2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
41 #include <asm/virtext.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
58 static const struct x86_cpu_id vmx_cpu_id
[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
62 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
64 static bool __read_mostly enable_vpid
= 1;
65 module_param_named(vpid
, enable_vpid
, bool, 0444);
67 static bool __read_mostly flexpriority_enabled
= 1;
68 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
70 static bool __read_mostly enable_ept
= 1;
71 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
73 static bool __read_mostly enable_unrestricted_guest
= 1;
74 module_param_named(unrestricted_guest
,
75 enable_unrestricted_guest
, bool, S_IRUGO
);
77 static bool __read_mostly enable_ept_ad_bits
= 1;
78 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
80 static bool __read_mostly emulate_invalid_guest_state
= true;
81 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
83 static bool __read_mostly vmm_exclusive
= 1;
84 module_param(vmm_exclusive
, bool, S_IRUGO
);
86 static bool __read_mostly fasteoi
= 1;
87 module_param(fasteoi
, bool, S_IRUGO
);
89 static bool __read_mostly enable_apicv
= 1;
90 module_param(enable_apicv
, bool, S_IRUGO
);
92 static bool __read_mostly enable_shadow_vmcs
= 1;
93 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
99 static bool __read_mostly nested
= 0;
100 module_param(nested
, bool, S_IRUGO
);
102 static u64 __read_mostly host_xss
;
104 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
105 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
106 #define KVM_VM_CR0_ALWAYS_ON \
107 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
108 #define KVM_CR4_GUEST_OWNED_BITS \
109 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
110 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
112 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
113 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
115 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
117 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
120 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
121 * ple_gap: upper bound on the amount of time between two successive
122 * executions of PAUSE in a loop. Also indicate if ple enabled.
123 * According to test, this time is usually smaller than 128 cycles.
124 * ple_window: upper bound on the amount of time a guest is allowed to execute
125 * in a PAUSE loop. Tests indicate that most spinlocks are held for
126 * less than 2^12 cycles
127 * Time is measured based on a counter that runs at the same rate as the TSC,
128 * refer SDM volume 3b section 21.6.13 & 22.1.3.
130 #define KVM_VMX_DEFAULT_PLE_GAP 128
131 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
133 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
134 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
135 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
137 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
138 module_param(ple_gap
, int, S_IRUGO
);
140 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
141 module_param(ple_window
, int, S_IRUGO
);
143 /* Default doubles per-vcpu window every exit. */
144 static int ple_window_grow
= KVM_VMX_DEFAULT_PLE_WINDOW_GROW
;
145 module_param(ple_window_grow
, int, S_IRUGO
);
147 /* Default resets per-vcpu window every exit to ple_window. */
148 static int ple_window_shrink
= KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK
;
149 module_param(ple_window_shrink
, int, S_IRUGO
);
151 /* Default is to compute the maximum so we can never overflow. */
152 static int ple_window_actual_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
153 static int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
154 module_param(ple_window_max
, int, S_IRUGO
);
156 extern const ulong vmx_return
;
158 #define NR_AUTOLOAD_MSRS 8
159 #define VMCS02_POOL_SIZE 1
168 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
169 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
170 * loaded on this CPU (so we can clear them if the CPU goes down).
176 struct list_head loaded_vmcss_on_cpu_link
;
179 struct shared_msr_entry
{
186 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
187 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
188 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
189 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
190 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
191 * More than one of these structures may exist, if L1 runs multiple L2 guests.
192 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
193 * underlying hardware which will be used to run L2.
194 * This structure is packed to ensure that its layout is identical across
195 * machines (necessary for live migration).
196 * If there are changes in this struct, VMCS12_REVISION must be changed.
198 typedef u64 natural_width
;
199 struct __packed vmcs12
{
200 /* According to the Intel spec, a VMCS region must start with the
201 * following two fields. Then follow implementation-specific data.
206 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
207 u32 padding
[7]; /* room for future expansion */
212 u64 vm_exit_msr_store_addr
;
213 u64 vm_exit_msr_load_addr
;
214 u64 vm_entry_msr_load_addr
;
216 u64 virtual_apic_page_addr
;
217 u64 apic_access_addr
;
220 u64 guest_physical_address
;
221 u64 vmcs_link_pointer
;
222 u64 guest_ia32_debugctl
;
225 u64 guest_ia32_perf_global_ctrl
;
233 u64 host_ia32_perf_global_ctrl
;
234 u64 padding64
[8]; /* room for future expansion */
236 * To allow migration of L1 (complete with its L2 guests) between
237 * machines of different natural widths (32 or 64 bit), we cannot have
238 * unsigned long fields with no explict size. We use u64 (aliased
239 * natural_width) instead. Luckily, x86 is little-endian.
241 natural_width cr0_guest_host_mask
;
242 natural_width cr4_guest_host_mask
;
243 natural_width cr0_read_shadow
;
244 natural_width cr4_read_shadow
;
245 natural_width cr3_target_value0
;
246 natural_width cr3_target_value1
;
247 natural_width cr3_target_value2
;
248 natural_width cr3_target_value3
;
249 natural_width exit_qualification
;
250 natural_width guest_linear_address
;
251 natural_width guest_cr0
;
252 natural_width guest_cr3
;
253 natural_width guest_cr4
;
254 natural_width guest_es_base
;
255 natural_width guest_cs_base
;
256 natural_width guest_ss_base
;
257 natural_width guest_ds_base
;
258 natural_width guest_fs_base
;
259 natural_width guest_gs_base
;
260 natural_width guest_ldtr_base
;
261 natural_width guest_tr_base
;
262 natural_width guest_gdtr_base
;
263 natural_width guest_idtr_base
;
264 natural_width guest_dr7
;
265 natural_width guest_rsp
;
266 natural_width guest_rip
;
267 natural_width guest_rflags
;
268 natural_width guest_pending_dbg_exceptions
;
269 natural_width guest_sysenter_esp
;
270 natural_width guest_sysenter_eip
;
271 natural_width host_cr0
;
272 natural_width host_cr3
;
273 natural_width host_cr4
;
274 natural_width host_fs_base
;
275 natural_width host_gs_base
;
276 natural_width host_tr_base
;
277 natural_width host_gdtr_base
;
278 natural_width host_idtr_base
;
279 natural_width host_ia32_sysenter_esp
;
280 natural_width host_ia32_sysenter_eip
;
281 natural_width host_rsp
;
282 natural_width host_rip
;
283 natural_width paddingl
[8]; /* room for future expansion */
284 u32 pin_based_vm_exec_control
;
285 u32 cpu_based_vm_exec_control
;
286 u32 exception_bitmap
;
287 u32 page_fault_error_code_mask
;
288 u32 page_fault_error_code_match
;
289 u32 cr3_target_count
;
290 u32 vm_exit_controls
;
291 u32 vm_exit_msr_store_count
;
292 u32 vm_exit_msr_load_count
;
293 u32 vm_entry_controls
;
294 u32 vm_entry_msr_load_count
;
295 u32 vm_entry_intr_info_field
;
296 u32 vm_entry_exception_error_code
;
297 u32 vm_entry_instruction_len
;
299 u32 secondary_vm_exec_control
;
300 u32 vm_instruction_error
;
302 u32 vm_exit_intr_info
;
303 u32 vm_exit_intr_error_code
;
304 u32 idt_vectoring_info_field
;
305 u32 idt_vectoring_error_code
;
306 u32 vm_exit_instruction_len
;
307 u32 vmx_instruction_info
;
314 u32 guest_ldtr_limit
;
316 u32 guest_gdtr_limit
;
317 u32 guest_idtr_limit
;
318 u32 guest_es_ar_bytes
;
319 u32 guest_cs_ar_bytes
;
320 u32 guest_ss_ar_bytes
;
321 u32 guest_ds_ar_bytes
;
322 u32 guest_fs_ar_bytes
;
323 u32 guest_gs_ar_bytes
;
324 u32 guest_ldtr_ar_bytes
;
325 u32 guest_tr_ar_bytes
;
326 u32 guest_interruptibility_info
;
327 u32 guest_activity_state
;
328 u32 guest_sysenter_cs
;
329 u32 host_ia32_sysenter_cs
;
330 u32 vmx_preemption_timer_value
;
331 u32 padding32
[7]; /* room for future expansion */
332 u16 virtual_processor_id
;
333 u16 guest_es_selector
;
334 u16 guest_cs_selector
;
335 u16 guest_ss_selector
;
336 u16 guest_ds_selector
;
337 u16 guest_fs_selector
;
338 u16 guest_gs_selector
;
339 u16 guest_ldtr_selector
;
340 u16 guest_tr_selector
;
341 u16 host_es_selector
;
342 u16 host_cs_selector
;
343 u16 host_ss_selector
;
344 u16 host_ds_selector
;
345 u16 host_fs_selector
;
346 u16 host_gs_selector
;
347 u16 host_tr_selector
;
351 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
352 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
353 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
355 #define VMCS12_REVISION 0x11e57ed0
358 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
359 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
360 * current implementation, 4K are reserved to avoid future complications.
362 #define VMCS12_SIZE 0x1000
364 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
366 struct list_head list
;
368 struct loaded_vmcs vmcs02
;
372 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
373 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
376 /* Has the level1 guest done vmxon? */
380 /* The guest-physical address of the current VMCS L1 keeps for L2 */
382 /* The host-usable pointer to the above */
383 struct page
*current_vmcs12_page
;
384 struct vmcs12
*current_vmcs12
;
385 struct vmcs
*current_shadow_vmcs
;
387 * Indicates if the shadow vmcs must be updated with the
388 * data hold by vmcs12
390 bool sync_shadow_vmcs
;
392 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
393 struct list_head vmcs02_pool
;
395 u64 vmcs01_tsc_offset
;
396 /* L2 must run next, and mustn't decide to exit to L1. */
397 bool nested_run_pending
;
399 * Guest pages referred to in vmcs02 with host-physical pointers, so
400 * we must keep them pinned while L2 runs.
402 struct page
*apic_access_page
;
403 struct page
*virtual_apic_page
;
404 u64 msr_ia32_feature_control
;
406 struct hrtimer preemption_timer
;
407 bool preemption_timer_expired
;
409 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
413 #define POSTED_INTR_ON 0
414 /* Posted-Interrupt Descriptor */
416 u32 pir
[8]; /* Posted interrupt requested */
417 u32 control
; /* bit 0 of control is outstanding notification bit */
421 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
423 return test_and_set_bit(POSTED_INTR_ON
,
424 (unsigned long *)&pi_desc
->control
);
427 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
429 return test_and_clear_bit(POSTED_INTR_ON
,
430 (unsigned long *)&pi_desc
->control
);
433 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
435 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
439 struct kvm_vcpu vcpu
;
440 unsigned long host_rsp
;
442 bool nmi_known_unmasked
;
444 u32 idt_vectoring_info
;
446 struct shared_msr_entry
*guest_msrs
;
449 unsigned long host_idt_base
;
451 u64 msr_host_kernel_gs_base
;
452 u64 msr_guest_kernel_gs_base
;
454 u32 vm_entry_controls_shadow
;
455 u32 vm_exit_controls_shadow
;
457 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
458 * non-nested (L1) guest, it always points to vmcs01. For a nested
459 * guest (L2), it points to a different VMCS.
461 struct loaded_vmcs vmcs01
;
462 struct loaded_vmcs
*loaded_vmcs
;
463 bool __launched
; /* temporary, used in vmx_vcpu_run */
464 struct msr_autoload
{
466 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
467 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
471 u16 fs_sel
, gs_sel
, ldt_sel
;
475 int gs_ldt_reload_needed
;
476 int fs_reload_needed
;
477 u64 msr_host_bndcfgs
;
478 unsigned long vmcs_host_cr4
; /* May not match real cr4 */
483 struct kvm_segment segs
[8];
486 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
487 struct kvm_save_segment
{
495 bool emulation_required
;
497 /* Support for vnmi-less CPUs */
498 int soft_vnmi_blocked
;
500 s64 vnmi_blocked_time
;
505 /* Posted interrupt descriptor */
506 struct pi_desc pi_desc
;
508 /* Support for a guest hypervisor (nested VMX) */
509 struct nested_vmx nested
;
511 /* Dynamic PLE window. */
513 bool ple_window_dirty
;
516 enum segment_cache_field
{
525 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
527 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
530 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
531 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
532 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
533 [number##_HIGH] = VMCS12_OFFSET(name)+4
536 static unsigned long shadow_read_only_fields
[] = {
538 * We do NOT shadow fields that are modified when L0
539 * traps and emulates any vmx instruction (e.g. VMPTRLD,
540 * VMXON...) executed by L1.
541 * For example, VM_INSTRUCTION_ERROR is read
542 * by L1 if a vmx instruction fails (part of the error path).
543 * Note the code assumes this logic. If for some reason
544 * we start shadowing these fields then we need to
545 * force a shadow sync when L0 emulates vmx instructions
546 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
547 * by nested_vmx_failValid)
551 VM_EXIT_INSTRUCTION_LEN
,
552 IDT_VECTORING_INFO_FIELD
,
553 IDT_VECTORING_ERROR_CODE
,
554 VM_EXIT_INTR_ERROR_CODE
,
556 GUEST_LINEAR_ADDRESS
,
557 GUEST_PHYSICAL_ADDRESS
559 static int max_shadow_read_only_fields
=
560 ARRAY_SIZE(shadow_read_only_fields
);
562 static unsigned long shadow_read_write_fields
[] = {
569 GUEST_INTERRUPTIBILITY_INFO
,
582 CPU_BASED_VM_EXEC_CONTROL
,
583 VM_ENTRY_EXCEPTION_ERROR_CODE
,
584 VM_ENTRY_INTR_INFO_FIELD
,
585 VM_ENTRY_INSTRUCTION_LEN
,
586 VM_ENTRY_EXCEPTION_ERROR_CODE
,
592 static int max_shadow_read_write_fields
=
593 ARRAY_SIZE(shadow_read_write_fields
);
595 static const unsigned short vmcs_field_to_offset_table
[] = {
596 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
597 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
598 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
599 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
600 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
601 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
602 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
603 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
604 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
605 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
606 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
607 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
608 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
609 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
610 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
611 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
612 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
613 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
614 FIELD64(MSR_BITMAP
, msr_bitmap
),
615 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
616 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
617 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
618 FIELD64(TSC_OFFSET
, tsc_offset
),
619 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
620 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
621 FIELD64(EPT_POINTER
, ept_pointer
),
622 FIELD64(XSS_EXIT_BITMAP
, xss_exit_bitmap
),
623 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
624 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
625 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
626 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
627 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
628 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
629 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
630 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
631 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
632 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
633 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
634 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
635 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
636 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
637 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
638 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
639 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
640 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
641 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
642 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
643 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
644 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
645 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
646 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
647 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
648 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
649 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
650 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
651 FIELD(TPR_THRESHOLD
, tpr_threshold
),
652 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
653 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
654 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
655 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
656 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
657 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
658 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
659 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
660 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
661 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
662 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
663 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
664 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
665 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
666 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
667 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
668 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
669 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
670 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
671 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
672 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
673 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
674 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
675 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
676 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
677 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
678 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
679 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
680 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
681 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
682 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
683 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
684 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
685 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
686 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
687 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
688 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
689 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
690 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
691 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
692 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
693 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
694 FIELD(GUEST_CR0
, guest_cr0
),
695 FIELD(GUEST_CR3
, guest_cr3
),
696 FIELD(GUEST_CR4
, guest_cr4
),
697 FIELD(GUEST_ES_BASE
, guest_es_base
),
698 FIELD(GUEST_CS_BASE
, guest_cs_base
),
699 FIELD(GUEST_SS_BASE
, guest_ss_base
),
700 FIELD(GUEST_DS_BASE
, guest_ds_base
),
701 FIELD(GUEST_FS_BASE
, guest_fs_base
),
702 FIELD(GUEST_GS_BASE
, guest_gs_base
),
703 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
704 FIELD(GUEST_TR_BASE
, guest_tr_base
),
705 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
706 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
707 FIELD(GUEST_DR7
, guest_dr7
),
708 FIELD(GUEST_RSP
, guest_rsp
),
709 FIELD(GUEST_RIP
, guest_rip
),
710 FIELD(GUEST_RFLAGS
, guest_rflags
),
711 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
712 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
713 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
714 FIELD(HOST_CR0
, host_cr0
),
715 FIELD(HOST_CR3
, host_cr3
),
716 FIELD(HOST_CR4
, host_cr4
),
717 FIELD(HOST_FS_BASE
, host_fs_base
),
718 FIELD(HOST_GS_BASE
, host_gs_base
),
719 FIELD(HOST_TR_BASE
, host_tr_base
),
720 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
721 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
722 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
723 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
724 FIELD(HOST_RSP
, host_rsp
),
725 FIELD(HOST_RIP
, host_rip
),
728 static inline short vmcs_field_to_offset(unsigned long field
)
730 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table
) > SHRT_MAX
);
732 if (field
>= ARRAY_SIZE(vmcs_field_to_offset_table
) ||
733 vmcs_field_to_offset_table
[field
] == 0)
736 return vmcs_field_to_offset_table
[field
];
739 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
741 return to_vmx(vcpu
)->nested
.current_vmcs12
;
744 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
746 struct page
*page
= gfn_to_page(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
747 if (is_error_page(page
))
753 static void nested_release_page(struct page
*page
)
755 kvm_release_page_dirty(page
);
758 static void nested_release_page_clean(struct page
*page
)
760 kvm_release_page_clean(page
);
763 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
764 static u64
construct_eptp(unsigned long root_hpa
);
765 static void kvm_cpu_vmxon(u64 addr
);
766 static void kvm_cpu_vmxoff(void);
767 static bool vmx_mpx_supported(void);
768 static bool vmx_xsaves_supported(void);
769 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
770 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
771 struct kvm_segment
*var
, int seg
);
772 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
773 struct kvm_segment
*var
, int seg
);
774 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
775 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
776 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
);
777 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
);
778 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
779 static int alloc_identity_pagetable(struct kvm
*kvm
);
781 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
782 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
784 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
785 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
787 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
788 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
790 static unsigned long *vmx_io_bitmap_a
;
791 static unsigned long *vmx_io_bitmap_b
;
792 static unsigned long *vmx_msr_bitmap_legacy
;
793 static unsigned long *vmx_msr_bitmap_longmode
;
794 static unsigned long *vmx_msr_bitmap_legacy_x2apic
;
795 static unsigned long *vmx_msr_bitmap_longmode_x2apic
;
796 static unsigned long *vmx_vmread_bitmap
;
797 static unsigned long *vmx_vmwrite_bitmap
;
799 static bool cpu_has_load_ia32_efer
;
800 static bool cpu_has_load_perf_global_ctrl
;
802 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
803 static DEFINE_SPINLOCK(vmx_vpid_lock
);
805 static struct vmcs_config
{
809 u32 pin_based_exec_ctrl
;
810 u32 cpu_based_exec_ctrl
;
811 u32 cpu_based_2nd_exec_ctrl
;
816 static struct vmx_capability
{
821 #define VMX_SEGMENT_FIELD(seg) \
822 [VCPU_SREG_##seg] = { \
823 .selector = GUEST_##seg##_SELECTOR, \
824 .base = GUEST_##seg##_BASE, \
825 .limit = GUEST_##seg##_LIMIT, \
826 .ar_bytes = GUEST_##seg##_AR_BYTES, \
829 static const struct kvm_vmx_segment_field
{
834 } kvm_vmx_segment_fields
[] = {
835 VMX_SEGMENT_FIELD(CS
),
836 VMX_SEGMENT_FIELD(DS
),
837 VMX_SEGMENT_FIELD(ES
),
838 VMX_SEGMENT_FIELD(FS
),
839 VMX_SEGMENT_FIELD(GS
),
840 VMX_SEGMENT_FIELD(SS
),
841 VMX_SEGMENT_FIELD(TR
),
842 VMX_SEGMENT_FIELD(LDTR
),
845 static u64 host_efer
;
847 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
850 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
851 * away by decrementing the array size.
853 static const u32 vmx_msr_index
[] = {
855 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
857 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
860 static inline bool is_page_fault(u32 intr_info
)
862 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
863 INTR_INFO_VALID_MASK
)) ==
864 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
867 static inline bool is_no_device(u32 intr_info
)
869 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
870 INTR_INFO_VALID_MASK
)) ==
871 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
874 static inline bool is_invalid_opcode(u32 intr_info
)
876 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
877 INTR_INFO_VALID_MASK
)) ==
878 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
881 static inline bool is_external_interrupt(u32 intr_info
)
883 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
884 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
887 static inline bool is_machine_check(u32 intr_info
)
889 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
890 INTR_INFO_VALID_MASK
)) ==
891 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
894 static inline bool cpu_has_vmx_msr_bitmap(void)
896 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
899 static inline bool cpu_has_vmx_tpr_shadow(void)
901 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
904 static inline bool vm_need_tpr_shadow(struct kvm
*kvm
)
906 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
909 static inline bool cpu_has_secondary_exec_ctrls(void)
911 return vmcs_config
.cpu_based_exec_ctrl
&
912 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
915 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
917 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
918 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
921 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
923 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
924 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
927 static inline bool cpu_has_vmx_apic_register_virt(void)
929 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
930 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
933 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
935 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
936 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
939 static inline bool cpu_has_vmx_posted_intr(void)
941 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
944 static inline bool cpu_has_vmx_apicv(void)
946 return cpu_has_vmx_apic_register_virt() &&
947 cpu_has_vmx_virtual_intr_delivery() &&
948 cpu_has_vmx_posted_intr();
951 static inline bool cpu_has_vmx_flexpriority(void)
953 return cpu_has_vmx_tpr_shadow() &&
954 cpu_has_vmx_virtualize_apic_accesses();
957 static inline bool cpu_has_vmx_ept_execute_only(void)
959 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
962 static inline bool cpu_has_vmx_eptp_uncacheable(void)
964 return vmx_capability
.ept
& VMX_EPTP_UC_BIT
;
967 static inline bool cpu_has_vmx_eptp_writeback(void)
969 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
972 static inline bool cpu_has_vmx_ept_2m_page(void)
974 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
977 static inline bool cpu_has_vmx_ept_1g_page(void)
979 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
982 static inline bool cpu_has_vmx_ept_4levels(void)
984 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
987 static inline bool cpu_has_vmx_ept_ad_bits(void)
989 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
992 static inline bool cpu_has_vmx_invept_context(void)
994 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
997 static inline bool cpu_has_vmx_invept_global(void)
999 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
1002 static inline bool cpu_has_vmx_invvpid_single(void)
1004 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
1007 static inline bool cpu_has_vmx_invvpid_global(void)
1009 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
1012 static inline bool cpu_has_vmx_ept(void)
1014 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1015 SECONDARY_EXEC_ENABLE_EPT
;
1018 static inline bool cpu_has_vmx_unrestricted_guest(void)
1020 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1021 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1024 static inline bool cpu_has_vmx_ple(void)
1026 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1027 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1030 static inline bool vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
1032 return flexpriority_enabled
&& irqchip_in_kernel(kvm
);
1035 static inline bool cpu_has_vmx_vpid(void)
1037 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1038 SECONDARY_EXEC_ENABLE_VPID
;
1041 static inline bool cpu_has_vmx_rdtscp(void)
1043 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1044 SECONDARY_EXEC_RDTSCP
;
1047 static inline bool cpu_has_vmx_invpcid(void)
1049 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1050 SECONDARY_EXEC_ENABLE_INVPCID
;
1053 static inline bool cpu_has_virtual_nmis(void)
1055 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1058 static inline bool cpu_has_vmx_wbinvd_exit(void)
1060 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1061 SECONDARY_EXEC_WBINVD_EXITING
;
1064 static inline bool cpu_has_vmx_shadow_vmcs(void)
1067 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1068 /* check if the cpu supports writing r/o exit information fields */
1069 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1072 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1073 SECONDARY_EXEC_SHADOW_VMCS
;
1076 static inline bool report_flexpriority(void)
1078 return flexpriority_enabled
;
1081 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1083 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1086 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1088 return (vmcs12
->cpu_based_vm_exec_control
&
1089 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1090 (vmcs12
->secondary_vm_exec_control
& bit
);
1093 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1095 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
1098 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1100 return vmcs12
->pin_based_vm_exec_control
&
1101 PIN_BASED_VMX_PREEMPTION_TIMER
;
1104 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1106 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1109 static inline bool nested_cpu_has_xsaves(struct vmcs12
*vmcs12
)
1111 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
) &&
1112 vmx_xsaves_supported();
1115 static inline bool is_exception(u32 intr_info
)
1117 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1118 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
1121 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
1123 unsigned long exit_qualification
);
1124 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1125 struct vmcs12
*vmcs12
,
1126 u32 reason
, unsigned long qualification
);
1128 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1132 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1133 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1138 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1144 } operand
= { vpid
, 0, gva
};
1146 asm volatile (__ex(ASM_VMX_INVVPID
)
1147 /* CF==1 or ZF==1 --> rc = -1 */
1148 "; ja 1f ; ud2 ; 1:"
1149 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1152 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1156 } operand
= {eptp
, gpa
};
1158 asm volatile (__ex(ASM_VMX_INVEPT
)
1159 /* CF==1 or ZF==1 --> rc = -1 */
1160 "; ja 1f ; ud2 ; 1:\n"
1161 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1164 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1168 i
= __find_msr_index(vmx
, msr
);
1170 return &vmx
->guest_msrs
[i
];
1174 static void vmcs_clear(struct vmcs
*vmcs
)
1176 u64 phys_addr
= __pa(vmcs
);
1179 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1180 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1183 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1187 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1189 vmcs_clear(loaded_vmcs
->vmcs
);
1190 loaded_vmcs
->cpu
= -1;
1191 loaded_vmcs
->launched
= 0;
1194 static void vmcs_load(struct vmcs
*vmcs
)
1196 u64 phys_addr
= __pa(vmcs
);
1199 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1200 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1203 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1209 * This bitmap is used to indicate whether the vmclear
1210 * operation is enabled on all cpus. All disabled by
1213 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1215 static inline void crash_enable_local_vmclear(int cpu
)
1217 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1220 static inline void crash_disable_local_vmclear(int cpu
)
1222 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1225 static inline int crash_local_vmclear_enabled(int cpu
)
1227 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1230 static void crash_vmclear_local_loaded_vmcss(void)
1232 int cpu
= raw_smp_processor_id();
1233 struct loaded_vmcs
*v
;
1235 if (!crash_local_vmclear_enabled(cpu
))
1238 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1239 loaded_vmcss_on_cpu_link
)
1240 vmcs_clear(v
->vmcs
);
1243 static inline void crash_enable_local_vmclear(int cpu
) { }
1244 static inline void crash_disable_local_vmclear(int cpu
) { }
1245 #endif /* CONFIG_KEXEC */
1247 static void __loaded_vmcs_clear(void *arg
)
1249 struct loaded_vmcs
*loaded_vmcs
= arg
;
1250 int cpu
= raw_smp_processor_id();
1252 if (loaded_vmcs
->cpu
!= cpu
)
1253 return; /* vcpu migration can race with cpu offline */
1254 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1255 per_cpu(current_vmcs
, cpu
) = NULL
;
1256 crash_disable_local_vmclear(cpu
);
1257 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1260 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1261 * is before setting loaded_vmcs->vcpu to -1 which is done in
1262 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1263 * then adds the vmcs into percpu list before it is deleted.
1267 loaded_vmcs_init(loaded_vmcs
);
1268 crash_enable_local_vmclear(cpu
);
1271 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1273 int cpu
= loaded_vmcs
->cpu
;
1276 smp_call_function_single(cpu
,
1277 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1280 static inline void vpid_sync_vcpu_single(struct vcpu_vmx
*vmx
)
1285 if (cpu_has_vmx_invvpid_single())
1286 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
1289 static inline void vpid_sync_vcpu_global(void)
1291 if (cpu_has_vmx_invvpid_global())
1292 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1295 static inline void vpid_sync_context(struct vcpu_vmx
*vmx
)
1297 if (cpu_has_vmx_invvpid_single())
1298 vpid_sync_vcpu_single(vmx
);
1300 vpid_sync_vcpu_global();
1303 static inline void ept_sync_global(void)
1305 if (cpu_has_vmx_invept_global())
1306 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1309 static inline void ept_sync_context(u64 eptp
)
1312 if (cpu_has_vmx_invept_context())
1313 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1319 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1321 unsigned long value
;
1323 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1324 : "=a"(value
) : "d"(field
) : "cc");
1328 static __always_inline u16
vmcs_read16(unsigned long field
)
1330 return vmcs_readl(field
);
1333 static __always_inline u32
vmcs_read32(unsigned long field
)
1335 return vmcs_readl(field
);
1338 static __always_inline u64
vmcs_read64(unsigned long field
)
1340 #ifdef CONFIG_X86_64
1341 return vmcs_readl(field
);
1343 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
1347 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1349 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1350 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1354 static void vmcs_writel(unsigned long field
, unsigned long value
)
1358 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1359 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1360 if (unlikely(error
))
1361 vmwrite_error(field
, value
);
1364 static void vmcs_write16(unsigned long field
, u16 value
)
1366 vmcs_writel(field
, value
);
1369 static void vmcs_write32(unsigned long field
, u32 value
)
1371 vmcs_writel(field
, value
);
1374 static void vmcs_write64(unsigned long field
, u64 value
)
1376 vmcs_writel(field
, value
);
1377 #ifndef CONFIG_X86_64
1379 vmcs_writel(field
+1, value
>> 32);
1383 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
1385 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
1388 static void vmcs_set_bits(unsigned long field
, u32 mask
)
1390 vmcs_writel(field
, vmcs_readl(field
) | mask
);
1393 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1395 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
1396 vmx
->vm_entry_controls_shadow
= val
;
1399 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1401 if (vmx
->vm_entry_controls_shadow
!= val
)
1402 vm_entry_controls_init(vmx
, val
);
1405 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
1407 return vmx
->vm_entry_controls_shadow
;
1411 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1413 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
1416 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1418 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
1421 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1423 vmcs_write32(VM_EXIT_CONTROLS
, val
);
1424 vmx
->vm_exit_controls_shadow
= val
;
1427 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1429 if (vmx
->vm_exit_controls_shadow
!= val
)
1430 vm_exit_controls_init(vmx
, val
);
1433 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
1435 return vmx
->vm_exit_controls_shadow
;
1439 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1441 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
1444 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1446 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
1449 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1451 vmx
->segment_cache
.bitmask
= 0;
1454 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1458 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1460 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1461 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1462 vmx
->segment_cache
.bitmask
= 0;
1464 ret
= vmx
->segment_cache
.bitmask
& mask
;
1465 vmx
->segment_cache
.bitmask
|= mask
;
1469 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1471 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1473 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1474 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1478 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1480 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1482 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1483 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1487 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1489 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1491 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1492 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1496 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1498 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1500 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1501 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1505 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1509 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1510 (1u << NM_VECTOR
) | (1u << DB_VECTOR
);
1511 if ((vcpu
->guest_debug
&
1512 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1513 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1514 eb
|= 1u << BP_VECTOR
;
1515 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1518 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1519 if (vcpu
->fpu_active
)
1520 eb
&= ~(1u << NM_VECTOR
);
1522 /* When we are running a nested L2 guest and L1 specified for it a
1523 * certain exception bitmap, we must trap the same exceptions and pass
1524 * them to L1. When running L2, we will only handle the exceptions
1525 * specified above if L1 did not want them.
1527 if (is_guest_mode(vcpu
))
1528 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1530 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1533 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1534 unsigned long entry
, unsigned long exit
)
1536 vm_entry_controls_clearbit(vmx
, entry
);
1537 vm_exit_controls_clearbit(vmx
, exit
);
1540 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1543 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1547 if (cpu_has_load_ia32_efer
) {
1548 clear_atomic_switch_msr_special(vmx
,
1549 VM_ENTRY_LOAD_IA32_EFER
,
1550 VM_EXIT_LOAD_IA32_EFER
);
1554 case MSR_CORE_PERF_GLOBAL_CTRL
:
1555 if (cpu_has_load_perf_global_ctrl
) {
1556 clear_atomic_switch_msr_special(vmx
,
1557 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1558 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1564 for (i
= 0; i
< m
->nr
; ++i
)
1565 if (m
->guest
[i
].index
== msr
)
1571 m
->guest
[i
] = m
->guest
[m
->nr
];
1572 m
->host
[i
] = m
->host
[m
->nr
];
1573 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1574 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1577 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1578 unsigned long entry
, unsigned long exit
,
1579 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1580 u64 guest_val
, u64 host_val
)
1582 vmcs_write64(guest_val_vmcs
, guest_val
);
1583 vmcs_write64(host_val_vmcs
, host_val
);
1584 vm_entry_controls_setbit(vmx
, entry
);
1585 vm_exit_controls_setbit(vmx
, exit
);
1588 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1589 u64 guest_val
, u64 host_val
)
1592 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1596 if (cpu_has_load_ia32_efer
) {
1597 add_atomic_switch_msr_special(vmx
,
1598 VM_ENTRY_LOAD_IA32_EFER
,
1599 VM_EXIT_LOAD_IA32_EFER
,
1602 guest_val
, host_val
);
1606 case MSR_CORE_PERF_GLOBAL_CTRL
:
1607 if (cpu_has_load_perf_global_ctrl
) {
1608 add_atomic_switch_msr_special(vmx
,
1609 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1610 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1611 GUEST_IA32_PERF_GLOBAL_CTRL
,
1612 HOST_IA32_PERF_GLOBAL_CTRL
,
1613 guest_val
, host_val
);
1619 for (i
= 0; i
< m
->nr
; ++i
)
1620 if (m
->guest
[i
].index
== msr
)
1623 if (i
== NR_AUTOLOAD_MSRS
) {
1624 printk_once(KERN_WARNING
"Not enough msr switch entries. "
1625 "Can't add msr %x\n", msr
);
1627 } else if (i
== m
->nr
) {
1629 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1630 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1633 m
->guest
[i
].index
= msr
;
1634 m
->guest
[i
].value
= guest_val
;
1635 m
->host
[i
].index
= msr
;
1636 m
->host
[i
].value
= host_val
;
1639 static void reload_tss(void)
1642 * VT restores TR but not its size. Useless.
1644 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1645 struct desc_struct
*descs
;
1647 descs
= (void *)gdt
->address
;
1648 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1652 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1657 guest_efer
= vmx
->vcpu
.arch
.efer
;
1660 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1663 ignore_bits
= EFER_NX
| EFER_SCE
;
1664 #ifdef CONFIG_X86_64
1665 ignore_bits
|= EFER_LMA
| EFER_LME
;
1666 /* SCE is meaningful only in long mode on Intel */
1667 if (guest_efer
& EFER_LMA
)
1668 ignore_bits
&= ~(u64
)EFER_SCE
;
1670 guest_efer
&= ~ignore_bits
;
1671 guest_efer
|= host_efer
& ignore_bits
;
1672 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
1673 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
1675 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1678 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1679 * On CPUs that support "load IA32_EFER", always switch EFER
1680 * atomically, since it's faster than switching it manually.
1682 if (cpu_has_load_ia32_efer
||
1683 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
))) {
1684 guest_efer
= vmx
->vcpu
.arch
.efer
;
1685 if (!(guest_efer
& EFER_LMA
))
1686 guest_efer
&= ~EFER_LME
;
1687 if (guest_efer
!= host_efer
)
1688 add_atomic_switch_msr(vmx
, MSR_EFER
,
1689 guest_efer
, host_efer
);
1696 static unsigned long segment_base(u16 selector
)
1698 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1699 struct desc_struct
*d
;
1700 unsigned long table_base
;
1703 if (!(selector
& ~3))
1706 table_base
= gdt
->address
;
1708 if (selector
& 4) { /* from ldt */
1709 u16 ldt_selector
= kvm_read_ldt();
1711 if (!(ldt_selector
& ~3))
1714 table_base
= segment_base(ldt_selector
);
1716 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
1717 v
= get_desc_base(d
);
1718 #ifdef CONFIG_X86_64
1719 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
1720 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
1725 static inline unsigned long kvm_read_tr_base(void)
1728 asm("str %0" : "=g"(tr
));
1729 return segment_base(tr
);
1732 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
1734 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1737 if (vmx
->host_state
.loaded
)
1740 vmx
->host_state
.loaded
= 1;
1742 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1743 * allow segment selectors with cpl > 0 or ti == 1.
1745 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
1746 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
1747 savesegment(fs
, vmx
->host_state
.fs_sel
);
1748 if (!(vmx
->host_state
.fs_sel
& 7)) {
1749 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
1750 vmx
->host_state
.fs_reload_needed
= 0;
1752 vmcs_write16(HOST_FS_SELECTOR
, 0);
1753 vmx
->host_state
.fs_reload_needed
= 1;
1755 savesegment(gs
, vmx
->host_state
.gs_sel
);
1756 if (!(vmx
->host_state
.gs_sel
& 7))
1757 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
1759 vmcs_write16(HOST_GS_SELECTOR
, 0);
1760 vmx
->host_state
.gs_ldt_reload_needed
= 1;
1763 #ifdef CONFIG_X86_64
1764 savesegment(ds
, vmx
->host_state
.ds_sel
);
1765 savesegment(es
, vmx
->host_state
.es_sel
);
1768 #ifdef CONFIG_X86_64
1769 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
1770 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
1772 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
1773 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
1776 #ifdef CONFIG_X86_64
1777 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1778 if (is_long_mode(&vmx
->vcpu
))
1779 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1781 if (boot_cpu_has(X86_FEATURE_MPX
))
1782 rdmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
1783 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
1784 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
1785 vmx
->guest_msrs
[i
].data
,
1786 vmx
->guest_msrs
[i
].mask
);
1789 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
1791 if (!vmx
->host_state
.loaded
)
1794 ++vmx
->vcpu
.stat
.host_state_reload
;
1795 vmx
->host_state
.loaded
= 0;
1796 #ifdef CONFIG_X86_64
1797 if (is_long_mode(&vmx
->vcpu
))
1798 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1800 if (vmx
->host_state
.gs_ldt_reload_needed
) {
1801 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
1802 #ifdef CONFIG_X86_64
1803 load_gs_index(vmx
->host_state
.gs_sel
);
1805 loadsegment(gs
, vmx
->host_state
.gs_sel
);
1808 if (vmx
->host_state
.fs_reload_needed
)
1809 loadsegment(fs
, vmx
->host_state
.fs_sel
);
1810 #ifdef CONFIG_X86_64
1811 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
1812 loadsegment(ds
, vmx
->host_state
.ds_sel
);
1813 loadsegment(es
, vmx
->host_state
.es_sel
);
1817 #ifdef CONFIG_X86_64
1818 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1820 if (vmx
->host_state
.msr_host_bndcfgs
)
1821 wrmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
1823 * If the FPU is not active (through the host task or
1824 * the guest vcpu), then restore the cr0.TS bit.
1826 if (!user_has_fpu() && !vmx
->vcpu
.guest_fpu_loaded
)
1828 load_gdt(this_cpu_ptr(&host_gdt
));
1831 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
1834 __vmx_load_host_state(vmx
);
1839 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1840 * vcpu mutex is already taken.
1842 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1844 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1845 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1848 kvm_cpu_vmxon(phys_addr
);
1849 else if (vmx
->loaded_vmcs
->cpu
!= cpu
)
1850 loaded_vmcs_clear(vmx
->loaded_vmcs
);
1852 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
1853 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
1854 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1857 if (vmx
->loaded_vmcs
->cpu
!= cpu
) {
1858 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1859 unsigned long sysenter_esp
;
1861 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1862 local_irq_disable();
1863 crash_disable_local_vmclear(cpu
);
1866 * Read loaded_vmcs->cpu should be before fetching
1867 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1868 * See the comments in __loaded_vmcs_clear().
1872 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
1873 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
1874 crash_enable_local_vmclear(cpu
);
1878 * Linux uses per-cpu TSS and GDT, so set these when switching
1881 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
1882 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
1884 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
1885 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
1886 vmx
->loaded_vmcs
->cpu
= cpu
;
1890 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
1892 __vmx_load_host_state(to_vmx(vcpu
));
1893 if (!vmm_exclusive
) {
1894 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
1900 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
1904 if (vcpu
->fpu_active
)
1906 vcpu
->fpu_active
= 1;
1907 cr0
= vmcs_readl(GUEST_CR0
);
1908 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
1909 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
1910 vmcs_writel(GUEST_CR0
, cr0
);
1911 update_exception_bitmap(vcpu
);
1912 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
1913 if (is_guest_mode(vcpu
))
1914 vcpu
->arch
.cr0_guest_owned_bits
&=
1915 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
1916 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1919 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
1922 * Return the cr0 value that a nested guest would read. This is a combination
1923 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1924 * its hypervisor (cr0_read_shadow).
1926 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
1928 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
1929 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
1931 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
1933 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
1934 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
1937 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
1939 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1940 * set this *before* calling this function.
1942 vmx_decache_cr0_guest_bits(vcpu
);
1943 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
1944 update_exception_bitmap(vcpu
);
1945 vcpu
->arch
.cr0_guest_owned_bits
= 0;
1946 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1947 if (is_guest_mode(vcpu
)) {
1949 * L1's specified read shadow might not contain the TS bit,
1950 * so now that we turned on shadowing of this bit, we need to
1951 * set this bit of the shadow. Like in nested_vmx_run we need
1952 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1953 * up-to-date here because we just decached cr0.TS (and we'll
1954 * only update vmcs12->guest_cr0 on nested exit).
1956 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1957 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
1958 (vcpu
->arch
.cr0
& X86_CR0_TS
);
1959 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
1961 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
1964 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
1966 unsigned long rflags
, save_rflags
;
1968 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
1969 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1970 rflags
= vmcs_readl(GUEST_RFLAGS
);
1971 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1972 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1973 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
1974 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1976 to_vmx(vcpu
)->rflags
= rflags
;
1978 return to_vmx(vcpu
)->rflags
;
1981 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1983 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1984 to_vmx(vcpu
)->rflags
= rflags
;
1985 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1986 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
1987 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1989 vmcs_writel(GUEST_RFLAGS
, rflags
);
1992 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
1994 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1997 if (interruptibility
& GUEST_INTR_STATE_STI
)
1998 ret
|= KVM_X86_SHADOW_INT_STI
;
1999 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
2000 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
2005 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
2007 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2008 u32 interruptibility
= interruptibility_old
;
2010 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
2012 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
2013 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
2014 else if (mask
& KVM_X86_SHADOW_INT_STI
)
2015 interruptibility
|= GUEST_INTR_STATE_STI
;
2017 if ((interruptibility
!= interruptibility_old
))
2018 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
2021 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
2025 rip
= kvm_rip_read(vcpu
);
2026 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
2027 kvm_rip_write(vcpu
, rip
);
2029 /* skipping an emulated instruction also counts */
2030 vmx_set_interrupt_shadow(vcpu
, 0);
2034 * KVM wants to inject page-faults which it got to the guest. This function
2035 * checks whether in a nested guest, we need to inject them to L1 or L2.
2037 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
2039 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2041 if (!(vmcs12
->exception_bitmap
& (1u << nr
)))
2044 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
2045 vmcs_read32(VM_EXIT_INTR_INFO
),
2046 vmcs_readl(EXIT_QUALIFICATION
));
2050 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
2051 bool has_error_code
, u32 error_code
,
2054 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2055 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2057 if (!reinject
&& is_guest_mode(vcpu
) &&
2058 nested_vmx_check_exception(vcpu
, nr
))
2061 if (has_error_code
) {
2062 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
2063 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2066 if (vmx
->rmode
.vm86_active
) {
2068 if (kvm_exception_is_soft(nr
))
2069 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
2070 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
2071 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2075 if (kvm_exception_is_soft(nr
)) {
2076 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2077 vmx
->vcpu
.arch
.event_exit_inst_len
);
2078 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2080 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2082 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
2085 static bool vmx_rdtscp_supported(void)
2087 return cpu_has_vmx_rdtscp();
2090 static bool vmx_invpcid_supported(void)
2092 return cpu_has_vmx_invpcid() && enable_ept
;
2096 * Swap MSR entry in host/guest MSR entry array.
2098 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
2100 struct shared_msr_entry tmp
;
2102 tmp
= vmx
->guest_msrs
[to
];
2103 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
2104 vmx
->guest_msrs
[from
] = tmp
;
2107 static void vmx_set_msr_bitmap(struct kvm_vcpu
*vcpu
)
2109 unsigned long *msr_bitmap
;
2111 if (irqchip_in_kernel(vcpu
->kvm
) && apic_x2apic_mode(vcpu
->arch
.apic
)) {
2112 if (is_long_mode(vcpu
))
2113 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic
;
2115 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic
;
2117 if (is_long_mode(vcpu
))
2118 msr_bitmap
= vmx_msr_bitmap_longmode
;
2120 msr_bitmap
= vmx_msr_bitmap_legacy
;
2123 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
2127 * Set up the vmcs to automatically save and restore system
2128 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2129 * mode, as fiddling with msrs is very expensive.
2131 static void setup_msrs(struct vcpu_vmx
*vmx
)
2133 int save_nmsrs
, index
;
2136 #ifdef CONFIG_X86_64
2137 if (is_long_mode(&vmx
->vcpu
)) {
2138 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2140 move_msr_up(vmx
, index
, save_nmsrs
++);
2141 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2143 move_msr_up(vmx
, index
, save_nmsrs
++);
2144 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2146 move_msr_up(vmx
, index
, save_nmsrs
++);
2147 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2148 if (index
>= 0 && vmx
->rdtscp_enabled
)
2149 move_msr_up(vmx
, index
, save_nmsrs
++);
2151 * MSR_STAR is only needed on long mode guests, and only
2152 * if efer.sce is enabled.
2154 index
= __find_msr_index(vmx
, MSR_STAR
);
2155 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2156 move_msr_up(vmx
, index
, save_nmsrs
++);
2159 index
= __find_msr_index(vmx
, MSR_EFER
);
2160 if (index
>= 0 && update_transition_efer(vmx
, index
))
2161 move_msr_up(vmx
, index
, save_nmsrs
++);
2163 vmx
->save_nmsrs
= save_nmsrs
;
2165 if (cpu_has_vmx_msr_bitmap())
2166 vmx_set_msr_bitmap(&vmx
->vcpu
);
2170 * reads and returns guest's timestamp counter "register"
2171 * guest_tsc = host_tsc + tsc_offset -- 21.3
2173 static u64
guest_read_tsc(void)
2175 u64 host_tsc
, tsc_offset
;
2178 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2179 return host_tsc
+ tsc_offset
;
2183 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2184 * counter, even if a nested guest (L2) is currently running.
2186 static u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2190 tsc_offset
= is_guest_mode(vcpu
) ?
2191 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
2192 vmcs_read64(TSC_OFFSET
);
2193 return host_tsc
+ tsc_offset
;
2197 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2198 * software catchup for faster rates on slower CPUs.
2200 static void vmx_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
2205 if (user_tsc_khz
> tsc_khz
) {
2206 vcpu
->arch
.tsc_catchup
= 1;
2207 vcpu
->arch
.tsc_always_catchup
= 1;
2209 WARN(1, "user requested TSC rate below hardware speed\n");
2212 static u64
vmx_read_tsc_offset(struct kvm_vcpu
*vcpu
)
2214 return vmcs_read64(TSC_OFFSET
);
2218 * writes 'offset' into guest's timestamp counter offset register
2220 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2222 if (is_guest_mode(vcpu
)) {
2224 * We're here if L1 chose not to trap WRMSR to TSC. According
2225 * to the spec, this should set L1's TSC; The offset that L1
2226 * set for L2 remains unchanged, and still needs to be added
2227 * to the newly set TSC to get L2's TSC.
2229 struct vmcs12
*vmcs12
;
2230 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
2231 /* recalculate vmcs02.TSC_OFFSET: */
2232 vmcs12
= get_vmcs12(vcpu
);
2233 vmcs_write64(TSC_OFFSET
, offset
+
2234 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2235 vmcs12
->tsc_offset
: 0));
2237 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2238 vmcs_read64(TSC_OFFSET
), offset
);
2239 vmcs_write64(TSC_OFFSET
, offset
);
2243 static void vmx_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
2245 u64 offset
= vmcs_read64(TSC_OFFSET
);
2247 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
2248 if (is_guest_mode(vcpu
)) {
2249 /* Even when running L2, the adjustment needs to apply to L1 */
2250 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
2252 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
, offset
,
2253 offset
+ adjustment
);
2256 static u64
vmx_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
2258 return target_tsc
- native_read_tsc();
2261 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
2263 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
2264 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
2268 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2269 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2270 * all guests if the "nested" module option is off, and can also be disabled
2271 * for a single guest by disabling its VMX cpuid bit.
2273 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2275 return nested
&& guest_cpuid_has_vmx(vcpu
);
2279 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2280 * returned for the various VMX controls MSRs when nested VMX is enabled.
2281 * The same values should also be used to verify that vmcs12 control fields are
2282 * valid during nested entry from L1 to L2.
2283 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2284 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2285 * bit in the high half is on if the corresponding bit in the control field
2286 * may be on. See also vmx_control_verify().
2287 * TODO: allow these variables to be modified (downgraded) by module options
2290 static u32 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
;
2291 static u32 nested_vmx_true_procbased_ctls_low
;
2292 static u32 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
;
2293 static u32 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
;
2294 static u32 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
;
2295 static u32 nested_vmx_true_exit_ctls_low
;
2296 static u32 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
;
2297 static u32 nested_vmx_true_entry_ctls_low
;
2298 static u32 nested_vmx_misc_low
, nested_vmx_misc_high
;
2299 static u32 nested_vmx_ept_caps
;
2300 static __init
void nested_vmx_setup_ctls_msrs(void)
2303 * Note that as a general rule, the high half of the MSRs (bits in
2304 * the control fields which may be 1) should be initialized by the
2305 * intersection of the underlying hardware's MSR (i.e., features which
2306 * can be supported) and the list of features we want to expose -
2307 * because they are known to be properly supported in our code.
2308 * Also, usually, the low half of the MSRs (bits which must be 1) can
2309 * be set to 0, meaning that L1 may turn off any of these bits. The
2310 * reason is that if one of these bits is necessary, it will appear
2311 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2312 * fields of vmcs01 and vmcs02, will turn these bits off - and
2313 * nested_vmx_exit_handled() will not pass related exits to L1.
2314 * These rules have exceptions below.
2317 /* pin-based controls */
2318 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2319 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
);
2320 nested_vmx_pinbased_ctls_low
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2321 nested_vmx_pinbased_ctls_high
&= PIN_BASED_EXT_INTR_MASK
|
2322 PIN_BASED_NMI_EXITING
| PIN_BASED_VIRTUAL_NMIS
;
2323 nested_vmx_pinbased_ctls_high
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2324 PIN_BASED_VMX_PREEMPTION_TIMER
;
2327 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2328 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
);
2329 nested_vmx_exit_ctls_low
= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2331 nested_vmx_exit_ctls_high
&=
2332 #ifdef CONFIG_X86_64
2333 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2335 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2336 nested_vmx_exit_ctls_high
|= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2337 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
2338 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
2340 if (vmx_mpx_supported())
2341 nested_vmx_exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
2343 /* We support free control of debug control saving. */
2344 nested_vmx_true_exit_ctls_low
= nested_vmx_exit_ctls_low
&
2345 ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
2347 /* entry controls */
2348 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2349 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
);
2350 nested_vmx_entry_ctls_low
= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2351 nested_vmx_entry_ctls_high
&=
2352 #ifdef CONFIG_X86_64
2353 VM_ENTRY_IA32E_MODE
|
2355 VM_ENTRY_LOAD_IA32_PAT
;
2356 nested_vmx_entry_ctls_high
|= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
|
2357 VM_ENTRY_LOAD_IA32_EFER
);
2358 if (vmx_mpx_supported())
2359 nested_vmx_entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
2361 /* We support free control of debug control loading. */
2362 nested_vmx_true_entry_ctls_low
= nested_vmx_entry_ctls_low
&
2363 ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2365 /* cpu-based controls */
2366 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2367 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
);
2368 nested_vmx_procbased_ctls_low
= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2369 nested_vmx_procbased_ctls_high
&=
2370 CPU_BASED_VIRTUAL_INTR_PENDING
|
2371 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2372 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2373 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2374 CPU_BASED_CR3_STORE_EXITING
|
2375 #ifdef CONFIG_X86_64
2376 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2378 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2379 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_EXITING
|
2380 CPU_BASED_RDPMC_EXITING
| CPU_BASED_RDTSC_EXITING
|
2381 CPU_BASED_PAUSE_EXITING
| CPU_BASED_TPR_SHADOW
|
2382 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2384 * We can allow some features even when not supported by the
2385 * hardware. For example, L1 can specify an MSR bitmap - and we
2386 * can use it to avoid exits to L1 - even when L0 runs L2
2387 * without MSR bitmaps.
2389 nested_vmx_procbased_ctls_high
|= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2390 CPU_BASED_USE_MSR_BITMAPS
;
2392 /* We support free control of CR3 access interception. */
2393 nested_vmx_true_procbased_ctls_low
= nested_vmx_procbased_ctls_low
&
2394 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
2396 /* secondary cpu-based controls */
2397 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2398 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
);
2399 nested_vmx_secondary_ctls_low
= 0;
2400 nested_vmx_secondary_ctls_high
&=
2401 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2402 SECONDARY_EXEC_WBINVD_EXITING
|
2403 SECONDARY_EXEC_XSAVES
;
2406 /* nested EPT: emulate EPT also to L1 */
2407 nested_vmx_secondary_ctls_high
|= SECONDARY_EXEC_ENABLE_EPT
|
2408 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2409 nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2410 VMX_EPTP_WB_BIT
| VMX_EPT_2MB_PAGE_BIT
|
2412 nested_vmx_ept_caps
&= vmx_capability
.ept
;
2414 * For nested guests, we don't do anything specific
2415 * for single context invalidation. Hence, only advertise
2416 * support for global context invalidation.
2418 nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
;
2420 nested_vmx_ept_caps
= 0;
2422 /* miscellaneous data */
2423 rdmsr(MSR_IA32_VMX_MISC
, nested_vmx_misc_low
, nested_vmx_misc_high
);
2424 nested_vmx_misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
2425 nested_vmx_misc_low
|= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
2426 VMX_MISC_ACTIVITY_HLT
;
2427 nested_vmx_misc_high
= 0;
2430 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2433 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2435 return ((control
& high
) | low
) == control
;
2438 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2440 return low
| ((u64
)high
<< 32);
2443 /* Returns 0 on success, non-0 otherwise. */
2444 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2446 switch (msr_index
) {
2447 case MSR_IA32_VMX_BASIC
:
2449 * This MSR reports some information about VMX support. We
2450 * should return information about the VMX we emulate for the
2451 * guest, and the VMCS structure we give it - not about the
2452 * VMX support of the underlying hardware.
2454 *pdata
= VMCS12_REVISION
| VMX_BASIC_TRUE_CTLS
|
2455 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2456 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2458 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2459 case MSR_IA32_VMX_PINBASED_CTLS
:
2460 *pdata
= vmx_control_msr(nested_vmx_pinbased_ctls_low
,
2461 nested_vmx_pinbased_ctls_high
);
2463 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2464 *pdata
= vmx_control_msr(nested_vmx_true_procbased_ctls_low
,
2465 nested_vmx_procbased_ctls_high
);
2467 case MSR_IA32_VMX_PROCBASED_CTLS
:
2468 *pdata
= vmx_control_msr(nested_vmx_procbased_ctls_low
,
2469 nested_vmx_procbased_ctls_high
);
2471 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2472 *pdata
= vmx_control_msr(nested_vmx_true_exit_ctls_low
,
2473 nested_vmx_exit_ctls_high
);
2475 case MSR_IA32_VMX_EXIT_CTLS
:
2476 *pdata
= vmx_control_msr(nested_vmx_exit_ctls_low
,
2477 nested_vmx_exit_ctls_high
);
2479 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2480 *pdata
= vmx_control_msr(nested_vmx_true_entry_ctls_low
,
2481 nested_vmx_entry_ctls_high
);
2483 case MSR_IA32_VMX_ENTRY_CTLS
:
2484 *pdata
= vmx_control_msr(nested_vmx_entry_ctls_low
,
2485 nested_vmx_entry_ctls_high
);
2487 case MSR_IA32_VMX_MISC
:
2488 *pdata
= vmx_control_msr(nested_vmx_misc_low
,
2489 nested_vmx_misc_high
);
2492 * These MSRs specify bits which the guest must keep fixed (on or off)
2493 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2494 * We picked the standard core2 setting.
2496 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2497 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2498 case MSR_IA32_VMX_CR0_FIXED0
:
2499 *pdata
= VMXON_CR0_ALWAYSON
;
2501 case MSR_IA32_VMX_CR0_FIXED1
:
2504 case MSR_IA32_VMX_CR4_FIXED0
:
2505 *pdata
= VMXON_CR4_ALWAYSON
;
2507 case MSR_IA32_VMX_CR4_FIXED1
:
2510 case MSR_IA32_VMX_VMCS_ENUM
:
2511 *pdata
= 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2513 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2514 *pdata
= vmx_control_msr(nested_vmx_secondary_ctls_low
,
2515 nested_vmx_secondary_ctls_high
);
2517 case MSR_IA32_VMX_EPT_VPID_CAP
:
2518 /* Currently, no nested vpid support */
2519 *pdata
= nested_vmx_ept_caps
;
2529 * Reads an msr value (of 'msr_index') into 'pdata'.
2530 * Returns 0 on success, non-0 otherwise.
2531 * Assumes vcpu_load() was already called.
2533 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2536 struct shared_msr_entry
*msr
;
2539 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
2543 switch (msr_index
) {
2544 #ifdef CONFIG_X86_64
2546 data
= vmcs_readl(GUEST_FS_BASE
);
2549 data
= vmcs_readl(GUEST_GS_BASE
);
2551 case MSR_KERNEL_GS_BASE
:
2552 vmx_load_host_state(to_vmx(vcpu
));
2553 data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2557 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2559 data
= guest_read_tsc();
2561 case MSR_IA32_SYSENTER_CS
:
2562 data
= vmcs_read32(GUEST_SYSENTER_CS
);
2564 case MSR_IA32_SYSENTER_EIP
:
2565 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2567 case MSR_IA32_SYSENTER_ESP
:
2568 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2570 case MSR_IA32_BNDCFGS
:
2571 if (!vmx_mpx_supported())
2573 data
= vmcs_read64(GUEST_BNDCFGS
);
2575 case MSR_IA32_FEATURE_CONTROL
:
2576 if (!nested_vmx_allowed(vcpu
))
2578 data
= to_vmx(vcpu
)->nested
.msr_ia32_feature_control
;
2580 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
2581 if (!nested_vmx_allowed(vcpu
))
2583 return vmx_get_vmx_msr(vcpu
, msr_index
, pdata
);
2585 if (!vmx_xsaves_supported())
2587 data
= vcpu
->arch
.ia32_xss
;
2590 if (!to_vmx(vcpu
)->rdtscp_enabled
)
2592 /* Otherwise falls through */
2594 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
2599 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2606 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
2609 * Writes msr value into into the appropriate "register".
2610 * Returns 0 on success, non-0 otherwise.
2611 * Assumes vcpu_load() was already called.
2613 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2615 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2616 struct shared_msr_entry
*msr
;
2618 u32 msr_index
= msr_info
->index
;
2619 u64 data
= msr_info
->data
;
2621 switch (msr_index
) {
2623 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2625 #ifdef CONFIG_X86_64
2627 vmx_segment_cache_clear(vmx
);
2628 vmcs_writel(GUEST_FS_BASE
, data
);
2631 vmx_segment_cache_clear(vmx
);
2632 vmcs_writel(GUEST_GS_BASE
, data
);
2634 case MSR_KERNEL_GS_BASE
:
2635 vmx_load_host_state(vmx
);
2636 vmx
->msr_guest_kernel_gs_base
= data
;
2639 case MSR_IA32_SYSENTER_CS
:
2640 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2642 case MSR_IA32_SYSENTER_EIP
:
2643 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2645 case MSR_IA32_SYSENTER_ESP
:
2646 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2648 case MSR_IA32_BNDCFGS
:
2649 if (!vmx_mpx_supported())
2651 vmcs_write64(GUEST_BNDCFGS
, data
);
2654 kvm_write_tsc(vcpu
, msr_info
);
2656 case MSR_IA32_CR_PAT
:
2657 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2658 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
2660 vmcs_write64(GUEST_IA32_PAT
, data
);
2661 vcpu
->arch
.pat
= data
;
2664 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2666 case MSR_IA32_TSC_ADJUST
:
2667 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2669 case MSR_IA32_FEATURE_CONTROL
:
2670 if (!nested_vmx_allowed(vcpu
) ||
2671 (to_vmx(vcpu
)->nested
.msr_ia32_feature_control
&
2672 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
2674 vmx
->nested
.msr_ia32_feature_control
= data
;
2675 if (msr_info
->host_initiated
&& data
== 0)
2676 vmx_leave_nested(vcpu
);
2678 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
2679 return 1; /* they are read-only */
2681 if (!vmx_xsaves_supported())
2684 * The only supported bit as of Skylake is bit 8, but
2685 * it is not supported on KVM.
2689 vcpu
->arch
.ia32_xss
= data
;
2690 if (vcpu
->arch
.ia32_xss
!= host_xss
)
2691 add_atomic_switch_msr(vmx
, MSR_IA32_XSS
,
2692 vcpu
->arch
.ia32_xss
, host_xss
);
2694 clear_atomic_switch_msr(vmx
, MSR_IA32_XSS
);
2697 if (!vmx
->rdtscp_enabled
)
2699 /* Check reserved bit, higher 32 bits should be zero */
2700 if ((data
>> 32) != 0)
2702 /* Otherwise falls through */
2704 msr
= find_msr_entry(vmx
, msr_index
);
2706 u64 old_msr_data
= msr
->data
;
2708 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
2710 ret
= kvm_set_shared_msr(msr
->index
, msr
->data
,
2714 msr
->data
= old_msr_data
;
2718 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2724 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2726 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
2729 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
2732 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
2734 case VCPU_EXREG_PDPTR
:
2736 ept_save_pdptrs(vcpu
);
2743 static __init
int cpu_has_kvm_support(void)
2745 return cpu_has_vmx();
2748 static __init
int vmx_disabled_by_bios(void)
2752 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
2753 if (msr
& FEATURE_CONTROL_LOCKED
) {
2754 /* launched w/ TXT and VMX disabled */
2755 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2758 /* launched w/o TXT and VMX only enabled w/ TXT */
2759 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2760 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2761 && !tboot_enabled()) {
2762 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
2763 "activate TXT before enabling KVM\n");
2766 /* launched w/o TXT and VMX disabled */
2767 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2768 && !tboot_enabled())
2775 static void kvm_cpu_vmxon(u64 addr
)
2777 asm volatile (ASM_VMX_VMXON_RAX
2778 : : "a"(&addr
), "m"(addr
)
2782 static int hardware_enable(void)
2784 int cpu
= raw_smp_processor_id();
2785 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2788 if (read_cr4() & X86_CR4_VMXE
)
2791 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
2794 * Now we can enable the vmclear operation in kdump
2795 * since the loaded_vmcss_on_cpu list on this cpu
2796 * has been initialized.
2798 * Though the cpu is not in VMX operation now, there
2799 * is no problem to enable the vmclear operation
2800 * for the loaded_vmcss_on_cpu list is empty!
2802 crash_enable_local_vmclear(cpu
);
2804 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
2806 test_bits
= FEATURE_CONTROL_LOCKED
;
2807 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
2808 if (tboot_enabled())
2809 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
2811 if ((old
& test_bits
) != test_bits
) {
2812 /* enable and lock */
2813 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
2815 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
2817 if (vmm_exclusive
) {
2818 kvm_cpu_vmxon(phys_addr
);
2822 native_store_gdt(this_cpu_ptr(&host_gdt
));
2827 static void vmclear_local_loaded_vmcss(void)
2829 int cpu
= raw_smp_processor_id();
2830 struct loaded_vmcs
*v
, *n
;
2832 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
2833 loaded_vmcss_on_cpu_link
)
2834 __loaded_vmcs_clear(v
);
2838 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2841 static void kvm_cpu_vmxoff(void)
2843 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
2846 static void hardware_disable(void)
2848 if (vmm_exclusive
) {
2849 vmclear_local_loaded_vmcss();
2852 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
2855 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
2856 u32 msr
, u32
*result
)
2858 u32 vmx_msr_low
, vmx_msr_high
;
2859 u32 ctl
= ctl_min
| ctl_opt
;
2861 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2863 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
2864 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
2866 /* Ensure minimum (required) set of control bits are supported. */
2874 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
2876 u32 vmx_msr_low
, vmx_msr_high
;
2878 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2879 return vmx_msr_high
& ctl
;
2882 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
2884 u32 vmx_msr_low
, vmx_msr_high
;
2885 u32 min
, opt
, min2
, opt2
;
2886 u32 _pin_based_exec_control
= 0;
2887 u32 _cpu_based_exec_control
= 0;
2888 u32 _cpu_based_2nd_exec_control
= 0;
2889 u32 _vmexit_control
= 0;
2890 u32 _vmentry_control
= 0;
2892 min
= CPU_BASED_HLT_EXITING
|
2893 #ifdef CONFIG_X86_64
2894 CPU_BASED_CR8_LOAD_EXITING
|
2895 CPU_BASED_CR8_STORE_EXITING
|
2897 CPU_BASED_CR3_LOAD_EXITING
|
2898 CPU_BASED_CR3_STORE_EXITING
|
2899 CPU_BASED_USE_IO_BITMAPS
|
2900 CPU_BASED_MOV_DR_EXITING
|
2901 CPU_BASED_USE_TSC_OFFSETING
|
2902 CPU_BASED_MWAIT_EXITING
|
2903 CPU_BASED_MONITOR_EXITING
|
2904 CPU_BASED_INVLPG_EXITING
|
2905 CPU_BASED_RDPMC_EXITING
;
2907 opt
= CPU_BASED_TPR_SHADOW
|
2908 CPU_BASED_USE_MSR_BITMAPS
|
2909 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2910 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
2911 &_cpu_based_exec_control
) < 0)
2913 #ifdef CONFIG_X86_64
2914 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2915 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
2916 ~CPU_BASED_CR8_STORE_EXITING
;
2918 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
2920 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2921 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2922 SECONDARY_EXEC_WBINVD_EXITING
|
2923 SECONDARY_EXEC_ENABLE_VPID
|
2924 SECONDARY_EXEC_ENABLE_EPT
|
2925 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
2926 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
2927 SECONDARY_EXEC_RDTSCP
|
2928 SECONDARY_EXEC_ENABLE_INVPCID
|
2929 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2930 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2931 SECONDARY_EXEC_SHADOW_VMCS
|
2932 SECONDARY_EXEC_XSAVES
;
2933 if (adjust_vmx_controls(min2
, opt2
,
2934 MSR_IA32_VMX_PROCBASED_CTLS2
,
2935 &_cpu_based_2nd_exec_control
) < 0)
2938 #ifndef CONFIG_X86_64
2939 if (!(_cpu_based_2nd_exec_control
&
2940 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
2941 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2944 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2945 _cpu_based_2nd_exec_control
&= ~(
2946 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2947 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2948 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
2950 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
2951 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2953 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
2954 CPU_BASED_CR3_STORE_EXITING
|
2955 CPU_BASED_INVLPG_EXITING
);
2956 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
2957 vmx_capability
.ept
, vmx_capability
.vpid
);
2960 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
;
2961 #ifdef CONFIG_X86_64
2962 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
2964 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
2965 VM_EXIT_ACK_INTR_ON_EXIT
| VM_EXIT_CLEAR_BNDCFGS
;
2966 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
2967 &_vmexit_control
) < 0)
2970 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
2971 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
;
2972 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
2973 &_pin_based_exec_control
) < 0)
2976 if (!(_cpu_based_2nd_exec_control
&
2977 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) ||
2978 !(_vmexit_control
& VM_EXIT_ACK_INTR_ON_EXIT
))
2979 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
2981 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2982 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
2983 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
2984 &_vmentry_control
) < 0)
2987 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
2989 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2990 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
2993 #ifdef CONFIG_X86_64
2994 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2995 if (vmx_msr_high
& (1u<<16))
2999 /* Require Write-Back (WB) memory type for VMCS accesses. */
3000 if (((vmx_msr_high
>> 18) & 15) != 6)
3003 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
3004 vmcs_conf
->order
= get_order(vmcs_config
.size
);
3005 vmcs_conf
->revision_id
= vmx_msr_low
;
3007 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
3008 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
3009 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
3010 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
3011 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
3013 cpu_has_load_ia32_efer
=
3014 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3015 VM_ENTRY_LOAD_IA32_EFER
)
3016 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3017 VM_EXIT_LOAD_IA32_EFER
);
3019 cpu_has_load_perf_global_ctrl
=
3020 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3021 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
3022 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3023 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
3026 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3027 * but due to arrata below it can't be used. Workaround is to use
3028 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3030 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3035 * BC86,AAY89,BD102 (model 44)
3039 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
3040 switch (boot_cpu_data
.x86_model
) {
3046 cpu_has_load_perf_global_ctrl
= false;
3047 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3048 "does not work properly. Using workaround\n");
3056 rdmsrl(MSR_IA32_XSS
, host_xss
);
3061 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
3063 int node
= cpu_to_node(cpu
);
3067 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
3070 vmcs
= page_address(pages
);
3071 memset(vmcs
, 0, vmcs_config
.size
);
3072 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
3076 static struct vmcs
*alloc_vmcs(void)
3078 return alloc_vmcs_cpu(raw_smp_processor_id());
3081 static void free_vmcs(struct vmcs
*vmcs
)
3083 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
3087 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3089 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3091 if (!loaded_vmcs
->vmcs
)
3093 loaded_vmcs_clear(loaded_vmcs
);
3094 free_vmcs(loaded_vmcs
->vmcs
);
3095 loaded_vmcs
->vmcs
= NULL
;
3098 static void free_kvm_area(void)
3102 for_each_possible_cpu(cpu
) {
3103 free_vmcs(per_cpu(vmxarea
, cpu
));
3104 per_cpu(vmxarea
, cpu
) = NULL
;
3108 static void init_vmcs_shadow_fields(void)
3112 /* No checks for read only fields yet */
3114 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
3115 switch (shadow_read_write_fields
[i
]) {
3117 if (!vmx_mpx_supported())
3125 shadow_read_write_fields
[j
] =
3126 shadow_read_write_fields
[i
];
3129 max_shadow_read_write_fields
= j
;
3131 /* shadowed fields guest access without vmexit */
3132 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
3133 clear_bit(shadow_read_write_fields
[i
],
3134 vmx_vmwrite_bitmap
);
3135 clear_bit(shadow_read_write_fields
[i
],
3138 for (i
= 0; i
< max_shadow_read_only_fields
; i
++)
3139 clear_bit(shadow_read_only_fields
[i
],
3143 static __init
int alloc_kvm_area(void)
3147 for_each_possible_cpu(cpu
) {
3150 vmcs
= alloc_vmcs_cpu(cpu
);
3156 per_cpu(vmxarea
, cpu
) = vmcs
;
3161 static bool emulation_required(struct kvm_vcpu
*vcpu
)
3163 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
3166 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3167 struct kvm_segment
*save
)
3169 if (!emulate_invalid_guest_state
) {
3171 * CS and SS RPL should be equal during guest entry according
3172 * to VMX spec, but in reality it is not always so. Since vcpu
3173 * is in the middle of the transition from real mode to
3174 * protected mode it is safe to assume that RPL 0 is a good
3177 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3178 save
->selector
&= ~SELECTOR_RPL_MASK
;
3179 save
->dpl
= save
->selector
& SELECTOR_RPL_MASK
;
3182 vmx_set_segment(vcpu
, save
, seg
);
3185 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3187 unsigned long flags
;
3188 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3191 * Update real mode segment cache. It may be not up-to-date if sement
3192 * register was written while vcpu was in a guest mode.
3194 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3195 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3196 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3197 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3198 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3199 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3201 vmx
->rmode
.vm86_active
= 0;
3203 vmx_segment_cache_clear(vmx
);
3205 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3207 flags
= vmcs_readl(GUEST_RFLAGS
);
3208 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3209 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3210 vmcs_writel(GUEST_RFLAGS
, flags
);
3212 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3213 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3215 update_exception_bitmap(vcpu
);
3217 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3218 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3219 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3220 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3221 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3222 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3225 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3227 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3228 struct kvm_segment var
= *save
;
3231 if (seg
== VCPU_SREG_CS
)
3234 if (!emulate_invalid_guest_state
) {
3235 var
.selector
= var
.base
>> 4;
3236 var
.base
= var
.base
& 0xffff0;
3246 if (save
->base
& 0xf)
3247 printk_once(KERN_WARNING
"kvm: segment base is not "
3248 "paragraph aligned when entering "
3249 "protected mode (seg=%d)", seg
);
3252 vmcs_write16(sf
->selector
, var
.selector
);
3253 vmcs_write32(sf
->base
, var
.base
);
3254 vmcs_write32(sf
->limit
, var
.limit
);
3255 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3258 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3260 unsigned long flags
;
3261 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3263 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3264 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3265 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3266 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3267 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3268 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3269 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3271 vmx
->rmode
.vm86_active
= 1;
3274 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3275 * vcpu. Warn the user that an update is overdue.
3277 if (!vcpu
->kvm
->arch
.tss_addr
)
3278 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
3279 "called before entering vcpu\n");
3281 vmx_segment_cache_clear(vmx
);
3283 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
3284 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
3285 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3287 flags
= vmcs_readl(GUEST_RFLAGS
);
3288 vmx
->rmode
.save_rflags
= flags
;
3290 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3292 vmcs_writel(GUEST_RFLAGS
, flags
);
3293 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
3294 update_exception_bitmap(vcpu
);
3296 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3297 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3298 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3299 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3300 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3301 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3303 kvm_mmu_reset_context(vcpu
);
3306 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
3308 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3309 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
3315 * Force kernel_gs_base reloading before EFER changes, as control
3316 * of this msr depends on is_long_mode().
3318 vmx_load_host_state(to_vmx(vcpu
));
3319 vcpu
->arch
.efer
= efer
;
3320 if (efer
& EFER_LMA
) {
3321 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3324 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3326 msr
->data
= efer
& ~EFER_LME
;
3331 #ifdef CONFIG_X86_64
3333 static void enter_lmode(struct kvm_vcpu
*vcpu
)
3337 vmx_segment_cache_clear(to_vmx(vcpu
));
3339 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
3340 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
3341 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3343 vmcs_write32(GUEST_TR_AR_BYTES
,
3344 (guest_tr_ar
& ~AR_TYPE_MASK
)
3345 | AR_TYPE_BUSY_64_TSS
);
3347 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
3350 static void exit_lmode(struct kvm_vcpu
*vcpu
)
3352 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3353 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
3358 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
3360 vpid_sync_context(to_vmx(vcpu
));
3362 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3364 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
3368 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
3370 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
3372 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
3373 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
3376 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
3378 if (enable_ept
&& is_paging(vcpu
))
3379 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3380 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
3383 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
3385 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
3387 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
3388 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
3391 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3393 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3395 if (!test_bit(VCPU_EXREG_PDPTR
,
3396 (unsigned long *)&vcpu
->arch
.regs_dirty
))
3399 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3400 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
3401 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
3402 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
3403 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
3407 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3409 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3411 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3412 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3413 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3414 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3415 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3418 __set_bit(VCPU_EXREG_PDPTR
,
3419 (unsigned long *)&vcpu
->arch
.regs_avail
);
3420 __set_bit(VCPU_EXREG_PDPTR
,
3421 (unsigned long *)&vcpu
->arch
.regs_dirty
);
3424 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
3426 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
3428 struct kvm_vcpu
*vcpu
)
3430 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3431 vmx_decache_cr3(vcpu
);
3432 if (!(cr0
& X86_CR0_PG
)) {
3433 /* From paging/starting to nonpaging */
3434 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3435 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
3436 (CPU_BASED_CR3_LOAD_EXITING
|
3437 CPU_BASED_CR3_STORE_EXITING
));
3438 vcpu
->arch
.cr0
= cr0
;
3439 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3440 } else if (!is_paging(vcpu
)) {
3441 /* From nonpaging to paging */
3442 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3443 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
3444 ~(CPU_BASED_CR3_LOAD_EXITING
|
3445 CPU_BASED_CR3_STORE_EXITING
));
3446 vcpu
->arch
.cr0
= cr0
;
3447 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3450 if (!(cr0
& X86_CR0_WP
))
3451 *hw_cr0
&= ~X86_CR0_WP
;
3454 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3456 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3457 unsigned long hw_cr0
;
3459 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
3460 if (enable_unrestricted_guest
)
3461 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3463 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
3465 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3468 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3472 #ifdef CONFIG_X86_64
3473 if (vcpu
->arch
.efer
& EFER_LME
) {
3474 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
3476 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
3482 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
3484 if (!vcpu
->fpu_active
)
3485 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
3487 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3488 vmcs_writel(GUEST_CR0
, hw_cr0
);
3489 vcpu
->arch
.cr0
= cr0
;
3491 /* depends on vcpu->arch.cr0 to be set to a new value */
3492 vmx
->emulation_required
= emulation_required(vcpu
);
3495 static u64
construct_eptp(unsigned long root_hpa
)
3499 /* TODO write the value reading from MSR */
3500 eptp
= VMX_EPT_DEFAULT_MT
|
3501 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3502 if (enable_ept_ad_bits
)
3503 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
3504 eptp
|= (root_hpa
& PAGE_MASK
);
3509 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3511 unsigned long guest_cr3
;
3516 eptp
= construct_eptp(cr3
);
3517 vmcs_write64(EPT_POINTER
, eptp
);
3518 if (is_paging(vcpu
) || is_guest_mode(vcpu
))
3519 guest_cr3
= kvm_read_cr3(vcpu
);
3521 guest_cr3
= vcpu
->kvm
->arch
.ept_identity_map_addr
;
3522 ept_load_pdptrs(vcpu
);
3525 vmx_flush_tlb(vcpu
);
3526 vmcs_writel(GUEST_CR3
, guest_cr3
);
3529 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3531 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
3532 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3534 if (cr4
& X86_CR4_VMXE
) {
3536 * To use VMXON (and later other VMX instructions), a guest
3537 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3538 * So basically the check on whether to allow nested VMX
3541 if (!nested_vmx_allowed(vcpu
))
3544 if (to_vmx(vcpu
)->nested
.vmxon
&&
3545 ((cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
))
3548 vcpu
->arch
.cr4
= cr4
;
3550 if (!is_paging(vcpu
)) {
3551 hw_cr4
&= ~X86_CR4_PAE
;
3552 hw_cr4
|= X86_CR4_PSE
;
3554 * SMEP/SMAP is disabled if CPU is in non-paging mode
3555 * in hardware. However KVM always uses paging mode to
3556 * emulate guest non-paging mode with TDP.
3557 * To emulate this behavior, SMEP/SMAP needs to be
3558 * manually disabled when guest switches to non-paging
3561 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
);
3562 } else if (!(cr4
& X86_CR4_PAE
)) {
3563 hw_cr4
&= ~X86_CR4_PAE
;
3567 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3568 vmcs_writel(GUEST_CR4
, hw_cr4
);
3572 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
3573 struct kvm_segment
*var
, int seg
)
3575 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3578 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3579 *var
= vmx
->rmode
.segs
[seg
];
3580 if (seg
== VCPU_SREG_TR
3581 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3583 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3584 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3587 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3588 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3589 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3590 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3591 var
->unusable
= (ar
>> 16) & 1;
3592 var
->type
= ar
& 15;
3593 var
->s
= (ar
>> 4) & 1;
3594 var
->dpl
= (ar
>> 5) & 3;
3596 * Some userspaces do not preserve unusable property. Since usable
3597 * segment has to be present according to VMX spec we can use present
3598 * property to amend userspace bug by making unusable segment always
3599 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3600 * segment as unusable.
3602 var
->present
= !var
->unusable
;
3603 var
->avl
= (ar
>> 12) & 1;
3604 var
->l
= (ar
>> 13) & 1;
3605 var
->db
= (ar
>> 14) & 1;
3606 var
->g
= (ar
>> 15) & 1;
3609 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3611 struct kvm_segment s
;
3613 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3614 vmx_get_segment(vcpu
, &s
, seg
);
3617 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3620 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3622 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3624 if (unlikely(vmx
->rmode
.vm86_active
))
3627 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
3632 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3636 if (var
->unusable
|| !var
->present
)
3639 ar
= var
->type
& 15;
3640 ar
|= (var
->s
& 1) << 4;
3641 ar
|= (var
->dpl
& 3) << 5;
3642 ar
|= (var
->present
& 1) << 7;
3643 ar
|= (var
->avl
& 1) << 12;
3644 ar
|= (var
->l
& 1) << 13;
3645 ar
|= (var
->db
& 1) << 14;
3646 ar
|= (var
->g
& 1) << 15;
3652 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
3653 struct kvm_segment
*var
, int seg
)
3655 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3656 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3658 vmx_segment_cache_clear(vmx
);
3660 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3661 vmx
->rmode
.segs
[seg
] = *var
;
3662 if (seg
== VCPU_SREG_TR
)
3663 vmcs_write16(sf
->selector
, var
->selector
);
3665 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
3669 vmcs_writel(sf
->base
, var
->base
);
3670 vmcs_write32(sf
->limit
, var
->limit
);
3671 vmcs_write16(sf
->selector
, var
->selector
);
3674 * Fix the "Accessed" bit in AR field of segment registers for older
3676 * IA32 arch specifies that at the time of processor reset the
3677 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3678 * is setting it to 0 in the userland code. This causes invalid guest
3679 * state vmexit when "unrestricted guest" mode is turned on.
3680 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3681 * tree. Newer qemu binaries with that qemu fix would not need this
3684 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
3685 var
->type
|= 0x1; /* Accessed */
3687 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
3690 vmx
->emulation_required
= emulation_required(vcpu
);
3693 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3695 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
3697 *db
= (ar
>> 14) & 1;
3698 *l
= (ar
>> 13) & 1;
3701 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3703 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
3704 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
3707 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3709 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
3710 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
3713 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3715 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
3716 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
3719 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3721 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
3722 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
3725 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3727 struct kvm_segment var
;
3730 vmx_get_segment(vcpu
, &var
, seg
);
3732 if (seg
== VCPU_SREG_CS
)
3734 ar
= vmx_segment_access_rights(&var
);
3736 if (var
.base
!= (var
.selector
<< 4))
3738 if (var
.limit
!= 0xffff)
3746 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
3748 struct kvm_segment cs
;
3749 unsigned int cs_rpl
;
3751 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3752 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
3756 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
3760 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
3761 if (cs
.dpl
> cs_rpl
)
3764 if (cs
.dpl
!= cs_rpl
)
3770 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3774 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
3776 struct kvm_segment ss
;
3777 unsigned int ss_rpl
;
3779 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3780 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
3784 if (ss
.type
!= 3 && ss
.type
!= 7)
3788 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
3796 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3798 struct kvm_segment var
;
3801 vmx_get_segment(vcpu
, &var
, seg
);
3802 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
3810 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
3811 if (var
.dpl
< rpl
) /* DPL < RPL */
3815 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3821 static bool tr_valid(struct kvm_vcpu
*vcpu
)
3823 struct kvm_segment tr
;
3825 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
3829 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3831 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
3839 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
3841 struct kvm_segment ldtr
;
3843 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
3847 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3857 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
3859 struct kvm_segment cs
, ss
;
3861 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3862 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3864 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
3865 (ss
.selector
& SELECTOR_RPL_MASK
));
3869 * Check if guest state is valid. Returns true if valid, false if
3871 * We assume that registers are always usable
3873 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
3875 if (enable_unrestricted_guest
)
3878 /* real mode guest state checks */
3879 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
3880 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
3882 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
3884 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
3886 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
3888 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
3890 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
3893 /* protected mode guest state checks */
3894 if (!cs_ss_rpl_check(vcpu
))
3896 if (!code_segment_valid(vcpu
))
3898 if (!stack_segment_valid(vcpu
))
3900 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
3902 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
3904 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
3906 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
3908 if (!tr_valid(vcpu
))
3910 if (!ldtr_valid(vcpu
))
3914 * - Add checks on RIP
3915 * - Add checks on RFLAGS
3921 static int init_rmode_tss(struct kvm
*kvm
)
3927 idx
= srcu_read_lock(&kvm
->srcu
);
3928 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
3929 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3932 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
3933 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
3934 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
3937 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
3940 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3944 r
= kvm_write_guest_page(kvm
, fn
, &data
,
3945 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
3948 srcu_read_unlock(&kvm
->srcu
, idx
);
3952 static int init_rmode_identity_map(struct kvm
*kvm
)
3955 pfn_t identity_map_pfn
;
3961 /* Protect kvm->arch.ept_identity_pagetable_done. */
3962 mutex_lock(&kvm
->slots_lock
);
3964 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
3967 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
3969 r
= alloc_identity_pagetable(kvm
);
3973 idx
= srcu_read_lock(&kvm
->srcu
);
3974 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
3977 /* Set up identity-mapping pagetable for EPT in real mode */
3978 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
3979 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
3980 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
3981 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
3982 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
3986 kvm
->arch
.ept_identity_pagetable_done
= true;
3989 srcu_read_unlock(&kvm
->srcu
, idx
);
3992 mutex_unlock(&kvm
->slots_lock
);
3996 static void seg_setup(int seg
)
3998 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4001 vmcs_write16(sf
->selector
, 0);
4002 vmcs_writel(sf
->base
, 0);
4003 vmcs_write32(sf
->limit
, 0xffff);
4005 if (seg
== VCPU_SREG_CS
)
4006 ar
|= 0x08; /* code segment */
4008 vmcs_write32(sf
->ar_bytes
, ar
);
4011 static int alloc_apic_access_page(struct kvm
*kvm
)
4014 struct kvm_userspace_memory_region kvm_userspace_mem
;
4017 mutex_lock(&kvm
->slots_lock
);
4018 if (kvm
->arch
.apic_access_page_done
)
4020 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
4021 kvm_userspace_mem
.flags
= 0;
4022 kvm_userspace_mem
.guest_phys_addr
= APIC_DEFAULT_PHYS_BASE
;
4023 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
4024 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
);
4028 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
4029 if (is_error_page(page
)) {
4035 * Do not pin the page in memory, so that memory hot-unplug
4036 * is able to migrate it.
4039 kvm
->arch
.apic_access_page_done
= true;
4041 mutex_unlock(&kvm
->slots_lock
);
4045 static int alloc_identity_pagetable(struct kvm
*kvm
)
4047 /* Called with kvm->slots_lock held. */
4049 struct kvm_userspace_memory_region kvm_userspace_mem
;
4052 BUG_ON(kvm
->arch
.ept_identity_pagetable_done
);
4054 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
4055 kvm_userspace_mem
.flags
= 0;
4056 kvm_userspace_mem
.guest_phys_addr
=
4057 kvm
->arch
.ept_identity_map_addr
;
4058 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
4059 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
);
4064 static void allocate_vpid(struct vcpu_vmx
*vmx
)
4071 spin_lock(&vmx_vpid_lock
);
4072 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
4073 if (vpid
< VMX_NR_VPIDS
) {
4075 __set_bit(vpid
, vmx_vpid_bitmap
);
4077 spin_unlock(&vmx_vpid_lock
);
4080 static void free_vpid(struct vcpu_vmx
*vmx
)
4084 spin_lock(&vmx_vpid_lock
);
4086 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
4087 spin_unlock(&vmx_vpid_lock
);
4090 #define MSR_TYPE_R 1
4091 #define MSR_TYPE_W 2
4092 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
4095 int f
= sizeof(unsigned long);
4097 if (!cpu_has_vmx_msr_bitmap())
4101 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4102 * have the write-low and read-high bitmap offsets the wrong way round.
4103 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4105 if (msr
<= 0x1fff) {
4106 if (type
& MSR_TYPE_R
)
4108 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
4110 if (type
& MSR_TYPE_W
)
4112 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
4114 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4116 if (type
& MSR_TYPE_R
)
4118 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
4120 if (type
& MSR_TYPE_W
)
4122 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4127 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
4130 int f
= sizeof(unsigned long);
4132 if (!cpu_has_vmx_msr_bitmap())
4136 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4137 * have the write-low and read-high bitmap offsets the wrong way round.
4138 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4140 if (msr
<= 0x1fff) {
4141 if (type
& MSR_TYPE_R
)
4143 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
4145 if (type
& MSR_TYPE_W
)
4147 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
4149 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4151 if (type
& MSR_TYPE_R
)
4153 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
4155 if (type
& MSR_TYPE_W
)
4157 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4162 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
4165 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
,
4166 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4167 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
,
4168 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4171 static void vmx_enable_intercept_msr_read_x2apic(u32 msr
)
4173 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4175 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4179 static void vmx_disable_intercept_msr_read_x2apic(u32 msr
)
4181 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4183 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4187 static void vmx_disable_intercept_msr_write_x2apic(u32 msr
)
4189 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4191 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4195 static int vmx_vm_has_apicv(struct kvm
*kvm
)
4197 return enable_apicv
&& irqchip_in_kernel(kvm
);
4201 * Send interrupt to vcpu via posted interrupt way.
4202 * 1. If target vcpu is running(non-root mode), send posted interrupt
4203 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4204 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4205 * interrupt from PIR in next vmentry.
4207 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
4209 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4212 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
4215 r
= pi_test_and_set_on(&vmx
->pi_desc
);
4216 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4218 if (!r
&& (vcpu
->mode
== IN_GUEST_MODE
))
4219 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
),
4220 POSTED_INTR_VECTOR
);
4223 kvm_vcpu_kick(vcpu
);
4226 static void vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
4228 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4230 if (!pi_test_and_clear_on(&vmx
->pi_desc
))
4233 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
);
4236 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
)
4242 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4243 * will not change in the lifetime of the guest.
4244 * Note that host-state that does change is set elsewhere. E.g., host-state
4245 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4247 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
4254 vmcs_writel(HOST_CR0
, read_cr0() & ~X86_CR0_TS
); /* 22.2.3 */
4255 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4257 /* Save the most likely value for this task's CR4 in the VMCS. */
4259 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
4260 vmx
->host_state
.vmcs_host_cr4
= cr4
;
4262 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
4263 #ifdef CONFIG_X86_64
4265 * Load null selectors, so we can avoid reloading them in
4266 * __vmx_load_host_state(), in case userspace uses the null selectors
4267 * too (the expected case).
4269 vmcs_write16(HOST_DS_SELECTOR
, 0);
4270 vmcs_write16(HOST_ES_SELECTOR
, 0);
4272 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4273 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4275 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4276 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
4278 native_store_idt(&dt
);
4279 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
4280 vmx
->host_idt_base
= dt
.address
;
4282 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
4284 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
4285 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
4286 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
4287 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
4289 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
4290 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
4291 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
4295 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
4297 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
4299 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
4300 if (is_guest_mode(&vmx
->vcpu
))
4301 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
4302 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
4303 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
4306 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
4308 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
4310 if (!vmx_vm_has_apicv(vmx
->vcpu
.kvm
))
4311 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
4312 return pin_based_exec_ctrl
;
4315 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
4317 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
4319 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
4320 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
4322 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
4323 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4324 #ifdef CONFIG_X86_64
4325 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
4326 CPU_BASED_CR8_LOAD_EXITING
;
4330 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
4331 CPU_BASED_CR3_LOAD_EXITING
|
4332 CPU_BASED_INVLPG_EXITING
;
4333 return exec_control
;
4336 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
4338 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
4339 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
4340 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
4342 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
4344 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
4345 enable_unrestricted_guest
= 0;
4346 /* Enable INVPCID for non-ept guests may cause performance regression. */
4347 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
4349 if (!enable_unrestricted_guest
)
4350 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
4352 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
4353 if (!vmx_vm_has_apicv(vmx
->vcpu
.kvm
))
4354 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4355 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4356 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
4357 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4359 We can NOT enable shadow_vmcs here because we don't have yet
4362 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
4363 return exec_control
;
4366 static void ept_set_mmio_spte_mask(void)
4369 * EPT Misconfigurations can be generated if the value of bits 2:0
4370 * of an EPT paging-structure entry is 110b (write/execute).
4371 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4374 kvm_mmu_set_mmio_spte_mask((0x3ull
<< 62) | 0x6ull
);
4377 #define VMX_XSS_EXIT_BITMAP 0
4379 * Sets up the vmcs for emulated real mode.
4381 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
4383 #ifdef CONFIG_X86_64
4389 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
4390 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
4392 if (enable_shadow_vmcs
) {
4393 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
4394 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
4396 if (cpu_has_vmx_msr_bitmap())
4397 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
4399 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
4402 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
4404 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
4406 if (cpu_has_secondary_exec_ctrls()) {
4407 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
4408 vmx_secondary_exec_control(vmx
));
4411 if (vmx_vm_has_apicv(vmx
->vcpu
.kvm
)) {
4412 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
4413 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
4414 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
4415 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
4417 vmcs_write16(GUEST_INTR_STATUS
, 0);
4419 vmcs_write64(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
4420 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
4424 vmcs_write32(PLE_GAP
, ple_gap
);
4425 vmx
->ple_window
= ple_window
;
4426 vmx
->ple_window_dirty
= true;
4429 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
4430 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
4431 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
4433 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
4434 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
4435 vmx_set_constant_host_state(vmx
);
4436 #ifdef CONFIG_X86_64
4437 rdmsrl(MSR_FS_BASE
, a
);
4438 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
4439 rdmsrl(MSR_GS_BASE
, a
);
4440 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
4442 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
4443 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
4446 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
4447 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
4448 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
4449 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
4450 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
4452 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
4453 u32 msr_low
, msr_high
;
4455 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
4456 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
4457 /* Write the default value follow host pat */
4458 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
4459 /* Keep arch.pat sync with GUEST_IA32_PAT */
4460 vmx
->vcpu
.arch
.pat
= host_pat
;
4463 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
) {
4464 u32 index
= vmx_msr_index
[i
];
4465 u32 data_low
, data_high
;
4468 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
4470 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
4472 vmx
->guest_msrs
[j
].index
= i
;
4473 vmx
->guest_msrs
[j
].data
= 0;
4474 vmx
->guest_msrs
[j
].mask
= -1ull;
4479 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
4481 /* 22.2.1, 20.8.1 */
4482 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
4484 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
4485 set_cr4_guest_host_mask(vmx
);
4487 if (vmx_xsaves_supported())
4488 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
4493 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
4495 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4496 struct msr_data apic_base_msr
;
4498 vmx
->rmode
.vm86_active
= 0;
4500 vmx
->soft_vnmi_blocked
= 0;
4502 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
4503 kvm_set_cr8(&vmx
->vcpu
, 0);
4504 apic_base_msr
.data
= APIC_DEFAULT_PHYS_BASE
| MSR_IA32_APICBASE_ENABLE
;
4505 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
4506 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
4507 apic_base_msr
.host_initiated
= true;
4508 kvm_set_apic_base(&vmx
->vcpu
, &apic_base_msr
);
4510 vmx_segment_cache_clear(vmx
);
4512 seg_setup(VCPU_SREG_CS
);
4513 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
4514 vmcs_write32(GUEST_CS_BASE
, 0xffff0000);
4516 seg_setup(VCPU_SREG_DS
);
4517 seg_setup(VCPU_SREG_ES
);
4518 seg_setup(VCPU_SREG_FS
);
4519 seg_setup(VCPU_SREG_GS
);
4520 seg_setup(VCPU_SREG_SS
);
4522 vmcs_write16(GUEST_TR_SELECTOR
, 0);
4523 vmcs_writel(GUEST_TR_BASE
, 0);
4524 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
4525 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4527 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
4528 vmcs_writel(GUEST_LDTR_BASE
, 0);
4529 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
4530 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
4532 vmcs_write32(GUEST_SYSENTER_CS
, 0);
4533 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
4534 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
4536 vmcs_writel(GUEST_RFLAGS
, 0x02);
4537 kvm_rip_write(vcpu
, 0xfff0);
4539 vmcs_writel(GUEST_GDTR_BASE
, 0);
4540 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
4542 vmcs_writel(GUEST_IDTR_BASE
, 0);
4543 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
4545 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
4546 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
4547 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
4549 /* Special registers */
4550 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
4554 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
4556 if (cpu_has_vmx_tpr_shadow()) {
4557 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
4558 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
4559 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
4560 __pa(vmx
->vcpu
.arch
.apic
->regs
));
4561 vmcs_write32(TPR_THRESHOLD
, 0);
4564 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
4566 if (vmx_vm_has_apicv(vcpu
->kvm
))
4567 memset(&vmx
->pi_desc
, 0, sizeof(struct pi_desc
));
4570 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
4572 vmx
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
4573 vmx_set_cr0(&vmx
->vcpu
, kvm_read_cr0(vcpu
)); /* enter rmode */
4574 vmx_set_cr4(&vmx
->vcpu
, 0);
4575 vmx_set_efer(&vmx
->vcpu
, 0);
4576 vmx_fpu_activate(&vmx
->vcpu
);
4577 update_exception_bitmap(&vmx
->vcpu
);
4579 vpid_sync_context(vmx
);
4583 * In nested virtualization, check if L1 asked to exit on external interrupts.
4584 * For most existing hypervisors, this will always return true.
4586 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
4588 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4589 PIN_BASED_EXT_INTR_MASK
;
4593 * In nested virtualization, check if L1 has set
4594 * VM_EXIT_ACK_INTR_ON_EXIT
4596 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
4598 return get_vmcs12(vcpu
)->vm_exit_controls
&
4599 VM_EXIT_ACK_INTR_ON_EXIT
;
4602 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
4604 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4605 PIN_BASED_NMI_EXITING
;
4608 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
4610 u32 cpu_based_vm_exec_control
;
4612 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4613 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
4614 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4617 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
4619 u32 cpu_based_vm_exec_control
;
4621 if (!cpu_has_virtual_nmis() ||
4622 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
4623 enable_irq_window(vcpu
);
4627 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4628 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
4629 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4632 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
4634 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4636 int irq
= vcpu
->arch
.interrupt
.nr
;
4638 trace_kvm_inj_virq(irq
);
4640 ++vcpu
->stat
.irq_injections
;
4641 if (vmx
->rmode
.vm86_active
) {
4643 if (vcpu
->arch
.interrupt
.soft
)
4644 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
4645 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
4646 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4649 intr
= irq
| INTR_INFO_VALID_MASK
;
4650 if (vcpu
->arch
.interrupt
.soft
) {
4651 intr
|= INTR_TYPE_SOFT_INTR
;
4652 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
4653 vmx
->vcpu
.arch
.event_exit_inst_len
);
4655 intr
|= INTR_TYPE_EXT_INTR
;
4656 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
4659 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
4661 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4663 if (is_guest_mode(vcpu
))
4666 if (!cpu_has_virtual_nmis()) {
4668 * Tracking the NMI-blocked state in software is built upon
4669 * finding the next open IRQ window. This, in turn, depends on
4670 * well-behaving guests: They have to keep IRQs disabled at
4671 * least as long as the NMI handler runs. Otherwise we may
4672 * cause NMI nesting, maybe breaking the guest. But as this is
4673 * highly unlikely, we can live with the residual risk.
4675 vmx
->soft_vnmi_blocked
= 1;
4676 vmx
->vnmi_blocked_time
= 0;
4679 ++vcpu
->stat
.nmi_injections
;
4680 vmx
->nmi_known_unmasked
= false;
4681 if (vmx
->rmode
.vm86_active
) {
4682 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
4683 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4686 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
4687 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
4690 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
4692 if (!cpu_has_virtual_nmis())
4693 return to_vmx(vcpu
)->soft_vnmi_blocked
;
4694 if (to_vmx(vcpu
)->nmi_known_unmasked
)
4696 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
4699 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
4701 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4703 if (!cpu_has_virtual_nmis()) {
4704 if (vmx
->soft_vnmi_blocked
!= masked
) {
4705 vmx
->soft_vnmi_blocked
= masked
;
4706 vmx
->vnmi_blocked_time
= 0;
4709 vmx
->nmi_known_unmasked
= !masked
;
4711 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
4712 GUEST_INTR_STATE_NMI
);
4714 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
4715 GUEST_INTR_STATE_NMI
);
4719 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
4721 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
4724 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
4727 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4728 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
4729 | GUEST_INTR_STATE_NMI
));
4732 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4734 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
4735 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
4736 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4737 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
4740 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
4743 struct kvm_userspace_memory_region tss_mem
= {
4744 .slot
= TSS_PRIVATE_MEMSLOT
,
4745 .guest_phys_addr
= addr
,
4746 .memory_size
= PAGE_SIZE
* 3,
4750 ret
= kvm_set_memory_region(kvm
, &tss_mem
);
4753 kvm
->arch
.tss_addr
= addr
;
4754 return init_rmode_tss(kvm
);
4757 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
4762 * Update instruction length as we may reinject the exception
4763 * from user space while in guest debugging mode.
4765 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
4766 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4767 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
4771 if (vcpu
->guest_debug
&
4772 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
4789 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
4790 int vec
, u32 err_code
)
4793 * Instruction with address size override prefix opcode 0x67
4794 * Cause the #SS fault with 0 error code in VM86 mode.
4796 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
4797 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
4798 if (vcpu
->arch
.halt_request
) {
4799 vcpu
->arch
.halt_request
= 0;
4800 return kvm_emulate_halt(vcpu
);
4808 * Forward all other exceptions that are valid in real mode.
4809 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4810 * the required debugging infrastructure rework.
4812 kvm_queue_exception(vcpu
, vec
);
4817 * Trigger machine check on the host. We assume all the MSRs are already set up
4818 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4819 * We pass a fake environment to the machine check handler because we want
4820 * the guest to be always treated like user space, no matter what context
4821 * it used internally.
4823 static void kvm_machine_check(void)
4825 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4826 struct pt_regs regs
= {
4827 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
4828 .flags
= X86_EFLAGS_IF
,
4831 do_machine_check(®s
, 0);
4835 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
4837 /* already handled by vcpu_run */
4841 static int handle_exception(struct kvm_vcpu
*vcpu
)
4843 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4844 struct kvm_run
*kvm_run
= vcpu
->run
;
4845 u32 intr_info
, ex_no
, error_code
;
4846 unsigned long cr2
, rip
, dr6
;
4848 enum emulation_result er
;
4850 vect_info
= vmx
->idt_vectoring_info
;
4851 intr_info
= vmx
->exit_intr_info
;
4853 if (is_machine_check(intr_info
))
4854 return handle_machine_check(vcpu
);
4856 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
4857 return 1; /* already handled by vmx_vcpu_run() */
4859 if (is_no_device(intr_info
)) {
4860 vmx_fpu_activate(vcpu
);
4864 if (is_invalid_opcode(intr_info
)) {
4865 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
4866 if (er
!= EMULATE_DONE
)
4867 kvm_queue_exception(vcpu
, UD_VECTOR
);
4872 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
4873 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
4876 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4877 * MMIO, it is better to report an internal error.
4878 * See the comments in vmx_handle_exit.
4880 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
4881 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
4882 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4883 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
4884 vcpu
->run
->internal
.ndata
= 2;
4885 vcpu
->run
->internal
.data
[0] = vect_info
;
4886 vcpu
->run
->internal
.data
[1] = intr_info
;
4890 if (is_page_fault(intr_info
)) {
4891 /* EPT won't cause page fault directly */
4893 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
4894 trace_kvm_page_fault(cr2
, error_code
);
4896 if (kvm_event_needs_reinjection(vcpu
))
4897 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
4898 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
4901 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
4903 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
4904 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
4908 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
4909 if (!(vcpu
->guest_debug
&
4910 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
4911 vcpu
->arch
.dr6
&= ~15;
4912 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
4913 if (!(dr6
& ~DR6_RESERVED
)) /* icebp */
4914 skip_emulated_instruction(vcpu
);
4916 kvm_queue_exception(vcpu
, DB_VECTOR
);
4919 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
4920 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
4924 * Update instruction length as we may reinject #BP from
4925 * user space while in guest debugging mode. Reading it for
4926 * #DB as well causes no harm, it is not used in that case.
4928 vmx
->vcpu
.arch
.event_exit_inst_len
=
4929 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4930 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
4931 rip
= kvm_rip_read(vcpu
);
4932 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
4933 kvm_run
->debug
.arch
.exception
= ex_no
;
4936 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
4937 kvm_run
->ex
.exception
= ex_no
;
4938 kvm_run
->ex
.error_code
= error_code
;
4944 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
4946 ++vcpu
->stat
.irq_exits
;
4950 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
4952 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
4956 static int handle_io(struct kvm_vcpu
*vcpu
)
4958 unsigned long exit_qualification
;
4959 int size
, in
, string
;
4962 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4963 string
= (exit_qualification
& 16) != 0;
4964 in
= (exit_qualification
& 8) != 0;
4966 ++vcpu
->stat
.io_exits
;
4969 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4971 port
= exit_qualification
>> 16;
4972 size
= (exit_qualification
& 7) + 1;
4973 skip_emulated_instruction(vcpu
);
4975 return kvm_fast_pio_out(vcpu
, size
, port
);
4979 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
4982 * Patch in the VMCALL instruction:
4984 hypercall
[0] = 0x0f;
4985 hypercall
[1] = 0x01;
4986 hypercall
[2] = 0xc1;
4989 static bool nested_cr0_valid(struct vmcs12
*vmcs12
, unsigned long val
)
4991 unsigned long always_on
= VMXON_CR0_ALWAYSON
;
4993 if (nested_vmx_secondary_ctls_high
&
4994 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
4995 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
4996 always_on
&= ~(X86_CR0_PE
| X86_CR0_PG
);
4997 return (val
& always_on
) == always_on
;
5000 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5001 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
5003 if (is_guest_mode(vcpu
)) {
5004 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5005 unsigned long orig_val
= val
;
5008 * We get here when L2 changed cr0 in a way that did not change
5009 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5010 * but did change L0 shadowed bits. So we first calculate the
5011 * effective cr0 value that L1 would like to write into the
5012 * hardware. It consists of the L2-owned bits from the new
5013 * value combined with the L1-owned bits from L1's guest_cr0.
5015 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
5016 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
5018 if (!nested_cr0_valid(vmcs12
, val
))
5021 if (kvm_set_cr0(vcpu
, val
))
5023 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
5026 if (to_vmx(vcpu
)->nested
.vmxon
&&
5027 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
5029 return kvm_set_cr0(vcpu
, val
);
5033 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
5035 if (is_guest_mode(vcpu
)) {
5036 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5037 unsigned long orig_val
= val
;
5039 /* analogously to handle_set_cr0 */
5040 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
5041 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
5042 if (kvm_set_cr4(vcpu
, val
))
5044 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
5047 return kvm_set_cr4(vcpu
, val
);
5050 /* called to set cr0 as approriate for clts instruction exit. */
5051 static void handle_clts(struct kvm_vcpu
*vcpu
)
5053 if (is_guest_mode(vcpu
)) {
5055 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5056 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5057 * just pretend it's off (also in arch.cr0 for fpu_activate).
5059 vmcs_writel(CR0_READ_SHADOW
,
5060 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
5061 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
5063 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
5066 static int handle_cr(struct kvm_vcpu
*vcpu
)
5068 unsigned long exit_qualification
, val
;
5073 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5074 cr
= exit_qualification
& 15;
5075 reg
= (exit_qualification
>> 8) & 15;
5076 switch ((exit_qualification
>> 4) & 3) {
5077 case 0: /* mov to cr */
5078 val
= kvm_register_readl(vcpu
, reg
);
5079 trace_kvm_cr_write(cr
, val
);
5082 err
= handle_set_cr0(vcpu
, val
);
5083 kvm_complete_insn_gp(vcpu
, err
);
5086 err
= kvm_set_cr3(vcpu
, val
);
5087 kvm_complete_insn_gp(vcpu
, err
);
5090 err
= handle_set_cr4(vcpu
, val
);
5091 kvm_complete_insn_gp(vcpu
, err
);
5094 u8 cr8_prev
= kvm_get_cr8(vcpu
);
5096 err
= kvm_set_cr8(vcpu
, cr8
);
5097 kvm_complete_insn_gp(vcpu
, err
);
5098 if (irqchip_in_kernel(vcpu
->kvm
))
5100 if (cr8_prev
<= cr8
)
5102 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
5109 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
5110 skip_emulated_instruction(vcpu
);
5111 vmx_fpu_activate(vcpu
);
5113 case 1: /*mov from cr*/
5116 val
= kvm_read_cr3(vcpu
);
5117 kvm_register_write(vcpu
, reg
, val
);
5118 trace_kvm_cr_read(cr
, val
);
5119 skip_emulated_instruction(vcpu
);
5122 val
= kvm_get_cr8(vcpu
);
5123 kvm_register_write(vcpu
, reg
, val
);
5124 trace_kvm_cr_read(cr
, val
);
5125 skip_emulated_instruction(vcpu
);
5130 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
5131 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
5132 kvm_lmsw(vcpu
, val
);
5134 skip_emulated_instruction(vcpu
);
5139 vcpu
->run
->exit_reason
= 0;
5140 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
5141 (int)(exit_qualification
>> 4) & 3, cr
);
5145 static int handle_dr(struct kvm_vcpu
*vcpu
)
5147 unsigned long exit_qualification
;
5150 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5151 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
5153 /* First, if DR does not exist, trigger UD */
5154 if (!kvm_require_dr(vcpu
, dr
))
5157 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5158 if (!kvm_require_cpl(vcpu
, 0))
5160 dr7
= vmcs_readl(GUEST_DR7
);
5163 * As the vm-exit takes precedence over the debug trap, we
5164 * need to emulate the latter, either for the host or the
5165 * guest debugging itself.
5167 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5168 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
5169 vcpu
->run
->debug
.arch
.dr7
= dr7
;
5170 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
5171 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
5172 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
5175 vcpu
->arch
.dr6
&= ~15;
5176 vcpu
->arch
.dr6
|= DR6_BD
| DR6_RTM
;
5177 kvm_queue_exception(vcpu
, DB_VECTOR
);
5182 if (vcpu
->guest_debug
== 0) {
5183 u32 cpu_based_vm_exec_control
;
5185 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5186 cpu_based_vm_exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
5187 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5190 * No more DR vmexits; force a reload of the debug registers
5191 * and reenter on this instruction. The next vmexit will
5192 * retrieve the full state of the debug registers.
5194 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
5198 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
5199 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
5202 if (kvm_get_dr(vcpu
, dr
, &val
))
5204 kvm_register_write(vcpu
, reg
, val
);
5206 if (kvm_set_dr(vcpu
, dr
, kvm_register_readl(vcpu
, reg
)))
5209 skip_emulated_instruction(vcpu
);
5213 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
5215 return vcpu
->arch
.dr6
;
5218 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
5222 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
5224 u32 cpu_based_vm_exec_control
;
5226 get_debugreg(vcpu
->arch
.db
[0], 0);
5227 get_debugreg(vcpu
->arch
.db
[1], 1);
5228 get_debugreg(vcpu
->arch
.db
[2], 2);
5229 get_debugreg(vcpu
->arch
.db
[3], 3);
5230 get_debugreg(vcpu
->arch
.dr6
, 6);
5231 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
5233 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
5235 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5236 cpu_based_vm_exec_control
|= CPU_BASED_MOV_DR_EXITING
;
5237 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5240 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
5242 vmcs_writel(GUEST_DR7
, val
);
5245 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
5247 kvm_emulate_cpuid(vcpu
);
5251 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
5253 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5256 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
5257 trace_kvm_msr_read_ex(ecx
);
5258 kvm_inject_gp(vcpu
, 0);
5262 trace_kvm_msr_read(ecx
, data
);
5264 /* FIXME: handling of bits 32:63 of rax, rdx */
5265 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
5266 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
5267 skip_emulated_instruction(vcpu
);
5271 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
5273 struct msr_data msr
;
5274 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5275 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
5276 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
5280 msr
.host_initiated
= false;
5281 if (kvm_set_msr(vcpu
, &msr
) != 0) {
5282 trace_kvm_msr_write_ex(ecx
, data
);
5283 kvm_inject_gp(vcpu
, 0);
5287 trace_kvm_msr_write(ecx
, data
);
5288 skip_emulated_instruction(vcpu
);
5292 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
5294 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5298 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
5300 u32 cpu_based_vm_exec_control
;
5302 /* clear pending irq */
5303 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5304 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
5305 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5307 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5309 ++vcpu
->stat
.irq_window_exits
;
5312 * If the user space waits to inject interrupts, exit as soon as
5315 if (!irqchip_in_kernel(vcpu
->kvm
) &&
5316 vcpu
->run
->request_interrupt_window
&&
5317 !kvm_cpu_has_interrupt(vcpu
)) {
5318 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
5324 static int handle_halt(struct kvm_vcpu
*vcpu
)
5326 skip_emulated_instruction(vcpu
);
5327 return kvm_emulate_halt(vcpu
);
5330 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
5332 skip_emulated_instruction(vcpu
);
5333 kvm_emulate_hypercall(vcpu
);
5337 static int handle_invd(struct kvm_vcpu
*vcpu
)
5339 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5342 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
5344 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5346 kvm_mmu_invlpg(vcpu
, exit_qualification
);
5347 skip_emulated_instruction(vcpu
);
5351 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
5355 err
= kvm_rdpmc(vcpu
);
5356 kvm_complete_insn_gp(vcpu
, err
);
5361 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
5363 skip_emulated_instruction(vcpu
);
5364 kvm_emulate_wbinvd(vcpu
);
5368 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
5370 u64 new_bv
= kvm_read_edx_eax(vcpu
);
5371 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5373 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
5374 skip_emulated_instruction(vcpu
);
5378 static int handle_xsaves(struct kvm_vcpu
*vcpu
)
5380 skip_emulated_instruction(vcpu
);
5381 WARN(1, "this should never happen\n");
5385 static int handle_xrstors(struct kvm_vcpu
*vcpu
)
5387 skip_emulated_instruction(vcpu
);
5388 WARN(1, "this should never happen\n");
5392 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
5394 if (likely(fasteoi
)) {
5395 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5396 int access_type
, offset
;
5398 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
5399 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
5401 * Sane guest uses MOV to write EOI, with written value
5402 * not cared. So make a short-circuit here by avoiding
5403 * heavy instruction emulation.
5405 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
5406 (offset
== APIC_EOI
)) {
5407 kvm_lapic_set_eoi(vcpu
);
5408 skip_emulated_instruction(vcpu
);
5412 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5415 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
5417 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5418 int vector
= exit_qualification
& 0xff;
5420 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5421 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
5425 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
5427 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5428 u32 offset
= exit_qualification
& 0xfff;
5430 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5431 kvm_apic_write_nodecode(vcpu
, offset
);
5435 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
5437 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5438 unsigned long exit_qualification
;
5439 bool has_error_code
= false;
5442 int reason
, type
, idt_v
, idt_index
;
5444 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
5445 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
5446 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
5448 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5450 reason
= (u32
)exit_qualification
>> 30;
5451 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
5453 case INTR_TYPE_NMI_INTR
:
5454 vcpu
->arch
.nmi_injected
= false;
5455 vmx_set_nmi_mask(vcpu
, true);
5457 case INTR_TYPE_EXT_INTR
:
5458 case INTR_TYPE_SOFT_INTR
:
5459 kvm_clear_interrupt_queue(vcpu
);
5461 case INTR_TYPE_HARD_EXCEPTION
:
5462 if (vmx
->idt_vectoring_info
&
5463 VECTORING_INFO_DELIVER_CODE_MASK
) {
5464 has_error_code
= true;
5466 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
5469 case INTR_TYPE_SOFT_EXCEPTION
:
5470 kvm_clear_exception_queue(vcpu
);
5476 tss_selector
= exit_qualification
;
5478 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
5479 type
!= INTR_TYPE_EXT_INTR
&&
5480 type
!= INTR_TYPE_NMI_INTR
))
5481 skip_emulated_instruction(vcpu
);
5483 if (kvm_task_switch(vcpu
, tss_selector
,
5484 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
5485 has_error_code
, error_code
) == EMULATE_FAIL
) {
5486 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5487 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5488 vcpu
->run
->internal
.ndata
= 0;
5492 /* clear all local breakpoint enable flags */
5493 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~0x155);
5496 * TODO: What about debug traps on tss switch?
5497 * Are we supposed to inject them and update dr6?
5503 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
5505 unsigned long exit_qualification
;
5510 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5512 gla_validity
= (exit_qualification
>> 7) & 0x3;
5513 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
5514 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
5515 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5516 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
5517 vmcs_readl(GUEST_LINEAR_ADDRESS
));
5518 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
5519 (long unsigned int)exit_qualification
);
5520 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5521 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
5526 * EPT violation happened while executing iret from NMI,
5527 * "blocked by NMI" bit has to be set before next VM entry.
5528 * There are errata that may cause this bit to not be set:
5531 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5532 cpu_has_virtual_nmis() &&
5533 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
5534 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
5536 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5537 trace_kvm_page_fault(gpa
, exit_qualification
);
5539 /* It is a write fault? */
5540 error_code
= exit_qualification
& PFERR_WRITE_MASK
;
5541 /* It is a fetch fault? */
5542 error_code
|= (exit_qualification
<< 2) & PFERR_FETCH_MASK
;
5543 /* ept page table is present? */
5544 error_code
|= (exit_qualification
>> 3) & PFERR_PRESENT_MASK
;
5546 vcpu
->arch
.exit_qualification
= exit_qualification
;
5548 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
5551 static u64
ept_rsvd_mask(u64 spte
, int level
)
5556 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
5557 mask
|= (1ULL << i
);
5560 /* bits 7:3 reserved */
5562 else if (spte
& (1ULL << 7))
5564 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5565 * level == 1 if the hypervisor is using the ignored bit 7.
5567 mask
|= (PAGE_SIZE
<< ((level
- 1) * 9)) - PAGE_SIZE
;
5569 /* bits 6:3 reserved */
5575 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
5578 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
5580 /* 010b (write-only) */
5581 WARN_ON((spte
& 0x7) == 0x2);
5583 /* 110b (write/execute) */
5584 WARN_ON((spte
& 0x7) == 0x6);
5586 /* 100b (execute-only) and value not supported by logical processor */
5587 if (!cpu_has_vmx_ept_execute_only())
5588 WARN_ON((spte
& 0x7) == 0x4);
5592 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
5594 if (rsvd_bits
!= 0) {
5595 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
5596 __func__
, rsvd_bits
);
5600 /* bits 5:3 are _not_ reserved for large page or leaf page */
5601 if ((rsvd_bits
& 0x38) == 0) {
5602 u64 ept_mem_type
= (spte
& 0x38) >> 3;
5604 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
5605 ept_mem_type
== 7) {
5606 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
5607 __func__
, ept_mem_type
);
5614 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
5617 int nr_sptes
, i
, ret
;
5620 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5621 if (!kvm_io_bus_write(vcpu
->kvm
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
5622 skip_emulated_instruction(vcpu
);
5626 ret
= handle_mmio_page_fault_common(vcpu
, gpa
, true);
5627 if (likely(ret
== RET_MMIO_PF_EMULATE
))
5628 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
5631 if (unlikely(ret
== RET_MMIO_PF_INVALID
))
5632 return kvm_mmu_page_fault(vcpu
, gpa
, 0, NULL
, 0);
5634 if (unlikely(ret
== RET_MMIO_PF_RETRY
))
5637 /* It is the real ept misconfig */
5638 printk(KERN_ERR
"EPT: Misconfiguration.\n");
5639 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
5641 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
5643 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
5644 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
5646 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5647 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
5652 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
5654 u32 cpu_based_vm_exec_control
;
5656 /* clear pending NMI */
5657 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5658 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
5659 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5660 ++vcpu
->stat
.nmi_window_exits
;
5661 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5666 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
5668 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5669 enum emulation_result err
= EMULATE_DONE
;
5672 bool intr_window_requested
;
5673 unsigned count
= 130;
5675 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5676 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
5678 while (vmx
->emulation_required
&& count
-- != 0) {
5679 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
5680 return handle_interrupt_window(&vmx
->vcpu
);
5682 if (test_bit(KVM_REQ_EVENT
, &vcpu
->requests
))
5685 err
= emulate_instruction(vcpu
, EMULTYPE_NO_REEXECUTE
);
5687 if (err
== EMULATE_USER_EXIT
) {
5688 ++vcpu
->stat
.mmio_exits
;
5693 if (err
!= EMULATE_DONE
) {
5694 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5695 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5696 vcpu
->run
->internal
.ndata
= 0;
5700 if (vcpu
->arch
.halt_request
) {
5701 vcpu
->arch
.halt_request
= 0;
5702 ret
= kvm_emulate_halt(vcpu
);
5706 if (signal_pending(current
))
5716 static int __grow_ple_window(int val
)
5718 if (ple_window_grow
< 1)
5721 val
= min(val
, ple_window_actual_max
);
5723 if (ple_window_grow
< ple_window
)
5724 val
*= ple_window_grow
;
5726 val
+= ple_window_grow
;
5731 static int __shrink_ple_window(int val
, int modifier
, int minimum
)
5736 if (modifier
< ple_window
)
5741 return max(val
, minimum
);
5744 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
5746 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5747 int old
= vmx
->ple_window
;
5749 vmx
->ple_window
= __grow_ple_window(old
);
5751 if (vmx
->ple_window
!= old
)
5752 vmx
->ple_window_dirty
= true;
5754 trace_kvm_ple_window_grow(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
5757 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
5759 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5760 int old
= vmx
->ple_window
;
5762 vmx
->ple_window
= __shrink_ple_window(old
,
5763 ple_window_shrink
, ple_window
);
5765 if (vmx
->ple_window
!= old
)
5766 vmx
->ple_window_dirty
= true;
5768 trace_kvm_ple_window_shrink(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
5772 * ple_window_actual_max is computed to be one grow_ple_window() below
5773 * ple_window_max. (See __grow_ple_window for the reason.)
5774 * This prevents overflows, because ple_window_max is int.
5775 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5777 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5779 static void update_ple_window_actual_max(void)
5781 ple_window_actual_max
=
5782 __shrink_ple_window(max(ple_window_max
, ple_window
),
5783 ple_window_grow
, INT_MIN
);
5786 static __init
int hardware_setup(void)
5788 int r
= -ENOMEM
, i
, msr
;
5790 rdmsrl_safe(MSR_EFER
, &host_efer
);
5792 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
)
5793 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
5795 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
5796 if (!vmx_io_bitmap_a
)
5799 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
5800 if (!vmx_io_bitmap_b
)
5803 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
5804 if (!vmx_msr_bitmap_legacy
)
5807 vmx_msr_bitmap_legacy_x2apic
=
5808 (unsigned long *)__get_free_page(GFP_KERNEL
);
5809 if (!vmx_msr_bitmap_legacy_x2apic
)
5812 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
5813 if (!vmx_msr_bitmap_longmode
)
5816 vmx_msr_bitmap_longmode_x2apic
=
5817 (unsigned long *)__get_free_page(GFP_KERNEL
);
5818 if (!vmx_msr_bitmap_longmode_x2apic
)
5820 vmx_vmread_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
5821 if (!vmx_vmread_bitmap
)
5824 vmx_vmwrite_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
5825 if (!vmx_vmwrite_bitmap
)
5828 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
5829 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
5832 * Allow direct access to the PC debug port (it is often used for I/O
5833 * delays, but the vmexits simply slow things down).
5835 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
5836 clear_bit(0x80, vmx_io_bitmap_a
);
5838 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
5840 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
5841 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
5843 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
5844 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
5845 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
5846 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
5847 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
5848 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
5849 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS
, true);
5851 memcpy(vmx_msr_bitmap_legacy_x2apic
,
5852 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
5853 memcpy(vmx_msr_bitmap_longmode_x2apic
,
5854 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
5857 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
5858 vmx_disable_intercept_msr_read_x2apic(msr
);
5860 /* According SDM, in x2apic mode, the whole id reg is used.
5861 * But in KVM, it only use the highest eight bits. Need to
5863 vmx_enable_intercept_msr_read_x2apic(0x802);
5865 vmx_enable_intercept_msr_read_x2apic(0x839);
5867 vmx_disable_intercept_msr_write_x2apic(0x808);
5869 vmx_disable_intercept_msr_write_x2apic(0x80b);
5871 vmx_disable_intercept_msr_write_x2apic(0x83f);
5875 kvm_mmu_set_mask_ptes(0ull,
5876 (enable_ept_ad_bits
) ? VMX_EPT_ACCESS_BIT
: 0ull,
5877 (enable_ept_ad_bits
) ? VMX_EPT_DIRTY_BIT
: 0ull,
5878 0ull, VMX_EPT_EXECUTABLE_MASK
);
5879 ept_set_mmio_spte_mask();
5884 update_ple_window_actual_max();
5886 if (setup_vmcs_config(&vmcs_config
) < 0) {
5891 if (boot_cpu_has(X86_FEATURE_NX
))
5892 kvm_enable_efer_bits(EFER_NX
);
5894 if (!cpu_has_vmx_vpid())
5896 if (!cpu_has_vmx_shadow_vmcs())
5897 enable_shadow_vmcs
= 0;
5898 if (enable_shadow_vmcs
)
5899 init_vmcs_shadow_fields();
5901 if (!cpu_has_vmx_ept() ||
5902 !cpu_has_vmx_ept_4levels()) {
5904 enable_unrestricted_guest
= 0;
5905 enable_ept_ad_bits
= 0;
5908 if (!cpu_has_vmx_ept_ad_bits())
5909 enable_ept_ad_bits
= 0;
5911 if (!cpu_has_vmx_unrestricted_guest())
5912 enable_unrestricted_guest
= 0;
5914 if (!cpu_has_vmx_flexpriority()) {
5915 flexpriority_enabled
= 0;
5918 * set_apic_access_page_addr() is used to reload apic access
5919 * page upon invalidation. No need to do anything if the
5920 * processor does not have the APIC_ACCESS_ADDR VMCS field.
5922 kvm_x86_ops
->set_apic_access_page_addr
= NULL
;
5925 if (!cpu_has_vmx_tpr_shadow())
5926 kvm_x86_ops
->update_cr8_intercept
= NULL
;
5928 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
5929 kvm_disable_largepages();
5931 if (!cpu_has_vmx_ple())
5934 if (!cpu_has_vmx_apicv())
5938 kvm_x86_ops
->update_cr8_intercept
= NULL
;
5940 kvm_x86_ops
->hwapic_irr_update
= NULL
;
5941 kvm_x86_ops
->deliver_posted_interrupt
= NULL
;
5942 kvm_x86_ops
->sync_pir_to_irr
= vmx_sync_pir_to_irr_dummy
;
5946 nested_vmx_setup_ctls_msrs();
5948 return alloc_kvm_area();
5951 free_page((unsigned long)vmx_vmwrite_bitmap
);
5953 free_page((unsigned long)vmx_vmread_bitmap
);
5955 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
5957 free_page((unsigned long)vmx_msr_bitmap_longmode
);
5959 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
5961 free_page((unsigned long)vmx_msr_bitmap_legacy
);
5963 free_page((unsigned long)vmx_io_bitmap_b
);
5965 free_page((unsigned long)vmx_io_bitmap_a
);
5970 static __exit
void hardware_unsetup(void)
5972 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
5973 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
5974 free_page((unsigned long)vmx_msr_bitmap_legacy
);
5975 free_page((unsigned long)vmx_msr_bitmap_longmode
);
5976 free_page((unsigned long)vmx_io_bitmap_b
);
5977 free_page((unsigned long)vmx_io_bitmap_a
);
5978 free_page((unsigned long)vmx_vmwrite_bitmap
);
5979 free_page((unsigned long)vmx_vmread_bitmap
);
5985 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5986 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5988 static int handle_pause(struct kvm_vcpu
*vcpu
)
5991 grow_ple_window(vcpu
);
5993 skip_emulated_instruction(vcpu
);
5994 kvm_vcpu_on_spin(vcpu
);
5999 static int handle_nop(struct kvm_vcpu
*vcpu
)
6001 skip_emulated_instruction(vcpu
);
6005 static int handle_mwait(struct kvm_vcpu
*vcpu
)
6007 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
6008 return handle_nop(vcpu
);
6011 static int handle_monitor(struct kvm_vcpu
*vcpu
)
6013 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
6014 return handle_nop(vcpu
);
6018 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6019 * We could reuse a single VMCS for all the L2 guests, but we also want the
6020 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6021 * allows keeping them loaded on the processor, and in the future will allow
6022 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6023 * every entry if they never change.
6024 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6025 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6027 * The following functions allocate and free a vmcs02 in this pool.
6030 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6031 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
6033 struct vmcs02_list
*item
;
6034 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6035 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
6036 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6037 return &item
->vmcs02
;
6040 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
6041 /* Recycle the least recently used VMCS. */
6042 item
= list_entry(vmx
->nested
.vmcs02_pool
.prev
,
6043 struct vmcs02_list
, list
);
6044 item
->vmptr
= vmx
->nested
.current_vmptr
;
6045 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6046 return &item
->vmcs02
;
6049 /* Create a new VMCS */
6050 item
= kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
6053 item
->vmcs02
.vmcs
= alloc_vmcs();
6054 if (!item
->vmcs02
.vmcs
) {
6058 loaded_vmcs_init(&item
->vmcs02
);
6059 item
->vmptr
= vmx
->nested
.current_vmptr
;
6060 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
6061 vmx
->nested
.vmcs02_num
++;
6062 return &item
->vmcs02
;
6065 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6066 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
6068 struct vmcs02_list
*item
;
6069 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6070 if (item
->vmptr
== vmptr
) {
6071 free_loaded_vmcs(&item
->vmcs02
);
6072 list_del(&item
->list
);
6074 vmx
->nested
.vmcs02_num
--;
6080 * Free all VMCSs saved for this vcpu, except the one pointed by
6081 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6082 * must be &vmx->vmcs01.
6084 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
6086 struct vmcs02_list
*item
, *n
;
6088 WARN_ON(vmx
->loaded_vmcs
!= &vmx
->vmcs01
);
6089 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
6091 * Something will leak if the above WARN triggers. Better than
6094 if (vmx
->loaded_vmcs
== &item
->vmcs02
)
6097 free_loaded_vmcs(&item
->vmcs02
);
6098 list_del(&item
->list
);
6100 vmx
->nested
.vmcs02_num
--;
6105 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6106 * set the success or error code of an emulated VMX instruction, as specified
6107 * by Vol 2B, VMX Instruction Reference, "Conventions".
6109 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
6111 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
6112 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6113 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
6116 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
6118 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6119 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
6120 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6124 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
6125 u32 vm_instruction_error
)
6127 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
6129 * failValid writes the error number to the current VMCS, which
6130 * can't be done there isn't a current VMCS.
6132 nested_vmx_failInvalid(vcpu
);
6135 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6136 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6137 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6139 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
6141 * We don't need to force a shadow sync because
6142 * VM_INSTRUCTION_ERROR is not shadowed
6146 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
6148 struct vcpu_vmx
*vmx
=
6149 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
6151 vmx
->nested
.preemption_timer_expired
= true;
6152 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
6153 kvm_vcpu_kick(&vmx
->vcpu
);
6155 return HRTIMER_NORESTART
;
6159 * Decode the memory-address operand of a vmx instruction, as recorded on an
6160 * exit caused by such an instruction (run by a guest hypervisor).
6161 * On success, returns 0. When the operand is invalid, returns 1 and throws
6164 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
6165 unsigned long exit_qualification
,
6166 u32 vmx_instruction_info
, gva_t
*ret
)
6169 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6170 * Execution", on an exit, vmx_instruction_info holds most of the
6171 * addressing components of the operand. Only the displacement part
6172 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6173 * For how an actual address is calculated from all these components,
6174 * refer to Vol. 1, "Operand Addressing".
6176 int scaling
= vmx_instruction_info
& 3;
6177 int addr_size
= (vmx_instruction_info
>> 7) & 7;
6178 bool is_reg
= vmx_instruction_info
& (1u << 10);
6179 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
6180 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
6181 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
6182 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
6183 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
6186 kvm_queue_exception(vcpu
, UD_VECTOR
);
6190 /* Addr = segment_base + offset */
6191 /* offset = base + [index * scale] + displacement */
6192 *ret
= vmx_get_segment_base(vcpu
, seg_reg
);
6194 *ret
+= kvm_register_read(vcpu
, base_reg
);
6196 *ret
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
6197 *ret
+= exit_qualification
; /* holds the displacement */
6199 if (addr_size
== 1) /* 32 bit */
6203 * TODO: throw #GP (and return 1) in various cases that the VM*
6204 * instructions require it - e.g., offset beyond segment limit,
6205 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6206 * address, and so on. Currently these are not checked.
6212 * This function performs the various checks including
6213 * - if it's 4KB aligned
6214 * - No bits beyond the physical address width are set
6215 * - Returns 0 on success or else 1
6216 * (Intel SDM Section 30.3)
6218 static int nested_vmx_check_vmptr(struct kvm_vcpu
*vcpu
, int exit_reason
,
6223 struct x86_exception e
;
6225 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6226 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
6228 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6229 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
6232 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
6233 sizeof(vmptr
), &e
)) {
6234 kvm_inject_page_fault(vcpu
, &e
);
6238 switch (exit_reason
) {
6239 case EXIT_REASON_VMON
:
6242 * The first 4 bytes of VMXON region contain the supported
6243 * VMCS revision identifier
6245 * Note - IA32_VMX_BASIC[48] will never be 1
6246 * for the nested case;
6247 * which replaces physical address width with 32
6250 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6251 nested_vmx_failInvalid(vcpu
);
6252 skip_emulated_instruction(vcpu
);
6256 page
= nested_get_page(vcpu
, vmptr
);
6258 *(u32
*)kmap(page
) != VMCS12_REVISION
) {
6259 nested_vmx_failInvalid(vcpu
);
6261 skip_emulated_instruction(vcpu
);
6265 vmx
->nested
.vmxon_ptr
= vmptr
;
6267 case EXIT_REASON_VMCLEAR
:
6268 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6269 nested_vmx_failValid(vcpu
,
6270 VMXERR_VMCLEAR_INVALID_ADDRESS
);
6271 skip_emulated_instruction(vcpu
);
6275 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6276 nested_vmx_failValid(vcpu
,
6277 VMXERR_VMCLEAR_VMXON_POINTER
);
6278 skip_emulated_instruction(vcpu
);
6282 case EXIT_REASON_VMPTRLD
:
6283 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6284 nested_vmx_failValid(vcpu
,
6285 VMXERR_VMPTRLD_INVALID_ADDRESS
);
6286 skip_emulated_instruction(vcpu
);
6290 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6291 nested_vmx_failValid(vcpu
,
6292 VMXERR_VMCLEAR_VMXON_POINTER
);
6293 skip_emulated_instruction(vcpu
);
6298 return 1; /* shouldn't happen */
6307 * Emulate the VMXON instruction.
6308 * Currently, we just remember that VMX is active, and do not save or even
6309 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6310 * do not currently need to store anything in that guest-allocated memory
6311 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6312 * argument is different from the VMXON pointer (which the spec says they do).
6314 static int handle_vmon(struct kvm_vcpu
*vcpu
)
6316 struct kvm_segment cs
;
6317 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6318 struct vmcs
*shadow_vmcs
;
6319 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
6320 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
6322 /* The Intel VMX Instruction Reference lists a bunch of bits that
6323 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6324 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6325 * Otherwise, we should fail with #UD. We test these now:
6327 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
6328 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
6329 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
6330 kvm_queue_exception(vcpu
, UD_VECTOR
);
6334 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6335 if (is_long_mode(vcpu
) && !cs
.l
) {
6336 kvm_queue_exception(vcpu
, UD_VECTOR
);
6340 if (vmx_get_cpl(vcpu
)) {
6341 kvm_inject_gp(vcpu
, 0);
6345 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMON
, NULL
))
6348 if (vmx
->nested
.vmxon
) {
6349 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
6350 skip_emulated_instruction(vcpu
);
6354 if ((vmx
->nested
.msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
6355 != VMXON_NEEDED_FEATURES
) {
6356 kvm_inject_gp(vcpu
, 0);
6360 if (enable_shadow_vmcs
) {
6361 shadow_vmcs
= alloc_vmcs();
6364 /* mark vmcs as shadow */
6365 shadow_vmcs
->revision_id
|= (1u << 31);
6366 /* init shadow vmcs */
6367 vmcs_clear(shadow_vmcs
);
6368 vmx
->nested
.current_shadow_vmcs
= shadow_vmcs
;
6371 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
6372 vmx
->nested
.vmcs02_num
= 0;
6374 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
6376 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
6378 vmx
->nested
.vmxon
= true;
6380 skip_emulated_instruction(vcpu
);
6381 nested_vmx_succeed(vcpu
);
6386 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6387 * for running VMX instructions (except VMXON, whose prerequisites are
6388 * slightly different). It also specifies what exception to inject otherwise.
6390 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
6392 struct kvm_segment cs
;
6393 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6395 if (!vmx
->nested
.vmxon
) {
6396 kvm_queue_exception(vcpu
, UD_VECTOR
);
6400 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6401 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
6402 (is_long_mode(vcpu
) && !cs
.l
)) {
6403 kvm_queue_exception(vcpu
, UD_VECTOR
);
6407 if (vmx_get_cpl(vcpu
)) {
6408 kvm_inject_gp(vcpu
, 0);
6415 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
6418 if (vmx
->nested
.current_vmptr
== -1ull)
6421 /* current_vmptr and current_vmcs12 are always set/reset together */
6422 if (WARN_ON(vmx
->nested
.current_vmcs12
== NULL
))
6425 if (enable_shadow_vmcs
) {
6426 /* copy to memory all shadowed fields in case
6427 they were modified */
6428 copy_shadow_to_vmcs12(vmx
);
6429 vmx
->nested
.sync_shadow_vmcs
= false;
6430 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6431 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
6432 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
6433 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
6435 kunmap(vmx
->nested
.current_vmcs12_page
);
6436 nested_release_page(vmx
->nested
.current_vmcs12_page
);
6437 vmx
->nested
.current_vmptr
= -1ull;
6438 vmx
->nested
.current_vmcs12
= NULL
;
6442 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6443 * just stops using VMX.
6445 static void free_nested(struct vcpu_vmx
*vmx
)
6447 if (!vmx
->nested
.vmxon
)
6450 vmx
->nested
.vmxon
= false;
6451 nested_release_vmcs12(vmx
);
6452 if (enable_shadow_vmcs
)
6453 free_vmcs(vmx
->nested
.current_shadow_vmcs
);
6454 /* Unpin physical memory we referred to in current vmcs02 */
6455 if (vmx
->nested
.apic_access_page
) {
6456 nested_release_page(vmx
->nested
.apic_access_page
);
6457 vmx
->nested
.apic_access_page
= NULL
;
6459 if (vmx
->nested
.virtual_apic_page
) {
6460 nested_release_page(vmx
->nested
.virtual_apic_page
);
6461 vmx
->nested
.virtual_apic_page
= NULL
;
6464 nested_free_all_saved_vmcss(vmx
);
6467 /* Emulate the VMXOFF instruction */
6468 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
6470 if (!nested_vmx_check_permission(vcpu
))
6472 free_nested(to_vmx(vcpu
));
6473 skip_emulated_instruction(vcpu
);
6474 nested_vmx_succeed(vcpu
);
6478 /* Emulate the VMCLEAR instruction */
6479 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
6481 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6483 struct vmcs12
*vmcs12
;
6486 if (!nested_vmx_check_permission(vcpu
))
6489 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMCLEAR
, &vmptr
))
6492 if (vmptr
== vmx
->nested
.current_vmptr
)
6493 nested_release_vmcs12(vmx
);
6495 page
= nested_get_page(vcpu
, vmptr
);
6498 * For accurate processor emulation, VMCLEAR beyond available
6499 * physical memory should do nothing at all. However, it is
6500 * possible that a nested vmx bug, not a guest hypervisor bug,
6501 * resulted in this case, so let's shut down before doing any
6504 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6507 vmcs12
= kmap(page
);
6508 vmcs12
->launch_state
= 0;
6510 nested_release_page(page
);
6512 nested_free_vmcs02(vmx
, vmptr
);
6514 skip_emulated_instruction(vcpu
);
6515 nested_vmx_succeed(vcpu
);
6519 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
6521 /* Emulate the VMLAUNCH instruction */
6522 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
6524 return nested_vmx_run(vcpu
, true);
6527 /* Emulate the VMRESUME instruction */
6528 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
6531 return nested_vmx_run(vcpu
, false);
6534 enum vmcs_field_type
{
6535 VMCS_FIELD_TYPE_U16
= 0,
6536 VMCS_FIELD_TYPE_U64
= 1,
6537 VMCS_FIELD_TYPE_U32
= 2,
6538 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
6541 static inline int vmcs_field_type(unsigned long field
)
6543 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
6544 return VMCS_FIELD_TYPE_U32
;
6545 return (field
>> 13) & 0x3 ;
6548 static inline int vmcs_field_readonly(unsigned long field
)
6550 return (((field
>> 10) & 0x3) == 1);
6554 * Read a vmcs12 field. Since these can have varying lengths and we return
6555 * one type, we chose the biggest type (u64) and zero-extend the return value
6556 * to that size. Note that the caller, handle_vmread, might need to use only
6557 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6558 * 64-bit fields are to be returned).
6560 static inline int vmcs12_read_any(struct kvm_vcpu
*vcpu
,
6561 unsigned long field
, u64
*ret
)
6563 short offset
= vmcs_field_to_offset(field
);
6569 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
6571 switch (vmcs_field_type(field
)) {
6572 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6573 *ret
= *((natural_width
*)p
);
6575 case VMCS_FIELD_TYPE_U16
:
6578 case VMCS_FIELD_TYPE_U32
:
6581 case VMCS_FIELD_TYPE_U64
:
6591 static inline int vmcs12_write_any(struct kvm_vcpu
*vcpu
,
6592 unsigned long field
, u64 field_value
){
6593 short offset
= vmcs_field_to_offset(field
);
6594 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
6598 switch (vmcs_field_type(field
)) {
6599 case VMCS_FIELD_TYPE_U16
:
6600 *(u16
*)p
= field_value
;
6602 case VMCS_FIELD_TYPE_U32
:
6603 *(u32
*)p
= field_value
;
6605 case VMCS_FIELD_TYPE_U64
:
6606 *(u64
*)p
= field_value
;
6608 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6609 *(natural_width
*)p
= field_value
;
6618 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
6621 unsigned long field
;
6623 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
6624 const unsigned long *fields
= shadow_read_write_fields
;
6625 const int num_fields
= max_shadow_read_write_fields
;
6629 vmcs_load(shadow_vmcs
);
6631 for (i
= 0; i
< num_fields
; i
++) {
6633 switch (vmcs_field_type(field
)) {
6634 case VMCS_FIELD_TYPE_U16
:
6635 field_value
= vmcs_read16(field
);
6637 case VMCS_FIELD_TYPE_U32
:
6638 field_value
= vmcs_read32(field
);
6640 case VMCS_FIELD_TYPE_U64
:
6641 field_value
= vmcs_read64(field
);
6643 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6644 field_value
= vmcs_readl(field
);
6650 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
6653 vmcs_clear(shadow_vmcs
);
6654 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
6659 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
6661 const unsigned long *fields
[] = {
6662 shadow_read_write_fields
,
6663 shadow_read_only_fields
6665 const int max_fields
[] = {
6666 max_shadow_read_write_fields
,
6667 max_shadow_read_only_fields
6670 unsigned long field
;
6671 u64 field_value
= 0;
6672 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
6674 vmcs_load(shadow_vmcs
);
6676 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
6677 for (i
= 0; i
< max_fields
[q
]; i
++) {
6678 field
= fields
[q
][i
];
6679 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
6681 switch (vmcs_field_type(field
)) {
6682 case VMCS_FIELD_TYPE_U16
:
6683 vmcs_write16(field
, (u16
)field_value
);
6685 case VMCS_FIELD_TYPE_U32
:
6686 vmcs_write32(field
, (u32
)field_value
);
6688 case VMCS_FIELD_TYPE_U64
:
6689 vmcs_write64(field
, (u64
)field_value
);
6691 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6692 vmcs_writel(field
, (long)field_value
);
6701 vmcs_clear(shadow_vmcs
);
6702 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
6706 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6707 * used before) all generate the same failure when it is missing.
6709 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
6711 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6712 if (vmx
->nested
.current_vmptr
== -1ull) {
6713 nested_vmx_failInvalid(vcpu
);
6714 skip_emulated_instruction(vcpu
);
6720 static int handle_vmread(struct kvm_vcpu
*vcpu
)
6722 unsigned long field
;
6724 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6725 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6728 if (!nested_vmx_check_permission(vcpu
) ||
6729 !nested_vmx_check_vmcs12(vcpu
))
6732 /* Decode instruction info and find the field to read */
6733 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
6734 /* Read the field, zero-extended to a u64 field_value */
6735 if (vmcs12_read_any(vcpu
, field
, &field_value
) < 0) {
6736 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
6737 skip_emulated_instruction(vcpu
);
6741 * Now copy part of this value to register or memory, as requested.
6742 * Note that the number of bits actually copied is 32 or 64 depending
6743 * on the guest's mode (32 or 64 bit), not on the given field's length.
6745 if (vmx_instruction_info
& (1u << 10)) {
6746 kvm_register_writel(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
6749 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6750 vmx_instruction_info
, &gva
))
6752 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6753 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
6754 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
6757 nested_vmx_succeed(vcpu
);
6758 skip_emulated_instruction(vcpu
);
6763 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
6765 unsigned long field
;
6767 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6768 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6769 /* The value to write might be 32 or 64 bits, depending on L1's long
6770 * mode, and eventually we need to write that into a field of several
6771 * possible lengths. The code below first zero-extends the value to 64
6772 * bit (field_value), and then copies only the approriate number of
6773 * bits into the vmcs12 field.
6775 u64 field_value
= 0;
6776 struct x86_exception e
;
6778 if (!nested_vmx_check_permission(vcpu
) ||
6779 !nested_vmx_check_vmcs12(vcpu
))
6782 if (vmx_instruction_info
& (1u << 10))
6783 field_value
= kvm_register_readl(vcpu
,
6784 (((vmx_instruction_info
) >> 3) & 0xf));
6786 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6787 vmx_instruction_info
, &gva
))
6789 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
6790 &field_value
, (is_64_bit_mode(vcpu
) ? 8 : 4), &e
)) {
6791 kvm_inject_page_fault(vcpu
, &e
);
6797 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
6798 if (vmcs_field_readonly(field
)) {
6799 nested_vmx_failValid(vcpu
,
6800 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
6801 skip_emulated_instruction(vcpu
);
6805 if (vmcs12_write_any(vcpu
, field
, field_value
) < 0) {
6806 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
6807 skip_emulated_instruction(vcpu
);
6811 nested_vmx_succeed(vcpu
);
6812 skip_emulated_instruction(vcpu
);
6816 /* Emulate the VMPTRLD instruction */
6817 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
6819 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6823 if (!nested_vmx_check_permission(vcpu
))
6826 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMPTRLD
, &vmptr
))
6829 if (vmx
->nested
.current_vmptr
!= vmptr
) {
6830 struct vmcs12
*new_vmcs12
;
6832 page
= nested_get_page(vcpu
, vmptr
);
6834 nested_vmx_failInvalid(vcpu
);
6835 skip_emulated_instruction(vcpu
);
6838 new_vmcs12
= kmap(page
);
6839 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
6841 nested_release_page_clean(page
);
6842 nested_vmx_failValid(vcpu
,
6843 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
6844 skip_emulated_instruction(vcpu
);
6848 nested_release_vmcs12(vmx
);
6849 vmx
->nested
.current_vmptr
= vmptr
;
6850 vmx
->nested
.current_vmcs12
= new_vmcs12
;
6851 vmx
->nested
.current_vmcs12_page
= page
;
6852 if (enable_shadow_vmcs
) {
6853 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6854 exec_control
|= SECONDARY_EXEC_SHADOW_VMCS
;
6855 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
6856 vmcs_write64(VMCS_LINK_POINTER
,
6857 __pa(vmx
->nested
.current_shadow_vmcs
));
6858 vmx
->nested
.sync_shadow_vmcs
= true;
6862 nested_vmx_succeed(vcpu
);
6863 skip_emulated_instruction(vcpu
);
6867 /* Emulate the VMPTRST instruction */
6868 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
6870 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6871 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6873 struct x86_exception e
;
6875 if (!nested_vmx_check_permission(vcpu
))
6878 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6879 vmx_instruction_info
, &vmcs_gva
))
6881 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6882 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
6883 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
6885 kvm_inject_page_fault(vcpu
, &e
);
6888 nested_vmx_succeed(vcpu
);
6889 skip_emulated_instruction(vcpu
);
6893 /* Emulate the INVEPT instruction */
6894 static int handle_invept(struct kvm_vcpu
*vcpu
)
6896 u32 vmx_instruction_info
, types
;
6899 struct x86_exception e
;
6904 if (!(nested_vmx_secondary_ctls_high
& SECONDARY_EXEC_ENABLE_EPT
) ||
6905 !(nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
6906 kvm_queue_exception(vcpu
, UD_VECTOR
);
6910 if (!nested_vmx_check_permission(vcpu
))
6913 if (!kvm_read_cr0_bits(vcpu
, X86_CR0_PE
)) {
6914 kvm_queue_exception(vcpu
, UD_VECTOR
);
6918 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6919 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
6921 types
= (nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
6923 if (!(types
& (1UL << type
))) {
6924 nested_vmx_failValid(vcpu
,
6925 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
6929 /* According to the Intel VMX instruction reference, the memory
6930 * operand is read even if it isn't needed (e.g., for type==global)
6932 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6933 vmx_instruction_info
, &gva
))
6935 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
6936 sizeof(operand
), &e
)) {
6937 kvm_inject_page_fault(vcpu
, &e
);
6942 case VMX_EPT_EXTENT_GLOBAL
:
6943 kvm_mmu_sync_roots(vcpu
);
6944 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
6945 nested_vmx_succeed(vcpu
);
6948 /* Trap single context invalidation invept calls */
6953 skip_emulated_instruction(vcpu
);
6957 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
6959 kvm_queue_exception(vcpu
, UD_VECTOR
);
6964 * The exit handlers return 1 if the exit was handled fully and guest execution
6965 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6966 * to be done to userspace and return 0.
6968 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
6969 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
6970 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
6971 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
6972 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
6973 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
6974 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
6975 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
6976 [EXIT_REASON_CPUID
] = handle_cpuid
,
6977 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
6978 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
6979 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
6980 [EXIT_REASON_HLT
] = handle_halt
,
6981 [EXIT_REASON_INVD
] = handle_invd
,
6982 [EXIT_REASON_INVLPG
] = handle_invlpg
,
6983 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
6984 [EXIT_REASON_VMCALL
] = handle_vmcall
,
6985 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
6986 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
6987 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
6988 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
6989 [EXIT_REASON_VMREAD
] = handle_vmread
,
6990 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
6991 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
6992 [EXIT_REASON_VMOFF
] = handle_vmoff
,
6993 [EXIT_REASON_VMON
] = handle_vmon
,
6994 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
6995 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
6996 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
6997 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
6998 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
6999 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
7000 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
7001 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
7002 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
7003 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
7004 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
7005 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
7006 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
7007 [EXIT_REASON_INVEPT
] = handle_invept
,
7008 [EXIT_REASON_INVVPID
] = handle_invvpid
,
7009 [EXIT_REASON_XSAVES
] = handle_xsaves
,
7010 [EXIT_REASON_XRSTORS
] = handle_xrstors
,
7013 static const int kvm_vmx_max_exit_handlers
=
7014 ARRAY_SIZE(kvm_vmx_exit_handlers
);
7016 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
7017 struct vmcs12
*vmcs12
)
7019 unsigned long exit_qualification
;
7020 gpa_t bitmap
, last_bitmap
;
7025 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
7026 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
7028 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7030 port
= exit_qualification
>> 16;
7031 size
= (exit_qualification
& 7) + 1;
7033 last_bitmap
= (gpa_t
)-1;
7038 bitmap
= vmcs12
->io_bitmap_a
;
7039 else if (port
< 0x10000)
7040 bitmap
= vmcs12
->io_bitmap_b
;
7043 bitmap
+= (port
& 0x7fff) / 8;
7045 if (last_bitmap
!= bitmap
)
7046 if (kvm_read_guest(vcpu
->kvm
, bitmap
, &b
, 1))
7048 if (b
& (1 << (port
& 7)))
7053 last_bitmap
= bitmap
;
7060 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7061 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7062 * disinterest in the current event (read or write a specific MSR) by using an
7063 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7065 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
7066 struct vmcs12
*vmcs12
, u32 exit_reason
)
7068 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
7071 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
7075 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7076 * for the four combinations of read/write and low/high MSR numbers.
7077 * First we need to figure out which of the four to use:
7079 bitmap
= vmcs12
->msr_bitmap
;
7080 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
7082 if (msr_index
>= 0xc0000000) {
7083 msr_index
-= 0xc0000000;
7087 /* Then read the msr_index'th bit from this bitmap: */
7088 if (msr_index
< 1024*8) {
7090 if (kvm_read_guest(vcpu
->kvm
, bitmap
+ msr_index
/8, &b
, 1))
7092 return 1 & (b
>> (msr_index
& 7));
7094 return 1; /* let L1 handle the wrong parameter */
7098 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7099 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7100 * intercept (via guest_host_mask etc.) the current event.
7102 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
7103 struct vmcs12
*vmcs12
)
7105 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7106 int cr
= exit_qualification
& 15;
7107 int reg
= (exit_qualification
>> 8) & 15;
7108 unsigned long val
= kvm_register_readl(vcpu
, reg
);
7110 switch ((exit_qualification
>> 4) & 3) {
7111 case 0: /* mov to cr */
7114 if (vmcs12
->cr0_guest_host_mask
&
7115 (val
^ vmcs12
->cr0_read_shadow
))
7119 if ((vmcs12
->cr3_target_count
>= 1 &&
7120 vmcs12
->cr3_target_value0
== val
) ||
7121 (vmcs12
->cr3_target_count
>= 2 &&
7122 vmcs12
->cr3_target_value1
== val
) ||
7123 (vmcs12
->cr3_target_count
>= 3 &&
7124 vmcs12
->cr3_target_value2
== val
) ||
7125 (vmcs12
->cr3_target_count
>= 4 &&
7126 vmcs12
->cr3_target_value3
== val
))
7128 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
7132 if (vmcs12
->cr4_guest_host_mask
&
7133 (vmcs12
->cr4_read_shadow
^ val
))
7137 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
7143 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
7144 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
7147 case 1: /* mov from cr */
7150 if (vmcs12
->cpu_based_vm_exec_control
&
7151 CPU_BASED_CR3_STORE_EXITING
)
7155 if (vmcs12
->cpu_based_vm_exec_control
&
7156 CPU_BASED_CR8_STORE_EXITING
)
7163 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7164 * cr0. Other attempted changes are ignored, with no exit.
7166 if (vmcs12
->cr0_guest_host_mask
& 0xe &
7167 (val
^ vmcs12
->cr0_read_shadow
))
7169 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
7170 !(vmcs12
->cr0_read_shadow
& 0x1) &&
7179 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7180 * should handle it ourselves in L0 (and then continue L2). Only call this
7181 * when in is_guest_mode (L2).
7183 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
7185 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7186 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7187 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7188 u32 exit_reason
= vmx
->exit_reason
;
7190 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
7191 vmcs_readl(EXIT_QUALIFICATION
),
7192 vmx
->idt_vectoring_info
,
7194 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
7197 if (vmx
->nested
.nested_run_pending
)
7200 if (unlikely(vmx
->fail
)) {
7201 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
7202 vmcs_read32(VM_INSTRUCTION_ERROR
));
7206 switch (exit_reason
) {
7207 case EXIT_REASON_EXCEPTION_NMI
:
7208 if (!is_exception(intr_info
))
7210 else if (is_page_fault(intr_info
))
7212 else if (is_no_device(intr_info
) &&
7213 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
7215 return vmcs12
->exception_bitmap
&
7216 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
7217 case EXIT_REASON_EXTERNAL_INTERRUPT
:
7219 case EXIT_REASON_TRIPLE_FAULT
:
7221 case EXIT_REASON_PENDING_INTERRUPT
:
7222 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
7223 case EXIT_REASON_NMI_WINDOW
:
7224 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
7225 case EXIT_REASON_TASK_SWITCH
:
7227 case EXIT_REASON_CPUID
:
7228 if (kvm_register_read(vcpu
, VCPU_REGS_RAX
) == 0xa)
7231 case EXIT_REASON_HLT
:
7232 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
7233 case EXIT_REASON_INVD
:
7235 case EXIT_REASON_INVLPG
:
7236 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
7237 case EXIT_REASON_RDPMC
:
7238 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
7239 case EXIT_REASON_RDTSC
:
7240 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
7241 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
7242 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
7243 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
7244 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
7245 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
7246 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
7248 * VMX instructions trap unconditionally. This allows L1 to
7249 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7252 case EXIT_REASON_CR_ACCESS
:
7253 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
7254 case EXIT_REASON_DR_ACCESS
:
7255 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
7256 case EXIT_REASON_IO_INSTRUCTION
:
7257 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
7258 case EXIT_REASON_MSR_READ
:
7259 case EXIT_REASON_MSR_WRITE
:
7260 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
7261 case EXIT_REASON_INVALID_STATE
:
7263 case EXIT_REASON_MWAIT_INSTRUCTION
:
7264 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
7265 case EXIT_REASON_MONITOR_INSTRUCTION
:
7266 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
7267 case EXIT_REASON_PAUSE_INSTRUCTION
:
7268 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
7269 nested_cpu_has2(vmcs12
,
7270 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
7271 case EXIT_REASON_MCE_DURING_VMENTRY
:
7273 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
7274 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
7275 case EXIT_REASON_APIC_ACCESS
:
7276 return nested_cpu_has2(vmcs12
,
7277 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
7278 case EXIT_REASON_EPT_VIOLATION
:
7280 * L0 always deals with the EPT violation. If nested EPT is
7281 * used, and the nested mmu code discovers that the address is
7282 * missing in the guest EPT table (EPT12), the EPT violation
7283 * will be injected with nested_ept_inject_page_fault()
7286 case EXIT_REASON_EPT_MISCONFIG
:
7288 * L2 never uses directly L1's EPT, but rather L0's own EPT
7289 * table (shadow on EPT) or a merged EPT table that L0 built
7290 * (EPT on EPT). So any problems with the structure of the
7291 * table is L0's fault.
7294 case EXIT_REASON_WBINVD
:
7295 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
7296 case EXIT_REASON_XSETBV
:
7298 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
7300 * This should never happen, since it is not possible to
7301 * set XSS to a non-zero value---neither in L1 nor in L2.
7302 * If if it were, XSS would have to be checked against
7303 * the XSS exit bitmap in vmcs12.
7305 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
7311 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
7313 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
7314 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
7318 * The guest has exited. See if we can fix it or if we need userspace
7321 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
7323 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7324 u32 exit_reason
= vmx
->exit_reason
;
7325 u32 vectoring_info
= vmx
->idt_vectoring_info
;
7327 /* If guest state is invalid, start emulating */
7328 if (vmx
->emulation_required
)
7329 return handle_invalid_guest_state(vcpu
);
7331 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
7332 nested_vmx_vmexit(vcpu
, exit_reason
,
7333 vmcs_read32(VM_EXIT_INTR_INFO
),
7334 vmcs_readl(EXIT_QUALIFICATION
));
7338 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
7339 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
7340 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
7345 if (unlikely(vmx
->fail
)) {
7346 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
7347 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
7348 = vmcs_read32(VM_INSTRUCTION_ERROR
);
7354 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7355 * delivery event since it indicates guest is accessing MMIO.
7356 * The vm-exit can be triggered again after return to guest that
7357 * will cause infinite loop.
7359 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
7360 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
7361 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
7362 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
7363 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
7364 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
7365 vcpu
->run
->internal
.ndata
= 2;
7366 vcpu
->run
->internal
.data
[0] = vectoring_info
;
7367 vcpu
->run
->internal
.data
[1] = exit_reason
;
7371 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
7372 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
7373 get_vmcs12(vcpu
))))) {
7374 if (vmx_interrupt_allowed(vcpu
)) {
7375 vmx
->soft_vnmi_blocked
= 0;
7376 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
7377 vcpu
->arch
.nmi_pending
) {
7379 * This CPU don't support us in finding the end of an
7380 * NMI-blocked window if the guest runs with IRQs
7381 * disabled. So we pull the trigger after 1 s of
7382 * futile waiting, but inform the user about this.
7384 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
7385 "state on VCPU %d after 1 s timeout\n",
7386 __func__
, vcpu
->vcpu_id
);
7387 vmx
->soft_vnmi_blocked
= 0;
7391 if (exit_reason
< kvm_vmx_max_exit_handlers
7392 && kvm_vmx_exit_handlers
[exit_reason
])
7393 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
7395 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason
);
7396 kvm_queue_exception(vcpu
, UD_VECTOR
);
7401 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
7403 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7405 if (is_guest_mode(vcpu
) &&
7406 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
7409 if (irr
== -1 || tpr
< irr
) {
7410 vmcs_write32(TPR_THRESHOLD
, 0);
7414 vmcs_write32(TPR_THRESHOLD
, irr
);
7417 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
7419 u32 sec_exec_control
;
7422 * There is not point to enable virtualize x2apic without enable
7425 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7426 !vmx_vm_has_apicv(vcpu
->kvm
))
7429 if (!vm_need_tpr_shadow(vcpu
->kvm
))
7432 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7435 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7436 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
7438 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
7439 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7441 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
7443 vmx_set_msr_bitmap(vcpu
);
7446 static void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
, hpa_t hpa
)
7448 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7451 * Currently we do not handle the nested case where L2 has an
7452 * APIC access page of its own; that page is still pinned.
7453 * Hence, we skip the case where the VCPU is in guest mode _and_
7454 * L1 prepared an APIC access page for L2.
7456 * For the case where L1 and L2 share the same APIC access page
7457 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7458 * in the vmcs12), this function will only update either the vmcs01
7459 * or the vmcs02. If the former, the vmcs02 will be updated by
7460 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7461 * the next L2->L1 exit.
7463 if (!is_guest_mode(vcpu
) ||
7464 !nested_cpu_has2(vmx
->nested
.current_vmcs12
,
7465 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
7466 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
7469 static void vmx_hwapic_isr_update(struct kvm
*kvm
, int isr
)
7474 if (!vmx_vm_has_apicv(kvm
))
7480 status
= vmcs_read16(GUEST_INTR_STATUS
);
7485 vmcs_write16(GUEST_INTR_STATUS
, status
);
7489 static void vmx_set_rvi(int vector
)
7497 status
= vmcs_read16(GUEST_INTR_STATUS
);
7498 old
= (u8
)status
& 0xff;
7499 if ((u8
)vector
!= old
) {
7501 status
|= (u8
)vector
;
7502 vmcs_write16(GUEST_INTR_STATUS
, status
);
7506 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
7508 if (!is_guest_mode(vcpu
)) {
7509 vmx_set_rvi(max_irr
);
7517 * In guest mode. If a vmexit is needed, vmx_check_nested_events
7520 if (nested_exit_on_intr(vcpu
))
7524 * Else, fall back to pre-APICv interrupt injection since L2
7525 * is run without virtual interrupt delivery.
7527 if (!kvm_event_needs_reinjection(vcpu
) &&
7528 vmx_interrupt_allowed(vcpu
)) {
7529 kvm_queue_interrupt(vcpu
, max_irr
, false);
7530 vmx_inject_irq(vcpu
);
7534 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
7536 if (!vmx_vm_has_apicv(vcpu
->kvm
))
7539 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
7540 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
7541 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
7542 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
7545 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
7549 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
7550 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
7553 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7554 exit_intr_info
= vmx
->exit_intr_info
;
7556 /* Handle machine checks before interrupts are enabled */
7557 if (is_machine_check(exit_intr_info
))
7558 kvm_machine_check();
7560 /* We need to handle NMIs before interrupts are enabled */
7561 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
7562 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
7563 kvm_before_handle_nmi(&vmx
->vcpu
);
7565 kvm_after_handle_nmi(&vmx
->vcpu
);
7569 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
7571 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7574 * If external interrupt exists, IF bit is set in rflags/eflags on the
7575 * interrupt stack frame, and interrupt will be enabled on a return
7576 * from interrupt handler.
7578 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
7579 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
7580 unsigned int vector
;
7581 unsigned long entry
;
7583 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7584 #ifdef CONFIG_X86_64
7588 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
7589 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
7590 entry
= gate_offset(*desc
);
7592 #ifdef CONFIG_X86_64
7593 "mov %%" _ASM_SP
", %[sp]\n\t"
7594 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
7599 "orl $0x200, (%%" _ASM_SP
")\n\t"
7600 __ASM_SIZE(push
) " $%c[cs]\n\t"
7601 "call *%[entry]\n\t"
7603 #ifdef CONFIG_X86_64
7608 [ss
]"i"(__KERNEL_DS
),
7609 [cs
]"i"(__KERNEL_CS
)
7615 static bool vmx_mpx_supported(void)
7617 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
7618 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
7621 static bool vmx_xsaves_supported(void)
7623 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
7624 SECONDARY_EXEC_XSAVES
;
7627 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
7632 bool idtv_info_valid
;
7634 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
7636 if (cpu_has_virtual_nmis()) {
7637 if (vmx
->nmi_known_unmasked
)
7640 * Can't use vmx->exit_intr_info since we're not sure what
7641 * the exit reason is.
7643 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7644 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
7645 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
7647 * SDM 3: 27.7.1.2 (September 2008)
7648 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7649 * a guest IRET fault.
7650 * SDM 3: 23.2.2 (September 2008)
7651 * Bit 12 is undefined in any of the following cases:
7652 * If the VM exit sets the valid bit in the IDT-vectoring
7653 * information field.
7654 * If the VM exit is due to a double fault.
7656 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
7657 vector
!= DF_VECTOR
&& !idtv_info_valid
)
7658 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7659 GUEST_INTR_STATE_NMI
);
7661 vmx
->nmi_known_unmasked
=
7662 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
7663 & GUEST_INTR_STATE_NMI
);
7664 } else if (unlikely(vmx
->soft_vnmi_blocked
))
7665 vmx
->vnmi_blocked_time
+=
7666 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
7669 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
7670 u32 idt_vectoring_info
,
7671 int instr_len_field
,
7672 int error_code_field
)
7676 bool idtv_info_valid
;
7678 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
7680 vcpu
->arch
.nmi_injected
= false;
7681 kvm_clear_exception_queue(vcpu
);
7682 kvm_clear_interrupt_queue(vcpu
);
7684 if (!idtv_info_valid
)
7687 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7689 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
7690 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
7693 case INTR_TYPE_NMI_INTR
:
7694 vcpu
->arch
.nmi_injected
= true;
7696 * SDM 3: 27.7.1.2 (September 2008)
7697 * Clear bit "block by NMI" before VM entry if a NMI
7700 vmx_set_nmi_mask(vcpu
, false);
7702 case INTR_TYPE_SOFT_EXCEPTION
:
7703 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7705 case INTR_TYPE_HARD_EXCEPTION
:
7706 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
7707 u32 err
= vmcs_read32(error_code_field
);
7708 kvm_requeue_exception_e(vcpu
, vector
, err
);
7710 kvm_requeue_exception(vcpu
, vector
);
7712 case INTR_TYPE_SOFT_INTR
:
7713 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7715 case INTR_TYPE_EXT_INTR
:
7716 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
7723 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
7725 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
7726 VM_EXIT_INSTRUCTION_LEN
,
7727 IDT_VECTORING_ERROR_CODE
);
7730 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
7732 __vmx_complete_interrupts(vcpu
,
7733 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
7734 VM_ENTRY_INSTRUCTION_LEN
,
7735 VM_ENTRY_EXCEPTION_ERROR_CODE
);
7737 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
7740 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
7743 struct perf_guest_switch_msr
*msrs
;
7745 msrs
= perf_guest_get_msrs(&nr_msrs
);
7750 for (i
= 0; i
< nr_msrs
; i
++)
7751 if (msrs
[i
].host
== msrs
[i
].guest
)
7752 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
7754 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
7758 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
7760 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7761 unsigned long debugctlmsr
, cr4
;
7763 /* Record the guest's net vcpu time for enforced NMI injections. */
7764 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
7765 vmx
->entry_time
= ktime_get();
7767 /* Don't enter VMX if guest state is invalid, let the exit handler
7768 start emulation until we arrive back to a valid state */
7769 if (vmx
->emulation_required
)
7772 if (vmx
->ple_window_dirty
) {
7773 vmx
->ple_window_dirty
= false;
7774 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
7777 if (vmx
->nested
.sync_shadow_vmcs
) {
7778 copy_vmcs12_to_shadow(vmx
);
7779 vmx
->nested
.sync_shadow_vmcs
= false;
7782 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
7783 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
7784 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
7785 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
7788 if (unlikely(cr4
!= vmx
->host_state
.vmcs_host_cr4
)) {
7789 vmcs_writel(HOST_CR4
, cr4
);
7790 vmx
->host_state
.vmcs_host_cr4
= cr4
;
7793 /* When single-stepping over STI and MOV SS, we must clear the
7794 * corresponding interruptibility bits in the guest state. Otherwise
7795 * vmentry fails as it then expects bit 14 (BS) in pending debug
7796 * exceptions being set, but that's not correct for the guest debugging
7798 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7799 vmx_set_interrupt_shadow(vcpu
, 0);
7801 atomic_switch_perf_msrs(vmx
);
7802 debugctlmsr
= get_debugctlmsr();
7804 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
7806 /* Store host registers */
7807 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
7808 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
7809 "push %%" _ASM_CX
" \n\t"
7810 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
7812 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
7813 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
7815 /* Reload cr2 if changed */
7816 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
7817 "mov %%cr2, %%" _ASM_DX
" \n\t"
7818 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
7820 "mov %%" _ASM_AX
", %%cr2 \n\t"
7822 /* Check if vmlaunch of vmresume is needed */
7823 "cmpl $0, %c[launched](%0) \n\t"
7824 /* Load guest registers. Don't clobber flags. */
7825 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
7826 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
7827 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
7828 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
7829 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
7830 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
7831 #ifdef CONFIG_X86_64
7832 "mov %c[r8](%0), %%r8 \n\t"
7833 "mov %c[r9](%0), %%r9 \n\t"
7834 "mov %c[r10](%0), %%r10 \n\t"
7835 "mov %c[r11](%0), %%r11 \n\t"
7836 "mov %c[r12](%0), %%r12 \n\t"
7837 "mov %c[r13](%0), %%r13 \n\t"
7838 "mov %c[r14](%0), %%r14 \n\t"
7839 "mov %c[r15](%0), %%r15 \n\t"
7841 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
7843 /* Enter guest mode */
7845 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
7847 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
7849 /* Save guest registers, load host registers, keep flags */
7850 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
7852 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
7853 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
7854 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
7855 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
7856 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
7857 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
7858 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
7859 #ifdef CONFIG_X86_64
7860 "mov %%r8, %c[r8](%0) \n\t"
7861 "mov %%r9, %c[r9](%0) \n\t"
7862 "mov %%r10, %c[r10](%0) \n\t"
7863 "mov %%r11, %c[r11](%0) \n\t"
7864 "mov %%r12, %c[r12](%0) \n\t"
7865 "mov %%r13, %c[r13](%0) \n\t"
7866 "mov %%r14, %c[r14](%0) \n\t"
7867 "mov %%r15, %c[r15](%0) \n\t"
7869 "mov %%cr2, %%" _ASM_AX
" \n\t"
7870 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
7872 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
7873 "setbe %c[fail](%0) \n\t"
7874 ".pushsection .rodata \n\t"
7875 ".global vmx_return \n\t"
7876 "vmx_return: " _ASM_PTR
" 2b \n\t"
7878 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
7879 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
7880 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
7881 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
7882 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
7883 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
7884 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
7885 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
7886 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
7887 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
7888 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
7889 #ifdef CONFIG_X86_64
7890 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
7891 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
7892 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
7893 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
7894 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
7895 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
7896 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
7897 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
7899 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
7900 [wordsize
]"i"(sizeof(ulong
))
7902 #ifdef CONFIG_X86_64
7903 , "rax", "rbx", "rdi", "rsi"
7904 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7906 , "eax", "ebx", "edi", "esi"
7910 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7912 update_debugctlmsr(debugctlmsr
);
7914 #ifndef CONFIG_X86_64
7916 * The sysexit path does not restore ds/es, so we must set them to
7917 * a reasonable value ourselves.
7919 * We can't defer this to vmx_load_host_state() since that function
7920 * may be executed in interrupt context, which saves and restore segments
7921 * around it, nullifying its effect.
7923 loadsegment(ds
, __USER_DS
);
7924 loadsegment(es
, __USER_DS
);
7927 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
7928 | (1 << VCPU_EXREG_RFLAGS
)
7929 | (1 << VCPU_EXREG_PDPTR
)
7930 | (1 << VCPU_EXREG_SEGMENTS
)
7931 | (1 << VCPU_EXREG_CR3
));
7932 vcpu
->arch
.regs_dirty
= 0;
7934 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
7936 vmx
->loaded_vmcs
->launched
= 1;
7938 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
7939 trace_kvm_exit(vmx
->exit_reason
, vcpu
, KVM_ISA_VMX
);
7942 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7943 * we did not inject a still-pending event to L1 now because of
7944 * nested_run_pending, we need to re-enable this bit.
7946 if (vmx
->nested
.nested_run_pending
)
7947 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7949 vmx
->nested
.nested_run_pending
= 0;
7951 vmx_complete_atomic_exit(vmx
);
7952 vmx_recover_nmi_blocking(vmx
);
7953 vmx_complete_interrupts(vmx
);
7956 static void vmx_load_vmcs01(struct kvm_vcpu
*vcpu
)
7958 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7961 if (vmx
->loaded_vmcs
== &vmx
->vmcs01
)
7965 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
7967 vmx_vcpu_load(vcpu
, cpu
);
7972 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
7974 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7977 leave_guest_mode(vcpu
);
7978 vmx_load_vmcs01(vcpu
);
7980 free_loaded_vmcs(vmx
->loaded_vmcs
);
7981 kfree(vmx
->guest_msrs
);
7982 kvm_vcpu_uninit(vcpu
);
7983 kmem_cache_free(kvm_vcpu_cache
, vmx
);
7986 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
7989 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
7993 return ERR_PTR(-ENOMEM
);
7997 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
8001 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
8002 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index
) * sizeof(vmx
->guest_msrs
[0])
8006 if (!vmx
->guest_msrs
) {
8010 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
8011 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
8012 if (!vmx
->loaded_vmcs
->vmcs
)
8015 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
8016 loaded_vmcs_init(vmx
->loaded_vmcs
);
8021 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
8022 vmx
->vcpu
.cpu
= cpu
;
8023 err
= vmx_vcpu_setup(vmx
);
8024 vmx_vcpu_put(&vmx
->vcpu
);
8028 if (vm_need_virtualize_apic_accesses(kvm
)) {
8029 err
= alloc_apic_access_page(kvm
);
8035 if (!kvm
->arch
.ept_identity_map_addr
)
8036 kvm
->arch
.ept_identity_map_addr
=
8037 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
8038 err
= init_rmode_identity_map(kvm
);
8043 vmx
->nested
.current_vmptr
= -1ull;
8044 vmx
->nested
.current_vmcs12
= NULL
;
8049 free_loaded_vmcs(vmx
->loaded_vmcs
);
8051 kfree(vmx
->guest_msrs
);
8053 kvm_vcpu_uninit(&vmx
->vcpu
);
8056 kmem_cache_free(kvm_vcpu_cache
, vmx
);
8057 return ERR_PTR(err
);
8060 static void __init
vmx_check_processor_compat(void *rtn
)
8062 struct vmcs_config vmcs_conf
;
8065 if (setup_vmcs_config(&vmcs_conf
) < 0)
8067 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
8068 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
8069 smp_processor_id());
8074 static int get_ept_level(void)
8076 return VMX_EPT_DEFAULT_GAW
+ 1;
8079 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
8083 /* For VT-d and EPT combination
8084 * 1. MMIO: always map as UC
8086 * a. VT-d without snooping control feature: can't guarantee the
8087 * result, try to trust guest.
8088 * b. VT-d with snooping control feature: snooping control feature of
8089 * VT-d engine can guarantee the cache correctness. Just set it
8090 * to WB to keep consistent with host. So the same as item 3.
8091 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8092 * consistent with host MTRR
8095 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
8096 else if (kvm_arch_has_noncoherent_dma(vcpu
->kvm
))
8097 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
8098 VMX_EPT_MT_EPTE_SHIFT
;
8100 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
8106 static int vmx_get_lpage_level(void)
8108 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
8109 return PT_DIRECTORY_LEVEL
;
8111 /* For shadow and EPT supported 1GB page */
8112 return PT_PDPE_LEVEL
;
8115 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
8117 struct kvm_cpuid_entry2
*best
;
8118 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8121 vmx
->rdtscp_enabled
= false;
8122 if (vmx_rdtscp_supported()) {
8123 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8124 if (exec_control
& SECONDARY_EXEC_RDTSCP
) {
8125 best
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
8126 if (best
&& (best
->edx
& bit(X86_FEATURE_RDTSCP
)))
8127 vmx
->rdtscp_enabled
= true;
8129 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
8130 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
8136 /* Exposing INVPCID only when PCID is exposed */
8137 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
8138 if (vmx_invpcid_supported() &&
8139 best
&& (best
->ebx
& bit(X86_FEATURE_INVPCID
)) &&
8140 guest_cpuid_has_pcid(vcpu
)) {
8141 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8142 exec_control
|= SECONDARY_EXEC_ENABLE_INVPCID
;
8143 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
8146 if (cpu_has_secondary_exec_ctrls()) {
8147 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8148 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
8149 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
8153 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
8157 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
8159 if (func
== 1 && nested
)
8160 entry
->ecx
|= bit(X86_FEATURE_VMX
);
8163 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
8164 struct x86_exception
*fault
)
8166 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8169 if (fault
->error_code
& PFERR_RSVD_MASK
)
8170 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
8172 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
8173 nested_vmx_vmexit(vcpu
, exit_reason
, 0, vcpu
->arch
.exit_qualification
);
8174 vmcs12
->guest_physical_address
= fault
->address
;
8177 /* Callbacks for nested_ept_init_mmu_context: */
8179 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
8181 /* return the page table to be shadowed - in our case, EPT12 */
8182 return get_vmcs12(vcpu
)->ept_pointer
;
8185 static void nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
8187 kvm_init_shadow_ept_mmu(vcpu
, &vcpu
->arch
.mmu
,
8188 nested_vmx_ept_caps
& VMX_EPT_EXECUTE_ONLY_BIT
);
8190 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
8191 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
8192 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
8194 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
8197 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
8199 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
8202 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
8203 struct x86_exception
*fault
)
8205 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8207 WARN_ON(!is_guest_mode(vcpu
));
8209 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
8210 if (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
))
8211 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
8212 vmcs_read32(VM_EXIT_INTR_INFO
),
8213 vmcs_readl(EXIT_QUALIFICATION
));
8215 kvm_inject_page_fault(vcpu
, fault
);
8218 static bool nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
,
8219 struct vmcs12
*vmcs12
)
8221 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8223 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
8224 /* TODO: Also verify bits beyond physical address width are 0 */
8225 if (!PAGE_ALIGNED(vmcs12
->apic_access_addr
))
8229 * Translate L1 physical address to host physical
8230 * address for vmcs02. Keep the page pinned, so this
8231 * physical address remains valid. We keep a reference
8232 * to it so we can release it later.
8234 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
8235 nested_release_page(vmx
->nested
.apic_access_page
);
8236 vmx
->nested
.apic_access_page
=
8237 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
8240 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
8241 /* TODO: Also verify bits beyond physical address width are 0 */
8242 if (!PAGE_ALIGNED(vmcs12
->virtual_apic_page_addr
))
8245 if (vmx
->nested
.virtual_apic_page
) /* shouldn't happen */
8246 nested_release_page(vmx
->nested
.virtual_apic_page
);
8247 vmx
->nested
.virtual_apic_page
=
8248 nested_get_page(vcpu
, vmcs12
->virtual_apic_page_addr
);
8251 * Failing the vm entry is _not_ what the processor does
8252 * but it's basically the only possibility we have.
8253 * We could still enter the guest if CR8 load exits are
8254 * enabled, CR8 store exits are enabled, and virtualize APIC
8255 * access is disabled; in this case the processor would never
8256 * use the TPR shadow and we could simply clear the bit from
8257 * the execution control. But such a configuration is useless,
8258 * so let's keep the code simple.
8260 if (!vmx
->nested
.virtual_apic_page
)
8267 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
8269 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
8270 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8272 if (vcpu
->arch
.virtual_tsc_khz
== 0)
8275 /* Make sure short timeouts reliably trigger an immediate vmexit.
8276 * hrtimer_start does not guarantee this. */
8277 if (preemption_timeout
<= 1) {
8278 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
8282 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
8283 preemption_timeout
*= 1000000;
8284 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
8285 hrtimer_start(&vmx
->nested
.preemption_timer
,
8286 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
8290 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8291 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8292 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8293 * guest in a way that will both be appropriate to L1's requests, and our
8294 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8295 * function also has additional necessary side-effects, like setting various
8296 * vcpu->arch fields.
8298 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
8300 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8303 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
8304 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
8305 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
8306 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
8307 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
8308 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
8309 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
8310 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
8311 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
8312 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
8313 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
8314 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
8315 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
8316 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
8317 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
8318 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
8319 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
8320 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
8321 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
8322 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
8323 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
8324 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
8325 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
8326 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
8327 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
8328 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
8329 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
8330 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
8331 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
8332 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
8333 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
8334 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
8335 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
8336 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
8337 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
8338 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
8340 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) {
8341 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
8342 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
8344 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
8345 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
8347 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
8348 vmcs12
->vm_entry_intr_info_field
);
8349 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
8350 vmcs12
->vm_entry_exception_error_code
);
8351 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
8352 vmcs12
->vm_entry_instruction_len
);
8353 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
8354 vmcs12
->guest_interruptibility_info
);
8355 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
8356 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
8357 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
8358 vmcs12
->guest_pending_dbg_exceptions
);
8359 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
8360 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
8362 if (nested_cpu_has_xsaves(vmcs12
))
8363 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
8364 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
8366 exec_control
= vmcs12
->pin_based_vm_exec_control
;
8367 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
8368 exec_control
&= ~(PIN_BASED_VMX_PREEMPTION_TIMER
|
8369 PIN_BASED_POSTED_INTR
);
8370 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
8372 vmx
->nested
.preemption_timer_expired
= false;
8373 if (nested_cpu_has_preemption_timer(vmcs12
))
8374 vmx_start_preemption_timer(vcpu
);
8377 * Whether page-faults are trapped is determined by a combination of
8378 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8379 * If enable_ept, L0 doesn't care about page faults and we should
8380 * set all of these to L1's desires. However, if !enable_ept, L0 does
8381 * care about (at least some) page faults, and because it is not easy
8382 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8383 * to exit on each and every L2 page fault. This is done by setting
8384 * MASK=MATCH=0 and (see below) EB.PF=1.
8385 * Note that below we don't need special code to set EB.PF beyond the
8386 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8387 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8388 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8390 * A problem with this approach (when !enable_ept) is that L1 may be
8391 * injected with more page faults than it asked for. This could have
8392 * caused problems, but in practice existing hypervisors don't care.
8393 * To fix this, we will need to emulate the PFEC checking (on the L1
8394 * page tables), using walk_addr(), when injecting PFs to L1.
8396 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
8397 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
8398 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
8399 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
8401 if (cpu_has_secondary_exec_ctrls()) {
8402 exec_control
= vmx_secondary_exec_control(vmx
);
8403 if (!vmx
->rdtscp_enabled
)
8404 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
8405 /* Take the following fields only from vmcs12 */
8406 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
8407 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
8408 SECONDARY_EXEC_APIC_REGISTER_VIRT
);
8409 if (nested_cpu_has(vmcs12
,
8410 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
8411 exec_control
|= vmcs12
->secondary_vm_exec_control
;
8413 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
8415 * If translation failed, no matter: This feature asks
8416 * to exit when accessing the given address, and if it
8417 * can never be accessed, this feature won't do
8420 if (!vmx
->nested
.apic_access_page
)
8422 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8424 vmcs_write64(APIC_ACCESS_ADDR
,
8425 page_to_phys(vmx
->nested
.apic_access_page
));
8426 } else if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
)) {
8428 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8429 kvm_vcpu_reload_apic_access_page(vcpu
);
8432 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
8437 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8438 * Some constant fields are set here by vmx_set_constant_host_state().
8439 * Other fields are different per CPU, and will be set later when
8440 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8442 vmx_set_constant_host_state(vmx
);
8445 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8446 * entry, but only if the current (host) sp changed from the value
8447 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8448 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8449 * here we just force the write to happen on entry.
8453 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
8454 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
8455 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
8456 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
8457 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
8459 if (exec_control
& CPU_BASED_TPR_SHADOW
) {
8460 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
8461 page_to_phys(vmx
->nested
.virtual_apic_page
));
8462 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
8466 * Merging of IO and MSR bitmaps not currently supported.
8467 * Rather, exit every time.
8469 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
8470 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
8471 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
8473 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
8475 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8476 * bitwise-or of what L1 wants to trap for L2, and what we want to
8477 * trap. Note that CR0.TS also needs updating - we do this later.
8479 update_exception_bitmap(vcpu
);
8480 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
8481 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
8483 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8484 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8485 * bits are further modified by vmx_set_efer() below.
8487 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
8489 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8490 * emulated by vmx_set_efer(), below.
8492 vm_entry_controls_init(vmx
,
8493 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
8494 ~VM_ENTRY_IA32E_MODE
) |
8495 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
8497 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
) {
8498 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
8499 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
8500 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
8501 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
8504 set_cr4_guest_host_mask(vmx
);
8506 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)
8507 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
8509 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
8510 vmcs_write64(TSC_OFFSET
,
8511 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
8513 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
8517 * Trivially support vpid by letting L2s share their parent
8518 * L1's vpid. TODO: move to a more elaborate solution, giving
8519 * each L2 its own vpid and exposing the vpid feature to L1.
8521 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
8522 vmx_flush_tlb(vcpu
);
8525 if (nested_cpu_has_ept(vmcs12
)) {
8526 kvm_mmu_unload(vcpu
);
8527 nested_ept_init_mmu_context(vcpu
);
8530 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
8531 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
8532 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
8533 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
8535 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
8536 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8537 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
8540 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8541 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8542 * The CR0_READ_SHADOW is what L2 should have expected to read given
8543 * the specifications by L1; It's not enough to take
8544 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8545 * have more bits than L1 expected.
8547 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
8548 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
8550 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
8551 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
8553 /* shadow page tables on either EPT or shadow page tables */
8554 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
8555 kvm_mmu_reset_context(vcpu
);
8558 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
8561 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8564 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
8565 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
8566 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
8567 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
8570 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
8571 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
8575 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8576 * for running an L2 nested guest.
8578 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
8580 struct vmcs12
*vmcs12
;
8581 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8583 struct loaded_vmcs
*vmcs02
;
8586 if (!nested_vmx_check_permission(vcpu
) ||
8587 !nested_vmx_check_vmcs12(vcpu
))
8590 skip_emulated_instruction(vcpu
);
8591 vmcs12
= get_vmcs12(vcpu
);
8593 if (enable_shadow_vmcs
)
8594 copy_shadow_to_vmcs12(vmx
);
8597 * The nested entry process starts with enforcing various prerequisites
8598 * on vmcs12 as required by the Intel SDM, and act appropriately when
8599 * they fail: As the SDM explains, some conditions should cause the
8600 * instruction to fail, while others will cause the instruction to seem
8601 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8602 * To speed up the normal (success) code path, we should avoid checking
8603 * for misconfigurations which will anyway be caught by the processor
8604 * when using the merged vmcs02.
8606 if (vmcs12
->launch_state
== launch
) {
8607 nested_vmx_failValid(vcpu
,
8608 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8609 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
8613 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
8614 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
) {
8615 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8619 if ((vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_MSR_BITMAPS
) &&
8620 !PAGE_ALIGNED(vmcs12
->msr_bitmap
)) {
8621 /*TODO: Also verify bits beyond physical address width are 0*/
8622 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8626 if (!nested_get_vmcs12_pages(vcpu
, vmcs12
)) {
8627 /*TODO: Also verify bits beyond physical address width are 0*/
8628 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8632 if (vmcs12
->vm_entry_msr_load_count
> 0 ||
8633 vmcs12
->vm_exit_msr_load_count
> 0 ||
8634 vmcs12
->vm_exit_msr_store_count
> 0) {
8635 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8637 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8641 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
8642 nested_vmx_true_procbased_ctls_low
,
8643 nested_vmx_procbased_ctls_high
) ||
8644 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
8645 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
) ||
8646 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
8647 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
) ||
8648 !vmx_control_verify(vmcs12
->vm_exit_controls
,
8649 nested_vmx_true_exit_ctls_low
,
8650 nested_vmx_exit_ctls_high
) ||
8651 !vmx_control_verify(vmcs12
->vm_entry_controls
,
8652 nested_vmx_true_entry_ctls_low
,
8653 nested_vmx_entry_ctls_high
))
8655 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8659 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
8660 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
8661 nested_vmx_failValid(vcpu
,
8662 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
8666 if (!nested_cr0_valid(vmcs12
, vmcs12
->guest_cr0
) ||
8667 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
8668 nested_vmx_entry_failure(vcpu
, vmcs12
,
8669 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
8672 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
8673 nested_vmx_entry_failure(vcpu
, vmcs12
,
8674 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
8679 * If the load IA32_EFER VM-entry control is 1, the following checks
8680 * are performed on the field for the IA32_EFER MSR:
8681 * - Bits reserved in the IA32_EFER MSR must be 0.
8682 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8683 * the IA-32e mode guest VM-exit control. It must also be identical
8684 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8687 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
) {
8688 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
8689 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
8690 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
8691 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
8692 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
))) {
8693 nested_vmx_entry_failure(vcpu
, vmcs12
,
8694 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
8700 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8701 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8702 * the values of the LMA and LME bits in the field must each be that of
8703 * the host address-space size VM-exit control.
8705 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
8706 ia32e
= (vmcs12
->vm_exit_controls
&
8707 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
8708 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
8709 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
8710 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
)) {
8711 nested_vmx_entry_failure(vcpu
, vmcs12
,
8712 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
8718 * We're finally done with prerequisite checking, and can start with
8722 vmcs02
= nested_get_current_vmcs02(vmx
);
8726 enter_guest_mode(vcpu
);
8728 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
8730 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
8731 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
8734 vmx
->loaded_vmcs
= vmcs02
;
8736 vmx_vcpu_load(vcpu
, cpu
);
8740 vmx_segment_cache_clear(vmx
);
8742 vmcs12
->launch_state
= 1;
8744 prepare_vmcs02(vcpu
, vmcs12
);
8746 if (vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
)
8747 return kvm_emulate_halt(vcpu
);
8749 vmx
->nested
.nested_run_pending
= 1;
8752 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8753 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8754 * returned as far as L1 is concerned. It will only return (and set
8755 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8761 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8762 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8763 * This function returns the new value we should put in vmcs12.guest_cr0.
8764 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8765 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8766 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8767 * didn't trap the bit, because if L1 did, so would L0).
8768 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8769 * been modified by L2, and L1 knows it. So just leave the old value of
8770 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8771 * isn't relevant, because if L0 traps this bit it can set it to anything.
8772 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8773 * changed these bits, and therefore they need to be updated, but L0
8774 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8775 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8777 static inline unsigned long
8778 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
8781 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
8782 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
8783 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
8784 vcpu
->arch
.cr0_guest_owned_bits
));
8787 static inline unsigned long
8788 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
8791 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
8792 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
8793 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
8794 vcpu
->arch
.cr4_guest_owned_bits
));
8797 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
8798 struct vmcs12
*vmcs12
)
8803 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.reinject
) {
8804 nr
= vcpu
->arch
.exception
.nr
;
8805 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
8807 if (kvm_exception_is_soft(nr
)) {
8808 vmcs12
->vm_exit_instruction_len
=
8809 vcpu
->arch
.event_exit_inst_len
;
8810 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
8812 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
8814 if (vcpu
->arch
.exception
.has_error_code
) {
8815 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
8816 vmcs12
->idt_vectoring_error_code
=
8817 vcpu
->arch
.exception
.error_code
;
8820 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
8821 } else if (vcpu
->arch
.nmi_injected
) {
8822 vmcs12
->idt_vectoring_info_field
=
8823 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
8824 } else if (vcpu
->arch
.interrupt
.pending
) {
8825 nr
= vcpu
->arch
.interrupt
.nr
;
8826 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
8828 if (vcpu
->arch
.interrupt
.soft
) {
8829 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
8830 vmcs12
->vm_entry_instruction_len
=
8831 vcpu
->arch
.event_exit_inst_len
;
8833 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
8835 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
8839 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
8841 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8843 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
8844 vmx
->nested
.preemption_timer_expired
) {
8845 if (vmx
->nested
.nested_run_pending
)
8847 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
8851 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
8852 if (vmx
->nested
.nested_run_pending
||
8853 vcpu
->arch
.interrupt
.pending
)
8855 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
8856 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
8857 INTR_INFO_VALID_MASK
, 0);
8859 * The NMI-triggered VM exit counts as injection:
8860 * clear this one and block further NMIs.
8862 vcpu
->arch
.nmi_pending
= 0;
8863 vmx_set_nmi_mask(vcpu
, true);
8867 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
8868 nested_exit_on_intr(vcpu
)) {
8869 if (vmx
->nested
.nested_run_pending
)
8871 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
8877 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
8880 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
8883 if (ktime_to_ns(remaining
) <= 0)
8886 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
8887 do_div(value
, 1000000);
8888 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
8892 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8893 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8894 * and this function updates it to reflect the changes to the guest state while
8895 * L2 was running (and perhaps made some exits which were handled directly by L0
8896 * without going back to L1), and to reflect the exit reason.
8897 * Note that we do not have to copy here all VMCS fields, just those that
8898 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8899 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8900 * which already writes to vmcs12 directly.
8902 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
8903 u32 exit_reason
, u32 exit_intr_info
,
8904 unsigned long exit_qualification
)
8906 /* update guest state fields: */
8907 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
8908 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
8910 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
8911 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
8912 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
8914 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
8915 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
8916 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
8917 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
8918 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
8919 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
8920 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
8921 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
8922 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
8923 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
8924 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
8925 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
8926 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
8927 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
8928 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
8929 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
8930 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
8931 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
8932 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
8933 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
8934 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
8935 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
8936 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
8937 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
8938 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
8939 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
8940 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
8941 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
8942 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
8943 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
8944 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
8945 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
8946 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
8947 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
8948 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
8949 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
8951 vmcs12
->guest_interruptibility_info
=
8952 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
8953 vmcs12
->guest_pending_dbg_exceptions
=
8954 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
8955 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
8956 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
8958 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
8960 if (nested_cpu_has_preemption_timer(vmcs12
)) {
8961 if (vmcs12
->vm_exit_controls
&
8962 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
8963 vmcs12
->vmx_preemption_timer_value
=
8964 vmx_get_preemption_timer_value(vcpu
);
8965 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
8969 * In some cases (usually, nested EPT), L2 is allowed to change its
8970 * own CR3 without exiting. If it has changed it, we must keep it.
8971 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8972 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8974 * Additionally, restore L2's PDPTR to vmcs12.
8977 vmcs12
->guest_cr3
= vmcs_read64(GUEST_CR3
);
8978 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
8979 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
8980 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
8981 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
8984 vmcs12
->vm_entry_controls
=
8985 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
8986 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
8988 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
8989 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
8990 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
8993 /* TODO: These cannot have changed unless we have MSR bitmaps and
8994 * the relevant bit asks not to trap the change */
8995 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
8996 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
8997 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
8998 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
8999 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
9000 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
9001 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
9002 if (vmx_mpx_supported())
9003 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
9004 if (nested_cpu_has_xsaves(vmcs12
))
9005 vmcs12
->xss_exit_bitmap
= vmcs_read64(XSS_EXIT_BITMAP
);
9007 /* update exit information fields: */
9009 vmcs12
->vm_exit_reason
= exit_reason
;
9010 vmcs12
->exit_qualification
= exit_qualification
;
9012 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
9013 if ((vmcs12
->vm_exit_intr_info
&
9014 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
9015 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
))
9016 vmcs12
->vm_exit_intr_error_code
=
9017 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
9018 vmcs12
->idt_vectoring_info_field
= 0;
9019 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
9020 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
9022 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
9023 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9024 * instead of reading the real value. */
9025 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
9028 * Transfer the event that L0 or L1 may wanted to inject into
9029 * L2 to IDT_VECTORING_INFO_FIELD.
9031 vmcs12_save_pending_event(vcpu
, vmcs12
);
9035 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9036 * preserved above and would only end up incorrectly in L1.
9038 vcpu
->arch
.nmi_injected
= false;
9039 kvm_clear_exception_queue(vcpu
);
9040 kvm_clear_interrupt_queue(vcpu
);
9044 * A part of what we need to when the nested L2 guest exits and we want to
9045 * run its L1 parent, is to reset L1's guest state to the host state specified
9047 * This function is to be called not only on normal nested exit, but also on
9048 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9049 * Failures During or After Loading Guest State").
9050 * This function should be called when the active VMCS is L1's (vmcs01).
9052 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
9053 struct vmcs12
*vmcs12
)
9055 struct kvm_segment seg
;
9057 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
9058 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
9059 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
9060 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
9062 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
9063 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
9065 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
9066 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
9067 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
9069 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9070 * actually changed, because it depends on the current state of
9071 * fpu_active (which may have changed).
9072 * Note that vmx_set_cr0 refers to efer set above.
9074 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
9076 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9077 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9078 * but we also need to update cr0_guest_host_mask and exception_bitmap.
9080 update_exception_bitmap(vcpu
);
9081 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
9082 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
9085 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9086 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9088 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
9089 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
9091 nested_ept_uninit_mmu_context(vcpu
);
9093 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
9094 kvm_mmu_reset_context(vcpu
);
9097 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
9101 * Trivially support vpid by letting L2s share their parent
9102 * L1's vpid. TODO: move to a more elaborate solution, giving
9103 * each L2 its own vpid and exposing the vpid feature to L1.
9105 vmx_flush_tlb(vcpu
);
9109 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
9110 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
9111 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
9112 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
9113 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
9115 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
9116 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
9117 vmcs_write64(GUEST_BNDCFGS
, 0);
9119 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
9120 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
9121 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
9123 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
9124 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
9125 vmcs12
->host_ia32_perf_global_ctrl
);
9127 /* Set L1 segment info according to Intel SDM
9128 27.5.2 Loading Host Segment and Descriptor-Table Registers */
9129 seg
= (struct kvm_segment
) {
9131 .limit
= 0xFFFFFFFF,
9132 .selector
= vmcs12
->host_cs_selector
,
9138 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
9142 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
9143 seg
= (struct kvm_segment
) {
9145 .limit
= 0xFFFFFFFF,
9152 seg
.selector
= vmcs12
->host_ds_selector
;
9153 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
9154 seg
.selector
= vmcs12
->host_es_selector
;
9155 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
9156 seg
.selector
= vmcs12
->host_ss_selector
;
9157 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
9158 seg
.selector
= vmcs12
->host_fs_selector
;
9159 seg
.base
= vmcs12
->host_fs_base
;
9160 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
9161 seg
.selector
= vmcs12
->host_gs_selector
;
9162 seg
.base
= vmcs12
->host_gs_base
;
9163 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
9164 seg
= (struct kvm_segment
) {
9165 .base
= vmcs12
->host_tr_base
,
9167 .selector
= vmcs12
->host_tr_selector
,
9171 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
9173 kvm_set_dr(vcpu
, 7, 0x400);
9174 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
9178 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9179 * and modify vmcs12 to make it see what it would expect to see there if
9180 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9182 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
9184 unsigned long exit_qualification
)
9186 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9187 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9189 /* trying to cancel vmlaunch/vmresume is a bug */
9190 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
9192 leave_guest_mode(vcpu
);
9193 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
9194 exit_qualification
);
9196 vmx_load_vmcs01(vcpu
);
9198 if ((exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
)
9199 && nested_exit_intr_ack_set(vcpu
)) {
9200 int irq
= kvm_cpu_get_interrupt(vcpu
);
9202 vmcs12
->vm_exit_intr_info
= irq
|
9203 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
9206 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
9207 vmcs12
->exit_qualification
,
9208 vmcs12
->idt_vectoring_info_field
,
9209 vmcs12
->vm_exit_intr_info
,
9210 vmcs12
->vm_exit_intr_error_code
,
9213 vm_entry_controls_init(vmx
, vmcs_read32(VM_ENTRY_CONTROLS
));
9214 vm_exit_controls_init(vmx
, vmcs_read32(VM_EXIT_CONTROLS
));
9215 vmx_segment_cache_clear(vmx
);
9217 /* if no vmcs02 cache requested, remove the one we used */
9218 if (VMCS02_POOL_SIZE
== 0)
9219 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
9221 load_vmcs12_host_state(vcpu
, vmcs12
);
9223 /* Update TSC_OFFSET if TSC was changed while L2 ran */
9224 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
9226 /* This is needed for same reason as it was needed in prepare_vmcs02 */
9229 /* Unpin physical memory we referred to in vmcs02 */
9230 if (vmx
->nested
.apic_access_page
) {
9231 nested_release_page(vmx
->nested
.apic_access_page
);
9232 vmx
->nested
.apic_access_page
= NULL
;
9234 if (vmx
->nested
.virtual_apic_page
) {
9235 nested_release_page(vmx
->nested
.virtual_apic_page
);
9236 vmx
->nested
.virtual_apic_page
= NULL
;
9240 * We are now running in L2, mmu_notifier will force to reload the
9241 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9243 kvm_vcpu_reload_apic_access_page(vcpu
);
9246 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9247 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9248 * success or failure flag accordingly.
9250 if (unlikely(vmx
->fail
)) {
9252 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
9254 nested_vmx_succeed(vcpu
);
9255 if (enable_shadow_vmcs
)
9256 vmx
->nested
.sync_shadow_vmcs
= true;
9258 /* in case we halted in L2 */
9259 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
9263 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9265 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
9267 if (is_guest_mode(vcpu
))
9268 nested_vmx_vmexit(vcpu
, -1, 0, 0);
9269 free_nested(to_vmx(vcpu
));
9273 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9274 * 23.7 "VM-entry failures during or after loading guest state" (this also
9275 * lists the acceptable exit-reason and exit-qualification parameters).
9276 * It should only be called before L2 actually succeeded to run, and when
9277 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9279 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
9280 struct vmcs12
*vmcs12
,
9281 u32 reason
, unsigned long qualification
)
9283 load_vmcs12_host_state(vcpu
, vmcs12
);
9284 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
9285 vmcs12
->exit_qualification
= qualification
;
9286 nested_vmx_succeed(vcpu
);
9287 if (enable_shadow_vmcs
)
9288 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
9291 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
9292 struct x86_instruction_info
*info
,
9293 enum x86_intercept_stage stage
)
9295 return X86EMUL_CONTINUE
;
9298 static void vmx_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
9301 shrink_ple_window(vcpu
);
9304 static struct kvm_x86_ops vmx_x86_ops
= {
9305 .cpu_has_kvm_support
= cpu_has_kvm_support
,
9306 .disabled_by_bios
= vmx_disabled_by_bios
,
9307 .hardware_setup
= hardware_setup
,
9308 .hardware_unsetup
= hardware_unsetup
,
9309 .check_processor_compatibility
= vmx_check_processor_compat
,
9310 .hardware_enable
= hardware_enable
,
9311 .hardware_disable
= hardware_disable
,
9312 .cpu_has_accelerated_tpr
= report_flexpriority
,
9314 .vcpu_create
= vmx_create_vcpu
,
9315 .vcpu_free
= vmx_free_vcpu
,
9316 .vcpu_reset
= vmx_vcpu_reset
,
9318 .prepare_guest_switch
= vmx_save_host_state
,
9319 .vcpu_load
= vmx_vcpu_load
,
9320 .vcpu_put
= vmx_vcpu_put
,
9322 .update_db_bp_intercept
= update_exception_bitmap
,
9323 .get_msr
= vmx_get_msr
,
9324 .set_msr
= vmx_set_msr
,
9325 .get_segment_base
= vmx_get_segment_base
,
9326 .get_segment
= vmx_get_segment
,
9327 .set_segment
= vmx_set_segment
,
9328 .get_cpl
= vmx_get_cpl
,
9329 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
9330 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
9331 .decache_cr3
= vmx_decache_cr3
,
9332 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
9333 .set_cr0
= vmx_set_cr0
,
9334 .set_cr3
= vmx_set_cr3
,
9335 .set_cr4
= vmx_set_cr4
,
9336 .set_efer
= vmx_set_efer
,
9337 .get_idt
= vmx_get_idt
,
9338 .set_idt
= vmx_set_idt
,
9339 .get_gdt
= vmx_get_gdt
,
9340 .set_gdt
= vmx_set_gdt
,
9341 .get_dr6
= vmx_get_dr6
,
9342 .set_dr6
= vmx_set_dr6
,
9343 .set_dr7
= vmx_set_dr7
,
9344 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
9345 .cache_reg
= vmx_cache_reg
,
9346 .get_rflags
= vmx_get_rflags
,
9347 .set_rflags
= vmx_set_rflags
,
9348 .fpu_deactivate
= vmx_fpu_deactivate
,
9350 .tlb_flush
= vmx_flush_tlb
,
9352 .run
= vmx_vcpu_run
,
9353 .handle_exit
= vmx_handle_exit
,
9354 .skip_emulated_instruction
= skip_emulated_instruction
,
9355 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
9356 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
9357 .patch_hypercall
= vmx_patch_hypercall
,
9358 .set_irq
= vmx_inject_irq
,
9359 .set_nmi
= vmx_inject_nmi
,
9360 .queue_exception
= vmx_queue_exception
,
9361 .cancel_injection
= vmx_cancel_injection
,
9362 .interrupt_allowed
= vmx_interrupt_allowed
,
9363 .nmi_allowed
= vmx_nmi_allowed
,
9364 .get_nmi_mask
= vmx_get_nmi_mask
,
9365 .set_nmi_mask
= vmx_set_nmi_mask
,
9366 .enable_nmi_window
= enable_nmi_window
,
9367 .enable_irq_window
= enable_irq_window
,
9368 .update_cr8_intercept
= update_cr8_intercept
,
9369 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
9370 .set_apic_access_page_addr
= vmx_set_apic_access_page_addr
,
9371 .vm_has_apicv
= vmx_vm_has_apicv
,
9372 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
9373 .hwapic_irr_update
= vmx_hwapic_irr_update
,
9374 .hwapic_isr_update
= vmx_hwapic_isr_update
,
9375 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
9376 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
9378 .set_tss_addr
= vmx_set_tss_addr
,
9379 .get_tdp_level
= get_ept_level
,
9380 .get_mt_mask
= vmx_get_mt_mask
,
9382 .get_exit_info
= vmx_get_exit_info
,
9384 .get_lpage_level
= vmx_get_lpage_level
,
9386 .cpuid_update
= vmx_cpuid_update
,
9388 .rdtscp_supported
= vmx_rdtscp_supported
,
9389 .invpcid_supported
= vmx_invpcid_supported
,
9391 .set_supported_cpuid
= vmx_set_supported_cpuid
,
9393 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
9395 .set_tsc_khz
= vmx_set_tsc_khz
,
9396 .read_tsc_offset
= vmx_read_tsc_offset
,
9397 .write_tsc_offset
= vmx_write_tsc_offset
,
9398 .adjust_tsc_offset
= vmx_adjust_tsc_offset
,
9399 .compute_tsc_offset
= vmx_compute_tsc_offset
,
9400 .read_l1_tsc
= vmx_read_l1_tsc
,
9402 .set_tdp_cr3
= vmx_set_cr3
,
9404 .check_intercept
= vmx_check_intercept
,
9405 .handle_external_intr
= vmx_handle_external_intr
,
9406 .mpx_supported
= vmx_mpx_supported
,
9407 .xsaves_supported
= vmx_xsaves_supported
,
9409 .check_nested_events
= vmx_check_nested_events
,
9411 .sched_in
= vmx_sched_in
,
9414 static int __init
vmx_init(void)
9416 int r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
9417 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
9422 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
9423 crash_vmclear_local_loaded_vmcss
);
9429 static void __exit
vmx_exit(void)
9432 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss
, NULL
);
9439 module_init(vmx_init
)
9440 module_exit(vmx_exit
)