arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / arch / x86 / kvm / x86.c
blobc259814200bd340b54014a1869d914ec3674caed
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 /* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32 kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
111 static bool backwards_tsc_observed = false;
113 #define KVM_NR_SHARED_MSRS 16
115 struct kvm_shared_msrs_global {
116 int nr;
117 u32 msrs[KVM_NR_SHARED_MSRS];
120 struct kvm_shared_msrs {
121 struct user_return_notifier urn;
122 bool registered;
123 struct kvm_shared_msr_values {
124 u64 host;
125 u64 curr;
126 } values[KVM_NR_SHARED_MSRS];
129 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
130 static struct kvm_shared_msrs __percpu *shared_msrs;
132 struct kvm_stats_debugfs_item debugfs_entries[] = {
133 { "pf_fixed", VCPU_STAT(pf_fixed) },
134 { "pf_guest", VCPU_STAT(pf_guest) },
135 { "tlb_flush", VCPU_STAT(tlb_flush) },
136 { "invlpg", VCPU_STAT(invlpg) },
137 { "exits", VCPU_STAT(exits) },
138 { "io_exits", VCPU_STAT(io_exits) },
139 { "mmio_exits", VCPU_STAT(mmio_exits) },
140 { "signal_exits", VCPU_STAT(signal_exits) },
141 { "irq_window", VCPU_STAT(irq_window_exits) },
142 { "nmi_window", VCPU_STAT(nmi_window_exits) },
143 { "halt_exits", VCPU_STAT(halt_exits) },
144 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
145 { "hypercalls", VCPU_STAT(hypercalls) },
146 { "request_irq", VCPU_STAT(request_irq_exits) },
147 { "irq_exits", VCPU_STAT(irq_exits) },
148 { "host_state_reload", VCPU_STAT(host_state_reload) },
149 { "efer_reload", VCPU_STAT(efer_reload) },
150 { "fpu_reload", VCPU_STAT(fpu_reload) },
151 { "insn_emulation", VCPU_STAT(insn_emulation) },
152 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
153 { "irq_injections", VCPU_STAT(irq_injections) },
154 { "nmi_injections", VCPU_STAT(nmi_injections) },
155 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
156 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
157 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
158 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
159 { "mmu_flooded", VM_STAT(mmu_flooded) },
160 { "mmu_recycled", VM_STAT(mmu_recycled) },
161 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
162 { "mmu_unsync", VM_STAT(mmu_unsync) },
163 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
164 { "largepages", VM_STAT(lpages) },
165 { NULL }
168 u64 __read_mostly host_xcr0;
170 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
172 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
174 int i;
175 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
176 vcpu->arch.apf.gfns[i] = ~0;
179 static void kvm_on_user_return(struct user_return_notifier *urn)
181 unsigned slot;
182 struct kvm_shared_msrs *locals
183 = container_of(urn, struct kvm_shared_msrs, urn);
184 struct kvm_shared_msr_values *values;
186 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
187 values = &locals->values[slot];
188 if (values->host != values->curr) {
189 wrmsrl(shared_msrs_global.msrs[slot], values->host);
190 values->curr = values->host;
193 locals->registered = false;
194 user_return_notifier_unregister(urn);
197 static void shared_msr_update(unsigned slot, u32 msr)
199 u64 value;
200 unsigned int cpu = smp_processor_id();
201 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
203 /* only read, and nobody should modify it at this time,
204 * so don't need lock */
205 if (slot >= shared_msrs_global.nr) {
206 printk(KERN_ERR "kvm: invalid MSR slot!");
207 return;
209 rdmsrl_safe(msr, &value);
210 smsr->values[slot].host = value;
211 smsr->values[slot].curr = value;
214 void kvm_define_shared_msr(unsigned slot, u32 msr)
216 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
217 if (slot >= shared_msrs_global.nr)
218 shared_msrs_global.nr = slot + 1;
219 shared_msrs_global.msrs[slot] = msr;
220 /* we need ensured the shared_msr_global have been updated */
221 smp_wmb();
223 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
225 static void kvm_shared_msr_cpu_online(void)
227 unsigned i;
229 for (i = 0; i < shared_msrs_global.nr; ++i)
230 shared_msr_update(i, shared_msrs_global.msrs[i]);
233 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
235 unsigned int cpu = smp_processor_id();
236 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
237 int err;
239 if (((value ^ smsr->values[slot].curr) & mask) == 0)
240 return 0;
241 smsr->values[slot].curr = value;
242 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
243 if (err)
244 return 1;
246 if (!smsr->registered) {
247 smsr->urn.on_user_return = kvm_on_user_return;
248 user_return_notifier_register(&smsr->urn);
249 smsr->registered = true;
251 return 0;
253 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
255 static void drop_user_return_notifiers(void)
257 unsigned int cpu = smp_processor_id();
258 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
260 if (smsr->registered)
261 kvm_on_user_return(&smsr->urn);
264 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
266 return vcpu->arch.apic_base;
268 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
270 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
272 u64 old_state = vcpu->arch.apic_base &
273 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
274 u64 new_state = msr_info->data &
275 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
276 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
277 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
279 if (!msr_info->host_initiated &&
280 ((msr_info->data & reserved_bits) != 0 ||
281 new_state == X2APIC_ENABLE ||
282 (new_state == MSR_IA32_APICBASE_ENABLE &&
283 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
284 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
285 old_state == 0)))
286 return 1;
288 kvm_lapic_set_base(vcpu, msr_info->data);
289 return 0;
291 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
293 asmlinkage __visible void kvm_spurious_fault(void)
295 /* Fault while not rebooting. We want the trace. */
296 BUG();
298 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
300 #define EXCPT_BENIGN 0
301 #define EXCPT_CONTRIBUTORY 1
302 #define EXCPT_PF 2
304 static int exception_class(int vector)
306 switch (vector) {
307 case PF_VECTOR:
308 return EXCPT_PF;
309 case DE_VECTOR:
310 case TS_VECTOR:
311 case NP_VECTOR:
312 case SS_VECTOR:
313 case GP_VECTOR:
314 return EXCPT_CONTRIBUTORY;
315 default:
316 break;
318 return EXCPT_BENIGN;
321 #define EXCPT_FAULT 0
322 #define EXCPT_TRAP 1
323 #define EXCPT_ABORT 2
324 #define EXCPT_INTERRUPT 3
326 static int exception_type(int vector)
328 unsigned int mask;
330 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
331 return EXCPT_INTERRUPT;
333 mask = 1 << vector;
335 /* #DB is trap, as instruction watchpoints are handled elsewhere */
336 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
337 return EXCPT_TRAP;
339 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
340 return EXCPT_ABORT;
342 /* Reserved exceptions will result in fault */
343 return EXCPT_FAULT;
346 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
347 unsigned nr, bool has_error, u32 error_code,
348 bool reinject)
350 u32 prev_nr;
351 int class1, class2;
353 kvm_make_request(KVM_REQ_EVENT, vcpu);
355 if (!vcpu->arch.exception.pending) {
356 queue:
357 if (has_error && !is_protmode(vcpu))
358 has_error = false;
359 vcpu->arch.exception.pending = true;
360 vcpu->arch.exception.has_error_code = has_error;
361 vcpu->arch.exception.nr = nr;
362 vcpu->arch.exception.error_code = error_code;
363 vcpu->arch.exception.reinject = reinject;
364 return;
367 /* to check exception */
368 prev_nr = vcpu->arch.exception.nr;
369 if (prev_nr == DF_VECTOR) {
370 /* triple fault -> shutdown */
371 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
372 return;
374 class1 = exception_class(prev_nr);
375 class2 = exception_class(nr);
376 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
377 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
378 /* generate double fault per SDM Table 5-5 */
379 vcpu->arch.exception.pending = true;
380 vcpu->arch.exception.has_error_code = true;
381 vcpu->arch.exception.nr = DF_VECTOR;
382 vcpu->arch.exception.error_code = 0;
383 } else
384 /* replace previous exception with a new one in a hope
385 that instruction re-execution will regenerate lost
386 exception */
387 goto queue;
390 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
392 kvm_multiple_exception(vcpu, nr, false, 0, false);
394 EXPORT_SYMBOL_GPL(kvm_queue_exception);
396 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 kvm_multiple_exception(vcpu, nr, false, 0, true);
400 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
402 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
404 if (err)
405 kvm_inject_gp(vcpu, 0);
406 else
407 kvm_x86_ops->skip_emulated_instruction(vcpu);
409 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
411 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
413 ++vcpu->stat.pf_guest;
414 vcpu->arch.cr2 = fault->address;
415 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
417 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
419 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
421 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
422 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
423 else
424 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
426 return fault->nested_page_fault;
429 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
431 atomic_inc(&vcpu->arch.nmi_queued);
432 kvm_make_request(KVM_REQ_NMI, vcpu);
434 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
436 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
438 kvm_multiple_exception(vcpu, nr, true, error_code, false);
440 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
442 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 kvm_multiple_exception(vcpu, nr, true, error_code, true);
446 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
449 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
450 * a #GP and return false.
452 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
454 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
455 return true;
456 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
457 return false;
459 EXPORT_SYMBOL_GPL(kvm_require_cpl);
461 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
463 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
464 return true;
466 kvm_queue_exception(vcpu, UD_VECTOR);
467 return false;
469 EXPORT_SYMBOL_GPL(kvm_require_dr);
472 * This function will be used to read from the physical memory of the currently
473 * running guest. The difference to kvm_read_guest_page is that this function
474 * can read from guest physical or from the guest's guest physical memory.
476 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
477 gfn_t ngfn, void *data, int offset, int len,
478 u32 access)
480 struct x86_exception exception;
481 gfn_t real_gfn;
482 gpa_t ngpa;
484 ngpa = gfn_to_gpa(ngfn);
485 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
486 if (real_gfn == UNMAPPED_GVA)
487 return -EFAULT;
489 real_gfn = gpa_to_gfn(real_gfn);
491 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
493 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
495 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
496 void *data, int offset, int len, u32 access)
498 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
499 data, offset, len, access);
503 * Load the pae pdptrs. Return true is they are all valid.
505 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
507 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
508 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
509 int i;
510 int ret;
511 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
513 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
514 offset * sizeof(u64), sizeof(pdpte),
515 PFERR_USER_MASK|PFERR_WRITE_MASK);
516 if (ret < 0) {
517 ret = 0;
518 goto out;
520 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
521 if (is_present_gpte(pdpte[i]) &&
522 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
523 ret = 0;
524 goto out;
527 ret = 1;
529 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
530 __set_bit(VCPU_EXREG_PDPTR,
531 (unsigned long *)&vcpu->arch.regs_avail);
532 __set_bit(VCPU_EXREG_PDPTR,
533 (unsigned long *)&vcpu->arch.regs_dirty);
534 out:
536 return ret;
538 EXPORT_SYMBOL_GPL(load_pdptrs);
540 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
542 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
543 bool changed = true;
544 int offset;
545 gfn_t gfn;
546 int r;
548 if (is_long_mode(vcpu) || !is_pae(vcpu))
549 return false;
551 if (!test_bit(VCPU_EXREG_PDPTR,
552 (unsigned long *)&vcpu->arch.regs_avail))
553 return true;
555 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
556 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
557 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
558 PFERR_USER_MASK | PFERR_WRITE_MASK);
559 if (r < 0)
560 goto out;
561 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
562 out:
564 return changed;
567 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
569 unsigned long old_cr0 = kvm_read_cr0(vcpu);
570 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
571 X86_CR0_CD | X86_CR0_NW;
573 cr0 |= X86_CR0_ET;
575 #ifdef CONFIG_X86_64
576 if (cr0 & 0xffffffff00000000UL)
577 return 1;
578 #endif
580 cr0 &= ~CR0_RESERVED_BITS;
582 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
583 return 1;
585 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
586 return 1;
588 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
589 #ifdef CONFIG_X86_64
590 if ((vcpu->arch.efer & EFER_LME)) {
591 int cs_db, cs_l;
593 if (!is_pae(vcpu))
594 return 1;
595 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
596 if (cs_l)
597 return 1;
598 } else
599 #endif
600 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
601 kvm_read_cr3(vcpu)))
602 return 1;
605 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
606 return 1;
608 kvm_x86_ops->set_cr0(vcpu, cr0);
610 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
611 kvm_clear_async_pf_completion_queue(vcpu);
612 kvm_async_pf_hash_reset(vcpu);
615 if ((cr0 ^ old_cr0) & update_bits)
616 kvm_mmu_reset_context(vcpu);
617 return 0;
619 EXPORT_SYMBOL_GPL(kvm_set_cr0);
621 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
623 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
625 EXPORT_SYMBOL_GPL(kvm_lmsw);
627 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
629 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
630 !vcpu->guest_xcr0_loaded) {
631 /* kvm_set_xcr() also depends on this */
632 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
633 vcpu->guest_xcr0_loaded = 1;
637 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
639 if (vcpu->guest_xcr0_loaded) {
640 if (vcpu->arch.xcr0 != host_xcr0)
641 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
642 vcpu->guest_xcr0_loaded = 0;
646 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
648 u64 xcr0 = xcr;
649 u64 old_xcr0 = vcpu->arch.xcr0;
650 u64 valid_bits;
652 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
653 if (index != XCR_XFEATURE_ENABLED_MASK)
654 return 1;
655 if (!(xcr0 & XSTATE_FP))
656 return 1;
657 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
658 return 1;
661 * Do not allow the guest to set bits that we do not support
662 * saving. However, xcr0 bit 0 is always set, even if the
663 * emulated CPU does not support XSAVE (see fx_init).
665 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
666 if (xcr0 & ~valid_bits)
667 return 1;
669 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
670 return 1;
672 if (xcr0 & XSTATE_AVX512) {
673 if (!(xcr0 & XSTATE_YMM))
674 return 1;
675 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
676 return 1;
678 kvm_put_guest_xcr0(vcpu);
679 vcpu->arch.xcr0 = xcr0;
681 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
682 kvm_update_cpuid(vcpu);
683 return 0;
686 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
688 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
689 __kvm_set_xcr(vcpu, index, xcr)) {
690 kvm_inject_gp(vcpu, 0);
691 return 1;
693 return 0;
695 EXPORT_SYMBOL_GPL(kvm_set_xcr);
697 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
699 unsigned long old_cr4 = kvm_read_cr4(vcpu);
700 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
701 X86_CR4_PAE | X86_CR4_SMEP;
702 if (cr4 & CR4_RESERVED_BITS)
703 return 1;
705 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
706 return 1;
708 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
709 return 1;
711 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
712 return 1;
714 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
715 return 1;
717 if (is_long_mode(vcpu)) {
718 if (!(cr4 & X86_CR4_PAE))
719 return 1;
720 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
721 && ((cr4 ^ old_cr4) & pdptr_bits)
722 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
723 kvm_read_cr3(vcpu)))
724 return 1;
726 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
727 if (!guest_cpuid_has_pcid(vcpu))
728 return 1;
730 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
731 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
732 return 1;
735 if (kvm_x86_ops->set_cr4(vcpu, cr4))
736 return 1;
738 if (((cr4 ^ old_cr4) & pdptr_bits) ||
739 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
740 kvm_mmu_reset_context(vcpu);
742 if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
743 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
745 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
746 kvm_update_cpuid(vcpu);
748 return 0;
750 EXPORT_SYMBOL_GPL(kvm_set_cr4);
752 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
754 #ifdef CONFIG_X86_64
755 cr3 &= ~CR3_PCID_INVD;
756 #endif
758 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
759 kvm_mmu_sync_roots(vcpu);
760 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
761 return 0;
764 if (is_long_mode(vcpu)) {
765 if (cr3 & CR3_L_MODE_RESERVED_BITS)
766 return 1;
767 } else if (is_pae(vcpu) && is_paging(vcpu) &&
768 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
769 return 1;
771 vcpu->arch.cr3 = cr3;
772 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
773 kvm_mmu_new_cr3(vcpu);
774 return 0;
776 EXPORT_SYMBOL_GPL(kvm_set_cr3);
778 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
780 if (cr8 & CR8_RESERVED_BITS)
781 return 1;
782 if (irqchip_in_kernel(vcpu->kvm))
783 kvm_lapic_set_tpr(vcpu, cr8);
784 else
785 vcpu->arch.cr8 = cr8;
786 return 0;
788 EXPORT_SYMBOL_GPL(kvm_set_cr8);
790 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
792 if (irqchip_in_kernel(vcpu->kvm))
793 return kvm_lapic_get_cr8(vcpu);
794 else
795 return vcpu->arch.cr8;
797 EXPORT_SYMBOL_GPL(kvm_get_cr8);
799 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
801 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
802 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
805 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
807 unsigned long dr7;
809 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
810 dr7 = vcpu->arch.guest_debug_dr7;
811 else
812 dr7 = vcpu->arch.dr7;
813 kvm_x86_ops->set_dr7(vcpu, dr7);
814 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
815 if (dr7 & DR7_BP_EN_MASK)
816 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
819 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
821 u64 fixed = DR6_FIXED_1;
823 if (!guest_cpuid_has_rtm(vcpu))
824 fixed |= DR6_RTM;
825 return fixed;
828 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
830 switch (dr) {
831 case 0 ... 3:
832 vcpu->arch.db[dr] = val;
833 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
834 vcpu->arch.eff_db[dr] = val;
835 break;
836 case 4:
837 /* fall through */
838 case 6:
839 if (val & 0xffffffff00000000ULL)
840 return -1; /* #GP */
841 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
842 kvm_update_dr6(vcpu);
843 break;
844 case 5:
845 /* fall through */
846 default: /* 7 */
847 if (val & 0xffffffff00000000ULL)
848 return -1; /* #GP */
849 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
850 kvm_update_dr7(vcpu);
851 break;
854 return 0;
857 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
859 if (__kvm_set_dr(vcpu, dr, val)) {
860 kvm_inject_gp(vcpu, 0);
861 return 1;
863 return 0;
865 EXPORT_SYMBOL_GPL(kvm_set_dr);
867 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
869 switch (dr) {
870 case 0 ... 3:
871 *val = vcpu->arch.db[dr];
872 break;
873 case 4:
874 /* fall through */
875 case 6:
876 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
877 *val = vcpu->arch.dr6;
878 else
879 *val = kvm_x86_ops->get_dr6(vcpu);
880 break;
881 case 5:
882 /* fall through */
883 default: /* 7 */
884 *val = vcpu->arch.dr7;
885 break;
887 return 0;
889 EXPORT_SYMBOL_GPL(kvm_get_dr);
891 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
893 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
894 u64 data;
895 int err;
897 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
898 if (err)
899 return err;
900 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
901 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
902 return err;
904 EXPORT_SYMBOL_GPL(kvm_rdpmc);
907 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
908 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
910 * This list is modified at module load time to reflect the
911 * capabilities of the host cpu. This capabilities test skips MSRs that are
912 * kvm-specific. Those are put in the beginning of the list.
915 #define KVM_SAVE_MSRS_BEGIN 12
916 static u32 msrs_to_save[] = {
917 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
918 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
919 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
920 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
921 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
922 MSR_KVM_PV_EOI_EN,
923 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
924 MSR_STAR,
925 #ifdef CONFIG_X86_64
926 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
927 #endif
928 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
929 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
932 static unsigned num_msrs_to_save;
934 static const u32 emulated_msrs[] = {
935 MSR_IA32_TSC_ADJUST,
936 MSR_IA32_TSCDEADLINE,
937 MSR_IA32_MISC_ENABLE,
938 MSR_IA32_MCG_STATUS,
939 MSR_IA32_MCG_CTL,
942 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
944 if (efer & efer_reserved_bits)
945 return false;
947 if (efer & EFER_FFXSR) {
948 struct kvm_cpuid_entry2 *feat;
950 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
951 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
952 return false;
955 if (efer & EFER_SVME) {
956 struct kvm_cpuid_entry2 *feat;
958 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
959 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
960 return false;
963 return true;
965 EXPORT_SYMBOL_GPL(kvm_valid_efer);
967 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
969 u64 old_efer = vcpu->arch.efer;
971 if (!kvm_valid_efer(vcpu, efer))
972 return 1;
974 if (is_paging(vcpu)
975 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
976 return 1;
978 efer &= ~EFER_LMA;
979 efer |= vcpu->arch.efer & EFER_LMA;
981 kvm_x86_ops->set_efer(vcpu, efer);
983 /* Update reserved bits */
984 if ((efer ^ old_efer) & EFER_NX)
985 kvm_mmu_reset_context(vcpu);
987 return 0;
990 void kvm_enable_efer_bits(u64 mask)
992 efer_reserved_bits &= ~mask;
994 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
997 * Writes msr value into into the appropriate "register".
998 * Returns 0 on success, non-0 otherwise.
999 * Assumes vcpu_load() was already called.
1001 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1003 switch (msr->index) {
1004 case MSR_FS_BASE:
1005 case MSR_GS_BASE:
1006 case MSR_KERNEL_GS_BASE:
1007 case MSR_CSTAR:
1008 case MSR_LSTAR:
1009 if (is_noncanonical_address(msr->data))
1010 return 1;
1011 break;
1012 case MSR_IA32_SYSENTER_EIP:
1013 case MSR_IA32_SYSENTER_ESP:
1015 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1016 * non-canonical address is written on Intel but not on
1017 * AMD (which ignores the top 32-bits, because it does
1018 * not implement 64-bit SYSENTER).
1020 * 64-bit code should hence be able to write a non-canonical
1021 * value on AMD. Making the address canonical ensures that
1022 * vmentry does not fail on Intel after writing a non-canonical
1023 * value, and that something deterministic happens if the guest
1024 * invokes 64-bit SYSENTER.
1026 msr->data = get_canonical(msr->data);
1028 return kvm_x86_ops->set_msr(vcpu, msr);
1030 EXPORT_SYMBOL_GPL(kvm_set_msr);
1033 * Adapt set_msr() to msr_io()'s calling convention
1035 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1037 struct msr_data msr;
1039 msr.data = *data;
1040 msr.index = index;
1041 msr.host_initiated = true;
1042 return kvm_set_msr(vcpu, &msr);
1045 #ifdef CONFIG_X86_64
1046 struct pvclock_gtod_data {
1047 seqcount_t seq;
1049 struct { /* extract of a clocksource struct */
1050 int vclock_mode;
1051 cycle_t cycle_last;
1052 cycle_t mask;
1053 u32 mult;
1054 u32 shift;
1055 } clock;
1057 u64 boot_ns;
1058 u64 nsec_base;
1061 static struct pvclock_gtod_data pvclock_gtod_data;
1063 static void update_pvclock_gtod(struct timekeeper *tk)
1065 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1066 u64 boot_ns;
1068 boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1070 write_seqcount_begin(&vdata->seq);
1072 /* copy pvclock gtod data */
1073 vdata->clock.vclock_mode = tk->tkr.clock->archdata.vclock_mode;
1074 vdata->clock.cycle_last = tk->tkr.cycle_last;
1075 vdata->clock.mask = tk->tkr.mask;
1076 vdata->clock.mult = tk->tkr.mult;
1077 vdata->clock.shift = tk->tkr.shift;
1079 vdata->boot_ns = boot_ns;
1080 vdata->nsec_base = tk->tkr.xtime_nsec;
1082 write_seqcount_end(&vdata->seq);
1084 #endif
1087 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1089 int version;
1090 int r;
1091 struct pvclock_wall_clock wc;
1092 struct timespec boot;
1094 if (!wall_clock)
1095 return;
1097 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1098 if (r)
1099 return;
1101 if (version & 1)
1102 ++version; /* first time write, random junk */
1104 ++version;
1106 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1109 * The guest calculates current wall clock time by adding
1110 * system time (updated by kvm_guest_time_update below) to the
1111 * wall clock specified here. guest system time equals host
1112 * system time for us, thus we must fill in host boot time here.
1114 getboottime(&boot);
1116 if (kvm->arch.kvmclock_offset) {
1117 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1118 boot = timespec_sub(boot, ts);
1120 wc.sec = boot.tv_sec;
1121 wc.nsec = boot.tv_nsec;
1122 wc.version = version;
1124 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1126 version++;
1127 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1130 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1132 uint32_t quotient, remainder;
1134 /* Don't try to replace with do_div(), this one calculates
1135 * "(dividend << 32) / divisor" */
1136 __asm__ ( "divl %4"
1137 : "=a" (quotient), "=d" (remainder)
1138 : "0" (0), "1" (dividend), "r" (divisor) );
1139 return quotient;
1142 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1143 s8 *pshift, u32 *pmultiplier)
1145 uint64_t scaled64;
1146 int32_t shift = 0;
1147 uint64_t tps64;
1148 uint32_t tps32;
1150 tps64 = base_khz * 1000LL;
1151 scaled64 = scaled_khz * 1000LL;
1152 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1153 tps64 >>= 1;
1154 shift--;
1157 tps32 = (uint32_t)tps64;
1158 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1159 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1160 scaled64 >>= 1;
1161 else
1162 tps32 <<= 1;
1163 shift++;
1166 *pshift = shift;
1167 *pmultiplier = div_frac(scaled64, tps32);
1169 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1170 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1173 static inline u64 get_kernel_ns(void)
1175 return ktime_get_boot_ns();
1178 #ifdef CONFIG_X86_64
1179 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1180 #endif
1182 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1183 unsigned long max_tsc_khz;
1185 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1187 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1188 vcpu->arch.virtual_tsc_shift);
1191 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1193 u64 v = (u64)khz * (1000000 + ppm);
1194 do_div(v, 1000000);
1195 return v;
1198 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1200 u32 thresh_lo, thresh_hi;
1201 int use_scaling = 0;
1203 /* tsc_khz can be zero if TSC calibration fails */
1204 if (this_tsc_khz == 0)
1205 return;
1207 /* Compute a scale to convert nanoseconds in TSC cycles */
1208 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1209 &vcpu->arch.virtual_tsc_shift,
1210 &vcpu->arch.virtual_tsc_mult);
1211 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1214 * Compute the variation in TSC rate which is acceptable
1215 * within the range of tolerance and decide if the
1216 * rate being applied is within that bounds of the hardware
1217 * rate. If so, no scaling or compensation need be done.
1219 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1220 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1221 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1222 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1223 use_scaling = 1;
1225 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1228 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1230 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1231 vcpu->arch.virtual_tsc_mult,
1232 vcpu->arch.virtual_tsc_shift);
1233 tsc += vcpu->arch.this_tsc_write;
1234 return tsc;
1237 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1239 #ifdef CONFIG_X86_64
1240 bool vcpus_matched;
1241 struct kvm_arch *ka = &vcpu->kvm->arch;
1242 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1244 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1245 atomic_read(&vcpu->kvm->online_vcpus));
1248 * Once the masterclock is enabled, always perform request in
1249 * order to update it.
1251 * In order to enable masterclock, the host clocksource must be TSC
1252 * and the vcpus need to have matched TSCs. When that happens,
1253 * perform request to enable masterclock.
1255 if (ka->use_master_clock ||
1256 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1257 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1259 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1260 atomic_read(&vcpu->kvm->online_vcpus),
1261 ka->use_master_clock, gtod->clock.vclock_mode);
1262 #endif
1265 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1267 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1268 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1271 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1273 struct kvm *kvm = vcpu->kvm;
1274 u64 offset, ns, elapsed;
1275 unsigned long flags;
1276 s64 usdiff;
1277 bool matched;
1278 bool already_matched;
1279 u64 data = msr->data;
1281 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1282 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1283 ns = get_kernel_ns();
1284 elapsed = ns - kvm->arch.last_tsc_nsec;
1286 if (vcpu->arch.virtual_tsc_khz) {
1287 int faulted = 0;
1289 /* n.b - signed multiplication and division required */
1290 usdiff = data - kvm->arch.last_tsc_write;
1291 #ifdef CONFIG_X86_64
1292 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1293 #else
1294 /* do_div() only does unsigned */
1295 asm("1: idivl %[divisor]\n"
1296 "2: xor %%edx, %%edx\n"
1297 " movl $0, %[faulted]\n"
1298 "3:\n"
1299 ".section .fixup,\"ax\"\n"
1300 "4: movl $1, %[faulted]\n"
1301 " jmp 3b\n"
1302 ".previous\n"
1304 _ASM_EXTABLE(1b, 4b)
1306 : "=A"(usdiff), [faulted] "=r" (faulted)
1307 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1309 #endif
1310 do_div(elapsed, 1000);
1311 usdiff -= elapsed;
1312 if (usdiff < 0)
1313 usdiff = -usdiff;
1315 /* idivl overflow => difference is larger than USEC_PER_SEC */
1316 if (faulted)
1317 usdiff = USEC_PER_SEC;
1318 } else
1319 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1322 * Special case: TSC write with a small delta (1 second) of virtual
1323 * cycle time against real time is interpreted as an attempt to
1324 * synchronize the CPU.
1326 * For a reliable TSC, we can match TSC offsets, and for an unstable
1327 * TSC, we add elapsed time in this computation. We could let the
1328 * compensation code attempt to catch up if we fall behind, but
1329 * it's better to try to match offsets from the beginning.
1331 if (usdiff < USEC_PER_SEC &&
1332 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1333 if (!check_tsc_unstable()) {
1334 offset = kvm->arch.cur_tsc_offset;
1335 pr_debug("kvm: matched tsc offset for %llu\n", data);
1336 } else {
1337 u64 delta = nsec_to_cycles(vcpu, elapsed);
1338 data += delta;
1339 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1340 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1342 matched = true;
1343 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1344 } else {
1346 * We split periods of matched TSC writes into generations.
1347 * For each generation, we track the original measured
1348 * nanosecond time, offset, and write, so if TSCs are in
1349 * sync, we can match exact offset, and if not, we can match
1350 * exact software computation in compute_guest_tsc()
1352 * These values are tracked in kvm->arch.cur_xxx variables.
1354 kvm->arch.cur_tsc_generation++;
1355 kvm->arch.cur_tsc_nsec = ns;
1356 kvm->arch.cur_tsc_write = data;
1357 kvm->arch.cur_tsc_offset = offset;
1358 matched = false;
1359 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1360 kvm->arch.cur_tsc_generation, data);
1364 * We also track th most recent recorded KHZ, write and time to
1365 * allow the matching interval to be extended at each write.
1367 kvm->arch.last_tsc_nsec = ns;
1368 kvm->arch.last_tsc_write = data;
1369 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1371 vcpu->arch.last_guest_tsc = data;
1373 /* Keep track of which generation this VCPU has synchronized to */
1374 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1375 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1376 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1378 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1379 update_ia32_tsc_adjust_msr(vcpu, offset);
1380 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1381 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1383 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1384 if (!matched) {
1385 kvm->arch.nr_vcpus_matched_tsc = 0;
1386 } else if (!already_matched) {
1387 kvm->arch.nr_vcpus_matched_tsc++;
1390 kvm_track_tsc_matching(vcpu);
1391 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1394 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1396 #ifdef CONFIG_X86_64
1398 static cycle_t read_tsc(void)
1400 cycle_t ret;
1401 u64 last;
1404 * Empirically, a fence (of type that depends on the CPU)
1405 * before rdtsc is enough to ensure that rdtsc is ordered
1406 * with respect to loads. The various CPU manuals are unclear
1407 * as to whether rdtsc can be reordered with later loads,
1408 * but no one has ever seen it happen.
1410 rdtsc_barrier();
1411 ret = (cycle_t)vget_cycles();
1413 last = pvclock_gtod_data.clock.cycle_last;
1415 if (likely(ret >= last))
1416 return ret;
1419 * GCC likes to generate cmov here, but this branch is extremely
1420 * predictable (it's just a funciton of time and the likely is
1421 * very likely) and there's a data dependence, so force GCC
1422 * to generate a branch instead. I don't barrier() because
1423 * we don't actually need a barrier, and if this function
1424 * ever gets inlined it will generate worse code.
1426 asm volatile ("");
1427 return last;
1430 static inline u64 vgettsc(cycle_t *cycle_now)
1432 long v;
1433 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1435 *cycle_now = read_tsc();
1437 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1438 return v * gtod->clock.mult;
1441 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1443 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1444 unsigned long seq;
1445 int mode;
1446 u64 ns;
1448 do {
1449 seq = read_seqcount_begin(&gtod->seq);
1450 mode = gtod->clock.vclock_mode;
1451 ns = gtod->nsec_base;
1452 ns += vgettsc(cycle_now);
1453 ns >>= gtod->clock.shift;
1454 ns += gtod->boot_ns;
1455 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1456 *t = ns;
1458 return mode;
1461 /* returns true if host is using tsc clocksource */
1462 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1464 /* checked again under seqlock below */
1465 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1466 return false;
1468 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1470 #endif
1474 * Assuming a stable TSC across physical CPUS, and a stable TSC
1475 * across virtual CPUs, the following condition is possible.
1476 * Each numbered line represents an event visible to both
1477 * CPUs at the next numbered event.
1479 * "timespecX" represents host monotonic time. "tscX" represents
1480 * RDTSC value.
1482 * VCPU0 on CPU0 | VCPU1 on CPU1
1484 * 1. read timespec0,tsc0
1485 * 2. | timespec1 = timespec0 + N
1486 * | tsc1 = tsc0 + M
1487 * 3. transition to guest | transition to guest
1488 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1489 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1490 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1492 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1494 * - ret0 < ret1
1495 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1496 * ...
1497 * - 0 < N - M => M < N
1499 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1500 * always the case (the difference between two distinct xtime instances
1501 * might be smaller then the difference between corresponding TSC reads,
1502 * when updating guest vcpus pvclock areas).
1504 * To avoid that problem, do not allow visibility of distinct
1505 * system_timestamp/tsc_timestamp values simultaneously: use a master
1506 * copy of host monotonic time values. Update that master copy
1507 * in lockstep.
1509 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1513 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1515 #ifdef CONFIG_X86_64
1516 struct kvm_arch *ka = &kvm->arch;
1517 int vclock_mode;
1518 bool host_tsc_clocksource, vcpus_matched;
1520 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1521 atomic_read(&kvm->online_vcpus));
1524 * If the host uses TSC clock, then passthrough TSC as stable
1525 * to the guest.
1527 host_tsc_clocksource = kvm_get_time_and_clockread(
1528 &ka->master_kernel_ns,
1529 &ka->master_cycle_now);
1531 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1532 && !backwards_tsc_observed;
1534 if (ka->use_master_clock)
1535 atomic_set(&kvm_guest_has_master_clock, 1);
1537 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1538 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1539 vcpus_matched);
1540 #endif
1543 static void kvm_gen_update_masterclock(struct kvm *kvm)
1545 #ifdef CONFIG_X86_64
1546 int i;
1547 struct kvm_vcpu *vcpu;
1548 struct kvm_arch *ka = &kvm->arch;
1550 spin_lock(&ka->pvclock_gtod_sync_lock);
1551 kvm_make_mclock_inprogress_request(kvm);
1552 /* no guest entries from this point */
1553 pvclock_update_vm_gtod_copy(kvm);
1555 kvm_for_each_vcpu(i, vcpu, kvm)
1556 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1558 /* guest entries allowed */
1559 kvm_for_each_vcpu(i, vcpu, kvm)
1560 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1562 spin_unlock(&ka->pvclock_gtod_sync_lock);
1563 #endif
1566 static int kvm_guest_time_update(struct kvm_vcpu *v)
1568 unsigned long flags, this_tsc_khz;
1569 struct kvm_vcpu_arch *vcpu = &v->arch;
1570 struct kvm_arch *ka = &v->kvm->arch;
1571 s64 kernel_ns;
1572 u64 tsc_timestamp, host_tsc;
1573 struct pvclock_vcpu_time_info guest_hv_clock;
1574 u8 pvclock_flags;
1575 bool use_master_clock;
1577 kernel_ns = 0;
1578 host_tsc = 0;
1581 * If the host uses TSC clock, then passthrough TSC as stable
1582 * to the guest.
1584 spin_lock(&ka->pvclock_gtod_sync_lock);
1585 use_master_clock = ka->use_master_clock;
1586 if (use_master_clock) {
1587 host_tsc = ka->master_cycle_now;
1588 kernel_ns = ka->master_kernel_ns;
1590 spin_unlock(&ka->pvclock_gtod_sync_lock);
1592 /* Keep irq disabled to prevent changes to the clock */
1593 local_irq_save(flags);
1594 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1595 if (unlikely(this_tsc_khz == 0)) {
1596 local_irq_restore(flags);
1597 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1598 return 1;
1600 if (!use_master_clock) {
1601 host_tsc = native_read_tsc();
1602 kernel_ns = get_kernel_ns();
1605 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1608 * We may have to catch up the TSC to match elapsed wall clock
1609 * time for two reasons, even if kvmclock is used.
1610 * 1) CPU could have been running below the maximum TSC rate
1611 * 2) Broken TSC compensation resets the base at each VCPU
1612 * entry to avoid unknown leaps of TSC even when running
1613 * again on the same CPU. This may cause apparent elapsed
1614 * time to disappear, and the guest to stand still or run
1615 * very slowly.
1617 if (vcpu->tsc_catchup) {
1618 u64 tsc = compute_guest_tsc(v, kernel_ns);
1619 if (tsc > tsc_timestamp) {
1620 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1621 tsc_timestamp = tsc;
1625 local_irq_restore(flags);
1627 if (!vcpu->pv_time_enabled)
1628 return 0;
1630 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1631 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1632 &vcpu->hv_clock.tsc_shift,
1633 &vcpu->hv_clock.tsc_to_system_mul);
1634 vcpu->hw_tsc_khz = this_tsc_khz;
1637 /* With all the info we got, fill in the values */
1638 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1639 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1640 vcpu->last_guest_tsc = tsc_timestamp;
1642 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1643 &guest_hv_clock, sizeof(guest_hv_clock))))
1644 return 0;
1647 * The interface expects us to write an even number signaling that the
1648 * update is finished. Since the guest won't see the intermediate
1649 * state, we just increase by 2 at the end.
1651 vcpu->hv_clock.version = guest_hv_clock.version + 2;
1653 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1654 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1656 if (vcpu->pvclock_set_guest_stopped_request) {
1657 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1658 vcpu->pvclock_set_guest_stopped_request = false;
1661 /* If the host uses TSC clocksource, then it is stable */
1662 if (use_master_clock)
1663 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1665 vcpu->hv_clock.flags = pvclock_flags;
1667 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1669 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1670 &vcpu->hv_clock,
1671 sizeof(vcpu->hv_clock));
1672 return 0;
1676 * kvmclock updates which are isolated to a given vcpu, such as
1677 * vcpu->cpu migration, should not allow system_timestamp from
1678 * the rest of the vcpus to remain static. Otherwise ntp frequency
1679 * correction applies to one vcpu's system_timestamp but not
1680 * the others.
1682 * So in those cases, request a kvmclock update for all vcpus.
1683 * We need to rate-limit these requests though, as they can
1684 * considerably slow guests that have a large number of vcpus.
1685 * The time for a remote vcpu to update its kvmclock is bound
1686 * by the delay we use to rate-limit the updates.
1689 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1691 static void kvmclock_update_fn(struct work_struct *work)
1693 int i;
1694 struct delayed_work *dwork = to_delayed_work(work);
1695 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1696 kvmclock_update_work);
1697 struct kvm *kvm = container_of(ka, struct kvm, arch);
1698 struct kvm_vcpu *vcpu;
1700 kvm_for_each_vcpu(i, vcpu, kvm) {
1701 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1702 kvm_vcpu_kick(vcpu);
1706 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1708 struct kvm *kvm = v->kvm;
1710 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1711 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1712 KVMCLOCK_UPDATE_DELAY);
1715 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1717 static void kvmclock_sync_fn(struct work_struct *work)
1719 struct delayed_work *dwork = to_delayed_work(work);
1720 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1721 kvmclock_sync_work);
1722 struct kvm *kvm = container_of(ka, struct kvm, arch);
1724 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1725 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1726 KVMCLOCK_SYNC_PERIOD);
1729 static bool msr_mtrr_valid(unsigned msr)
1731 switch (msr) {
1732 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1733 case MSR_MTRRfix64K_00000:
1734 case MSR_MTRRfix16K_80000:
1735 case MSR_MTRRfix16K_A0000:
1736 case MSR_MTRRfix4K_C0000:
1737 case MSR_MTRRfix4K_C8000:
1738 case MSR_MTRRfix4K_D0000:
1739 case MSR_MTRRfix4K_D8000:
1740 case MSR_MTRRfix4K_E0000:
1741 case MSR_MTRRfix4K_E8000:
1742 case MSR_MTRRfix4K_F0000:
1743 case MSR_MTRRfix4K_F8000:
1744 case MSR_MTRRdefType:
1745 case MSR_IA32_CR_PAT:
1746 return true;
1747 case 0x2f8:
1748 return true;
1750 return false;
1753 static bool valid_pat_type(unsigned t)
1755 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1758 static bool valid_mtrr_type(unsigned t)
1760 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1763 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1765 int i;
1766 u64 mask;
1768 if (!msr_mtrr_valid(msr))
1769 return false;
1771 if (msr == MSR_IA32_CR_PAT) {
1772 for (i = 0; i < 8; i++)
1773 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1774 return false;
1775 return true;
1776 } else if (msr == MSR_MTRRdefType) {
1777 if (data & ~0xcff)
1778 return false;
1779 return valid_mtrr_type(data & 0xff);
1780 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1781 for (i = 0; i < 8 ; i++)
1782 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1783 return false;
1784 return true;
1787 /* variable MTRRs */
1788 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1790 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1791 if ((msr & 1) == 0) {
1792 /* MTRR base */
1793 if (!valid_mtrr_type(data & 0xff))
1794 return false;
1795 mask |= 0xf00;
1796 } else
1797 /* MTRR mask */
1798 mask |= 0x7ff;
1799 if (data & mask) {
1800 kvm_inject_gp(vcpu, 0);
1801 return false;
1804 return true;
1806 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1808 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1810 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1812 if (!kvm_mtrr_valid(vcpu, msr, data))
1813 return 1;
1815 if (msr == MSR_MTRRdefType) {
1816 vcpu->arch.mtrr_state.def_type = data;
1817 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1818 } else if (msr == MSR_MTRRfix64K_00000)
1819 p[0] = data;
1820 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1821 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1822 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1823 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1824 else if (msr == MSR_IA32_CR_PAT)
1825 vcpu->arch.pat = data;
1826 else { /* Variable MTRRs */
1827 int idx, is_mtrr_mask;
1828 u64 *pt;
1830 idx = (msr - 0x200) / 2;
1831 is_mtrr_mask = msr - 0x200 - 2 * idx;
1832 if (!is_mtrr_mask)
1833 pt =
1834 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1835 else
1836 pt =
1837 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1838 *pt = data;
1841 kvm_mmu_reset_context(vcpu);
1842 return 0;
1845 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1847 u64 mcg_cap = vcpu->arch.mcg_cap;
1848 unsigned bank_num = mcg_cap & 0xff;
1850 switch (msr) {
1851 case MSR_IA32_MCG_STATUS:
1852 vcpu->arch.mcg_status = data;
1853 break;
1854 case MSR_IA32_MCG_CTL:
1855 if (!(mcg_cap & MCG_CTL_P))
1856 return 1;
1857 if (data != 0 && data != ~(u64)0)
1858 return -1;
1859 vcpu->arch.mcg_ctl = data;
1860 break;
1861 default:
1862 if (msr >= MSR_IA32_MC0_CTL &&
1863 msr < MSR_IA32_MCx_CTL(bank_num)) {
1864 u32 offset = msr - MSR_IA32_MC0_CTL;
1865 /* only 0 or all 1s can be written to IA32_MCi_CTL
1866 * some Linux kernels though clear bit 10 in bank 4 to
1867 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1868 * this to avoid an uncatched #GP in the guest
1870 if ((offset & 0x3) == 0 &&
1871 data != 0 && (data | (1 << 10)) != ~(u64)0)
1872 return -1;
1873 vcpu->arch.mce_banks[offset] = data;
1874 break;
1876 return 1;
1878 return 0;
1881 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1883 struct kvm *kvm = vcpu->kvm;
1884 int lm = is_long_mode(vcpu);
1885 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1886 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1887 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1888 : kvm->arch.xen_hvm_config.blob_size_32;
1889 u32 page_num = data & ~PAGE_MASK;
1890 u64 page_addr = data & PAGE_MASK;
1891 u8 *page;
1892 int r;
1894 r = -E2BIG;
1895 if (page_num >= blob_size)
1896 goto out;
1897 r = -ENOMEM;
1898 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1899 if (IS_ERR(page)) {
1900 r = PTR_ERR(page);
1901 goto out;
1903 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1904 goto out_free;
1905 r = 0;
1906 out_free:
1907 kfree(page);
1908 out:
1909 return r;
1912 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1914 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1917 static bool kvm_hv_msr_partition_wide(u32 msr)
1919 bool r = false;
1920 switch (msr) {
1921 case HV_X64_MSR_GUEST_OS_ID:
1922 case HV_X64_MSR_HYPERCALL:
1923 case HV_X64_MSR_REFERENCE_TSC:
1924 case HV_X64_MSR_TIME_REF_COUNT:
1925 r = true;
1926 break;
1929 return r;
1932 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1934 struct kvm *kvm = vcpu->kvm;
1936 switch (msr) {
1937 case HV_X64_MSR_GUEST_OS_ID:
1938 kvm->arch.hv_guest_os_id = data;
1939 /* setting guest os id to zero disables hypercall page */
1940 if (!kvm->arch.hv_guest_os_id)
1941 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1942 break;
1943 case HV_X64_MSR_HYPERCALL: {
1944 u64 gfn;
1945 unsigned long addr;
1946 u8 instructions[4];
1948 /* if guest os id is not set hypercall should remain disabled */
1949 if (!kvm->arch.hv_guest_os_id)
1950 break;
1951 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1952 kvm->arch.hv_hypercall = data;
1953 break;
1955 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1956 addr = gfn_to_hva(kvm, gfn);
1957 if (kvm_is_error_hva(addr))
1958 return 1;
1959 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1960 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1961 if (__copy_to_user((void __user *)addr, instructions, 4))
1962 return 1;
1963 kvm->arch.hv_hypercall = data;
1964 mark_page_dirty(kvm, gfn);
1965 break;
1967 case HV_X64_MSR_REFERENCE_TSC: {
1968 u64 gfn;
1969 HV_REFERENCE_TSC_PAGE tsc_ref;
1970 memset(&tsc_ref, 0, sizeof(tsc_ref));
1971 kvm->arch.hv_tsc_page = data;
1972 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1973 break;
1974 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1975 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1976 &tsc_ref, sizeof(tsc_ref)))
1977 return 1;
1978 mark_page_dirty(kvm, gfn);
1979 break;
1981 default:
1982 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1983 "data 0x%llx\n", msr, data);
1984 return 1;
1986 return 0;
1989 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1991 switch (msr) {
1992 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1993 u64 gfn;
1994 unsigned long addr;
1996 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1997 vcpu->arch.hv_vapic = data;
1998 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1999 return 1;
2000 break;
2002 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2003 addr = gfn_to_hva(vcpu->kvm, gfn);
2004 if (kvm_is_error_hva(addr))
2005 return 1;
2006 if (__clear_user((void __user *)addr, PAGE_SIZE))
2007 return 1;
2008 vcpu->arch.hv_vapic = data;
2009 mark_page_dirty(vcpu->kvm, gfn);
2010 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2011 return 1;
2012 break;
2014 case HV_X64_MSR_EOI:
2015 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2016 case HV_X64_MSR_ICR:
2017 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2018 case HV_X64_MSR_TPR:
2019 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2020 default:
2021 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2022 "data 0x%llx\n", msr, data);
2023 return 1;
2026 return 0;
2029 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2031 gpa_t gpa = data & ~0x3f;
2033 /* Bits 2:5 are reserved, Should be zero */
2034 if (data & 0x3c)
2035 return 1;
2037 vcpu->arch.apf.msr_val = data;
2039 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2040 kvm_clear_async_pf_completion_queue(vcpu);
2041 kvm_async_pf_hash_reset(vcpu);
2042 return 0;
2045 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2046 sizeof(u32)))
2047 return 1;
2049 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2050 kvm_async_pf_wakeup_all(vcpu);
2051 return 0;
2054 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2056 vcpu->arch.pv_time_enabled = false;
2059 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2061 u64 delta;
2063 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2064 return;
2066 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2067 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2068 vcpu->arch.st.accum_steal = delta;
2071 static void record_steal_time(struct kvm_vcpu *vcpu)
2073 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2074 return;
2076 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2077 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2078 return;
2080 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2081 vcpu->arch.st.steal.version += 2;
2082 vcpu->arch.st.accum_steal = 0;
2084 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2088 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2090 bool pr = false;
2091 u32 msr = msr_info->index;
2092 u64 data = msr_info->data;
2094 switch (msr) {
2095 case MSR_AMD64_NB_CFG:
2096 case MSR_IA32_UCODE_REV:
2097 case MSR_IA32_UCODE_WRITE:
2098 case MSR_VM_HSAVE_PA:
2099 case MSR_AMD64_PATCH_LOADER:
2100 case MSR_AMD64_BU_CFG2:
2101 break;
2103 case MSR_EFER:
2104 return set_efer(vcpu, data);
2105 case MSR_K7_HWCR:
2106 data &= ~(u64)0x40; /* ignore flush filter disable */
2107 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2108 data &= ~(u64)0x8; /* ignore TLB cache disable */
2109 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2110 if (data != 0) {
2111 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2112 data);
2113 return 1;
2115 break;
2116 case MSR_FAM10H_MMIO_CONF_BASE:
2117 if (data != 0) {
2118 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2119 "0x%llx\n", data);
2120 return 1;
2122 break;
2123 case MSR_IA32_DEBUGCTLMSR:
2124 if (!data) {
2125 /* We support the non-activated case already */
2126 break;
2127 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2128 /* Values other than LBR and BTF are vendor-specific,
2129 thus reserved and should throw a #GP */
2130 return 1;
2132 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2133 __func__, data);
2134 break;
2135 case 0x200 ... 0x2ff:
2136 return set_msr_mtrr(vcpu, msr, data);
2137 case MSR_IA32_APICBASE:
2138 return kvm_set_apic_base(vcpu, msr_info);
2139 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2140 return kvm_x2apic_msr_write(vcpu, msr, data);
2141 case MSR_IA32_TSCDEADLINE:
2142 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2143 break;
2144 case MSR_IA32_TSC_ADJUST:
2145 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2146 if (!msr_info->host_initiated) {
2147 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2148 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2150 vcpu->arch.ia32_tsc_adjust_msr = data;
2152 break;
2153 case MSR_IA32_MISC_ENABLE:
2154 vcpu->arch.ia32_misc_enable_msr = data;
2155 break;
2156 case MSR_KVM_WALL_CLOCK_NEW:
2157 case MSR_KVM_WALL_CLOCK:
2158 vcpu->kvm->arch.wall_clock = data;
2159 kvm_write_wall_clock(vcpu->kvm, data);
2160 break;
2161 case MSR_KVM_SYSTEM_TIME_NEW:
2162 case MSR_KVM_SYSTEM_TIME: {
2163 u64 gpa_offset;
2164 kvmclock_reset(vcpu);
2166 vcpu->arch.time = data;
2167 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2169 /* we verify if the enable bit is set... */
2170 if (!(data & 1))
2171 break;
2173 gpa_offset = data & ~(PAGE_MASK | 1);
2175 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2176 &vcpu->arch.pv_time, data & ~1ULL,
2177 sizeof(struct pvclock_vcpu_time_info)))
2178 vcpu->arch.pv_time_enabled = false;
2179 else
2180 vcpu->arch.pv_time_enabled = true;
2182 break;
2184 case MSR_KVM_ASYNC_PF_EN:
2185 if (kvm_pv_enable_async_pf(vcpu, data))
2186 return 1;
2187 break;
2188 case MSR_KVM_STEAL_TIME:
2190 if (unlikely(!sched_info_on()))
2191 return 1;
2193 if (data & KVM_STEAL_RESERVED_MASK)
2194 return 1;
2196 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2197 data & KVM_STEAL_VALID_BITS,
2198 sizeof(struct kvm_steal_time)))
2199 return 1;
2201 vcpu->arch.st.msr_val = data;
2203 if (!(data & KVM_MSR_ENABLED))
2204 break;
2206 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2208 preempt_disable();
2209 accumulate_steal_time(vcpu);
2210 preempt_enable();
2212 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2214 break;
2215 case MSR_KVM_PV_EOI_EN:
2216 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2217 return 1;
2218 break;
2220 case MSR_IA32_MCG_CTL:
2221 case MSR_IA32_MCG_STATUS:
2222 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2223 return set_msr_mce(vcpu, msr, data);
2225 /* Performance counters are not protected by a CPUID bit,
2226 * so we should check all of them in the generic path for the sake of
2227 * cross vendor migration.
2228 * Writing a zero into the event select MSRs disables them,
2229 * which we perfectly emulate ;-). Any other value should be at least
2230 * reported, some guests depend on them.
2232 case MSR_K7_EVNTSEL0:
2233 case MSR_K7_EVNTSEL1:
2234 case MSR_K7_EVNTSEL2:
2235 case MSR_K7_EVNTSEL3:
2236 if (data != 0)
2237 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2238 "0x%x data 0x%llx\n", msr, data);
2239 break;
2240 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2241 * so we ignore writes to make it happy.
2243 case MSR_K7_PERFCTR0:
2244 case MSR_K7_PERFCTR1:
2245 case MSR_K7_PERFCTR2:
2246 case MSR_K7_PERFCTR3:
2247 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2248 "0x%x data 0x%llx\n", msr, data);
2249 break;
2250 case MSR_P6_PERFCTR0:
2251 case MSR_P6_PERFCTR1:
2252 pr = true;
2253 case MSR_P6_EVNTSEL0:
2254 case MSR_P6_EVNTSEL1:
2255 if (kvm_pmu_msr(vcpu, msr))
2256 return kvm_pmu_set_msr(vcpu, msr_info);
2258 if (pr || data != 0)
2259 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2260 "0x%x data 0x%llx\n", msr, data);
2261 break;
2262 case MSR_K7_CLK_CTL:
2264 * Ignore all writes to this no longer documented MSR.
2265 * Writes are only relevant for old K7 processors,
2266 * all pre-dating SVM, but a recommended workaround from
2267 * AMD for these chips. It is possible to specify the
2268 * affected processor models on the command line, hence
2269 * the need to ignore the workaround.
2271 break;
2272 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2273 if (kvm_hv_msr_partition_wide(msr)) {
2274 int r;
2275 mutex_lock(&vcpu->kvm->lock);
2276 r = set_msr_hyperv_pw(vcpu, msr, data);
2277 mutex_unlock(&vcpu->kvm->lock);
2278 return r;
2279 } else
2280 return set_msr_hyperv(vcpu, msr, data);
2281 break;
2282 case MSR_IA32_BBL_CR_CTL3:
2283 /* Drop writes to this legacy MSR -- see rdmsr
2284 * counterpart for further detail.
2286 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2287 break;
2288 case MSR_AMD64_OSVW_ID_LENGTH:
2289 if (!guest_cpuid_has_osvw(vcpu))
2290 return 1;
2291 vcpu->arch.osvw.length = data;
2292 break;
2293 case MSR_AMD64_OSVW_STATUS:
2294 if (!guest_cpuid_has_osvw(vcpu))
2295 return 1;
2296 vcpu->arch.osvw.status = data;
2297 break;
2298 default:
2299 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2300 return xen_hvm_config(vcpu, data);
2301 if (kvm_pmu_msr(vcpu, msr))
2302 return kvm_pmu_set_msr(vcpu, msr_info);
2303 if (!ignore_msrs) {
2304 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2305 msr, data);
2306 return 1;
2307 } else {
2308 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2309 msr, data);
2310 break;
2313 return 0;
2315 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2319 * Reads an msr value (of 'msr_index') into 'pdata'.
2320 * Returns 0 on success, non-0 otherwise.
2321 * Assumes vcpu_load() was already called.
2323 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2325 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2328 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2330 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2332 if (!msr_mtrr_valid(msr))
2333 return 1;
2335 if (msr == MSR_MTRRdefType)
2336 *pdata = vcpu->arch.mtrr_state.def_type +
2337 (vcpu->arch.mtrr_state.enabled << 10);
2338 else if (msr == MSR_MTRRfix64K_00000)
2339 *pdata = p[0];
2340 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2341 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2342 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2343 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2344 else if (msr == MSR_IA32_CR_PAT)
2345 *pdata = vcpu->arch.pat;
2346 else { /* Variable MTRRs */
2347 int idx, is_mtrr_mask;
2348 u64 *pt;
2350 idx = (msr - 0x200) / 2;
2351 is_mtrr_mask = msr - 0x200 - 2 * idx;
2352 if (!is_mtrr_mask)
2353 pt =
2354 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2355 else
2356 pt =
2357 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2358 *pdata = *pt;
2361 return 0;
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2366 u64 data;
2367 u64 mcg_cap = vcpu->arch.mcg_cap;
2368 unsigned bank_num = mcg_cap & 0xff;
2370 switch (msr) {
2371 case MSR_IA32_P5_MC_ADDR:
2372 case MSR_IA32_P5_MC_TYPE:
2373 data = 0;
2374 break;
2375 case MSR_IA32_MCG_CAP:
2376 data = vcpu->arch.mcg_cap;
2377 break;
2378 case MSR_IA32_MCG_CTL:
2379 if (!(mcg_cap & MCG_CTL_P))
2380 return 1;
2381 data = vcpu->arch.mcg_ctl;
2382 break;
2383 case MSR_IA32_MCG_STATUS:
2384 data = vcpu->arch.mcg_status;
2385 break;
2386 default:
2387 if (msr >= MSR_IA32_MC0_CTL &&
2388 msr < MSR_IA32_MCx_CTL(bank_num)) {
2389 u32 offset = msr - MSR_IA32_MC0_CTL;
2390 data = vcpu->arch.mce_banks[offset];
2391 break;
2393 return 1;
2395 *pdata = data;
2396 return 0;
2399 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2401 u64 data = 0;
2402 struct kvm *kvm = vcpu->kvm;
2404 switch (msr) {
2405 case HV_X64_MSR_GUEST_OS_ID:
2406 data = kvm->arch.hv_guest_os_id;
2407 break;
2408 case HV_X64_MSR_HYPERCALL:
2409 data = kvm->arch.hv_hypercall;
2410 break;
2411 case HV_X64_MSR_TIME_REF_COUNT: {
2412 data =
2413 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2414 break;
2416 case HV_X64_MSR_REFERENCE_TSC:
2417 data = kvm->arch.hv_tsc_page;
2418 break;
2419 default:
2420 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2421 return 1;
2424 *pdata = data;
2425 return 0;
2428 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2430 u64 data = 0;
2432 switch (msr) {
2433 case HV_X64_MSR_VP_INDEX: {
2434 int r;
2435 struct kvm_vcpu *v;
2436 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2437 if (v == vcpu) {
2438 data = r;
2439 break;
2442 break;
2444 case HV_X64_MSR_EOI:
2445 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2446 case HV_X64_MSR_ICR:
2447 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2448 case HV_X64_MSR_TPR:
2449 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2450 case HV_X64_MSR_APIC_ASSIST_PAGE:
2451 data = vcpu->arch.hv_vapic;
2452 break;
2453 default:
2454 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2455 return 1;
2457 *pdata = data;
2458 return 0;
2461 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2463 u64 data;
2465 switch (msr) {
2466 case MSR_IA32_PLATFORM_ID:
2467 case MSR_IA32_EBL_CR_POWERON:
2468 case MSR_IA32_DEBUGCTLMSR:
2469 case MSR_IA32_LASTBRANCHFROMIP:
2470 case MSR_IA32_LASTBRANCHTOIP:
2471 case MSR_IA32_LASTINTFROMIP:
2472 case MSR_IA32_LASTINTTOIP:
2473 case MSR_K8_SYSCFG:
2474 case MSR_K7_HWCR:
2475 case MSR_VM_HSAVE_PA:
2476 case MSR_K7_EVNTSEL0:
2477 case MSR_K7_EVNTSEL1:
2478 case MSR_K7_EVNTSEL2:
2479 case MSR_K7_EVNTSEL3:
2480 case MSR_K7_PERFCTR0:
2481 case MSR_K7_PERFCTR1:
2482 case MSR_K7_PERFCTR2:
2483 case MSR_K7_PERFCTR3:
2484 case MSR_K8_INT_PENDING_MSG:
2485 case MSR_AMD64_NB_CFG:
2486 case MSR_FAM10H_MMIO_CONF_BASE:
2487 case MSR_AMD64_BU_CFG2:
2488 data = 0;
2489 break;
2490 case MSR_P6_PERFCTR0:
2491 case MSR_P6_PERFCTR1:
2492 case MSR_P6_EVNTSEL0:
2493 case MSR_P6_EVNTSEL1:
2494 if (kvm_pmu_msr(vcpu, msr))
2495 return kvm_pmu_get_msr(vcpu, msr, pdata);
2496 data = 0;
2497 break;
2498 case MSR_IA32_UCODE_REV:
2499 data = 0x100000000ULL;
2500 break;
2501 case MSR_MTRRcap:
2502 data = 0x500 | KVM_NR_VAR_MTRR;
2503 break;
2504 case 0x200 ... 0x2ff:
2505 return get_msr_mtrr(vcpu, msr, pdata);
2506 case 0xcd: /* fsb frequency */
2507 data = 3;
2508 break;
2510 * MSR_EBC_FREQUENCY_ID
2511 * Conservative value valid for even the basic CPU models.
2512 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2513 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2514 * and 266MHz for model 3, or 4. Set Core Clock
2515 * Frequency to System Bus Frequency Ratio to 1 (bits
2516 * 31:24) even though these are only valid for CPU
2517 * models > 2, however guests may end up dividing or
2518 * multiplying by zero otherwise.
2520 case MSR_EBC_FREQUENCY_ID:
2521 data = 1 << 24;
2522 break;
2523 case MSR_IA32_APICBASE:
2524 data = kvm_get_apic_base(vcpu);
2525 break;
2526 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2527 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2528 break;
2529 case MSR_IA32_TSCDEADLINE:
2530 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2531 break;
2532 case MSR_IA32_TSC_ADJUST:
2533 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2534 break;
2535 case MSR_IA32_MISC_ENABLE:
2536 data = vcpu->arch.ia32_misc_enable_msr;
2537 break;
2538 case MSR_IA32_PERF_STATUS:
2539 /* TSC increment by tick */
2540 data = 1000ULL;
2541 /* CPU multiplier */
2542 data |= (((uint64_t)4ULL) << 40);
2543 break;
2544 case MSR_EFER:
2545 data = vcpu->arch.efer;
2546 break;
2547 case MSR_KVM_WALL_CLOCK:
2548 case MSR_KVM_WALL_CLOCK_NEW:
2549 data = vcpu->kvm->arch.wall_clock;
2550 break;
2551 case MSR_KVM_SYSTEM_TIME:
2552 case MSR_KVM_SYSTEM_TIME_NEW:
2553 data = vcpu->arch.time;
2554 break;
2555 case MSR_KVM_ASYNC_PF_EN:
2556 data = vcpu->arch.apf.msr_val;
2557 break;
2558 case MSR_KVM_STEAL_TIME:
2559 data = vcpu->arch.st.msr_val;
2560 break;
2561 case MSR_KVM_PV_EOI_EN:
2562 data = vcpu->arch.pv_eoi.msr_val;
2563 break;
2564 case MSR_IA32_P5_MC_ADDR:
2565 case MSR_IA32_P5_MC_TYPE:
2566 case MSR_IA32_MCG_CAP:
2567 case MSR_IA32_MCG_CTL:
2568 case MSR_IA32_MCG_STATUS:
2569 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570 return get_msr_mce(vcpu, msr, pdata);
2571 case MSR_K7_CLK_CTL:
2573 * Provide expected ramp-up count for K7. All other
2574 * are set to zero, indicating minimum divisors for
2575 * every field.
2577 * This prevents guest kernels on AMD host with CPU
2578 * type 6, model 8 and higher from exploding due to
2579 * the rdmsr failing.
2581 data = 0x20000000;
2582 break;
2583 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2584 if (kvm_hv_msr_partition_wide(msr)) {
2585 int r;
2586 mutex_lock(&vcpu->kvm->lock);
2587 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2588 mutex_unlock(&vcpu->kvm->lock);
2589 return r;
2590 } else
2591 return get_msr_hyperv(vcpu, msr, pdata);
2592 break;
2593 case MSR_IA32_BBL_CR_CTL3:
2594 /* This legacy MSR exists but isn't fully documented in current
2595 * silicon. It is however accessed by winxp in very narrow
2596 * scenarios where it sets bit #19, itself documented as
2597 * a "reserved" bit. Best effort attempt to source coherent
2598 * read data here should the balance of the register be
2599 * interpreted by the guest:
2601 * L2 cache control register 3: 64GB range, 256KB size,
2602 * enabled, latency 0x1, configured
2604 data = 0xbe702111;
2605 break;
2606 case MSR_AMD64_OSVW_ID_LENGTH:
2607 if (!guest_cpuid_has_osvw(vcpu))
2608 return 1;
2609 data = vcpu->arch.osvw.length;
2610 break;
2611 case MSR_AMD64_OSVW_STATUS:
2612 if (!guest_cpuid_has_osvw(vcpu))
2613 return 1;
2614 data = vcpu->arch.osvw.status;
2615 break;
2616 default:
2617 if (kvm_pmu_msr(vcpu, msr))
2618 return kvm_pmu_get_msr(vcpu, msr, pdata);
2619 if (!ignore_msrs) {
2620 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2621 return 1;
2622 } else {
2623 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2624 data = 0;
2626 break;
2628 *pdata = data;
2629 return 0;
2631 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2634 * Read or write a bunch of msrs. All parameters are kernel addresses.
2636 * @return number of msrs set successfully.
2638 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2639 struct kvm_msr_entry *entries,
2640 int (*do_msr)(struct kvm_vcpu *vcpu,
2641 unsigned index, u64 *data))
2643 int i, idx;
2645 idx = srcu_read_lock(&vcpu->kvm->srcu);
2646 for (i = 0; i < msrs->nmsrs; ++i)
2647 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2648 break;
2649 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2651 return i;
2655 * Read or write a bunch of msrs. Parameters are user addresses.
2657 * @return number of msrs set successfully.
2659 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2660 int (*do_msr)(struct kvm_vcpu *vcpu,
2661 unsigned index, u64 *data),
2662 int writeback)
2664 struct kvm_msrs msrs;
2665 struct kvm_msr_entry *entries;
2666 int r, n;
2667 unsigned size;
2669 r = -EFAULT;
2670 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2671 goto out;
2673 r = -E2BIG;
2674 if (msrs.nmsrs >= MAX_IO_MSRS)
2675 goto out;
2677 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2678 entries = memdup_user(user_msrs->entries, size);
2679 if (IS_ERR(entries)) {
2680 r = PTR_ERR(entries);
2681 goto out;
2684 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2685 if (r < 0)
2686 goto out_free;
2688 r = -EFAULT;
2689 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2690 goto out_free;
2692 r = n;
2694 out_free:
2695 kfree(entries);
2696 out:
2697 return r;
2700 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2702 int r;
2704 switch (ext) {
2705 case KVM_CAP_IRQCHIP:
2706 case KVM_CAP_HLT:
2707 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2708 case KVM_CAP_SET_TSS_ADDR:
2709 case KVM_CAP_EXT_CPUID:
2710 case KVM_CAP_EXT_EMUL_CPUID:
2711 case KVM_CAP_CLOCKSOURCE:
2712 case KVM_CAP_PIT:
2713 case KVM_CAP_NOP_IO_DELAY:
2714 case KVM_CAP_MP_STATE:
2715 case KVM_CAP_SYNC_MMU:
2716 case KVM_CAP_USER_NMI:
2717 case KVM_CAP_REINJECT_CONTROL:
2718 case KVM_CAP_IRQ_INJECT_STATUS:
2719 case KVM_CAP_IRQFD:
2720 case KVM_CAP_IOEVENTFD:
2721 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2722 case KVM_CAP_PIT2:
2723 case KVM_CAP_PIT_STATE2:
2724 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2725 case KVM_CAP_XEN_HVM:
2726 case KVM_CAP_ADJUST_CLOCK:
2727 case KVM_CAP_VCPU_EVENTS:
2728 case KVM_CAP_HYPERV:
2729 case KVM_CAP_HYPERV_VAPIC:
2730 case KVM_CAP_HYPERV_SPIN:
2731 case KVM_CAP_PCI_SEGMENT:
2732 case KVM_CAP_DEBUGREGS:
2733 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2734 case KVM_CAP_XSAVE:
2735 case KVM_CAP_ASYNC_PF:
2736 case KVM_CAP_GET_TSC_KHZ:
2737 case KVM_CAP_KVMCLOCK_CTRL:
2738 case KVM_CAP_READONLY_MEM:
2739 case KVM_CAP_HYPERV_TIME:
2740 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2741 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2742 case KVM_CAP_ASSIGN_DEV_IRQ:
2743 case KVM_CAP_PCI_2_3:
2744 #endif
2745 r = 1;
2746 break;
2747 case KVM_CAP_COALESCED_MMIO:
2748 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2749 break;
2750 case KVM_CAP_VAPIC:
2751 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2752 break;
2753 case KVM_CAP_NR_VCPUS:
2754 r = KVM_SOFT_MAX_VCPUS;
2755 break;
2756 case KVM_CAP_MAX_VCPUS:
2757 r = KVM_MAX_VCPUS;
2758 break;
2759 case KVM_CAP_NR_MEMSLOTS:
2760 r = KVM_USER_MEM_SLOTS;
2761 break;
2762 case KVM_CAP_PV_MMU: /* obsolete */
2763 r = 0;
2764 break;
2765 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2766 case KVM_CAP_IOMMU:
2767 r = iommu_present(&pci_bus_type);
2768 break;
2769 #endif
2770 case KVM_CAP_MCE:
2771 r = KVM_MAX_MCE_BANKS;
2772 break;
2773 case KVM_CAP_XCRS:
2774 r = cpu_has_xsave;
2775 break;
2776 case KVM_CAP_TSC_CONTROL:
2777 r = kvm_has_tsc_control;
2778 break;
2779 case KVM_CAP_TSC_DEADLINE_TIMER:
2780 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2781 break;
2782 default:
2783 r = 0;
2784 break;
2786 return r;
2790 long kvm_arch_dev_ioctl(struct file *filp,
2791 unsigned int ioctl, unsigned long arg)
2793 void __user *argp = (void __user *)arg;
2794 long r;
2796 switch (ioctl) {
2797 case KVM_GET_MSR_INDEX_LIST: {
2798 struct kvm_msr_list __user *user_msr_list = argp;
2799 struct kvm_msr_list msr_list;
2800 unsigned n;
2802 r = -EFAULT;
2803 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2804 goto out;
2805 n = msr_list.nmsrs;
2806 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2807 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2808 goto out;
2809 r = -E2BIG;
2810 if (n < msr_list.nmsrs)
2811 goto out;
2812 r = -EFAULT;
2813 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2814 num_msrs_to_save * sizeof(u32)))
2815 goto out;
2816 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2817 &emulated_msrs,
2818 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2819 goto out;
2820 r = 0;
2821 break;
2823 case KVM_GET_SUPPORTED_CPUID:
2824 case KVM_GET_EMULATED_CPUID: {
2825 struct kvm_cpuid2 __user *cpuid_arg = argp;
2826 struct kvm_cpuid2 cpuid;
2828 r = -EFAULT;
2829 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2830 goto out;
2832 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2833 ioctl);
2834 if (r)
2835 goto out;
2837 r = -EFAULT;
2838 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2839 goto out;
2840 r = 0;
2841 break;
2843 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2844 u64 mce_cap;
2846 mce_cap = KVM_MCE_CAP_SUPPORTED;
2847 r = -EFAULT;
2848 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2849 goto out;
2850 r = 0;
2851 break;
2853 default:
2854 r = -EINVAL;
2856 out:
2857 return r;
2860 static void wbinvd_ipi(void *garbage)
2862 wbinvd();
2865 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2867 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2870 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2872 /* Address WBINVD may be executed by guest */
2873 if (need_emulate_wbinvd(vcpu)) {
2874 if (kvm_x86_ops->has_wbinvd_exit())
2875 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2876 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2877 smp_call_function_single(vcpu->cpu,
2878 wbinvd_ipi, NULL, 1);
2881 kvm_x86_ops->vcpu_load(vcpu, cpu);
2883 /* Apply any externally detected TSC adjustments (due to suspend) */
2884 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2885 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2886 vcpu->arch.tsc_offset_adjustment = 0;
2887 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2890 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2891 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2892 native_read_tsc() - vcpu->arch.last_host_tsc;
2893 if (tsc_delta < 0)
2894 mark_tsc_unstable("KVM discovered backwards TSC");
2895 if (check_tsc_unstable()) {
2896 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2897 vcpu->arch.last_guest_tsc);
2898 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2899 vcpu->arch.tsc_catchup = 1;
2902 * On a host with synchronized TSC, there is no need to update
2903 * kvmclock on vcpu->cpu migration
2905 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2906 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2907 if (vcpu->cpu != cpu)
2908 kvm_migrate_timers(vcpu);
2909 vcpu->cpu = cpu;
2912 accumulate_steal_time(vcpu);
2913 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2916 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2918 kvm_x86_ops->vcpu_put(vcpu);
2919 kvm_put_guest_fpu(vcpu);
2920 vcpu->arch.last_host_tsc = native_read_tsc();
2923 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2924 struct kvm_lapic_state *s)
2926 kvm_x86_ops->sync_pir_to_irr(vcpu);
2927 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2929 return 0;
2932 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2933 struct kvm_lapic_state *s)
2935 kvm_apic_post_state_restore(vcpu, s);
2936 update_cr8_intercept(vcpu);
2938 return 0;
2941 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2942 struct kvm_interrupt *irq)
2944 if (irq->irq >= KVM_NR_INTERRUPTS)
2945 return -EINVAL;
2946 if (irqchip_in_kernel(vcpu->kvm))
2947 return -ENXIO;
2949 kvm_queue_interrupt(vcpu, irq->irq, false);
2950 kvm_make_request(KVM_REQ_EVENT, vcpu);
2952 return 0;
2955 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2957 kvm_inject_nmi(vcpu);
2959 return 0;
2962 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2963 struct kvm_tpr_access_ctl *tac)
2965 if (tac->flags)
2966 return -EINVAL;
2967 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2968 return 0;
2971 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2972 u64 mcg_cap)
2974 int r;
2975 unsigned bank_num = mcg_cap & 0xff, bank;
2977 r = -EINVAL;
2978 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2979 goto out;
2980 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2981 goto out;
2982 r = 0;
2983 vcpu->arch.mcg_cap = mcg_cap;
2984 /* Init IA32_MCG_CTL to all 1s */
2985 if (mcg_cap & MCG_CTL_P)
2986 vcpu->arch.mcg_ctl = ~(u64)0;
2987 /* Init IA32_MCi_CTL to all 1s */
2988 for (bank = 0; bank < bank_num; bank++)
2989 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2990 out:
2991 return r;
2994 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2995 struct kvm_x86_mce *mce)
2997 u64 mcg_cap = vcpu->arch.mcg_cap;
2998 unsigned bank_num = mcg_cap & 0xff;
2999 u64 *banks = vcpu->arch.mce_banks;
3001 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3002 return -EINVAL;
3004 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3005 * reporting is disabled
3007 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3008 vcpu->arch.mcg_ctl != ~(u64)0)
3009 return 0;
3010 banks += 4 * mce->bank;
3012 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3013 * reporting is disabled for the bank
3015 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3016 return 0;
3017 if (mce->status & MCI_STATUS_UC) {
3018 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3019 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3020 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021 return 0;
3023 if (banks[1] & MCI_STATUS_VAL)
3024 mce->status |= MCI_STATUS_OVER;
3025 banks[2] = mce->addr;
3026 banks[3] = mce->misc;
3027 vcpu->arch.mcg_status = mce->mcg_status;
3028 banks[1] = mce->status;
3029 kvm_queue_exception(vcpu, MC_VECTOR);
3030 } else if (!(banks[1] & MCI_STATUS_VAL)
3031 || !(banks[1] & MCI_STATUS_UC)) {
3032 if (banks[1] & MCI_STATUS_VAL)
3033 mce->status |= MCI_STATUS_OVER;
3034 banks[2] = mce->addr;
3035 banks[3] = mce->misc;
3036 banks[1] = mce->status;
3037 } else
3038 banks[1] |= MCI_STATUS_OVER;
3039 return 0;
3042 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3043 struct kvm_vcpu_events *events)
3045 process_nmi(vcpu);
3046 events->exception.injected =
3047 vcpu->arch.exception.pending &&
3048 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3049 events->exception.nr = vcpu->arch.exception.nr;
3050 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3051 events->exception.pad = 0;
3052 events->exception.error_code = vcpu->arch.exception.error_code;
3054 events->interrupt.injected =
3055 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3056 events->interrupt.nr = vcpu->arch.interrupt.nr;
3057 events->interrupt.soft = 0;
3058 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3060 events->nmi.injected = vcpu->arch.nmi_injected;
3061 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3062 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3063 events->nmi.pad = 0;
3065 events->sipi_vector = 0; /* never valid when reporting to user space */
3067 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068 | KVM_VCPUEVENT_VALID_SHADOW);
3069 memset(&events->reserved, 0, sizeof(events->reserved));
3072 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3073 struct kvm_vcpu_events *events)
3075 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3076 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3077 | KVM_VCPUEVENT_VALID_SHADOW))
3078 return -EINVAL;
3080 process_nmi(vcpu);
3081 vcpu->arch.exception.pending = events->exception.injected;
3082 vcpu->arch.exception.nr = events->exception.nr;
3083 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3084 vcpu->arch.exception.error_code = events->exception.error_code;
3086 vcpu->arch.interrupt.pending = events->interrupt.injected;
3087 vcpu->arch.interrupt.nr = events->interrupt.nr;
3088 vcpu->arch.interrupt.soft = events->interrupt.soft;
3089 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3090 kvm_x86_ops->set_interrupt_shadow(vcpu,
3091 events->interrupt.shadow);
3093 vcpu->arch.nmi_injected = events->nmi.injected;
3094 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3095 vcpu->arch.nmi_pending = events->nmi.pending;
3096 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3098 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3099 kvm_vcpu_has_lapic(vcpu))
3100 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3102 kvm_make_request(KVM_REQ_EVENT, vcpu);
3104 return 0;
3107 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3108 struct kvm_debugregs *dbgregs)
3110 unsigned long val;
3112 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3113 kvm_get_dr(vcpu, 6, &val);
3114 dbgregs->dr6 = val;
3115 dbgregs->dr7 = vcpu->arch.dr7;
3116 dbgregs->flags = 0;
3117 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3120 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3121 struct kvm_debugregs *dbgregs)
3123 if (dbgregs->flags)
3124 return -EINVAL;
3126 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3127 vcpu->arch.dr6 = dbgregs->dr6;
3128 kvm_update_dr6(vcpu);
3129 vcpu->arch.dr7 = dbgregs->dr7;
3130 kvm_update_dr7(vcpu);
3132 return 0;
3135 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3137 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3139 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3140 u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3141 u64 valid;
3144 * Copy legacy XSAVE area, to avoid complications with CPUID
3145 * leaves 0 and 1 in the loop below.
3147 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3149 /* Set XSTATE_BV */
3150 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3153 * Copy each region from the possibly compacted offset to the
3154 * non-compacted offset.
3156 valid = xstate_bv & ~XSTATE_FPSSE;
3157 while (valid) {
3158 u64 feature = valid & -valid;
3159 int index = fls64(feature) - 1;
3160 void *src = get_xsave_addr(xsave, feature);
3162 if (src) {
3163 u32 size, offset, ecx, edx;
3164 cpuid_count(XSTATE_CPUID, index,
3165 &size, &offset, &ecx, &edx);
3166 memcpy(dest + offset, src, size);
3169 valid -= feature;
3173 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3175 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3176 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3177 u64 valid;
3180 * Copy legacy XSAVE area, to avoid complications with CPUID
3181 * leaves 0 and 1 in the loop below.
3183 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3185 /* Set XSTATE_BV and possibly XCOMP_BV. */
3186 xsave->xsave_hdr.xstate_bv = xstate_bv;
3187 if (cpu_has_xsaves)
3188 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3191 * Copy each region from the non-compacted offset to the
3192 * possibly compacted offset.
3194 valid = xstate_bv & ~XSTATE_FPSSE;
3195 while (valid) {
3196 u64 feature = valid & -valid;
3197 int index = fls64(feature) - 1;
3198 void *dest = get_xsave_addr(xsave, feature);
3200 if (dest) {
3201 u32 size, offset, ecx, edx;
3202 cpuid_count(XSTATE_CPUID, index,
3203 &size, &offset, &ecx, &edx);
3204 memcpy(dest, src + offset, size);
3205 } else
3206 WARN_ON_ONCE(1);
3208 valid -= feature;
3212 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3213 struct kvm_xsave *guest_xsave)
3215 if (cpu_has_xsave) {
3216 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3217 fill_xsave((u8 *) guest_xsave->region, vcpu);
3218 } else {
3219 memcpy(guest_xsave->region,
3220 &vcpu->arch.guest_fpu.state->fxsave,
3221 sizeof(struct i387_fxsave_struct));
3222 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3223 XSTATE_FPSSE;
3227 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3228 struct kvm_xsave *guest_xsave)
3230 u64 xstate_bv =
3231 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3233 if (cpu_has_xsave) {
3235 * Here we allow setting states that are not present in
3236 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3237 * with old userspace.
3239 if (xstate_bv & ~kvm_supported_xcr0())
3240 return -EINVAL;
3241 load_xsave(vcpu, (u8 *)guest_xsave->region);
3242 } else {
3243 if (xstate_bv & ~XSTATE_FPSSE)
3244 return -EINVAL;
3245 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3246 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3248 return 0;
3251 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3252 struct kvm_xcrs *guest_xcrs)
3254 if (!cpu_has_xsave) {
3255 guest_xcrs->nr_xcrs = 0;
3256 return;
3259 guest_xcrs->nr_xcrs = 1;
3260 guest_xcrs->flags = 0;
3261 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3262 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3265 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3266 struct kvm_xcrs *guest_xcrs)
3268 int i, r = 0;
3270 if (!cpu_has_xsave)
3271 return -EINVAL;
3273 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3274 return -EINVAL;
3276 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3277 /* Only support XCR0 currently */
3278 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3279 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3280 guest_xcrs->xcrs[i].value);
3281 break;
3283 if (r)
3284 r = -EINVAL;
3285 return r;
3289 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3290 * stopped by the hypervisor. This function will be called from the host only.
3291 * EINVAL is returned when the host attempts to set the flag for a guest that
3292 * does not support pv clocks.
3294 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3296 if (!vcpu->arch.pv_time_enabled)
3297 return -EINVAL;
3298 vcpu->arch.pvclock_set_guest_stopped_request = true;
3299 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3300 return 0;
3303 long kvm_arch_vcpu_ioctl(struct file *filp,
3304 unsigned int ioctl, unsigned long arg)
3306 struct kvm_vcpu *vcpu = filp->private_data;
3307 void __user *argp = (void __user *)arg;
3308 int r;
3309 union {
3310 struct kvm_lapic_state *lapic;
3311 struct kvm_xsave *xsave;
3312 struct kvm_xcrs *xcrs;
3313 void *buffer;
3314 } u;
3316 u.buffer = NULL;
3317 switch (ioctl) {
3318 case KVM_GET_LAPIC: {
3319 r = -EINVAL;
3320 if (!vcpu->arch.apic)
3321 goto out;
3322 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3324 r = -ENOMEM;
3325 if (!u.lapic)
3326 goto out;
3327 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3328 if (r)
3329 goto out;
3330 r = -EFAULT;
3331 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3332 goto out;
3333 r = 0;
3334 break;
3336 case KVM_SET_LAPIC: {
3337 r = -EINVAL;
3338 if (!vcpu->arch.apic)
3339 goto out;
3340 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3341 if (IS_ERR(u.lapic))
3342 return PTR_ERR(u.lapic);
3344 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3345 break;
3347 case KVM_INTERRUPT: {
3348 struct kvm_interrupt irq;
3350 r = -EFAULT;
3351 if (copy_from_user(&irq, argp, sizeof irq))
3352 goto out;
3353 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3354 break;
3356 case KVM_NMI: {
3357 r = kvm_vcpu_ioctl_nmi(vcpu);
3358 break;
3360 case KVM_SET_CPUID: {
3361 struct kvm_cpuid __user *cpuid_arg = argp;
3362 struct kvm_cpuid cpuid;
3364 r = -EFAULT;
3365 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3366 goto out;
3367 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3368 break;
3370 case KVM_SET_CPUID2: {
3371 struct kvm_cpuid2 __user *cpuid_arg = argp;
3372 struct kvm_cpuid2 cpuid;
3374 r = -EFAULT;
3375 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3376 goto out;
3377 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3378 cpuid_arg->entries);
3379 break;
3381 case KVM_GET_CPUID2: {
3382 struct kvm_cpuid2 __user *cpuid_arg = argp;
3383 struct kvm_cpuid2 cpuid;
3385 r = -EFAULT;
3386 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3387 goto out;
3388 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3389 cpuid_arg->entries);
3390 if (r)
3391 goto out;
3392 r = -EFAULT;
3393 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3394 goto out;
3395 r = 0;
3396 break;
3398 case KVM_GET_MSRS:
3399 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3400 break;
3401 case KVM_SET_MSRS:
3402 r = msr_io(vcpu, argp, do_set_msr, 0);
3403 break;
3404 case KVM_TPR_ACCESS_REPORTING: {
3405 struct kvm_tpr_access_ctl tac;
3407 r = -EFAULT;
3408 if (copy_from_user(&tac, argp, sizeof tac))
3409 goto out;
3410 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3411 if (r)
3412 goto out;
3413 r = -EFAULT;
3414 if (copy_to_user(argp, &tac, sizeof tac))
3415 goto out;
3416 r = 0;
3417 break;
3419 case KVM_SET_VAPIC_ADDR: {
3420 struct kvm_vapic_addr va;
3422 r = -EINVAL;
3423 if (!irqchip_in_kernel(vcpu->kvm))
3424 goto out;
3425 r = -EFAULT;
3426 if (copy_from_user(&va, argp, sizeof va))
3427 goto out;
3428 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3429 break;
3431 case KVM_X86_SETUP_MCE: {
3432 u64 mcg_cap;
3434 r = -EFAULT;
3435 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3436 goto out;
3437 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3438 break;
3440 case KVM_X86_SET_MCE: {
3441 struct kvm_x86_mce mce;
3443 r = -EFAULT;
3444 if (copy_from_user(&mce, argp, sizeof mce))
3445 goto out;
3446 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3447 break;
3449 case KVM_GET_VCPU_EVENTS: {
3450 struct kvm_vcpu_events events;
3452 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3454 r = -EFAULT;
3455 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3456 break;
3457 r = 0;
3458 break;
3460 case KVM_SET_VCPU_EVENTS: {
3461 struct kvm_vcpu_events events;
3463 r = -EFAULT;
3464 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3465 break;
3467 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3468 break;
3470 case KVM_GET_DEBUGREGS: {
3471 struct kvm_debugregs dbgregs;
3473 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3475 r = -EFAULT;
3476 if (copy_to_user(argp, &dbgregs,
3477 sizeof(struct kvm_debugregs)))
3478 break;
3479 r = 0;
3480 break;
3482 case KVM_SET_DEBUGREGS: {
3483 struct kvm_debugregs dbgregs;
3485 r = -EFAULT;
3486 if (copy_from_user(&dbgregs, argp,
3487 sizeof(struct kvm_debugregs)))
3488 break;
3490 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3491 break;
3493 case KVM_GET_XSAVE: {
3494 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3495 r = -ENOMEM;
3496 if (!u.xsave)
3497 break;
3499 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3501 r = -EFAULT;
3502 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3503 break;
3504 r = 0;
3505 break;
3507 case KVM_SET_XSAVE: {
3508 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3509 if (IS_ERR(u.xsave))
3510 return PTR_ERR(u.xsave);
3512 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3513 break;
3515 case KVM_GET_XCRS: {
3516 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3517 r = -ENOMEM;
3518 if (!u.xcrs)
3519 break;
3521 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3523 r = -EFAULT;
3524 if (copy_to_user(argp, u.xcrs,
3525 sizeof(struct kvm_xcrs)))
3526 break;
3527 r = 0;
3528 break;
3530 case KVM_SET_XCRS: {
3531 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3532 if (IS_ERR(u.xcrs))
3533 return PTR_ERR(u.xcrs);
3535 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3536 break;
3538 case KVM_SET_TSC_KHZ: {
3539 u32 user_tsc_khz;
3541 r = -EINVAL;
3542 user_tsc_khz = (u32)arg;
3544 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3545 goto out;
3547 if (user_tsc_khz == 0)
3548 user_tsc_khz = tsc_khz;
3550 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3552 r = 0;
3553 goto out;
3555 case KVM_GET_TSC_KHZ: {
3556 r = vcpu->arch.virtual_tsc_khz;
3557 goto out;
3559 case KVM_KVMCLOCK_CTRL: {
3560 r = kvm_set_guest_paused(vcpu);
3561 goto out;
3563 default:
3564 r = -EINVAL;
3566 out:
3567 kfree(u.buffer);
3568 return r;
3571 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3573 return VM_FAULT_SIGBUS;
3576 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3578 int ret;
3580 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3581 return -EINVAL;
3582 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3583 return ret;
3586 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3587 u64 ident_addr)
3589 kvm->arch.ept_identity_map_addr = ident_addr;
3590 return 0;
3593 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3594 u32 kvm_nr_mmu_pages)
3596 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3597 return -EINVAL;
3599 mutex_lock(&kvm->slots_lock);
3601 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3602 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3604 mutex_unlock(&kvm->slots_lock);
3605 return 0;
3608 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3610 return kvm->arch.n_max_mmu_pages;
3613 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3615 int r;
3617 r = 0;
3618 switch (chip->chip_id) {
3619 case KVM_IRQCHIP_PIC_MASTER:
3620 memcpy(&chip->chip.pic,
3621 &pic_irqchip(kvm)->pics[0],
3622 sizeof(struct kvm_pic_state));
3623 break;
3624 case KVM_IRQCHIP_PIC_SLAVE:
3625 memcpy(&chip->chip.pic,
3626 &pic_irqchip(kvm)->pics[1],
3627 sizeof(struct kvm_pic_state));
3628 break;
3629 case KVM_IRQCHIP_IOAPIC:
3630 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3631 break;
3632 default:
3633 r = -EINVAL;
3634 break;
3636 return r;
3639 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3641 int r;
3643 r = 0;
3644 switch (chip->chip_id) {
3645 case KVM_IRQCHIP_PIC_MASTER:
3646 spin_lock(&pic_irqchip(kvm)->lock);
3647 memcpy(&pic_irqchip(kvm)->pics[0],
3648 &chip->chip.pic,
3649 sizeof(struct kvm_pic_state));
3650 spin_unlock(&pic_irqchip(kvm)->lock);
3651 break;
3652 case KVM_IRQCHIP_PIC_SLAVE:
3653 spin_lock(&pic_irqchip(kvm)->lock);
3654 memcpy(&pic_irqchip(kvm)->pics[1],
3655 &chip->chip.pic,
3656 sizeof(struct kvm_pic_state));
3657 spin_unlock(&pic_irqchip(kvm)->lock);
3658 break;
3659 case KVM_IRQCHIP_IOAPIC:
3660 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3661 break;
3662 default:
3663 r = -EINVAL;
3664 break;
3666 kvm_pic_update_irq(pic_irqchip(kvm));
3667 return r;
3670 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3672 int r = 0;
3674 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3675 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3676 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3677 return r;
3680 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3682 int r = 0;
3684 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3685 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3686 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3687 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3688 return r;
3691 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3693 int r = 0;
3695 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3696 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3697 sizeof(ps->channels));
3698 ps->flags = kvm->arch.vpit->pit_state.flags;
3699 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3700 memset(&ps->reserved, 0, sizeof(ps->reserved));
3701 return r;
3704 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3706 int r = 0, start = 0;
3707 u32 prev_legacy, cur_legacy;
3708 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3709 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3710 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3711 if (!prev_legacy && cur_legacy)
3712 start = 1;
3713 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3714 sizeof(kvm->arch.vpit->pit_state.channels));
3715 kvm->arch.vpit->pit_state.flags = ps->flags;
3716 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3717 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3718 return r;
3721 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3722 struct kvm_reinject_control *control)
3724 if (!kvm->arch.vpit)
3725 return -ENXIO;
3726 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3727 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3728 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3729 return 0;
3733 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3734 * @kvm: kvm instance
3735 * @log: slot id and address to which we copy the log
3737 * We need to keep it in mind that VCPU threads can write to the bitmap
3738 * concurrently. So, to avoid losing data, we keep the following order for
3739 * each bit:
3741 * 1. Take a snapshot of the bit and clear it if needed.
3742 * 2. Write protect the corresponding page.
3743 * 3. Flush TLB's if needed.
3744 * 4. Copy the snapshot to the userspace.
3746 * Between 2 and 3, the guest may write to the page using the remaining TLB
3747 * entry. This is not a problem because the page will be reported dirty at
3748 * step 4 using the snapshot taken before and step 3 ensures that successive
3749 * writes will be logged for the next call.
3751 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3753 int r;
3754 struct kvm_memory_slot *memslot;
3755 unsigned long n, i;
3756 unsigned long *dirty_bitmap;
3757 unsigned long *dirty_bitmap_buffer;
3758 bool is_dirty = false;
3760 mutex_lock(&kvm->slots_lock);
3762 r = -EINVAL;
3763 if (log->slot >= KVM_USER_MEM_SLOTS)
3764 goto out;
3766 memslot = id_to_memslot(kvm->memslots, log->slot);
3768 dirty_bitmap = memslot->dirty_bitmap;
3769 r = -ENOENT;
3770 if (!dirty_bitmap)
3771 goto out;
3773 n = kvm_dirty_bitmap_bytes(memslot);
3775 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3776 memset(dirty_bitmap_buffer, 0, n);
3778 spin_lock(&kvm->mmu_lock);
3780 for (i = 0; i < n / sizeof(long); i++) {
3781 unsigned long mask;
3782 gfn_t offset;
3784 if (!dirty_bitmap[i])
3785 continue;
3787 is_dirty = true;
3789 mask = xchg(&dirty_bitmap[i], 0);
3790 dirty_bitmap_buffer[i] = mask;
3792 offset = i * BITS_PER_LONG;
3793 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3796 spin_unlock(&kvm->mmu_lock);
3798 /* See the comments in kvm_mmu_slot_remove_write_access(). */
3799 lockdep_assert_held(&kvm->slots_lock);
3802 * All the TLBs can be flushed out of mmu lock, see the comments in
3803 * kvm_mmu_slot_remove_write_access().
3805 if (is_dirty)
3806 kvm_flush_remote_tlbs(kvm);
3808 r = -EFAULT;
3809 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3810 goto out;
3812 r = 0;
3813 out:
3814 mutex_unlock(&kvm->slots_lock);
3815 return r;
3818 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3819 bool line_status)
3821 if (!irqchip_in_kernel(kvm))
3822 return -ENXIO;
3824 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3825 irq_event->irq, irq_event->level,
3826 line_status);
3827 return 0;
3830 long kvm_arch_vm_ioctl(struct file *filp,
3831 unsigned int ioctl, unsigned long arg)
3833 struct kvm *kvm = filp->private_data;
3834 void __user *argp = (void __user *)arg;
3835 int r = -ENOTTY;
3837 * This union makes it completely explicit to gcc-3.x
3838 * that these two variables' stack usage should be
3839 * combined, not added together.
3841 union {
3842 struct kvm_pit_state ps;
3843 struct kvm_pit_state2 ps2;
3844 struct kvm_pit_config pit_config;
3845 } u;
3847 switch (ioctl) {
3848 case KVM_SET_TSS_ADDR:
3849 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3850 break;
3851 case KVM_SET_IDENTITY_MAP_ADDR: {
3852 u64 ident_addr;
3854 r = -EFAULT;
3855 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3856 goto out;
3857 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3858 break;
3860 case KVM_SET_NR_MMU_PAGES:
3861 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3862 break;
3863 case KVM_GET_NR_MMU_PAGES:
3864 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3865 break;
3866 case KVM_CREATE_IRQCHIP: {
3867 struct kvm_pic *vpic;
3869 mutex_lock(&kvm->lock);
3870 r = -EEXIST;
3871 if (kvm->arch.vpic)
3872 goto create_irqchip_unlock;
3873 r = -EINVAL;
3874 if (atomic_read(&kvm->online_vcpus))
3875 goto create_irqchip_unlock;
3876 r = -ENOMEM;
3877 vpic = kvm_create_pic(kvm);
3878 if (vpic) {
3879 r = kvm_ioapic_init(kvm);
3880 if (r) {
3881 mutex_lock(&kvm->slots_lock);
3882 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3883 &vpic->dev_master);
3884 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3885 &vpic->dev_slave);
3886 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3887 &vpic->dev_eclr);
3888 mutex_unlock(&kvm->slots_lock);
3889 kfree(vpic);
3890 goto create_irqchip_unlock;
3892 } else
3893 goto create_irqchip_unlock;
3894 smp_wmb();
3895 kvm->arch.vpic = vpic;
3896 smp_wmb();
3897 r = kvm_setup_default_irq_routing(kvm);
3898 if (r) {
3899 mutex_lock(&kvm->slots_lock);
3900 mutex_lock(&kvm->irq_lock);
3901 kvm_ioapic_destroy(kvm);
3902 kvm_destroy_pic(kvm);
3903 mutex_unlock(&kvm->irq_lock);
3904 mutex_unlock(&kvm->slots_lock);
3906 create_irqchip_unlock:
3907 mutex_unlock(&kvm->lock);
3908 break;
3910 case KVM_CREATE_PIT:
3911 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3912 goto create_pit;
3913 case KVM_CREATE_PIT2:
3914 r = -EFAULT;
3915 if (copy_from_user(&u.pit_config, argp,
3916 sizeof(struct kvm_pit_config)))
3917 goto out;
3918 create_pit:
3919 mutex_lock(&kvm->slots_lock);
3920 r = -EEXIST;
3921 if (kvm->arch.vpit)
3922 goto create_pit_unlock;
3923 r = -ENOMEM;
3924 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3925 if (kvm->arch.vpit)
3926 r = 0;
3927 create_pit_unlock:
3928 mutex_unlock(&kvm->slots_lock);
3929 break;
3930 case KVM_GET_IRQCHIP: {
3931 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3932 struct kvm_irqchip *chip;
3934 chip = memdup_user(argp, sizeof(*chip));
3935 if (IS_ERR(chip)) {
3936 r = PTR_ERR(chip);
3937 goto out;
3940 r = -ENXIO;
3941 if (!irqchip_in_kernel(kvm))
3942 goto get_irqchip_out;
3943 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3944 if (r)
3945 goto get_irqchip_out;
3946 r = -EFAULT;
3947 if (copy_to_user(argp, chip, sizeof *chip))
3948 goto get_irqchip_out;
3949 r = 0;
3950 get_irqchip_out:
3951 kfree(chip);
3952 break;
3954 case KVM_SET_IRQCHIP: {
3955 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3956 struct kvm_irqchip *chip;
3958 chip = memdup_user(argp, sizeof(*chip));
3959 if (IS_ERR(chip)) {
3960 r = PTR_ERR(chip);
3961 goto out;
3964 r = -ENXIO;
3965 if (!irqchip_in_kernel(kvm))
3966 goto set_irqchip_out;
3967 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3968 if (r)
3969 goto set_irqchip_out;
3970 r = 0;
3971 set_irqchip_out:
3972 kfree(chip);
3973 break;
3975 case KVM_GET_PIT: {
3976 r = -EFAULT;
3977 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3978 goto out;
3979 r = -ENXIO;
3980 if (!kvm->arch.vpit)
3981 goto out;
3982 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3983 if (r)
3984 goto out;
3985 r = -EFAULT;
3986 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3987 goto out;
3988 r = 0;
3989 break;
3991 case KVM_SET_PIT: {
3992 r = -EFAULT;
3993 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3994 goto out;
3995 r = -ENXIO;
3996 if (!kvm->arch.vpit)
3997 goto out;
3998 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3999 break;
4001 case KVM_GET_PIT2: {
4002 r = -ENXIO;
4003 if (!kvm->arch.vpit)
4004 goto out;
4005 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4006 if (r)
4007 goto out;
4008 r = -EFAULT;
4009 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4010 goto out;
4011 r = 0;
4012 break;
4014 case KVM_SET_PIT2: {
4015 r = -EFAULT;
4016 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4017 goto out;
4018 r = -ENXIO;
4019 if (!kvm->arch.vpit)
4020 goto out;
4021 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4022 break;
4024 case KVM_REINJECT_CONTROL: {
4025 struct kvm_reinject_control control;
4026 r = -EFAULT;
4027 if (copy_from_user(&control, argp, sizeof(control)))
4028 goto out;
4029 r = kvm_vm_ioctl_reinject(kvm, &control);
4030 break;
4032 case KVM_XEN_HVM_CONFIG: {
4033 r = -EFAULT;
4034 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4035 sizeof(struct kvm_xen_hvm_config)))
4036 goto out;
4037 r = -EINVAL;
4038 if (kvm->arch.xen_hvm_config.flags)
4039 goto out;
4040 r = 0;
4041 break;
4043 case KVM_SET_CLOCK: {
4044 struct kvm_clock_data user_ns;
4045 u64 now_ns;
4046 s64 delta;
4048 r = -EFAULT;
4049 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4050 goto out;
4052 r = -EINVAL;
4053 if (user_ns.flags)
4054 goto out;
4056 r = 0;
4057 local_irq_disable();
4058 now_ns = get_kernel_ns();
4059 delta = user_ns.clock - now_ns;
4060 local_irq_enable();
4061 kvm->arch.kvmclock_offset = delta;
4062 kvm_gen_update_masterclock(kvm);
4063 break;
4065 case KVM_GET_CLOCK: {
4066 struct kvm_clock_data user_ns;
4067 u64 now_ns;
4069 local_irq_disable();
4070 now_ns = get_kernel_ns();
4071 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4072 local_irq_enable();
4073 user_ns.flags = 0;
4074 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4076 r = -EFAULT;
4077 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4078 goto out;
4079 r = 0;
4080 break;
4083 default:
4084 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4086 out:
4087 return r;
4090 static void kvm_init_msr_list(void)
4092 u32 dummy[2];
4093 unsigned i, j;
4095 /* skip the first msrs in the list. KVM-specific */
4096 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4097 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4098 continue;
4101 * Even MSRs that are valid in the host may not be exposed
4102 * to the guests in some cases. We could work around this
4103 * in VMX with the generic MSR save/load machinery, but it
4104 * is not really worthwhile since it will really only
4105 * happen with nested virtualization.
4107 switch (msrs_to_save[i]) {
4108 case MSR_IA32_BNDCFGS:
4109 if (!kvm_x86_ops->mpx_supported())
4110 continue;
4111 break;
4112 default:
4113 break;
4116 if (j < i)
4117 msrs_to_save[j] = msrs_to_save[i];
4118 j++;
4120 num_msrs_to_save = j;
4123 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4124 const void *v)
4126 int handled = 0;
4127 int n;
4129 do {
4130 n = min(len, 8);
4131 if (!(vcpu->arch.apic &&
4132 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4133 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4134 break;
4135 handled += n;
4136 addr += n;
4137 len -= n;
4138 v += n;
4139 } while (len);
4141 return handled;
4144 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4146 int handled = 0;
4147 int n;
4149 do {
4150 n = min(len, 8);
4151 if (!(vcpu->arch.apic &&
4152 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4153 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4154 break;
4155 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4156 handled += n;
4157 addr += n;
4158 len -= n;
4159 v += n;
4160 } while (len);
4162 return handled;
4165 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4166 struct kvm_segment *var, int seg)
4168 kvm_x86_ops->set_segment(vcpu, var, seg);
4171 void kvm_get_segment(struct kvm_vcpu *vcpu,
4172 struct kvm_segment *var, int seg)
4174 kvm_x86_ops->get_segment(vcpu, var, seg);
4177 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4178 struct x86_exception *exception)
4180 gpa_t t_gpa;
4182 BUG_ON(!mmu_is_nested(vcpu));
4184 /* NPT walks are always user-walks */
4185 access |= PFERR_USER_MASK;
4186 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4188 return t_gpa;
4191 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4192 struct x86_exception *exception)
4194 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4195 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4198 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4199 struct x86_exception *exception)
4201 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4202 access |= PFERR_FETCH_MASK;
4203 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4206 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4207 struct x86_exception *exception)
4209 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4210 access |= PFERR_WRITE_MASK;
4211 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4214 /* uses this to access any guest's mapped memory without checking CPL */
4215 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4216 struct x86_exception *exception)
4218 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4221 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4222 struct kvm_vcpu *vcpu, u32 access,
4223 struct x86_exception *exception)
4225 void *data = val;
4226 int r = X86EMUL_CONTINUE;
4228 while (bytes) {
4229 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4230 exception);
4231 unsigned offset = addr & (PAGE_SIZE-1);
4232 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4233 int ret;
4235 if (gpa == UNMAPPED_GVA)
4236 return X86EMUL_PROPAGATE_FAULT;
4237 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4238 offset, toread);
4239 if (ret < 0) {
4240 r = X86EMUL_IO_NEEDED;
4241 goto out;
4244 bytes -= toread;
4245 data += toread;
4246 addr += toread;
4248 out:
4249 return r;
4252 /* used for instruction fetching */
4253 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4254 gva_t addr, void *val, unsigned int bytes,
4255 struct x86_exception *exception)
4257 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4258 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4259 unsigned offset;
4260 int ret;
4262 /* Inline kvm_read_guest_virt_helper for speed. */
4263 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4264 exception);
4265 if (unlikely(gpa == UNMAPPED_GVA))
4266 return X86EMUL_PROPAGATE_FAULT;
4268 offset = addr & (PAGE_SIZE-1);
4269 if (WARN_ON(offset + bytes > PAGE_SIZE))
4270 bytes = (unsigned)PAGE_SIZE - offset;
4271 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4272 offset, bytes);
4273 if (unlikely(ret < 0))
4274 return X86EMUL_IO_NEEDED;
4276 return X86EMUL_CONTINUE;
4279 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4280 gva_t addr, void *val, unsigned int bytes,
4281 struct x86_exception *exception)
4283 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4284 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4286 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4287 exception);
4289 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4291 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4292 gva_t addr, void *val, unsigned int bytes,
4293 struct x86_exception *exception)
4295 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4296 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4299 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4300 gva_t addr, void *val,
4301 unsigned int bytes,
4302 struct x86_exception *exception)
4304 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305 void *data = val;
4306 int r = X86EMUL_CONTINUE;
4308 while (bytes) {
4309 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4310 PFERR_WRITE_MASK,
4311 exception);
4312 unsigned offset = addr & (PAGE_SIZE-1);
4313 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4314 int ret;
4316 if (gpa == UNMAPPED_GVA)
4317 return X86EMUL_PROPAGATE_FAULT;
4318 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4319 if (ret < 0) {
4320 r = X86EMUL_IO_NEEDED;
4321 goto out;
4324 bytes -= towrite;
4325 data += towrite;
4326 addr += towrite;
4328 out:
4329 return r;
4331 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4333 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4334 gpa_t *gpa, struct x86_exception *exception,
4335 bool write)
4337 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4338 | (write ? PFERR_WRITE_MASK : 0);
4340 if (vcpu_match_mmio_gva(vcpu, gva)
4341 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4342 vcpu->arch.access, access)) {
4343 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4344 (gva & (PAGE_SIZE - 1));
4345 trace_vcpu_match_mmio(gva, *gpa, write, false);
4346 return 1;
4349 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4351 if (*gpa == UNMAPPED_GVA)
4352 return -1;
4354 /* For APIC access vmexit */
4355 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4356 return 1;
4358 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4359 trace_vcpu_match_mmio(gva, *gpa, write, true);
4360 return 1;
4363 return 0;
4366 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4367 const void *val, int bytes)
4369 int ret;
4371 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4372 if (ret < 0)
4373 return 0;
4374 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4375 return 1;
4378 struct read_write_emulator_ops {
4379 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4380 int bytes);
4381 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382 void *val, int bytes);
4383 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 int bytes, void *val);
4385 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4386 void *val, int bytes);
4387 bool write;
4390 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4392 if (vcpu->mmio_read_completed) {
4393 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4394 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4395 vcpu->mmio_read_completed = 0;
4396 return 1;
4399 return 0;
4402 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 void *val, int bytes)
4405 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4408 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4409 void *val, int bytes)
4411 return emulator_write_phys(vcpu, gpa, val, bytes);
4414 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4416 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4417 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4420 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4421 void *val, int bytes)
4423 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4424 return X86EMUL_IO_NEEDED;
4427 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4428 void *val, int bytes)
4430 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4432 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4433 return X86EMUL_CONTINUE;
4436 static const struct read_write_emulator_ops read_emultor = {
4437 .read_write_prepare = read_prepare,
4438 .read_write_emulate = read_emulate,
4439 .read_write_mmio = vcpu_mmio_read,
4440 .read_write_exit_mmio = read_exit_mmio,
4443 static const struct read_write_emulator_ops write_emultor = {
4444 .read_write_emulate = write_emulate,
4445 .read_write_mmio = write_mmio,
4446 .read_write_exit_mmio = write_exit_mmio,
4447 .write = true,
4450 static int emulator_read_write_onepage(unsigned long addr, void *val,
4451 unsigned int bytes,
4452 struct x86_exception *exception,
4453 struct kvm_vcpu *vcpu,
4454 const struct read_write_emulator_ops *ops)
4456 gpa_t gpa;
4457 int handled, ret;
4458 bool write = ops->write;
4459 struct kvm_mmio_fragment *frag;
4461 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4463 if (ret < 0)
4464 return X86EMUL_PROPAGATE_FAULT;
4466 /* For APIC access vmexit */
4467 if (ret)
4468 goto mmio;
4470 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4471 return X86EMUL_CONTINUE;
4473 mmio:
4475 * Is this MMIO handled locally?
4477 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4478 if (handled == bytes)
4479 return X86EMUL_CONTINUE;
4481 gpa += handled;
4482 bytes -= handled;
4483 val += handled;
4485 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4486 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4487 frag->gpa = gpa;
4488 frag->data = val;
4489 frag->len = bytes;
4490 return X86EMUL_CONTINUE;
4493 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4494 void *val, unsigned int bytes,
4495 struct x86_exception *exception,
4496 const struct read_write_emulator_ops *ops)
4498 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4499 gpa_t gpa;
4500 int rc;
4502 if (ops->read_write_prepare &&
4503 ops->read_write_prepare(vcpu, val, bytes))
4504 return X86EMUL_CONTINUE;
4506 vcpu->mmio_nr_fragments = 0;
4508 /* Crossing a page boundary? */
4509 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4510 int now;
4512 now = -addr & ~PAGE_MASK;
4513 rc = emulator_read_write_onepage(addr, val, now, exception,
4514 vcpu, ops);
4516 if (rc != X86EMUL_CONTINUE)
4517 return rc;
4518 addr += now;
4519 val += now;
4520 bytes -= now;
4523 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4524 vcpu, ops);
4525 if (rc != X86EMUL_CONTINUE)
4526 return rc;
4528 if (!vcpu->mmio_nr_fragments)
4529 return rc;
4531 gpa = vcpu->mmio_fragments[0].gpa;
4533 vcpu->mmio_needed = 1;
4534 vcpu->mmio_cur_fragment = 0;
4536 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4537 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4538 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4539 vcpu->run->mmio.phys_addr = gpa;
4541 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4544 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4545 unsigned long addr,
4546 void *val,
4547 unsigned int bytes,
4548 struct x86_exception *exception)
4550 return emulator_read_write(ctxt, addr, val, bytes,
4551 exception, &read_emultor);
4554 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4555 unsigned long addr,
4556 const void *val,
4557 unsigned int bytes,
4558 struct x86_exception *exception)
4560 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4561 exception, &write_emultor);
4564 #define CMPXCHG_TYPE(t, ptr, old, new) \
4565 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4567 #ifdef CONFIG_X86_64
4568 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4569 #else
4570 # define CMPXCHG64(ptr, old, new) \
4571 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4572 #endif
4574 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4575 unsigned long addr,
4576 const void *old,
4577 const void *new,
4578 unsigned int bytes,
4579 struct x86_exception *exception)
4581 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4582 gpa_t gpa;
4583 struct page *page;
4584 char *kaddr;
4585 bool exchanged;
4587 /* guests cmpxchg8b have to be emulated atomically */
4588 if (bytes > 8 || (bytes & (bytes - 1)))
4589 goto emul_write;
4591 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4593 if (gpa == UNMAPPED_GVA ||
4594 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4595 goto emul_write;
4597 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4598 goto emul_write;
4600 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4601 if (is_error_page(page))
4602 goto emul_write;
4604 kaddr = kmap_atomic(page);
4605 kaddr += offset_in_page(gpa);
4606 switch (bytes) {
4607 case 1:
4608 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4609 break;
4610 case 2:
4611 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4612 break;
4613 case 4:
4614 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4615 break;
4616 case 8:
4617 exchanged = CMPXCHG64(kaddr, old, new);
4618 break;
4619 default:
4620 BUG();
4622 kunmap_atomic(kaddr);
4623 kvm_release_page_dirty(page);
4625 if (!exchanged)
4626 return X86EMUL_CMPXCHG_FAILED;
4628 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4629 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4631 return X86EMUL_CONTINUE;
4633 emul_write:
4634 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4636 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4639 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4641 /* TODO: String I/O for in kernel device */
4642 int r;
4644 if (vcpu->arch.pio.in)
4645 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4646 vcpu->arch.pio.size, pd);
4647 else
4648 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4649 vcpu->arch.pio.port, vcpu->arch.pio.size,
4650 pd);
4651 return r;
4654 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4655 unsigned short port, void *val,
4656 unsigned int count, bool in)
4658 vcpu->arch.pio.port = port;
4659 vcpu->arch.pio.in = in;
4660 vcpu->arch.pio.count = count;
4661 vcpu->arch.pio.size = size;
4663 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4664 vcpu->arch.pio.count = 0;
4665 return 1;
4668 vcpu->run->exit_reason = KVM_EXIT_IO;
4669 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4670 vcpu->run->io.size = size;
4671 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4672 vcpu->run->io.count = count;
4673 vcpu->run->io.port = port;
4675 return 0;
4678 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4679 int size, unsigned short port, void *val,
4680 unsigned int count)
4682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4683 int ret;
4685 if (vcpu->arch.pio.count)
4686 goto data_avail;
4688 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4689 if (ret) {
4690 data_avail:
4691 memcpy(val, vcpu->arch.pio_data, size * count);
4692 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4693 vcpu->arch.pio.count = 0;
4694 return 1;
4697 return 0;
4700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4701 int size, unsigned short port,
4702 const void *val, unsigned int count)
4704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4706 memcpy(vcpu->arch.pio_data, val, size * count);
4707 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4708 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4711 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4713 return kvm_x86_ops->get_segment_base(vcpu, seg);
4716 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4718 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4721 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4723 if (!need_emulate_wbinvd(vcpu))
4724 return X86EMUL_CONTINUE;
4726 if (kvm_x86_ops->has_wbinvd_exit()) {
4727 int cpu = get_cpu();
4729 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4730 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4731 wbinvd_ipi, NULL, 1);
4732 put_cpu();
4733 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4734 } else
4735 wbinvd();
4736 return X86EMUL_CONTINUE;
4738 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4740 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4742 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4745 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4747 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4750 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4753 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4756 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4758 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4763 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4764 unsigned long value;
4766 switch (cr) {
4767 case 0:
4768 value = kvm_read_cr0(vcpu);
4769 break;
4770 case 2:
4771 value = vcpu->arch.cr2;
4772 break;
4773 case 3:
4774 value = kvm_read_cr3(vcpu);
4775 break;
4776 case 4:
4777 value = kvm_read_cr4(vcpu);
4778 break;
4779 case 8:
4780 value = kvm_get_cr8(vcpu);
4781 break;
4782 default:
4783 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4784 return 0;
4787 return value;
4790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4792 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4793 int res = 0;
4795 switch (cr) {
4796 case 0:
4797 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4798 break;
4799 case 2:
4800 vcpu->arch.cr2 = val;
4801 break;
4802 case 3:
4803 res = kvm_set_cr3(vcpu, val);
4804 break;
4805 case 4:
4806 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4807 break;
4808 case 8:
4809 res = kvm_set_cr8(vcpu, val);
4810 break;
4811 default:
4812 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4813 res = -1;
4816 return res;
4819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4821 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4826 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4831 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4836 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4841 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4844 static unsigned long emulator_get_cached_segment_base(
4845 struct x86_emulate_ctxt *ctxt, int seg)
4847 return get_segment_base(emul_to_vcpu(ctxt), seg);
4850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4851 struct desc_struct *desc, u32 *base3,
4852 int seg)
4854 struct kvm_segment var;
4856 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4857 *selector = var.selector;
4859 if (var.unusable) {
4860 memset(desc, 0, sizeof(*desc));
4861 return false;
4864 if (var.g)
4865 var.limit >>= 12;
4866 set_desc_limit(desc, var.limit);
4867 set_desc_base(desc, (unsigned long)var.base);
4868 #ifdef CONFIG_X86_64
4869 if (base3)
4870 *base3 = var.base >> 32;
4871 #endif
4872 desc->type = var.type;
4873 desc->s = var.s;
4874 desc->dpl = var.dpl;
4875 desc->p = var.present;
4876 desc->avl = var.avl;
4877 desc->l = var.l;
4878 desc->d = var.db;
4879 desc->g = var.g;
4881 return true;
4884 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4885 struct desc_struct *desc, u32 base3,
4886 int seg)
4888 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889 struct kvm_segment var;
4891 var.selector = selector;
4892 var.base = get_desc_base(desc);
4893 #ifdef CONFIG_X86_64
4894 var.base |= ((u64)base3) << 32;
4895 #endif
4896 var.limit = get_desc_limit(desc);
4897 if (desc->g)
4898 var.limit = (var.limit << 12) | 0xfff;
4899 var.type = desc->type;
4900 var.dpl = desc->dpl;
4901 var.db = desc->d;
4902 var.s = desc->s;
4903 var.l = desc->l;
4904 var.g = desc->g;
4905 var.avl = desc->avl;
4906 var.present = desc->p;
4907 var.unusable = !var.present;
4908 var.padding = 0;
4910 kvm_set_segment(vcpu, &var, seg);
4911 return;
4914 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4915 u32 msr_index, u64 *pdata)
4917 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4920 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4921 u32 msr_index, u64 data)
4923 struct msr_data msr;
4925 msr.data = data;
4926 msr.index = msr_index;
4927 msr.host_initiated = false;
4928 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4931 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4932 u32 pmc)
4934 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4937 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4938 u32 pmc, u64 *pdata)
4940 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4943 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4945 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4948 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4950 preempt_disable();
4951 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4953 * CR0.TS may reference the host fpu state, not the guest fpu state,
4954 * so it may be clear at this point.
4956 clts();
4959 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4961 preempt_enable();
4964 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4965 struct x86_instruction_info *info,
4966 enum x86_intercept_stage stage)
4968 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4972 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4974 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4977 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4979 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4982 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4984 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4987 static const struct x86_emulate_ops emulate_ops = {
4988 .read_gpr = emulator_read_gpr,
4989 .write_gpr = emulator_write_gpr,
4990 .read_std = kvm_read_guest_virt_system,
4991 .write_std = kvm_write_guest_virt_system,
4992 .fetch = kvm_fetch_guest_virt,
4993 .read_emulated = emulator_read_emulated,
4994 .write_emulated = emulator_write_emulated,
4995 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4996 .invlpg = emulator_invlpg,
4997 .pio_in_emulated = emulator_pio_in_emulated,
4998 .pio_out_emulated = emulator_pio_out_emulated,
4999 .get_segment = emulator_get_segment,
5000 .set_segment = emulator_set_segment,
5001 .get_cached_segment_base = emulator_get_cached_segment_base,
5002 .get_gdt = emulator_get_gdt,
5003 .get_idt = emulator_get_idt,
5004 .set_gdt = emulator_set_gdt,
5005 .set_idt = emulator_set_idt,
5006 .get_cr = emulator_get_cr,
5007 .set_cr = emulator_set_cr,
5008 .cpl = emulator_get_cpl,
5009 .get_dr = emulator_get_dr,
5010 .set_dr = emulator_set_dr,
5011 .set_msr = emulator_set_msr,
5012 .get_msr = emulator_get_msr,
5013 .check_pmc = emulator_check_pmc,
5014 .read_pmc = emulator_read_pmc,
5015 .halt = emulator_halt,
5016 .wbinvd = emulator_wbinvd,
5017 .fix_hypercall = emulator_fix_hypercall,
5018 .get_fpu = emulator_get_fpu,
5019 .put_fpu = emulator_put_fpu,
5020 .intercept = emulator_intercept,
5021 .get_cpuid = emulator_get_cpuid,
5024 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5026 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5028 * an sti; sti; sequence only disable interrupts for the first
5029 * instruction. So, if the last instruction, be it emulated or
5030 * not, left the system with the INT_STI flag enabled, it
5031 * means that the last instruction is an sti. We should not
5032 * leave the flag on in this case. The same goes for mov ss
5034 if (int_shadow & mask)
5035 mask = 0;
5036 if (unlikely(int_shadow || mask)) {
5037 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5038 if (!mask)
5039 kvm_make_request(KVM_REQ_EVENT, vcpu);
5043 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5045 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5046 if (ctxt->exception.vector == PF_VECTOR)
5047 return kvm_propagate_fault(vcpu, &ctxt->exception);
5049 if (ctxt->exception.error_code_valid)
5050 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5051 ctxt->exception.error_code);
5052 else
5053 kvm_queue_exception(vcpu, ctxt->exception.vector);
5054 return false;
5057 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5059 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5060 int cs_db, cs_l;
5062 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5064 ctxt->eflags = kvm_get_rflags(vcpu);
5065 ctxt->eip = kvm_rip_read(vcpu);
5066 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5067 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5068 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5069 cs_db ? X86EMUL_MODE_PROT32 :
5070 X86EMUL_MODE_PROT16;
5071 ctxt->guest_mode = is_guest_mode(vcpu);
5073 init_decode_cache(ctxt);
5074 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5077 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5079 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5080 int ret;
5082 init_emulate_ctxt(vcpu);
5084 ctxt->op_bytes = 2;
5085 ctxt->ad_bytes = 2;
5086 ctxt->_eip = ctxt->eip + inc_eip;
5087 ret = emulate_int_real(ctxt, irq);
5089 if (ret != X86EMUL_CONTINUE)
5090 return EMULATE_FAIL;
5092 ctxt->eip = ctxt->_eip;
5093 kvm_rip_write(vcpu, ctxt->eip);
5094 kvm_set_rflags(vcpu, ctxt->eflags);
5096 if (irq == NMI_VECTOR)
5097 vcpu->arch.nmi_pending = 0;
5098 else
5099 vcpu->arch.interrupt.pending = false;
5101 return EMULATE_DONE;
5103 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5105 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5107 int r = EMULATE_DONE;
5109 ++vcpu->stat.insn_emulation_fail;
5110 trace_kvm_emulate_insn_failed(vcpu);
5111 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5112 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5113 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5114 vcpu->run->internal.ndata = 0;
5115 r = EMULATE_FAIL;
5117 kvm_queue_exception(vcpu, UD_VECTOR);
5119 return r;
5122 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5123 bool write_fault_to_shadow_pgtable,
5124 int emulation_type)
5126 gpa_t gpa = cr2;
5127 pfn_t pfn;
5129 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5130 return false;
5132 if (!vcpu->arch.mmu.direct_map) {
5134 * Write permission should be allowed since only
5135 * write access need to be emulated.
5137 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5140 * If the mapping is invalid in guest, let cpu retry
5141 * it to generate fault.
5143 if (gpa == UNMAPPED_GVA)
5144 return true;
5148 * Do not retry the unhandleable instruction if it faults on the
5149 * readonly host memory, otherwise it will goto a infinite loop:
5150 * retry instruction -> write #PF -> emulation fail -> retry
5151 * instruction -> ...
5153 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5156 * If the instruction failed on the error pfn, it can not be fixed,
5157 * report the error to userspace.
5159 if (is_error_noslot_pfn(pfn))
5160 return false;
5162 kvm_release_pfn_clean(pfn);
5164 /* The instructions are well-emulated on direct mmu. */
5165 if (vcpu->arch.mmu.direct_map) {
5166 unsigned int indirect_shadow_pages;
5168 spin_lock(&vcpu->kvm->mmu_lock);
5169 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5170 spin_unlock(&vcpu->kvm->mmu_lock);
5172 if (indirect_shadow_pages)
5173 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5175 return true;
5179 * if emulation was due to access to shadowed page table
5180 * and it failed try to unshadow page and re-enter the
5181 * guest to let CPU execute the instruction.
5183 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5186 * If the access faults on its page table, it can not
5187 * be fixed by unprotecting shadow page and it should
5188 * be reported to userspace.
5190 return !write_fault_to_shadow_pgtable;
5193 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5194 unsigned long cr2, int emulation_type)
5196 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5197 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5199 last_retry_eip = vcpu->arch.last_retry_eip;
5200 last_retry_addr = vcpu->arch.last_retry_addr;
5203 * If the emulation is caused by #PF and it is non-page_table
5204 * writing instruction, it means the VM-EXIT is caused by shadow
5205 * page protected, we can zap the shadow page and retry this
5206 * instruction directly.
5208 * Note: if the guest uses a non-page-table modifying instruction
5209 * on the PDE that points to the instruction, then we will unmap
5210 * the instruction and go to an infinite loop. So, we cache the
5211 * last retried eip and the last fault address, if we meet the eip
5212 * and the address again, we can break out of the potential infinite
5213 * loop.
5215 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5217 if (!(emulation_type & EMULTYPE_RETRY))
5218 return false;
5220 if (x86_page_table_writing_insn(ctxt))
5221 return false;
5223 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5224 return false;
5226 vcpu->arch.last_retry_eip = ctxt->eip;
5227 vcpu->arch.last_retry_addr = cr2;
5229 if (!vcpu->arch.mmu.direct_map)
5230 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5232 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5234 return true;
5237 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5238 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5240 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5241 unsigned long *db)
5243 u32 dr6 = 0;
5244 int i;
5245 u32 enable, rwlen;
5247 enable = dr7;
5248 rwlen = dr7 >> 16;
5249 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5250 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5251 dr6 |= (1 << i);
5252 return dr6;
5255 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5257 struct kvm_run *kvm_run = vcpu->run;
5260 * rflags is the old, "raw" value of the flags. The new value has
5261 * not been saved yet.
5263 * This is correct even for TF set by the guest, because "the
5264 * processor will not generate this exception after the instruction
5265 * that sets the TF flag".
5267 if (unlikely(rflags & X86_EFLAGS_TF)) {
5268 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5269 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5270 DR6_RTM;
5271 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5272 kvm_run->debug.arch.exception = DB_VECTOR;
5273 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5274 *r = EMULATE_USER_EXIT;
5275 } else {
5276 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5278 * "Certain debug exceptions may clear bit 0-3. The
5279 * remaining contents of the DR6 register are never
5280 * cleared by the processor".
5282 vcpu->arch.dr6 &= ~15;
5283 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5284 kvm_queue_exception(vcpu, DB_VECTOR);
5289 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5291 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5292 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5293 struct kvm_run *kvm_run = vcpu->run;
5294 unsigned long eip = kvm_get_linear_rip(vcpu);
5295 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5296 vcpu->arch.guest_debug_dr7,
5297 vcpu->arch.eff_db);
5299 if (dr6 != 0) {
5300 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5301 kvm_run->debug.arch.pc = eip;
5302 kvm_run->debug.arch.exception = DB_VECTOR;
5303 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5304 *r = EMULATE_USER_EXIT;
5305 return true;
5309 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5310 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5311 unsigned long eip = kvm_get_linear_rip(vcpu);
5312 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5313 vcpu->arch.dr7,
5314 vcpu->arch.db);
5316 if (dr6 != 0) {
5317 vcpu->arch.dr6 &= ~15;
5318 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5319 kvm_queue_exception(vcpu, DB_VECTOR);
5320 *r = EMULATE_DONE;
5321 return true;
5325 return false;
5328 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5329 unsigned long cr2,
5330 int emulation_type,
5331 void *insn,
5332 int insn_len)
5334 int r;
5335 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5336 bool writeback = true;
5337 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5340 * Clear write_fault_to_shadow_pgtable here to ensure it is
5341 * never reused.
5343 vcpu->arch.write_fault_to_shadow_pgtable = false;
5344 kvm_clear_exception_queue(vcpu);
5346 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5347 init_emulate_ctxt(vcpu);
5350 * We will reenter on the same instruction since
5351 * we do not set complete_userspace_io. This does not
5352 * handle watchpoints yet, those would be handled in
5353 * the emulate_ops.
5355 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5356 return r;
5358 ctxt->interruptibility = 0;
5359 ctxt->have_exception = false;
5360 ctxt->exception.vector = -1;
5361 ctxt->perm_ok = false;
5363 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5365 r = x86_decode_insn(ctxt, insn, insn_len);
5367 trace_kvm_emulate_insn_start(vcpu);
5368 ++vcpu->stat.insn_emulation;
5369 if (r != EMULATION_OK) {
5370 if (emulation_type & EMULTYPE_TRAP_UD)
5371 return EMULATE_FAIL;
5372 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5373 emulation_type))
5374 return EMULATE_DONE;
5375 if (emulation_type & EMULTYPE_SKIP)
5376 return EMULATE_FAIL;
5377 return handle_emulation_failure(vcpu);
5381 if (emulation_type & EMULTYPE_SKIP) {
5382 kvm_rip_write(vcpu, ctxt->_eip);
5383 if (ctxt->eflags & X86_EFLAGS_RF)
5384 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5385 return EMULATE_DONE;
5388 if (retry_instruction(ctxt, cr2, emulation_type))
5389 return EMULATE_DONE;
5391 /* this is needed for vmware backdoor interface to work since it
5392 changes registers values during IO operation */
5393 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5394 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5395 emulator_invalidate_register_cache(ctxt);
5398 restart:
5399 r = x86_emulate_insn(ctxt);
5401 if (r == EMULATION_INTERCEPTED)
5402 return EMULATE_DONE;
5404 if (r == EMULATION_FAILED) {
5405 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5406 emulation_type))
5407 return EMULATE_DONE;
5409 return handle_emulation_failure(vcpu);
5412 if (ctxt->have_exception) {
5413 r = EMULATE_DONE;
5414 if (inject_emulated_exception(vcpu))
5415 return r;
5416 } else if (vcpu->arch.pio.count) {
5417 if (!vcpu->arch.pio.in) {
5418 /* FIXME: return into emulator if single-stepping. */
5419 vcpu->arch.pio.count = 0;
5420 } else {
5421 writeback = false;
5422 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5424 r = EMULATE_USER_EXIT;
5425 } else if (vcpu->mmio_needed) {
5426 if (!vcpu->mmio_is_write)
5427 writeback = false;
5428 r = EMULATE_USER_EXIT;
5429 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5430 } else if (r == EMULATION_RESTART)
5431 goto restart;
5432 else
5433 r = EMULATE_DONE;
5435 if (writeback) {
5436 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5437 toggle_interruptibility(vcpu, ctxt->interruptibility);
5438 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5439 kvm_rip_write(vcpu, ctxt->eip);
5440 if (r == EMULATE_DONE)
5441 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5442 if (!ctxt->have_exception ||
5443 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5444 __kvm_set_rflags(vcpu, ctxt->eflags);
5447 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5448 * do nothing, and it will be requested again as soon as
5449 * the shadow expires. But we still need to check here,
5450 * because POPF has no interrupt shadow.
5452 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5453 kvm_make_request(KVM_REQ_EVENT, vcpu);
5454 } else
5455 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5457 return r;
5459 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5461 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5463 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5464 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5465 size, port, &val, 1);
5466 /* do not return to emulator after return from userspace */
5467 vcpu->arch.pio.count = 0;
5468 return ret;
5470 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5472 static void tsc_bad(void *info)
5474 __this_cpu_write(cpu_tsc_khz, 0);
5477 static void tsc_khz_changed(void *data)
5479 struct cpufreq_freqs *freq = data;
5480 unsigned long khz = 0;
5482 if (data)
5483 khz = freq->new;
5484 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5485 khz = cpufreq_quick_get(raw_smp_processor_id());
5486 if (!khz)
5487 khz = tsc_khz;
5488 __this_cpu_write(cpu_tsc_khz, khz);
5491 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5492 void *data)
5494 struct cpufreq_freqs *freq = data;
5495 struct kvm *kvm;
5496 struct kvm_vcpu *vcpu;
5497 int i, send_ipi = 0;
5500 * We allow guests to temporarily run on slowing clocks,
5501 * provided we notify them after, or to run on accelerating
5502 * clocks, provided we notify them before. Thus time never
5503 * goes backwards.
5505 * However, we have a problem. We can't atomically update
5506 * the frequency of a given CPU from this function; it is
5507 * merely a notifier, which can be called from any CPU.
5508 * Changing the TSC frequency at arbitrary points in time
5509 * requires a recomputation of local variables related to
5510 * the TSC for each VCPU. We must flag these local variables
5511 * to be updated and be sure the update takes place with the
5512 * new frequency before any guests proceed.
5514 * Unfortunately, the combination of hotplug CPU and frequency
5515 * change creates an intractable locking scenario; the order
5516 * of when these callouts happen is undefined with respect to
5517 * CPU hotplug, and they can race with each other. As such,
5518 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5519 * undefined; you can actually have a CPU frequency change take
5520 * place in between the computation of X and the setting of the
5521 * variable. To protect against this problem, all updates of
5522 * the per_cpu tsc_khz variable are done in an interrupt
5523 * protected IPI, and all callers wishing to update the value
5524 * must wait for a synchronous IPI to complete (which is trivial
5525 * if the caller is on the CPU already). This establishes the
5526 * necessary total order on variable updates.
5528 * Note that because a guest time update may take place
5529 * anytime after the setting of the VCPU's request bit, the
5530 * correct TSC value must be set before the request. However,
5531 * to ensure the update actually makes it to any guest which
5532 * starts running in hardware virtualization between the set
5533 * and the acquisition of the spinlock, we must also ping the
5534 * CPU after setting the request bit.
5538 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5539 return 0;
5540 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5541 return 0;
5543 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5545 spin_lock(&kvm_lock);
5546 list_for_each_entry(kvm, &vm_list, vm_list) {
5547 kvm_for_each_vcpu(i, vcpu, kvm) {
5548 if (vcpu->cpu != freq->cpu)
5549 continue;
5550 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5551 if (vcpu->cpu != smp_processor_id())
5552 send_ipi = 1;
5555 spin_unlock(&kvm_lock);
5557 if (freq->old < freq->new && send_ipi) {
5559 * We upscale the frequency. Must make the guest
5560 * doesn't see old kvmclock values while running with
5561 * the new frequency, otherwise we risk the guest sees
5562 * time go backwards.
5564 * In case we update the frequency for another cpu
5565 * (which might be in guest context) send an interrupt
5566 * to kick the cpu out of guest context. Next time
5567 * guest context is entered kvmclock will be updated,
5568 * so the guest will not see stale values.
5570 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5572 return 0;
5575 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5576 .notifier_call = kvmclock_cpufreq_notifier
5579 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5580 unsigned long action, void *hcpu)
5582 unsigned int cpu = (unsigned long)hcpu;
5584 switch (action) {
5585 case CPU_ONLINE:
5586 case CPU_DOWN_FAILED:
5587 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5588 break;
5589 case CPU_DOWN_PREPARE:
5590 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5591 break;
5593 return NOTIFY_OK;
5596 static struct notifier_block kvmclock_cpu_notifier_block = {
5597 .notifier_call = kvmclock_cpu_notifier,
5598 .priority = -INT_MAX
5601 static void kvm_timer_init(void)
5603 int cpu;
5605 max_tsc_khz = tsc_khz;
5607 cpu_notifier_register_begin();
5608 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5609 #ifdef CONFIG_CPU_FREQ
5610 struct cpufreq_policy policy;
5611 memset(&policy, 0, sizeof(policy));
5612 cpu = get_cpu();
5613 cpufreq_get_policy(&policy, cpu);
5614 if (policy.cpuinfo.max_freq)
5615 max_tsc_khz = policy.cpuinfo.max_freq;
5616 put_cpu();
5617 #endif
5618 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5619 CPUFREQ_TRANSITION_NOTIFIER);
5621 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5622 for_each_online_cpu(cpu)
5623 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5625 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5626 cpu_notifier_register_done();
5630 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5632 int kvm_is_in_guest(void)
5634 return __this_cpu_read(current_vcpu) != NULL;
5637 static int kvm_is_user_mode(void)
5639 int user_mode = 3;
5641 if (__this_cpu_read(current_vcpu))
5642 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5644 return user_mode != 0;
5647 static unsigned long kvm_get_guest_ip(void)
5649 unsigned long ip = 0;
5651 if (__this_cpu_read(current_vcpu))
5652 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5654 return ip;
5657 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5658 .is_in_guest = kvm_is_in_guest,
5659 .is_user_mode = kvm_is_user_mode,
5660 .get_guest_ip = kvm_get_guest_ip,
5663 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5665 __this_cpu_write(current_vcpu, vcpu);
5667 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5669 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5671 __this_cpu_write(current_vcpu, NULL);
5673 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5675 static void kvm_set_mmio_spte_mask(void)
5677 u64 mask;
5678 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5681 * Set the reserved bits and the present bit of an paging-structure
5682 * entry to generate page fault with PFER.RSV = 1.
5684 /* Mask the reserved physical address bits. */
5685 mask = rsvd_bits(maxphyaddr, 51);
5687 /* Bit 62 is always reserved for 32bit host. */
5688 mask |= 0x3ull << 62;
5690 /* Set the present bit. */
5691 mask |= 1ull;
5693 #ifdef CONFIG_X86_64
5695 * If reserved bit is not supported, clear the present bit to disable
5696 * mmio page fault.
5698 if (maxphyaddr == 52)
5699 mask &= ~1ull;
5700 #endif
5702 kvm_mmu_set_mmio_spte_mask(mask);
5705 #ifdef CONFIG_X86_64
5706 static void pvclock_gtod_update_fn(struct work_struct *work)
5708 struct kvm *kvm;
5710 struct kvm_vcpu *vcpu;
5711 int i;
5713 spin_lock(&kvm_lock);
5714 list_for_each_entry(kvm, &vm_list, vm_list)
5715 kvm_for_each_vcpu(i, vcpu, kvm)
5716 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5717 atomic_set(&kvm_guest_has_master_clock, 0);
5718 spin_unlock(&kvm_lock);
5721 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5724 * Notification about pvclock gtod data update.
5726 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5727 void *priv)
5729 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5730 struct timekeeper *tk = priv;
5732 update_pvclock_gtod(tk);
5734 /* disable master clock if host does not trust, or does not
5735 * use, TSC clocksource
5737 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5738 atomic_read(&kvm_guest_has_master_clock) != 0)
5739 queue_work(system_long_wq, &pvclock_gtod_work);
5741 return 0;
5744 static struct notifier_block pvclock_gtod_notifier = {
5745 .notifier_call = pvclock_gtod_notify,
5747 #endif
5749 int kvm_arch_init(void *opaque)
5751 int r;
5752 struct kvm_x86_ops *ops = opaque;
5754 if (kvm_x86_ops) {
5755 printk(KERN_ERR "kvm: already loaded the other module\n");
5756 r = -EEXIST;
5757 goto out;
5760 if (!ops->cpu_has_kvm_support()) {
5761 printk(KERN_ERR "kvm: no hardware support\n");
5762 r = -EOPNOTSUPP;
5763 goto out;
5765 if (ops->disabled_by_bios()) {
5766 printk(KERN_ERR "kvm: disabled by bios\n");
5767 r = -EOPNOTSUPP;
5768 goto out;
5771 r = -ENOMEM;
5772 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5773 if (!shared_msrs) {
5774 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5775 goto out;
5778 r = kvm_mmu_module_init();
5779 if (r)
5780 goto out_free_percpu;
5782 kvm_set_mmio_spte_mask();
5784 kvm_x86_ops = ops;
5785 kvm_init_msr_list();
5787 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5788 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5790 kvm_timer_init();
5792 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5794 if (cpu_has_xsave)
5795 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5797 kvm_lapic_init();
5798 #ifdef CONFIG_X86_64
5799 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5800 #endif
5802 return 0;
5804 out_free_percpu:
5805 free_percpu(shared_msrs);
5806 out:
5807 return r;
5810 void kvm_arch_exit(void)
5812 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5814 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5815 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5816 CPUFREQ_TRANSITION_NOTIFIER);
5817 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5818 #ifdef CONFIG_X86_64
5819 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5820 #endif
5821 kvm_x86_ops = NULL;
5822 kvm_mmu_module_exit();
5823 free_percpu(shared_msrs);
5826 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5828 ++vcpu->stat.halt_exits;
5829 if (irqchip_in_kernel(vcpu->kvm)) {
5830 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5831 return 1;
5832 } else {
5833 vcpu->run->exit_reason = KVM_EXIT_HLT;
5834 return 0;
5837 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5839 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5841 u64 param, ingpa, outgpa, ret;
5842 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5843 bool fast, longmode;
5846 * hypercall generates UD from non zero cpl and real mode
5847 * per HYPER-V spec
5849 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5850 kvm_queue_exception(vcpu, UD_VECTOR);
5851 return 0;
5854 longmode = is_64_bit_mode(vcpu);
5856 if (!longmode) {
5857 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5858 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5859 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5860 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5861 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5862 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5864 #ifdef CONFIG_X86_64
5865 else {
5866 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5867 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5868 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5870 #endif
5872 code = param & 0xffff;
5873 fast = (param >> 16) & 0x1;
5874 rep_cnt = (param >> 32) & 0xfff;
5875 rep_idx = (param >> 48) & 0xfff;
5877 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5879 switch (code) {
5880 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5881 kvm_vcpu_on_spin(vcpu);
5882 break;
5883 default:
5884 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5885 break;
5888 ret = res | (((u64)rep_done & 0xfff) << 32);
5889 if (longmode) {
5890 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5891 } else {
5892 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5893 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5896 return 1;
5900 * kvm_pv_kick_cpu_op: Kick a vcpu.
5902 * @apicid - apicid of vcpu to be kicked.
5904 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5906 struct kvm_lapic_irq lapic_irq;
5908 lapic_irq.shorthand = 0;
5909 lapic_irq.dest_mode = 0;
5910 lapic_irq.dest_id = apicid;
5912 lapic_irq.delivery_mode = APIC_DM_REMRD;
5913 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5916 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5918 unsigned long nr, a0, a1, a2, a3, ret;
5919 int op_64_bit, r = 1;
5921 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5922 return kvm_hv_hypercall(vcpu);
5924 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5925 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5926 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5927 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5928 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5930 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5932 op_64_bit = is_64_bit_mode(vcpu);
5933 if (!op_64_bit) {
5934 nr &= 0xFFFFFFFF;
5935 a0 &= 0xFFFFFFFF;
5936 a1 &= 0xFFFFFFFF;
5937 a2 &= 0xFFFFFFFF;
5938 a3 &= 0xFFFFFFFF;
5941 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5942 ret = -KVM_EPERM;
5943 goto out;
5946 switch (nr) {
5947 case KVM_HC_VAPIC_POLL_IRQ:
5948 ret = 0;
5949 break;
5950 case KVM_HC_KICK_CPU:
5951 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5952 ret = 0;
5953 break;
5954 default:
5955 ret = -KVM_ENOSYS;
5956 break;
5958 out:
5959 if (!op_64_bit)
5960 ret = (u32)ret;
5961 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5962 ++vcpu->stat.hypercalls;
5963 return r;
5965 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5967 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5969 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5970 char instruction[3];
5971 unsigned long rip = kvm_rip_read(vcpu);
5973 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5975 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5979 * Check if userspace requested an interrupt window, and that the
5980 * interrupt window is open.
5982 * No need to exit to userspace if we already have an interrupt queued.
5984 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5986 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5987 vcpu->run->request_interrupt_window &&
5988 kvm_arch_interrupt_allowed(vcpu));
5991 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5993 struct kvm_run *kvm_run = vcpu->run;
5995 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5996 kvm_run->cr8 = kvm_get_cr8(vcpu);
5997 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5998 if (irqchip_in_kernel(vcpu->kvm))
5999 kvm_run->ready_for_interrupt_injection = 1;
6000 else
6001 kvm_run->ready_for_interrupt_injection =
6002 kvm_arch_interrupt_allowed(vcpu) &&
6003 !kvm_cpu_has_interrupt(vcpu) &&
6004 !kvm_event_needs_reinjection(vcpu);
6007 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6009 int max_irr, tpr;
6011 if (!kvm_x86_ops->update_cr8_intercept)
6012 return;
6014 if (!vcpu->arch.apic)
6015 return;
6017 if (!vcpu->arch.apic->vapic_addr)
6018 max_irr = kvm_lapic_find_highest_irr(vcpu);
6019 else
6020 max_irr = -1;
6022 if (max_irr != -1)
6023 max_irr >>= 4;
6025 tpr = kvm_lapic_get_cr8(vcpu);
6027 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6030 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6032 int r;
6034 /* try to reinject previous events if any */
6035 if (vcpu->arch.exception.pending) {
6036 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6037 vcpu->arch.exception.has_error_code,
6038 vcpu->arch.exception.error_code);
6040 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6041 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6042 X86_EFLAGS_RF);
6044 if (vcpu->arch.exception.nr == DB_VECTOR &&
6045 (vcpu->arch.dr7 & DR7_GD)) {
6046 vcpu->arch.dr7 &= ~DR7_GD;
6047 kvm_update_dr7(vcpu);
6050 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6051 vcpu->arch.exception.has_error_code,
6052 vcpu->arch.exception.error_code,
6053 vcpu->arch.exception.reinject);
6054 return 0;
6057 if (vcpu->arch.nmi_injected) {
6058 kvm_x86_ops->set_nmi(vcpu);
6059 return 0;
6062 if (vcpu->arch.interrupt.pending) {
6063 kvm_x86_ops->set_irq(vcpu);
6064 return 0;
6067 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6068 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6069 if (r != 0)
6070 return r;
6073 /* try to inject new event if pending */
6074 if (vcpu->arch.nmi_pending) {
6075 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6076 --vcpu->arch.nmi_pending;
6077 vcpu->arch.nmi_injected = true;
6078 kvm_x86_ops->set_nmi(vcpu);
6080 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6082 * Because interrupts can be injected asynchronously, we are
6083 * calling check_nested_events again here to avoid a race condition.
6084 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6085 * proposal and current concerns. Perhaps we should be setting
6086 * KVM_REQ_EVENT only on certain events and not unconditionally?
6088 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6089 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6090 if (r != 0)
6091 return r;
6093 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6094 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6095 false);
6096 kvm_x86_ops->set_irq(vcpu);
6099 return 0;
6102 static void process_nmi(struct kvm_vcpu *vcpu)
6104 unsigned limit = 2;
6107 * x86 is limited to one NMI running, and one NMI pending after it.
6108 * If an NMI is already in progress, limit further NMIs to just one.
6109 * Otherwise, allow two (and we'll inject the first one immediately).
6111 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6112 limit = 1;
6114 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6115 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6116 kvm_make_request(KVM_REQ_EVENT, vcpu);
6119 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6121 u64 eoi_exit_bitmap[4];
6122 u32 tmr[8];
6124 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6125 return;
6127 memset(eoi_exit_bitmap, 0, 32);
6128 memset(tmr, 0, 32);
6130 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6131 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6132 kvm_apic_update_tmr(vcpu, tmr);
6135 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6137 ++vcpu->stat.tlb_flush;
6138 kvm_x86_ops->tlb_flush(vcpu);
6141 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6143 struct page *page = NULL;
6145 if (!irqchip_in_kernel(vcpu->kvm))
6146 return;
6148 if (!kvm_x86_ops->set_apic_access_page_addr)
6149 return;
6151 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6152 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6155 * Do not pin apic access page in memory, the MMU notifier
6156 * will call us again if it is migrated or swapped out.
6158 put_page(page);
6160 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6162 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6163 unsigned long address)
6166 * The physical address of apic access page is stored in the VMCS.
6167 * Update it when it becomes invalid.
6169 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6170 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6174 * Returns 1 to let __vcpu_run() continue the guest execution loop without
6175 * exiting to the userspace. Otherwise, the value will be returned to the
6176 * userspace.
6178 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6180 int r;
6181 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6182 vcpu->run->request_interrupt_window;
6183 bool req_immediate_exit = false;
6185 if (vcpu->requests) {
6186 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6187 kvm_mmu_unload(vcpu);
6188 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6189 __kvm_migrate_timers(vcpu);
6190 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6191 kvm_gen_update_masterclock(vcpu->kvm);
6192 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6193 kvm_gen_kvmclock_update(vcpu);
6194 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6195 r = kvm_guest_time_update(vcpu);
6196 if (unlikely(r))
6197 goto out;
6199 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6200 kvm_mmu_sync_roots(vcpu);
6201 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6202 kvm_vcpu_flush_tlb(vcpu);
6203 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6204 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6205 r = 0;
6206 goto out;
6208 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6209 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6210 r = 0;
6211 goto out;
6213 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6214 vcpu->fpu_active = 0;
6215 kvm_x86_ops->fpu_deactivate(vcpu);
6217 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6218 /* Page is swapped out. Do synthetic halt */
6219 vcpu->arch.apf.halted = true;
6220 r = 1;
6221 goto out;
6223 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6224 record_steal_time(vcpu);
6225 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6226 process_nmi(vcpu);
6227 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6228 kvm_handle_pmu_event(vcpu);
6229 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6230 kvm_deliver_pmi(vcpu);
6231 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6232 vcpu_scan_ioapic(vcpu);
6233 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6234 kvm_vcpu_reload_apic_access_page(vcpu);
6237 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6238 kvm_apic_accept_events(vcpu);
6239 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6240 r = 1;
6241 goto out;
6244 if (inject_pending_event(vcpu, req_int_win) != 0)
6245 req_immediate_exit = true;
6246 /* enable NMI/IRQ window open exits if needed */
6247 else if (vcpu->arch.nmi_pending)
6248 kvm_x86_ops->enable_nmi_window(vcpu);
6249 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6250 kvm_x86_ops->enable_irq_window(vcpu);
6252 if (kvm_lapic_enabled(vcpu)) {
6254 * Update architecture specific hints for APIC
6255 * virtual interrupt delivery.
6257 if (kvm_x86_ops->hwapic_irr_update)
6258 kvm_x86_ops->hwapic_irr_update(vcpu,
6259 kvm_lapic_find_highest_irr(vcpu));
6260 update_cr8_intercept(vcpu);
6261 kvm_lapic_sync_to_vapic(vcpu);
6265 r = kvm_mmu_reload(vcpu);
6266 if (unlikely(r)) {
6267 goto cancel_injection;
6270 preempt_disable();
6272 kvm_x86_ops->prepare_guest_switch(vcpu);
6273 if (vcpu->fpu_active)
6274 kvm_load_guest_fpu(vcpu);
6275 kvm_load_guest_xcr0(vcpu);
6277 vcpu->mode = IN_GUEST_MODE;
6279 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6281 /* We should set ->mode before check ->requests,
6282 * see the comment in make_all_cpus_request.
6284 smp_mb__after_srcu_read_unlock();
6286 local_irq_disable();
6288 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6289 || need_resched() || signal_pending(current)) {
6290 vcpu->mode = OUTSIDE_GUEST_MODE;
6291 smp_wmb();
6292 local_irq_enable();
6293 preempt_enable();
6294 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6295 r = 1;
6296 goto cancel_injection;
6299 if (req_immediate_exit)
6300 smp_send_reschedule(vcpu->cpu);
6302 kvm_guest_enter();
6304 if (unlikely(vcpu->arch.switch_db_regs)) {
6305 set_debugreg(0, 7);
6306 set_debugreg(vcpu->arch.eff_db[0], 0);
6307 set_debugreg(vcpu->arch.eff_db[1], 1);
6308 set_debugreg(vcpu->arch.eff_db[2], 2);
6309 set_debugreg(vcpu->arch.eff_db[3], 3);
6310 set_debugreg(vcpu->arch.dr6, 6);
6313 trace_kvm_entry(vcpu->vcpu_id);
6314 kvm_x86_ops->run(vcpu);
6317 * Do this here before restoring debug registers on the host. And
6318 * since we do this before handling the vmexit, a DR access vmexit
6319 * can (a) read the correct value of the debug registers, (b) set
6320 * KVM_DEBUGREG_WONT_EXIT again.
6322 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6323 int i;
6325 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6326 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6327 for (i = 0; i < KVM_NR_DB_REGS; i++)
6328 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6332 * If the guest has used debug registers, at least dr7
6333 * will be disabled while returning to the host.
6334 * If we don't have active breakpoints in the host, we don't
6335 * care about the messed up debug address registers. But if
6336 * we have some of them active, restore the old state.
6338 if (hw_breakpoint_active())
6339 hw_breakpoint_restore();
6341 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6342 native_read_tsc());
6344 vcpu->mode = OUTSIDE_GUEST_MODE;
6345 smp_wmb();
6347 /* Interrupt is enabled by handle_external_intr() */
6348 kvm_x86_ops->handle_external_intr(vcpu);
6350 ++vcpu->stat.exits;
6353 * We must have an instruction between local_irq_enable() and
6354 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6355 * the interrupt shadow. The stat.exits increment will do nicely.
6356 * But we need to prevent reordering, hence this barrier():
6358 barrier();
6360 kvm_guest_exit();
6362 preempt_enable();
6364 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6367 * Profile KVM exit RIPs:
6369 if (unlikely(prof_on == KVM_PROFILING)) {
6370 unsigned long rip = kvm_rip_read(vcpu);
6371 profile_hit(KVM_PROFILING, (void *)rip);
6374 if (unlikely(vcpu->arch.tsc_always_catchup))
6375 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6377 if (vcpu->arch.apic_attention)
6378 kvm_lapic_sync_from_vapic(vcpu);
6380 r = kvm_x86_ops->handle_exit(vcpu);
6381 return r;
6383 cancel_injection:
6384 kvm_x86_ops->cancel_injection(vcpu);
6385 if (unlikely(vcpu->arch.apic_attention))
6386 kvm_lapic_sync_from_vapic(vcpu);
6387 out:
6388 return r;
6392 static int __vcpu_run(struct kvm_vcpu *vcpu)
6394 int r;
6395 struct kvm *kvm = vcpu->kvm;
6397 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6399 r = 1;
6400 while (r > 0) {
6401 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6402 !vcpu->arch.apf.halted)
6403 r = vcpu_enter_guest(vcpu);
6404 else {
6405 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6406 kvm_vcpu_block(vcpu);
6407 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6408 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6409 kvm_apic_accept_events(vcpu);
6410 switch(vcpu->arch.mp_state) {
6411 case KVM_MP_STATE_HALTED:
6412 vcpu->arch.pv.pv_unhalted = false;
6413 vcpu->arch.mp_state =
6414 KVM_MP_STATE_RUNNABLE;
6415 case KVM_MP_STATE_RUNNABLE:
6416 vcpu->arch.apf.halted = false;
6417 break;
6418 case KVM_MP_STATE_INIT_RECEIVED:
6419 break;
6420 default:
6421 r = -EINTR;
6422 break;
6427 if (r <= 0)
6428 break;
6430 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6431 if (kvm_cpu_has_pending_timer(vcpu))
6432 kvm_inject_pending_timer_irqs(vcpu);
6434 if (dm_request_for_irq_injection(vcpu)) {
6435 r = -EINTR;
6436 vcpu->run->exit_reason = KVM_EXIT_INTR;
6437 ++vcpu->stat.request_irq_exits;
6440 kvm_check_async_pf_completion(vcpu);
6442 if (signal_pending(current)) {
6443 r = -EINTR;
6444 vcpu->run->exit_reason = KVM_EXIT_INTR;
6445 ++vcpu->stat.signal_exits;
6447 if (need_resched()) {
6448 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6449 cond_resched();
6450 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6454 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6456 return r;
6459 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6461 int r;
6462 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6463 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6464 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6465 if (r != EMULATE_DONE)
6466 return 0;
6467 return 1;
6470 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6472 BUG_ON(!vcpu->arch.pio.count);
6474 return complete_emulated_io(vcpu);
6478 * Implements the following, as a state machine:
6480 * read:
6481 * for each fragment
6482 * for each mmio piece in the fragment
6483 * write gpa, len
6484 * exit
6485 * copy data
6486 * execute insn
6488 * write:
6489 * for each fragment
6490 * for each mmio piece in the fragment
6491 * write gpa, len
6492 * copy data
6493 * exit
6495 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6497 struct kvm_run *run = vcpu->run;
6498 struct kvm_mmio_fragment *frag;
6499 unsigned len;
6501 BUG_ON(!vcpu->mmio_needed);
6503 /* Complete previous fragment */
6504 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6505 len = min(8u, frag->len);
6506 if (!vcpu->mmio_is_write)
6507 memcpy(frag->data, run->mmio.data, len);
6509 if (frag->len <= 8) {
6510 /* Switch to the next fragment. */
6511 frag++;
6512 vcpu->mmio_cur_fragment++;
6513 } else {
6514 /* Go forward to the next mmio piece. */
6515 frag->data += len;
6516 frag->gpa += len;
6517 frag->len -= len;
6520 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6521 vcpu->mmio_needed = 0;
6523 /* FIXME: return into emulator if single-stepping. */
6524 if (vcpu->mmio_is_write)
6525 return 1;
6526 vcpu->mmio_read_completed = 1;
6527 return complete_emulated_io(vcpu);
6530 run->exit_reason = KVM_EXIT_MMIO;
6531 run->mmio.phys_addr = frag->gpa;
6532 if (vcpu->mmio_is_write)
6533 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6534 run->mmio.len = min(8u, frag->len);
6535 run->mmio.is_write = vcpu->mmio_is_write;
6536 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6537 return 0;
6541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6543 int r;
6544 sigset_t sigsaved;
6546 if (!tsk_used_math(current) && init_fpu(current))
6547 return -ENOMEM;
6549 if (vcpu->sigset_active)
6550 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6552 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6553 kvm_vcpu_block(vcpu);
6554 kvm_apic_accept_events(vcpu);
6555 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6556 r = -EAGAIN;
6557 goto out;
6560 /* re-sync apic's tpr */
6561 if (!irqchip_in_kernel(vcpu->kvm)) {
6562 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6563 r = -EINVAL;
6564 goto out;
6568 if (unlikely(vcpu->arch.complete_userspace_io)) {
6569 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6570 vcpu->arch.complete_userspace_io = NULL;
6571 r = cui(vcpu);
6572 if (r <= 0)
6573 goto out;
6574 } else
6575 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6577 r = __vcpu_run(vcpu);
6579 out:
6580 post_kvm_run_save(vcpu);
6581 if (vcpu->sigset_active)
6582 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6584 return r;
6587 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6589 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6591 * We are here if userspace calls get_regs() in the middle of
6592 * instruction emulation. Registers state needs to be copied
6593 * back from emulation context to vcpu. Userspace shouldn't do
6594 * that usually, but some bad designed PV devices (vmware
6595 * backdoor interface) need this to work
6597 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6598 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6600 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6601 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6602 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6603 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6604 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6605 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6606 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6607 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6608 #ifdef CONFIG_X86_64
6609 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6610 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6611 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6612 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6613 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6614 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6615 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6616 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6617 #endif
6619 regs->rip = kvm_rip_read(vcpu);
6620 regs->rflags = kvm_get_rflags(vcpu);
6622 return 0;
6625 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6627 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6628 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6630 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6631 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6632 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6633 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6634 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6635 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6636 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6637 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6638 #ifdef CONFIG_X86_64
6639 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6640 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6641 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6642 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6643 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6644 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6645 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6646 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6647 #endif
6649 kvm_rip_write(vcpu, regs->rip);
6650 kvm_set_rflags(vcpu, regs->rflags);
6652 vcpu->arch.exception.pending = false;
6654 kvm_make_request(KVM_REQ_EVENT, vcpu);
6656 return 0;
6659 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6661 struct kvm_segment cs;
6663 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6664 *db = cs.db;
6665 *l = cs.l;
6667 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6669 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6670 struct kvm_sregs *sregs)
6672 struct desc_ptr dt;
6674 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6675 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6676 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6677 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6678 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6679 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6681 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6682 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6684 kvm_x86_ops->get_idt(vcpu, &dt);
6685 sregs->idt.limit = dt.size;
6686 sregs->idt.base = dt.address;
6687 kvm_x86_ops->get_gdt(vcpu, &dt);
6688 sregs->gdt.limit = dt.size;
6689 sregs->gdt.base = dt.address;
6691 sregs->cr0 = kvm_read_cr0(vcpu);
6692 sregs->cr2 = vcpu->arch.cr2;
6693 sregs->cr3 = kvm_read_cr3(vcpu);
6694 sregs->cr4 = kvm_read_cr4(vcpu);
6695 sregs->cr8 = kvm_get_cr8(vcpu);
6696 sregs->efer = vcpu->arch.efer;
6697 sregs->apic_base = kvm_get_apic_base(vcpu);
6699 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6701 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6702 set_bit(vcpu->arch.interrupt.nr,
6703 (unsigned long *)sregs->interrupt_bitmap);
6705 return 0;
6708 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6709 struct kvm_mp_state *mp_state)
6711 kvm_apic_accept_events(vcpu);
6712 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6713 vcpu->arch.pv.pv_unhalted)
6714 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6715 else
6716 mp_state->mp_state = vcpu->arch.mp_state;
6718 return 0;
6721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6722 struct kvm_mp_state *mp_state)
6724 if (!kvm_vcpu_has_lapic(vcpu) &&
6725 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6726 return -EINVAL;
6728 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6729 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6730 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6731 } else
6732 vcpu->arch.mp_state = mp_state->mp_state;
6733 kvm_make_request(KVM_REQ_EVENT, vcpu);
6734 return 0;
6737 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6738 int reason, bool has_error_code, u32 error_code)
6740 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6741 int ret;
6743 init_emulate_ctxt(vcpu);
6745 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6746 has_error_code, error_code);
6748 if (ret)
6749 return EMULATE_FAIL;
6751 kvm_rip_write(vcpu, ctxt->eip);
6752 kvm_set_rflags(vcpu, ctxt->eflags);
6753 kvm_make_request(KVM_REQ_EVENT, vcpu);
6754 return EMULATE_DONE;
6756 EXPORT_SYMBOL_GPL(kvm_task_switch);
6758 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6759 struct kvm_sregs *sregs)
6761 struct msr_data apic_base_msr;
6762 int mmu_reset_needed = 0;
6763 int pending_vec, max_bits, idx;
6764 struct desc_ptr dt;
6766 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6767 return -EINVAL;
6769 dt.size = sregs->idt.limit;
6770 dt.address = sregs->idt.base;
6771 kvm_x86_ops->set_idt(vcpu, &dt);
6772 dt.size = sregs->gdt.limit;
6773 dt.address = sregs->gdt.base;
6774 kvm_x86_ops->set_gdt(vcpu, &dt);
6776 vcpu->arch.cr2 = sregs->cr2;
6777 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6778 vcpu->arch.cr3 = sregs->cr3;
6779 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6781 kvm_set_cr8(vcpu, sregs->cr8);
6783 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6784 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6785 apic_base_msr.data = sregs->apic_base;
6786 apic_base_msr.host_initiated = true;
6787 kvm_set_apic_base(vcpu, &apic_base_msr);
6789 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6790 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6791 vcpu->arch.cr0 = sregs->cr0;
6793 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6794 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6795 if (sregs->cr4 & X86_CR4_OSXSAVE)
6796 kvm_update_cpuid(vcpu);
6798 idx = srcu_read_lock(&vcpu->kvm->srcu);
6799 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6800 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6801 mmu_reset_needed = 1;
6803 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6805 if (mmu_reset_needed)
6806 kvm_mmu_reset_context(vcpu);
6808 max_bits = KVM_NR_INTERRUPTS;
6809 pending_vec = find_first_bit(
6810 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6811 if (pending_vec < max_bits) {
6812 kvm_queue_interrupt(vcpu, pending_vec, false);
6813 pr_debug("Set back pending irq %d\n", pending_vec);
6816 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6817 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6818 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6819 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6820 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6821 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6823 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6824 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6826 update_cr8_intercept(vcpu);
6828 /* Older userspace won't unhalt the vcpu on reset. */
6829 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6830 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6831 !is_protmode(vcpu))
6832 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6834 kvm_make_request(KVM_REQ_EVENT, vcpu);
6836 return 0;
6839 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6840 struct kvm_guest_debug *dbg)
6842 unsigned long rflags;
6843 int i, r;
6845 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6846 r = -EBUSY;
6847 if (vcpu->arch.exception.pending)
6848 goto out;
6849 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6850 kvm_queue_exception(vcpu, DB_VECTOR);
6851 else
6852 kvm_queue_exception(vcpu, BP_VECTOR);
6856 * Read rflags as long as potentially injected trace flags are still
6857 * filtered out.
6859 rflags = kvm_get_rflags(vcpu);
6861 vcpu->guest_debug = dbg->control;
6862 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6863 vcpu->guest_debug = 0;
6865 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6866 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6867 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6868 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6869 } else {
6870 for (i = 0; i < KVM_NR_DB_REGS; i++)
6871 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6873 kvm_update_dr7(vcpu);
6875 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6876 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6877 get_segment_base(vcpu, VCPU_SREG_CS);
6880 * Trigger an rflags update that will inject or remove the trace
6881 * flags.
6883 kvm_set_rflags(vcpu, rflags);
6885 kvm_x86_ops->update_db_bp_intercept(vcpu);
6887 r = 0;
6889 out:
6891 return r;
6895 * Translate a guest virtual address to a guest physical address.
6897 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6898 struct kvm_translation *tr)
6900 unsigned long vaddr = tr->linear_address;
6901 gpa_t gpa;
6902 int idx;
6904 idx = srcu_read_lock(&vcpu->kvm->srcu);
6905 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6906 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6907 tr->physical_address = gpa;
6908 tr->valid = gpa != UNMAPPED_GVA;
6909 tr->writeable = 1;
6910 tr->usermode = 0;
6912 return 0;
6915 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6917 struct i387_fxsave_struct *fxsave =
6918 &vcpu->arch.guest_fpu.state->fxsave;
6920 memcpy(fpu->fpr, fxsave->st_space, 128);
6921 fpu->fcw = fxsave->cwd;
6922 fpu->fsw = fxsave->swd;
6923 fpu->ftwx = fxsave->twd;
6924 fpu->last_opcode = fxsave->fop;
6925 fpu->last_ip = fxsave->rip;
6926 fpu->last_dp = fxsave->rdp;
6927 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6929 return 0;
6932 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6934 struct i387_fxsave_struct *fxsave =
6935 &vcpu->arch.guest_fpu.state->fxsave;
6937 memcpy(fxsave->st_space, fpu->fpr, 128);
6938 fxsave->cwd = fpu->fcw;
6939 fxsave->swd = fpu->fsw;
6940 fxsave->twd = fpu->ftwx;
6941 fxsave->fop = fpu->last_opcode;
6942 fxsave->rip = fpu->last_ip;
6943 fxsave->rdp = fpu->last_dp;
6944 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6946 return 0;
6949 int fx_init(struct kvm_vcpu *vcpu)
6951 int err;
6953 err = fpu_alloc(&vcpu->arch.guest_fpu);
6954 if (err)
6955 return err;
6957 fpu_finit(&vcpu->arch.guest_fpu);
6958 if (cpu_has_xsaves)
6959 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6960 host_xcr0 | XSTATE_COMPACTION_ENABLED;
6963 * Ensure guest xcr0 is valid for loading
6965 vcpu->arch.xcr0 = XSTATE_FP;
6967 vcpu->arch.cr0 |= X86_CR0_ET;
6969 return 0;
6971 EXPORT_SYMBOL_GPL(fx_init);
6973 static void fx_free(struct kvm_vcpu *vcpu)
6975 fpu_free(&vcpu->arch.guest_fpu);
6978 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6980 if (vcpu->guest_fpu_loaded)
6981 return;
6984 * Restore all possible states in the guest,
6985 * and assume host would use all available bits.
6986 * Guest xcr0 would be loaded later.
6988 kvm_put_guest_xcr0(vcpu);
6989 vcpu->guest_fpu_loaded = 1;
6990 __kernel_fpu_begin();
6991 fpu_restore_checking(&vcpu->arch.guest_fpu);
6992 trace_kvm_fpu(1);
6995 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6997 kvm_put_guest_xcr0(vcpu);
6999 if (!vcpu->guest_fpu_loaded)
7000 return;
7002 vcpu->guest_fpu_loaded = 0;
7003 fpu_save_init(&vcpu->arch.guest_fpu);
7004 __kernel_fpu_end();
7005 ++vcpu->stat.fpu_reload;
7006 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7007 trace_kvm_fpu(0);
7010 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7012 kvmclock_reset(vcpu);
7014 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7015 fx_free(vcpu);
7016 kvm_x86_ops->vcpu_free(vcpu);
7019 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7020 unsigned int id)
7022 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7023 printk_once(KERN_WARNING
7024 "kvm: SMP vm created on host with unstable TSC; "
7025 "guest TSC will not be reliable\n");
7026 return kvm_x86_ops->vcpu_create(kvm, id);
7029 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7031 int r;
7033 vcpu->arch.mtrr_state.have_fixed = 1;
7034 r = vcpu_load(vcpu);
7035 if (r)
7036 return r;
7037 kvm_vcpu_reset(vcpu);
7038 kvm_mmu_setup(vcpu);
7039 vcpu_put(vcpu);
7041 return r;
7044 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7046 int r;
7047 struct msr_data msr;
7048 struct kvm *kvm = vcpu->kvm;
7050 r = vcpu_load(vcpu);
7051 if (r)
7052 return r;
7053 msr.data = 0x0;
7054 msr.index = MSR_IA32_TSC;
7055 msr.host_initiated = true;
7056 kvm_write_tsc(vcpu, &msr);
7057 vcpu_put(vcpu);
7059 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7060 KVMCLOCK_SYNC_PERIOD);
7062 return r;
7065 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7067 int r;
7068 vcpu->arch.apf.msr_val = 0;
7070 r = vcpu_load(vcpu);
7071 BUG_ON(r);
7072 kvm_mmu_unload(vcpu);
7073 vcpu_put(vcpu);
7075 fx_free(vcpu);
7076 kvm_x86_ops->vcpu_free(vcpu);
7079 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7081 atomic_set(&vcpu->arch.nmi_queued, 0);
7082 vcpu->arch.nmi_pending = 0;
7083 vcpu->arch.nmi_injected = false;
7084 kvm_clear_interrupt_queue(vcpu);
7085 kvm_clear_exception_queue(vcpu);
7087 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7088 vcpu->arch.dr6 = DR6_INIT;
7089 kvm_update_dr6(vcpu);
7090 vcpu->arch.dr7 = DR7_FIXED_1;
7091 kvm_update_dr7(vcpu);
7093 kvm_make_request(KVM_REQ_EVENT, vcpu);
7094 vcpu->arch.apf.msr_val = 0;
7095 vcpu->arch.st.msr_val = 0;
7097 kvmclock_reset(vcpu);
7099 kvm_clear_async_pf_completion_queue(vcpu);
7100 kvm_async_pf_hash_reset(vcpu);
7101 vcpu->arch.apf.halted = false;
7103 kvm_pmu_reset(vcpu);
7105 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7106 vcpu->arch.regs_avail = ~0;
7107 vcpu->arch.regs_dirty = ~0;
7109 kvm_x86_ops->vcpu_reset(vcpu);
7112 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7114 struct kvm_segment cs;
7116 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7117 cs.selector = vector << 8;
7118 cs.base = vector << 12;
7119 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7120 kvm_rip_write(vcpu, 0);
7123 int kvm_arch_hardware_enable(void)
7125 struct kvm *kvm;
7126 struct kvm_vcpu *vcpu;
7127 int i;
7128 int ret;
7129 u64 local_tsc;
7130 u64 max_tsc = 0;
7131 bool stable, backwards_tsc = false;
7133 kvm_shared_msr_cpu_online();
7134 ret = kvm_x86_ops->hardware_enable();
7135 if (ret != 0)
7136 return ret;
7138 local_tsc = native_read_tsc();
7139 stable = !check_tsc_unstable();
7140 list_for_each_entry(kvm, &vm_list, vm_list) {
7141 kvm_for_each_vcpu(i, vcpu, kvm) {
7142 if (!stable && vcpu->cpu == smp_processor_id())
7143 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7144 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7145 backwards_tsc = true;
7146 if (vcpu->arch.last_host_tsc > max_tsc)
7147 max_tsc = vcpu->arch.last_host_tsc;
7153 * Sometimes, even reliable TSCs go backwards. This happens on
7154 * platforms that reset TSC during suspend or hibernate actions, but
7155 * maintain synchronization. We must compensate. Fortunately, we can
7156 * detect that condition here, which happens early in CPU bringup,
7157 * before any KVM threads can be running. Unfortunately, we can't
7158 * bring the TSCs fully up to date with real time, as we aren't yet far
7159 * enough into CPU bringup that we know how much real time has actually
7160 * elapsed; our helper function, get_kernel_ns() will be using boot
7161 * variables that haven't been updated yet.
7163 * So we simply find the maximum observed TSC above, then record the
7164 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7165 * the adjustment will be applied. Note that we accumulate
7166 * adjustments, in case multiple suspend cycles happen before some VCPU
7167 * gets a chance to run again. In the event that no KVM threads get a
7168 * chance to run, we will miss the entire elapsed period, as we'll have
7169 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7170 * loose cycle time. This isn't too big a deal, since the loss will be
7171 * uniform across all VCPUs (not to mention the scenario is extremely
7172 * unlikely). It is possible that a second hibernate recovery happens
7173 * much faster than a first, causing the observed TSC here to be
7174 * smaller; this would require additional padding adjustment, which is
7175 * why we set last_host_tsc to the local tsc observed here.
7177 * N.B. - this code below runs only on platforms with reliable TSC,
7178 * as that is the only way backwards_tsc is set above. Also note
7179 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7180 * have the same delta_cyc adjustment applied if backwards_tsc
7181 * is detected. Note further, this adjustment is only done once,
7182 * as we reset last_host_tsc on all VCPUs to stop this from being
7183 * called multiple times (one for each physical CPU bringup).
7185 * Platforms with unreliable TSCs don't have to deal with this, they
7186 * will be compensated by the logic in vcpu_load, which sets the TSC to
7187 * catchup mode. This will catchup all VCPUs to real time, but cannot
7188 * guarantee that they stay in perfect synchronization.
7190 if (backwards_tsc) {
7191 u64 delta_cyc = max_tsc - local_tsc;
7192 backwards_tsc_observed = true;
7193 list_for_each_entry(kvm, &vm_list, vm_list) {
7194 kvm_for_each_vcpu(i, vcpu, kvm) {
7195 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7196 vcpu->arch.last_host_tsc = local_tsc;
7197 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7201 * We have to disable TSC offset matching.. if you were
7202 * booting a VM while issuing an S4 host suspend....
7203 * you may have some problem. Solving this issue is
7204 * left as an exercise to the reader.
7206 kvm->arch.last_tsc_nsec = 0;
7207 kvm->arch.last_tsc_write = 0;
7211 return 0;
7214 void kvm_arch_hardware_disable(void)
7216 kvm_x86_ops->hardware_disable();
7217 drop_user_return_notifiers();
7220 int kvm_arch_hardware_setup(void)
7222 return kvm_x86_ops->hardware_setup();
7225 void kvm_arch_hardware_unsetup(void)
7227 kvm_x86_ops->hardware_unsetup();
7230 void kvm_arch_check_processor_compat(void *rtn)
7232 kvm_x86_ops->check_processor_compatibility(rtn);
7235 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7237 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7240 struct static_key kvm_no_apic_vcpu __read_mostly;
7242 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7244 struct page *page;
7245 struct kvm *kvm;
7246 int r;
7248 BUG_ON(vcpu->kvm == NULL);
7249 kvm = vcpu->kvm;
7251 vcpu->arch.pv.pv_unhalted = false;
7252 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7253 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7254 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7255 else
7256 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7258 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7259 if (!page) {
7260 r = -ENOMEM;
7261 goto fail;
7263 vcpu->arch.pio_data = page_address(page);
7265 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7267 r = kvm_mmu_create(vcpu);
7268 if (r < 0)
7269 goto fail_free_pio_data;
7271 if (irqchip_in_kernel(kvm)) {
7272 r = kvm_create_lapic(vcpu);
7273 if (r < 0)
7274 goto fail_mmu_destroy;
7275 } else
7276 static_key_slow_inc(&kvm_no_apic_vcpu);
7278 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7279 GFP_KERNEL);
7280 if (!vcpu->arch.mce_banks) {
7281 r = -ENOMEM;
7282 goto fail_free_lapic;
7284 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7286 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7287 r = -ENOMEM;
7288 goto fail_free_mce_banks;
7291 r = fx_init(vcpu);
7292 if (r)
7293 goto fail_free_wbinvd_dirty_mask;
7295 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7296 vcpu->arch.pv_time_enabled = false;
7298 vcpu->arch.guest_supported_xcr0 = 0;
7299 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7301 kvm_async_pf_hash_reset(vcpu);
7302 kvm_pmu_init(vcpu);
7304 return 0;
7305 fail_free_wbinvd_dirty_mask:
7306 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7307 fail_free_mce_banks:
7308 kfree(vcpu->arch.mce_banks);
7309 fail_free_lapic:
7310 kvm_free_lapic(vcpu);
7311 fail_mmu_destroy:
7312 kvm_mmu_destroy(vcpu);
7313 fail_free_pio_data:
7314 free_page((unsigned long)vcpu->arch.pio_data);
7315 fail:
7316 return r;
7319 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7321 int idx;
7323 kvm_pmu_destroy(vcpu);
7324 kfree(vcpu->arch.mce_banks);
7325 kvm_free_lapic(vcpu);
7326 idx = srcu_read_lock(&vcpu->kvm->srcu);
7327 kvm_mmu_destroy(vcpu);
7328 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7329 free_page((unsigned long)vcpu->arch.pio_data);
7330 if (!irqchip_in_kernel(vcpu->kvm))
7331 static_key_slow_dec(&kvm_no_apic_vcpu);
7334 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7336 kvm_x86_ops->sched_in(vcpu, cpu);
7339 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7341 if (type)
7342 return -EINVAL;
7344 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7345 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7346 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7347 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7348 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7350 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7351 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7352 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7353 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7354 &kvm->arch.irq_sources_bitmap);
7356 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7357 mutex_init(&kvm->arch.apic_map_lock);
7358 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7360 pvclock_update_vm_gtod_copy(kvm);
7362 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7363 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7365 return 0;
7368 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7370 int r;
7371 r = vcpu_load(vcpu);
7372 BUG_ON(r);
7373 kvm_mmu_unload(vcpu);
7374 vcpu_put(vcpu);
7377 static void kvm_free_vcpus(struct kvm *kvm)
7379 unsigned int i;
7380 struct kvm_vcpu *vcpu;
7383 * Unpin any mmu pages first.
7385 kvm_for_each_vcpu(i, vcpu, kvm) {
7386 kvm_clear_async_pf_completion_queue(vcpu);
7387 kvm_unload_vcpu_mmu(vcpu);
7389 kvm_for_each_vcpu(i, vcpu, kvm)
7390 kvm_arch_vcpu_free(vcpu);
7392 mutex_lock(&kvm->lock);
7393 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7394 kvm->vcpus[i] = NULL;
7396 atomic_set(&kvm->online_vcpus, 0);
7397 mutex_unlock(&kvm->lock);
7400 void kvm_arch_sync_events(struct kvm *kvm)
7402 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7403 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7404 kvm_free_all_assigned_devices(kvm);
7405 kvm_free_pit(kvm);
7408 void kvm_arch_destroy_vm(struct kvm *kvm)
7410 if (current->mm == kvm->mm) {
7412 * Free memory regions allocated on behalf of userspace,
7413 * unless the the memory map has changed due to process exit
7414 * or fd copying.
7416 struct kvm_userspace_memory_region mem;
7417 memset(&mem, 0, sizeof(mem));
7418 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7419 kvm_set_memory_region(kvm, &mem);
7421 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7422 kvm_set_memory_region(kvm, &mem);
7424 mem.slot = TSS_PRIVATE_MEMSLOT;
7425 kvm_set_memory_region(kvm, &mem);
7427 kvm_iommu_unmap_guest(kvm);
7428 kfree(kvm->arch.vpic);
7429 kfree(kvm->arch.vioapic);
7430 kvm_free_vcpus(kvm);
7431 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7434 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7435 struct kvm_memory_slot *dont)
7437 int i;
7439 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7440 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7441 kvm_kvfree(free->arch.rmap[i]);
7442 free->arch.rmap[i] = NULL;
7444 if (i == 0)
7445 continue;
7447 if (!dont || free->arch.lpage_info[i - 1] !=
7448 dont->arch.lpage_info[i - 1]) {
7449 kvm_kvfree(free->arch.lpage_info[i - 1]);
7450 free->arch.lpage_info[i - 1] = NULL;
7455 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7456 unsigned long npages)
7458 int i;
7460 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7461 unsigned long ugfn;
7462 int lpages;
7463 int level = i + 1;
7465 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7466 slot->base_gfn, level) + 1;
7468 slot->arch.rmap[i] =
7469 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7470 if (!slot->arch.rmap[i])
7471 goto out_free;
7472 if (i == 0)
7473 continue;
7475 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7476 sizeof(*slot->arch.lpage_info[i - 1]));
7477 if (!slot->arch.lpage_info[i - 1])
7478 goto out_free;
7480 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7481 slot->arch.lpage_info[i - 1][0].write_count = 1;
7482 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7483 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7484 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7486 * If the gfn and userspace address are not aligned wrt each
7487 * other, or if explicitly asked to, disable large page
7488 * support for this slot
7490 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7491 !kvm_largepages_enabled()) {
7492 unsigned long j;
7494 for (j = 0; j < lpages; ++j)
7495 slot->arch.lpage_info[i - 1][j].write_count = 1;
7499 return 0;
7501 out_free:
7502 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7503 kvm_kvfree(slot->arch.rmap[i]);
7504 slot->arch.rmap[i] = NULL;
7505 if (i == 0)
7506 continue;
7508 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7509 slot->arch.lpage_info[i - 1] = NULL;
7511 return -ENOMEM;
7514 void kvm_arch_memslots_updated(struct kvm *kvm)
7517 * memslots->generation has been incremented.
7518 * mmio generation may have reached its maximum value.
7520 kvm_mmu_invalidate_mmio_sptes(kvm);
7523 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7524 struct kvm_memory_slot *memslot,
7525 struct kvm_userspace_memory_region *mem,
7526 enum kvm_mr_change change)
7529 * Only private memory slots need to be mapped here since
7530 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7532 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7533 unsigned long userspace_addr;
7536 * MAP_SHARED to prevent internal slot pages from being moved
7537 * by fork()/COW.
7539 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7540 PROT_READ | PROT_WRITE,
7541 MAP_SHARED | MAP_ANONYMOUS, 0);
7543 if (IS_ERR((void *)userspace_addr))
7544 return PTR_ERR((void *)userspace_addr);
7546 memslot->userspace_addr = userspace_addr;
7549 return 0;
7552 void kvm_arch_commit_memory_region(struct kvm *kvm,
7553 struct kvm_userspace_memory_region *mem,
7554 const struct kvm_memory_slot *old,
7555 enum kvm_mr_change change)
7558 int nr_mmu_pages = 0;
7560 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7561 int ret;
7563 ret = vm_munmap(old->userspace_addr,
7564 old->npages * PAGE_SIZE);
7565 if (ret < 0)
7566 printk(KERN_WARNING
7567 "kvm_vm_ioctl_set_memory_region: "
7568 "failed to munmap memory\n");
7571 if (!kvm->arch.n_requested_mmu_pages)
7572 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7574 if (nr_mmu_pages)
7575 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7577 * Write protect all pages for dirty logging.
7579 * All the sptes including the large sptes which point to this
7580 * slot are set to readonly. We can not create any new large
7581 * spte on this slot until the end of the logging.
7583 * See the comments in fast_page_fault().
7585 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7586 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7589 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7591 kvm_mmu_invalidate_zap_all_pages(kvm);
7594 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7595 struct kvm_memory_slot *slot)
7597 kvm_mmu_invalidate_zap_all_pages(kvm);
7600 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7602 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7603 kvm_x86_ops->check_nested_events(vcpu, false);
7605 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7606 !vcpu->arch.apf.halted)
7607 || !list_empty_careful(&vcpu->async_pf.done)
7608 || kvm_apic_has_events(vcpu)
7609 || vcpu->arch.pv.pv_unhalted
7610 || atomic_read(&vcpu->arch.nmi_queued) ||
7611 (kvm_arch_interrupt_allowed(vcpu) &&
7612 kvm_cpu_has_interrupt(vcpu));
7615 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7617 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7620 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7622 return kvm_x86_ops->interrupt_allowed(vcpu);
7625 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7627 if (is_64_bit_mode(vcpu))
7628 return kvm_rip_read(vcpu);
7629 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7630 kvm_rip_read(vcpu));
7632 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7634 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7636 return kvm_get_linear_rip(vcpu) == linear_rip;
7638 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7640 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7642 unsigned long rflags;
7644 rflags = kvm_x86_ops->get_rflags(vcpu);
7645 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7646 rflags &= ~X86_EFLAGS_TF;
7647 return rflags;
7649 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7651 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7653 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7654 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7655 rflags |= X86_EFLAGS_TF;
7656 kvm_x86_ops->set_rflags(vcpu, rflags);
7659 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7661 __kvm_set_rflags(vcpu, rflags);
7662 kvm_make_request(KVM_REQ_EVENT, vcpu);
7664 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7666 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7668 int r;
7670 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7671 work->wakeup_all)
7672 return;
7674 r = kvm_mmu_reload(vcpu);
7675 if (unlikely(r))
7676 return;
7678 if (!vcpu->arch.mmu.direct_map &&
7679 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7680 return;
7682 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7685 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7687 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7690 static inline u32 kvm_async_pf_next_probe(u32 key)
7692 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7695 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7697 u32 key = kvm_async_pf_hash_fn(gfn);
7699 while (vcpu->arch.apf.gfns[key] != ~0)
7700 key = kvm_async_pf_next_probe(key);
7702 vcpu->arch.apf.gfns[key] = gfn;
7705 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7707 int i;
7708 u32 key = kvm_async_pf_hash_fn(gfn);
7710 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7711 (vcpu->arch.apf.gfns[key] != gfn &&
7712 vcpu->arch.apf.gfns[key] != ~0); i++)
7713 key = kvm_async_pf_next_probe(key);
7715 return key;
7718 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7720 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7723 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7725 u32 i, j, k;
7727 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7728 while (true) {
7729 vcpu->arch.apf.gfns[i] = ~0;
7730 do {
7731 j = kvm_async_pf_next_probe(j);
7732 if (vcpu->arch.apf.gfns[j] == ~0)
7733 return;
7734 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7736 * k lies cyclically in ]i,j]
7737 * | i.k.j |
7738 * |....j i.k.| or |.k..j i...|
7740 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7741 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7742 i = j;
7746 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7749 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7750 sizeof(val));
7753 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7754 struct kvm_async_pf *work)
7756 struct x86_exception fault;
7758 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7759 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7761 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7762 (vcpu->arch.apf.send_user_only &&
7763 kvm_x86_ops->get_cpl(vcpu) == 0))
7764 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7765 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7766 fault.vector = PF_VECTOR;
7767 fault.error_code_valid = true;
7768 fault.error_code = 0;
7769 fault.nested_page_fault = false;
7770 fault.address = work->arch.token;
7771 kvm_inject_page_fault(vcpu, &fault);
7775 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7776 struct kvm_async_pf *work)
7778 struct x86_exception fault;
7780 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7781 if (work->wakeup_all)
7782 work->arch.token = ~0; /* broadcast wakeup */
7783 else
7784 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7786 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7787 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7788 fault.vector = PF_VECTOR;
7789 fault.error_code_valid = true;
7790 fault.error_code = 0;
7791 fault.nested_page_fault = false;
7792 fault.address = work->arch.token;
7793 kvm_inject_page_fault(vcpu, &fault);
7795 vcpu->arch.apf.halted = false;
7796 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7799 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7801 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7802 return true;
7803 else
7804 return !kvm_event_needs_reinjection(vcpu) &&
7805 kvm_x86_ops->interrupt_allowed(vcpu);
7808 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7810 atomic_inc(&kvm->arch.noncoherent_dma_count);
7812 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7814 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7816 atomic_dec(&kvm->arch.noncoherent_dma_count);
7818 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7820 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7822 return atomic_read(&kvm->arch.noncoherent_dma_count);
7824 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7826 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7827 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);