PT64_ROOT_LEVEL;
3788 reset_rsvds_bits_mask(vcpu, context);
3789 context->gva_to_gpa = paging64_gva_to_gpa;
3790 } else if (is_pae(vcpu)) {
3791 context->nx = is_nx(vcpu);
3792 context->root_level = PT32E_ROOT_LEVEL;
3793 reset_rsvds_bits_mask(vcpu, context);
3794 context->gva_to_gpa = paging64_gva_to_gpa;
3795 } else {
3796 context->nx = false;
3797 context->root_level = PT32_ROOT_LEVEL;
3798 reset_rsvds_bits_mask(vcpu, context);
3799 context->gva_to_gpa = paging32_gva_to_gpa;
3802 update_permission_bitmask(vcpu, context, false);
3803 update_last_pte_bitmap(vcpu, context);
3806 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3808 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3809 ASSERT(vcpu);
3810 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3812 if (!is_paging(vcpu))
3813 nonpaging_init_context(vcpu, context);
3814 else if (is_long_mode(vcpu))
3815 paging64_init_context(vcpu, context);
3816 else if (is_pae(vcpu))
3817 paging32E_init_context(vcpu, context);
3818 else
3819 paging32_init_context(vcpu, context);
3821 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3822 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3823 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3824 vcpu->arch.mmu.base_role.smep_andnot_wp
3825 = smep && !is_write_protection(vcpu);
3827 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3829 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3830 bool execonly)
3832 ASSERT(vcpu);
3833 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3835 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3837 context->nx = true;
3838 context->page_fault = ept_page_fault;
3839 context->gva_to_gpa = ept_gva_to_gpa;
3840 context->sync_page = ept_sync_page;
3841 context->invlpg = ept_invlpg;
3842 context->update_pte = ept_update_pte;
3843 context->root_level = context->shadow_root_level;
3844 context->root_hpa = INVALID_PAGE;
3845 context->direct_map = false;
3847 update_permission_bitmask(vcpu, context, true);
3848 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3850 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3852 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3854 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3855 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3856 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3857 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3858 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3861 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3863 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3865 g_context->get_cr3 = get_cr3;
3866 g_context->get_pdptr = kvm_pdptr_read;
3867 g_context->inject_page_fault = kvm_inject_page_fault;
3870 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3871 * translation of l2_gpa to l1_gpa addresses is done using the
3872 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3873 * functions between mmu and nested_mmu are swapped.
3875 if (!is_paging(vcpu)) {
3876 g_context->nx = false;
3877 g_context->root_level = 0;
3878 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3879 } else if (is_long_mode(vcpu)) {
3880 g_context->nx = is_nx(vcpu);
3881 g_context->root_level = PT64_ROOT_LEVEL;
3882 reset_rsvds_bits_mask(vcpu, g_context);
3883 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3884 } else if (is_pae(vcpu)) {
3885 g_context->nx = is_nx(vcpu);
3886 g_context->root_level = PT32E_ROOT_LEVEL;
3887 reset_rsvds_bits_mask(vcpu, g_context);
3888 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3889 } else {
3890 g_context->nx = false;
3891 g_context->root_level = PT32_ROOT_LEVEL;
3892 reset_rsvds_bits_mask(vcpu, g_context);
3893 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3896 update_permission_bitmask(vcpu, g_context, false);
3897 update_last_pte_bitmap(vcpu, g_context);
3900 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3902 if (mmu_is_nested(vcpu))
3903 return init_kvm_nested_mmu(vcpu);
3904 else if (tdp_enabled)
3905 return init_kvm_tdp_mmu(vcpu);
3906 else
3907 return init_kvm_softmmu(vcpu);
3910 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3912 ASSERT(vcpu);
3914 kvm_mmu_unload(vcpu);
3915 init_kvm_mmu(vcpu);
3917 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3919 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3921 int r;
3923 r = mmu_topup_memory_caches(vcpu);
3924 if (r)
3925 goto out;
3926 r = mmu_alloc_roots(vcpu);
3927 kvm_mmu_sync_roots(vcpu);
3928 if (r)
3929 goto out;
3930 /* set_cr3() should ensure TLB has been flushed */
3931 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3932 out:
3933 return r;
3935 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3937 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3939 mmu_free_roots(vcpu);
3940 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3942 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3944 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3945 struct kvm_mmu_page *sp, u64 *spte,
3946 const void *new)
3948 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3949 ++vcpu->kvm->stat.mmu_pde_zapped;
3950 return;
3953 ++vcpu->kvm->stat.mmu_pte_updated;
3954 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3957 static bool need_remote_flush(u64 old, u64 new)
3959 if (!is_shadow_present_pte(old))
3960 return false;
3961 if (!is_shadow_present_pte(new))
3962 return true;
3963 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3964 return true;
3965 old ^= shadow_nx_mask;
3966 new ^= shadow_nx_mask;
3967 return (old & ~new & PT64_PERM_MASK) != 0;
3970 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3971 bool remote_flush, bool local_flush)
3973 if (zap_page)
3974 return;
3976 if (remote_flush)
3977 kvm_flush_remote_tlbs(vcpu->kvm);
3978 else if (local_flush)
3979 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3982 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3983 const u8 *new, int *bytes)
3985 u64 gentry;
3986 int r;
3989 * Assume that the pte write on a page table of the same type
3990 * as the current vcpu paging mode since we update the sptes only
3991 * when they have the same mode.
3993 if (is_pae(vcpu) && *bytes == 4) {
3994 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3995 *gpa &= ~(gpa_t)7;
3996 *bytes = 8;
3997 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3998 if (r)
3999 gentry = 0;
4000 new = (const u8 *)&gentry;
4003 switch (*bytes) {
4004 case 4:
4005 gentry = *(const u32 *)new;
4006 break;
4007 case 8:
4008 gentry = *(const u64 *)new;
4009 break;
4010 default:
4011 gentry = 0;
4012 break;
4015 return gentry;
4019 * If we're seeing too many writes to a page, it may no longer be a page table,
4020 * or we may be forking, in which case it is better to unmap the page.
4022 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4025 * Skip write-flooding detected for the sp whose level is 1, because
4026 * it can become unsync, then the guest page is not write-protected.
4028 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4029 return false;
4031 return ++sp->write_flooding_count >= 3;
4035 * Misaligned accesses are too much trouble to fix up; also, they usually
4036 * indicate a page is not used as a page table.
4038 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4039 int bytes)
4041 unsigned offset, pte_size, misaligned;
4043 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4044 gpa, bytes, sp->role.word);
4046 offset = offset_in_page(gpa);
4047 pte_size = sp->role.cr4_pae ? 8 : 4;
4050 * Sometimes, the OS only writes the last one bytes to update status
4051 * bits, for example, in linux, andb instruction is used in clear_bit().
4053 if (!(offset & (pte_size - 1)) && bytes == 1)
4054 return false;
4056 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4057 misaligned |= bytes < 4;
4059 return misaligned;
4062 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4064 unsigned page_offset, quadrant;
4065 u64 *spte;
4066 int level;
4068 page_offset = offset_in_page(gpa);
4069 level = sp->role.level;
4070 *nspte = 1;
4071 if (!sp->role.cr4_pae) {
4072 page_offset <<= 1; /* 32->64 */
4074 * A 32-bit pde maps 4MB while the shadow pdes map
4075 * only 2MB. So we need to double the offset again
4076 * and zap two pdes instead of one.
4078 if (level == PT32_ROOT_LEVEL) {
4079 page_offset &= ~7; /* kill rounding error */
4080 page_offset <<= 1;
4081 *nspte = 2;
4083 quadrant = page_offset >> PAGE_SHIFT;
4084 page_offset &= ~PAGE_MASK;
4085 if (quadrant != sp->role.quadrant)
4086 return NULL;
4089 spte = &sp->spt[page_offset / sizeof(*spte)];
4090 return spte;
4093 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4094 const u8 *new, int bytes)
4096 gfn_t gfn = gpa >> PAGE_SHIFT;
4097 union kvm_mmu_page_role mask = { .word = 0 };
4098 struct kvm_mmu_page *sp;
4099 LIST_HEAD(invalid_list);
4100 u64 entry, gentry, *spte;
4101 int npte;
4102 bool remote_flush, local_flush, zap_page;
4105 * If we don't have indirect shadow pages, it means no page is
4106 * write-protected, so we can exit simply.
4108 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4109 return;
4111 zap_page = remote_flush = local_flush = false;
4113 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4115 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4118 * No need to care whether allocation memory is successful
4119 * or not since pte prefetch is skiped if it does not have
4120 * enough objects in the cache.
4122 mmu_topup_memory_caches(vcpu);
4124 spin_lock(&vcpu->kvm->mmu_lock);
4125 ++vcpu->kvm->stat.mmu_pte_write;
4126 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4128 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4129 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4130 if (detect_write_misaligned(sp, gpa, bytes) ||
4131 detect_write_flooding(sp)) {
4132 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4133 &invalid_list);
4134 ++vcpu->kvm->stat.mmu_flooded;
4135 continue;
4138 spte = get_written_sptes(sp, gpa, &npte);
4139 if (!spte)
4140 continue;
4142 local_flush = true;
4143 while (npte--) {
4144 entry = *spte;
4145 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4146 if (gentry &&
4147 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4148 & mask.word) && rmap_can_add(vcpu))
4149 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4150 if (need_remote_flush(entry, *spte))
4151 remote_flush = true;
4152 ++spte;
4155 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4156 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4157 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4158 spin_unlock(&vcpu->kvm->mmu_lock);
4161 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4163 gpa_t gpa;
4164 int r;
4166 if (vcpu->arch.mmu.direct_map)
4167 return 0;
4169 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4171 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4173 return r;
4175 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4177 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4179 LIST_HEAD(invalid_list);
4181 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4182 return;
4184 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4185 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4186 break;
4188 ++vcpu->kvm->stat.mmu_recycled;
4190 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4193 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4195 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4196 return vcpu_match_mmio_gpa(vcpu, addr);
4198 return vcpu_match_mmio_gva(vcpu, addr);
4201 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4202 void *insn, int insn_len)
4204 int r, emulation_type = EMULTYPE_RETRY;
4205 enum emulation_result er;
4207 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4208 if (r < 0)
4209 goto out;
4211 if (!r) {
4212 r = 1;
4213 goto out;
4216 if (is_mmio_page_fault(vcpu, cr2))
4217 emulation_type = 0;
4219 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4221 switch (er) {
4222 case EMULATE_DONE:
4223 return 1;
4224 case EMULATE_USER_EXIT:
4225 ++vcpu->stat.mmio_exits;
4226 /* fall through */
4227 case EMULATE_FAIL:
4228 return 0;
4229 default:
4230 BUG();
4232 out:
4233 return r;
4235 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4237 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4239 vcpu->arch.mmu.invlpg(vcpu, gva);
4240 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4241 ++vcpu->stat.invlpg;
4243 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4245 void kvm_enable_tdp(void)
4247 tdp_enabled = true;
4249 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4251 void kvm_disable_tdp(void)
4253 tdp_enabled = false;
4255 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4257 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4259 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4260 if (vcpu->arch.mmu.lm_root != NULL)
4261 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4264 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4266 struct page *page;
4267 int i;
4269 ASSERT(vcpu);
4272 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4273 * Therefore we need to allocate shadow page tables in the first
4274 * 4GB of memory, which happens to fit the DMA32 zone.
4276 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4277 if (!page)
4278 return -ENOMEM;
4280 vcpu->arch.mmu.pae_root = page_address(page);
4281 for (i = 0; i < 4; ++i)
4282 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4284 return 0;
4287 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4289 ASSERT(vcpu);
4291 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4292 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4293 vcpu->arch.mmu.translate_gpa = translate_gpa;
4294 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4296 return alloc_mmu_pages(vcpu);
4299 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4301 ASSERT(vcpu);
4302 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4304 init_kvm_mmu(vcpu);
4307 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4309 struct kvm_memory_slot *memslot;
4310 gfn_t last_gfn;
4311 int i;
4313 memslot = id_to_memslot(kvm->memslots, slot);
4314 last_gfn = memslot->base_gfn + memslot->npages - 1;
4316 spin_lock(&kvm->mmu_lock);
4318 for (i = PT_PAGE_TABLE_LEVEL;
4319 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4320 unsigned long *rmapp;
4321 unsigned long last_index, index;
4323 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4324 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4326 for (index = 0; index <= last_index; ++index, ++rmapp) {
4327 if (*rmapp)
4328 __rmap_write_protect(kvm, rmapp, false);
4330 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4331 cond_resched_lock(&kvm->mmu_lock);
4335 spin_unlock(&kvm->mmu_lock);
4338 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4339 * which do tlb flush out of mmu-lock should be serialized by
4340 * kvm->slots_lock otherwise tlb flush would be missed.
4342 lockdep_assert_held(&kvm->slots_lock);
4345 * We can flush all the TLBs out of the mmu lock without TLB
4346 * corruption since we just change the spte from writable to
4347 * readonly so that we only need to care the case of changing
4348 * spte from present to present (changing the spte from present
4349 * to nonpresent will flush all the TLBs immediately), in other
4350 * words, the only case we care is mmu_spte_update() where we
4351 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4352 * instead of PT_WRITABLE_MASK, that means it does not depend
4353 * on PT_WRITABLE_MASK anymore.
4355 kvm_flush_remote_tlbs(kvm);
4358 #define BATCH_ZAP_PAGES 10
4359 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4361 struct kvm_mmu_page *sp, *node;
4362 int batch = 0;
4364 restart:
4365 list_for_each_entry_safe_reverse(sp, node,
4366 &kvm->arch.active_mmu_pages, link) {
4367 int ret;
4370 * No obsolete page exists before new created page since
4371 * active_mmu_pages is the FIFO list.
4373 if (!is_obsolete_sp(kvm, sp))
4374 break;
4377 * Since we are reversely walking the list and the invalid
4378 * list will be moved to the head, skip the invalid page
4379 * can help us to avoid the infinity list walking.
4381 if (sp->role.invalid)
4382 continue;
4385 * Need not flush tlb since we only zap the sp with invalid
4386 * generation number.
4388 if (batch >= BATCH_ZAP_PAGES &&
4389 cond_resched_lock(&kvm->mmu_lock)) {
4390 batch = 0;
4391 goto restart;
4394 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4395 &kvm->arch.zapped_obsolete_pages);
4396 batch += ret;
4398 if (ret)
4399 goto restart;
4403 * Should flush tlb before free page tables since lockless-walking
4404 * may use the pages.
4406 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4410 * Fast invalidate all shadow pages and use lock-break technique
4411 * to zap obsolete pages.
4413 * It's required when memslot is being deleted or VM is being
4414 * destroyed, in these cases, we should ensure that KVM MMU does
4415 * not use any resource of the being-deleted slot or all slots
4416 * after calling the function.
4418 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4420 spin_lock(&kvm->mmu_lock);
4421 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4422 kvm->arch.mmu_valid_gen++;
4425 * Notify all vcpus to reload its shadow page table
4426 * and flush TLB. Then all vcpus will switch to new
4427 * shadow page table with the new mmu_valid_gen.
4429 * Note: we should do this under the protection of
4430 * mmu-lock, otherwise, vcpu would purge shadow page
4431 * but miss tlb flush.
4433 kvm_reload_remote_mmus(kvm);
4435 kvm_zap_obsolete_pages(kvm);
4436 spin_unlock(&kvm->mmu_lock);
4439 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4441 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4444 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4447 * The very rare case: if the generation-number is round,
4448 * zap all shadow pages.
4450 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4451 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4452 kvm_mmu_invalidate_zap_all_pages(kvm);
4456 static unsigned long
4457 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4459 struct kvm *kvm;
4460 int nr_to_scan = sc->nr_to_scan;
4461 unsigned long freed = 0;
4463 spin_lock(&kvm_lock);
4465 list_for_each_entry(kvm, &vm_list, vm_list) {
4466 int idx;
4467 LIST_HEAD(invalid_list);
4470 * Never scan more than sc->nr_to_scan VM instances.
4471 * Will not hit this condition practically since we do not try
4472 * to shrink more than one VM and it is very unlikely to see
4473 * !n_used_mmu_pages so many times.
4475 if (!nr_to_scan--)
4476 break;
4478 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4479 * here. We may skip a VM instance errorneosly, but we do not
4480 * want to shrink a VM that only started to populate its MMU
4481 * anyway.
4483 if (!kvm->arch.n_used_mmu_pages &&
4484 !kvm_has_zapped_obsolete_pages(kvm))
4485 continue;
4487 idx = srcu_read_lock(&kvm->srcu);
4488 spin_lock(&kvm->mmu_lock);
4490 if (kvm_has_zapped_obsolete_pages(kvm)) {
4491 kvm_mmu_commit_zap_page(kvm,
4492 &kvm->arch.zapped_obsolete_pages);
4493 goto unlock;
4496 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4497 freed++;
4498 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4500 unlock:
4501 spin_unlock(&kvm->mmu_lock);
4502 srcu_read_unlock(&kvm->srcu, idx);
4505 * unfair on small ones
4506 * per-vm shrinkers cry out
4507 * sadness comes quickly
4509 list_move_tail(&kvm->vm_list, &vm_list);
4510 break;
4513 spin_unlock(&kvm_lock);
4514 return freed;
4517 static unsigned long
4518 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4520 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4523 static struct shrinker mmu_shrinker = {
4524 .count_objects = mmu_shrink_count,
4525 .scan_objects = mmu_shrink_scan,
4526 .seeks = DEFAULT_SEEKS * 10,
4529 static void mmu_destroy_caches(void)
4531 if (pte_list_desc_cache)
4532 kmem_cache_destroy(pte_list_desc_cache);
4533 if (mmu_page_header_cache)
4534 kmem_cache_destroy(mmu_page_header_cache);
4537 int kvm_mmu_module_init(void)
4539 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4540 sizeof(struct pte_list_desc),
4541 0, 0, NULL);
4542 if (!pte_list_desc_cache)
4543 goto nomem;
4545 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4546 sizeof(struct kvm_mmu_page),
4547 0, 0, NULL);
4548 if (!mmu_page_header_cache)
4549 goto nomem;
4551 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4552 goto nomem;
4554 register_shrinker(&mmu_shrinker);
4556 return 0;
4558 nomem:
4559 mmu_destroy_caches();
4560 return -ENOMEM;
4564 * Caculate mmu pages needed for kvm.
4566 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4568 unsigned int nr_mmu_pages;
4569 unsigned int nr_pages = 0;
4570 struct kvm_memslots *slots;
4571 struct kvm_memory_slot *memslot;
4573 slots = kvm_memslots(kvm);
4575 kvm_for_each_memslot(memslot, slots)
4576 nr_pages += memslot->npages;
4578 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4579 nr_mmu_pages = max(nr_mmu_pages,
4580 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4582 return nr_mmu_pages;
4585 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4587 struct kvm_shadow_walk_iterator iterator;
4588 u64 spte;
4589 int nr_sptes = 0;
4591 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4592 return nr_sptes;
4594 walk_shadow_page_lockless_begin(vcpu);
4595 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4596 sptes[iterator.level-1] = spte;
4597 nr_sptes++;
4598 if (!is_shadow_present_pte(spte))
4599 break;
4601 walk_shadow_page_lockless_end(vcpu);
4603 return nr_sptes;
4605 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4607 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4609 ASSERT(vcpu);
4611 kvm_mmu_unload(vcpu);
4612 free_mmu_pages(vcpu);
4613 mmu_free_memory_caches(vcpu);
4616 void kvm_mmu_module_exit(void)
4618 mmu_destroy_caches();
4619 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4620 unregister_shrinker(&mmu_shrinker);
4621 mmu_audit_disable();