2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
54 #define CREATE_TRACE_POINTS
57 #include <asm/debugreg.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
81 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
83 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
89 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
90 static void process_nmi(struct kvm_vcpu
*vcpu
);
91 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
93 struct kvm_x86_ops
*kvm_x86_ops
;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
96 static bool ignore_msrs
= 0;
97 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
99 unsigned int min_timer_period_us
= 500;
100 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
102 bool kvm_has_tsc_control
;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
104 u32 kvm_max_guest_tsc_khz
;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm
= 250;
109 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
111 static bool backwards_tsc_observed
= false;
113 #define KVM_NR_SHARED_MSRS 16
115 struct kvm_shared_msrs_global
{
117 u32 msrs
[KVM_NR_SHARED_MSRS
];
120 struct kvm_shared_msrs
{
121 struct user_return_notifier urn
;
123 struct kvm_shared_msr_values
{
126 } values
[KVM_NR_SHARED_MSRS
];
129 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
130 static struct kvm_shared_msrs __percpu
*shared_msrs
;
132 struct kvm_stats_debugfs_item debugfs_entries
[] = {
133 { "pf_fixed", VCPU_STAT(pf_fixed
) },
134 { "pf_guest", VCPU_STAT(pf_guest
) },
135 { "tlb_flush", VCPU_STAT(tlb_flush
) },
136 { "invlpg", VCPU_STAT(invlpg
) },
137 { "exits", VCPU_STAT(exits
) },
138 { "io_exits", VCPU_STAT(io_exits
) },
139 { "mmio_exits", VCPU_STAT(mmio_exits
) },
140 { "signal_exits", VCPU_STAT(signal_exits
) },
141 { "irq_window", VCPU_STAT(irq_window_exits
) },
142 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
143 { "halt_exits", VCPU_STAT(halt_exits
) },
144 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
145 { "hypercalls", VCPU_STAT(hypercalls
) },
146 { "request_irq", VCPU_STAT(request_irq_exits
) },
147 { "irq_exits", VCPU_STAT(irq_exits
) },
148 { "host_state_reload", VCPU_STAT(host_state_reload
) },
149 { "efer_reload", VCPU_STAT(efer_reload
) },
150 { "fpu_reload", VCPU_STAT(fpu_reload
) },
151 { "insn_emulation", VCPU_STAT(insn_emulation
) },
152 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
153 { "irq_injections", VCPU_STAT(irq_injections
) },
154 { "nmi_injections", VCPU_STAT(nmi_injections
) },
155 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
156 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
157 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
158 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
159 { "mmu_flooded", VM_STAT(mmu_flooded
) },
160 { "mmu_recycled", VM_STAT(mmu_recycled
) },
161 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
162 { "mmu_unsync", VM_STAT(mmu_unsync
) },
163 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
164 { "largepages", VM_STAT(lpages
) },
168 u64 __read_mostly host_xcr0
;
170 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
172 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
175 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
176 vcpu
->arch
.apf
.gfns
[i
] = ~0;
179 static void kvm_on_user_return(struct user_return_notifier
*urn
)
182 struct kvm_shared_msrs
*locals
183 = container_of(urn
, struct kvm_shared_msrs
, urn
);
184 struct kvm_shared_msr_values
*values
;
186 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
187 values
= &locals
->values
[slot
];
188 if (values
->host
!= values
->curr
) {
189 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
190 values
->curr
= values
->host
;
193 locals
->registered
= false;
194 user_return_notifier_unregister(urn
);
197 static void shared_msr_update(unsigned slot
, u32 msr
)
200 unsigned int cpu
= smp_processor_id();
201 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
203 /* only read, and nobody should modify it at this time,
204 * so don't need lock */
205 if (slot
>= shared_msrs_global
.nr
) {
206 printk(KERN_ERR
"kvm: invalid MSR slot!");
209 rdmsrl_safe(msr
, &value
);
210 smsr
->values
[slot
].host
= value
;
211 smsr
->values
[slot
].curr
= value
;
214 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
216 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
217 if (slot
>= shared_msrs_global
.nr
)
218 shared_msrs_global
.nr
= slot
+ 1;
219 shared_msrs_global
.msrs
[slot
] = msr
;
220 /* we need ensured the shared_msr_global have been updated */
223 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
225 static void kvm_shared_msr_cpu_online(void)
229 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
230 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
233 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
235 unsigned int cpu
= smp_processor_id();
236 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
239 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
241 smsr
->values
[slot
].curr
= value
;
242 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
246 if (!smsr
->registered
) {
247 smsr
->urn
.on_user_return
= kvm_on_user_return
;
248 user_return_notifier_register(&smsr
->urn
);
249 smsr
->registered
= true;
253 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
255 static void drop_user_return_notifiers(void)
257 unsigned int cpu
= smp_processor_id();
258 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
260 if (smsr
->registered
)
261 kvm_on_user_return(&smsr
->urn
);
264 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
266 return vcpu
->arch
.apic_base
;
268 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
270 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
272 u64 old_state
= vcpu
->arch
.apic_base
&
273 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
274 u64 new_state
= msr_info
->data
&
275 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
276 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
277 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
279 if (!msr_info
->host_initiated
&&
280 ((msr_info
->data
& reserved_bits
) != 0 ||
281 new_state
== X2APIC_ENABLE
||
282 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
283 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
284 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
288 kvm_lapic_set_base(vcpu
, msr_info
->data
);
291 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
293 asmlinkage __visible
void kvm_spurious_fault(void)
295 /* Fault while not rebooting. We want the trace. */
298 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
300 #define EXCPT_BENIGN 0
301 #define EXCPT_CONTRIBUTORY 1
304 static int exception_class(int vector
)
314 return EXCPT_CONTRIBUTORY
;
321 #define EXCPT_FAULT 0
323 #define EXCPT_ABORT 2
324 #define EXCPT_INTERRUPT 3
326 static int exception_type(int vector
)
330 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
331 return EXCPT_INTERRUPT
;
335 /* #DB is trap, as instruction watchpoints are handled elsewhere */
336 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
339 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
342 /* Reserved exceptions will result in fault */
346 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
347 unsigned nr
, bool has_error
, u32 error_code
,
353 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
355 if (!vcpu
->arch
.exception
.pending
) {
357 if (has_error
&& !is_protmode(vcpu
))
359 vcpu
->arch
.exception
.pending
= true;
360 vcpu
->arch
.exception
.has_error_code
= has_error
;
361 vcpu
->arch
.exception
.nr
= nr
;
362 vcpu
->arch
.exception
.error_code
= error_code
;
363 vcpu
->arch
.exception
.reinject
= reinject
;
367 /* to check exception */
368 prev_nr
= vcpu
->arch
.exception
.nr
;
369 if (prev_nr
== DF_VECTOR
) {
370 /* triple fault -> shutdown */
371 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
374 class1
= exception_class(prev_nr
);
375 class2
= exception_class(nr
);
376 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
377 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
378 /* generate double fault per SDM Table 5-5 */
379 vcpu
->arch
.exception
.pending
= true;
380 vcpu
->arch
.exception
.has_error_code
= true;
381 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
382 vcpu
->arch
.exception
.error_code
= 0;
384 /* replace previous exception with a new one in a hope
385 that instruction re-execution will regenerate lost
390 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
392 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
394 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
396 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
398 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
400 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
402 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
405 kvm_inject_gp(vcpu
, 0);
407 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
409 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
411 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
413 ++vcpu
->stat
.pf_guest
;
414 vcpu
->arch
.cr2
= fault
->address
;
415 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
417 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
419 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
421 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
422 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
424 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
426 return fault
->nested_page_fault
;
429 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
431 atomic_inc(&vcpu
->arch
.nmi_queued
);
432 kvm_make_request(KVM_REQ_NMI
, vcpu
);
434 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
436 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
438 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
440 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
442 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
444 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
446 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
449 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
450 * a #GP and return false.
452 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
454 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
456 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
459 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
461 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
463 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
466 kvm_queue_exception(vcpu
, UD_VECTOR
);
469 EXPORT_SYMBOL_GPL(kvm_require_dr
);
472 * This function will be used to read from the physical memory of the currently
473 * running guest. The difference to kvm_read_guest_page is that this function
474 * can read from guest physical or from the guest's guest physical memory.
476 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
477 gfn_t ngfn
, void *data
, int offset
, int len
,
480 struct x86_exception exception
;
484 ngpa
= gfn_to_gpa(ngfn
);
485 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
486 if (real_gfn
== UNMAPPED_GVA
)
489 real_gfn
= gpa_to_gfn(real_gfn
);
491 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
493 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
495 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
496 void *data
, int offset
, int len
, u32 access
)
498 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
499 data
, offset
, len
, access
);
503 * Load the pae pdptrs. Return true is they are all valid.
505 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
507 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
508 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
511 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
513 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
514 offset
* sizeof(u64
), sizeof(pdpte
),
515 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
520 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
521 if (is_present_gpte(pdpte
[i
]) &&
522 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
529 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
530 __set_bit(VCPU_EXREG_PDPTR
,
531 (unsigned long *)&vcpu
->arch
.regs_avail
);
532 __set_bit(VCPU_EXREG_PDPTR
,
533 (unsigned long *)&vcpu
->arch
.regs_dirty
);
538 EXPORT_SYMBOL_GPL(load_pdptrs
);
540 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
542 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
548 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
551 if (!test_bit(VCPU_EXREG_PDPTR
,
552 (unsigned long *)&vcpu
->arch
.regs_avail
))
555 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
556 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
557 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
558 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
561 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
567 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
569 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
570 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
571 X86_CR0_CD
| X86_CR0_NW
;
576 if (cr0
& 0xffffffff00000000UL
)
580 cr0
&= ~CR0_RESERVED_BITS
;
582 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
585 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
588 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
590 if ((vcpu
->arch
.efer
& EFER_LME
)) {
595 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
600 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
605 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
608 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
610 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
611 kvm_clear_async_pf_completion_queue(vcpu
);
612 kvm_async_pf_hash_reset(vcpu
);
615 if ((cr0
^ old_cr0
) & update_bits
)
616 kvm_mmu_reset_context(vcpu
);
619 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
621 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
623 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
625 EXPORT_SYMBOL_GPL(kvm_lmsw
);
627 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
629 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
630 !vcpu
->guest_xcr0_loaded
) {
631 /* kvm_set_xcr() also depends on this */
632 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
633 vcpu
->guest_xcr0_loaded
= 1;
637 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
639 if (vcpu
->guest_xcr0_loaded
) {
640 if (vcpu
->arch
.xcr0
!= host_xcr0
)
641 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
642 vcpu
->guest_xcr0_loaded
= 0;
646 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
649 u64 old_xcr0
= vcpu
->arch
.xcr0
;
652 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
653 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
655 if (!(xcr0
& XSTATE_FP
))
657 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
661 * Do not allow the guest to set bits that we do not support
662 * saving. However, xcr0 bit 0 is always set, even if the
663 * emulated CPU does not support XSAVE (see fx_init).
665 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XSTATE_FP
;
666 if (xcr0
& ~valid_bits
)
669 if ((!(xcr0
& XSTATE_BNDREGS
)) != (!(xcr0
& XSTATE_BNDCSR
)))
672 if (xcr0
& XSTATE_AVX512
) {
673 if (!(xcr0
& XSTATE_YMM
))
675 if ((xcr0
& XSTATE_AVX512
) != XSTATE_AVX512
)
678 kvm_put_guest_xcr0(vcpu
);
679 vcpu
->arch
.xcr0
= xcr0
;
681 if ((xcr0
^ old_xcr0
) & XSTATE_EXTEND_MASK
)
682 kvm_update_cpuid(vcpu
);
686 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
688 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
689 __kvm_set_xcr(vcpu
, index
, xcr
)) {
690 kvm_inject_gp(vcpu
, 0);
695 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
697 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
699 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
700 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
701 X86_CR4_PAE
| X86_CR4_SMEP
;
702 if (cr4
& CR4_RESERVED_BITS
)
705 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
708 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
711 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
714 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
717 if (is_long_mode(vcpu
)) {
718 if (!(cr4
& X86_CR4_PAE
))
720 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
721 && ((cr4
^ old_cr4
) & pdptr_bits
)
722 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
726 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
727 if (!guest_cpuid_has_pcid(vcpu
))
730 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
731 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
735 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
738 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
739 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
740 kvm_mmu_reset_context(vcpu
);
742 if ((cr4
^ old_cr4
) & X86_CR4_SMAP
)
743 update_permission_bitmask(vcpu
, vcpu
->arch
.walk_mmu
, false);
745 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
746 kvm_update_cpuid(vcpu
);
750 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
752 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
755 cr3
&= ~CR3_PCID_INVD
;
758 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
759 kvm_mmu_sync_roots(vcpu
);
760 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
764 if (is_long_mode(vcpu
)) {
765 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
767 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
768 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
771 vcpu
->arch
.cr3
= cr3
;
772 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
773 kvm_mmu_new_cr3(vcpu
);
776 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
778 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
780 if (cr8
& CR8_RESERVED_BITS
)
782 if (irqchip_in_kernel(vcpu
->kvm
))
783 kvm_lapic_set_tpr(vcpu
, cr8
);
785 vcpu
->arch
.cr8
= cr8
;
788 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
790 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
792 if (irqchip_in_kernel(vcpu
->kvm
))
793 return kvm_lapic_get_cr8(vcpu
);
795 return vcpu
->arch
.cr8
;
797 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
799 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
801 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
802 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
805 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
809 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
810 dr7
= vcpu
->arch
.guest_debug_dr7
;
812 dr7
= vcpu
->arch
.dr7
;
813 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
814 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
815 if (dr7
& DR7_BP_EN_MASK
)
816 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
819 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
821 u64 fixed
= DR6_FIXED_1
;
823 if (!guest_cpuid_has_rtm(vcpu
))
828 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
832 vcpu
->arch
.db
[dr
] = val
;
833 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
834 vcpu
->arch
.eff_db
[dr
] = val
;
839 if (val
& 0xffffffff00000000ULL
)
841 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
842 kvm_update_dr6(vcpu
);
847 if (val
& 0xffffffff00000000ULL
)
849 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
850 kvm_update_dr7(vcpu
);
857 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
859 if (__kvm_set_dr(vcpu
, dr
, val
)) {
860 kvm_inject_gp(vcpu
, 0);
865 EXPORT_SYMBOL_GPL(kvm_set_dr
);
867 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
871 *val
= vcpu
->arch
.db
[dr
];
876 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
877 *val
= vcpu
->arch
.dr6
;
879 *val
= kvm_x86_ops
->get_dr6(vcpu
);
884 *val
= vcpu
->arch
.dr7
;
889 EXPORT_SYMBOL_GPL(kvm_get_dr
);
891 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
893 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
897 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
900 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
901 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
904 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
907 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
908 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
910 * This list is modified at module load time to reflect the
911 * capabilities of the host cpu. This capabilities test skips MSRs that are
912 * kvm-specific. Those are put in the beginning of the list.
915 #define KVM_SAVE_MSRS_BEGIN 12
916 static u32 msrs_to_save
[] = {
917 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
918 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
919 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
920 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
921 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
923 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
926 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
928 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
929 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
932 static unsigned num_msrs_to_save
;
934 static const u32 emulated_msrs
[] = {
936 MSR_IA32_TSCDEADLINE
,
937 MSR_IA32_MISC_ENABLE
,
942 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
944 if (efer
& efer_reserved_bits
)
947 if (efer
& EFER_FFXSR
) {
948 struct kvm_cpuid_entry2
*feat
;
950 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
951 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
955 if (efer
& EFER_SVME
) {
956 struct kvm_cpuid_entry2
*feat
;
958 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
959 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
965 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
967 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
969 u64 old_efer
= vcpu
->arch
.efer
;
971 if (!kvm_valid_efer(vcpu
, efer
))
975 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
979 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
981 kvm_x86_ops
->set_efer(vcpu
, efer
);
983 /* Update reserved bits */
984 if ((efer
^ old_efer
) & EFER_NX
)
985 kvm_mmu_reset_context(vcpu
);
990 void kvm_enable_efer_bits(u64 mask
)
992 efer_reserved_bits
&= ~mask
;
994 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
997 * Writes msr value into into the appropriate "register".
998 * Returns 0 on success, non-0 otherwise.
999 * Assumes vcpu_load() was already called.
1001 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1003 switch (msr
->index
) {
1006 case MSR_KERNEL_GS_BASE
:
1009 if (is_noncanonical_address(msr
->data
))
1012 case MSR_IA32_SYSENTER_EIP
:
1013 case MSR_IA32_SYSENTER_ESP
:
1015 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1016 * non-canonical address is written on Intel but not on
1017 * AMD (which ignores the top 32-bits, because it does
1018 * not implement 64-bit SYSENTER).
1020 * 64-bit code should hence be able to write a non-canonical
1021 * value on AMD. Making the address canonical ensures that
1022 * vmentry does not fail on Intel after writing a non-canonical
1023 * value, and that something deterministic happens if the guest
1024 * invokes 64-bit SYSENTER.
1026 msr
->data
= get_canonical(msr
->data
);
1028 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1030 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1033 * Adapt set_msr() to msr_io()'s calling convention
1035 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1037 struct msr_data msr
;
1041 msr
.host_initiated
= true;
1042 return kvm_set_msr(vcpu
, &msr
);
1045 #ifdef CONFIG_X86_64
1046 struct pvclock_gtod_data
{
1049 struct { /* extract of a clocksource struct */
1061 static struct pvclock_gtod_data pvclock_gtod_data
;
1063 static void update_pvclock_gtod(struct timekeeper
*tk
)
1065 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1068 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr
.base_mono
, tk
->offs_boot
));
1070 write_seqcount_begin(&vdata
->seq
);
1072 /* copy pvclock gtod data */
1073 vdata
->clock
.vclock_mode
= tk
->tkr
.clock
->archdata
.vclock_mode
;
1074 vdata
->clock
.cycle_last
= tk
->tkr
.cycle_last
;
1075 vdata
->clock
.mask
= tk
->tkr
.mask
;
1076 vdata
->clock
.mult
= tk
->tkr
.mult
;
1077 vdata
->clock
.shift
= tk
->tkr
.shift
;
1079 vdata
->boot_ns
= boot_ns
;
1080 vdata
->nsec_base
= tk
->tkr
.xtime_nsec
;
1082 write_seqcount_end(&vdata
->seq
);
1087 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1091 struct pvclock_wall_clock wc
;
1092 struct timespec boot
;
1097 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1102 ++version
; /* first time write, random junk */
1106 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1109 * The guest calculates current wall clock time by adding
1110 * system time (updated by kvm_guest_time_update below) to the
1111 * wall clock specified here. guest system time equals host
1112 * system time for us, thus we must fill in host boot time here.
1116 if (kvm
->arch
.kvmclock_offset
) {
1117 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1118 boot
= timespec_sub(boot
, ts
);
1120 wc
.sec
= boot
.tv_sec
;
1121 wc
.nsec
= boot
.tv_nsec
;
1122 wc
.version
= version
;
1124 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1127 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1130 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1132 uint32_t quotient
, remainder
;
1134 /* Don't try to replace with do_div(), this one calculates
1135 * "(dividend << 32) / divisor" */
1137 : "=a" (quotient
), "=d" (remainder
)
1138 : "0" (0), "1" (dividend
), "r" (divisor
) );
1142 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1143 s8
*pshift
, u32
*pmultiplier
)
1150 tps64
= base_khz
* 1000LL;
1151 scaled64
= scaled_khz
* 1000LL;
1152 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1157 tps32
= (uint32_t)tps64
;
1158 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1159 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1167 *pmultiplier
= div_frac(scaled64
, tps32
);
1169 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1170 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1173 static inline u64
get_kernel_ns(void)
1175 return ktime_get_boot_ns();
1178 #ifdef CONFIG_X86_64
1179 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1182 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1183 unsigned long max_tsc_khz
;
1185 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1187 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1188 vcpu
->arch
.virtual_tsc_shift
);
1191 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1193 u64 v
= (u64
)khz
* (1000000 + ppm
);
1198 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1200 u32 thresh_lo
, thresh_hi
;
1201 int use_scaling
= 0;
1203 /* tsc_khz can be zero if TSC calibration fails */
1204 if (this_tsc_khz
== 0)
1207 /* Compute a scale to convert nanoseconds in TSC cycles */
1208 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1209 &vcpu
->arch
.virtual_tsc_shift
,
1210 &vcpu
->arch
.virtual_tsc_mult
);
1211 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1214 * Compute the variation in TSC rate which is acceptable
1215 * within the range of tolerance and decide if the
1216 * rate being applied is within that bounds of the hardware
1217 * rate. If so, no scaling or compensation need be done.
1219 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1220 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1221 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1222 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1225 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1228 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1230 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1231 vcpu
->arch
.virtual_tsc_mult
,
1232 vcpu
->arch
.virtual_tsc_shift
);
1233 tsc
+= vcpu
->arch
.this_tsc_write
;
1237 void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1239 #ifdef CONFIG_X86_64
1241 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1242 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1244 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1245 atomic_read(&vcpu
->kvm
->online_vcpus
));
1248 * Once the masterclock is enabled, always perform request in
1249 * order to update it.
1251 * In order to enable masterclock, the host clocksource must be TSC
1252 * and the vcpus need to have matched TSCs. When that happens,
1253 * perform request to enable masterclock.
1255 if (ka
->use_master_clock
||
1256 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1257 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1259 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1260 atomic_read(&vcpu
->kvm
->online_vcpus
),
1261 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1265 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1267 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1268 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1271 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1273 struct kvm
*kvm
= vcpu
->kvm
;
1274 u64 offset
, ns
, elapsed
;
1275 unsigned long flags
;
1278 bool already_matched
;
1279 u64 data
= msr
->data
;
1281 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1282 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1283 ns
= get_kernel_ns();
1284 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1286 if (vcpu
->arch
.virtual_tsc_khz
) {
1289 /* n.b - signed multiplication and division required */
1290 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1291 #ifdef CONFIG_X86_64
1292 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1294 /* do_div() only does unsigned */
1295 asm("1: idivl %[divisor]\n"
1296 "2: xor %%edx, %%edx\n"
1297 " movl $0, %[faulted]\n"
1299 ".section .fixup,\"ax\"\n"
1300 "4: movl $1, %[faulted]\n"
1304 _ASM_EXTABLE(1b
, 4b
)
1306 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1307 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1310 do_div(elapsed
, 1000);
1315 /* idivl overflow => difference is larger than USEC_PER_SEC */
1317 usdiff
= USEC_PER_SEC
;
1319 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1322 * Special case: TSC write with a small delta (1 second) of virtual
1323 * cycle time against real time is interpreted as an attempt to
1324 * synchronize the CPU.
1326 * For a reliable TSC, we can match TSC offsets, and for an unstable
1327 * TSC, we add elapsed time in this computation. We could let the
1328 * compensation code attempt to catch up if we fall behind, but
1329 * it's better to try to match offsets from the beginning.
1331 if (usdiff
< USEC_PER_SEC
&&
1332 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1333 if (!check_tsc_unstable()) {
1334 offset
= kvm
->arch
.cur_tsc_offset
;
1335 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1337 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1339 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1340 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1343 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1346 * We split periods of matched TSC writes into generations.
1347 * For each generation, we track the original measured
1348 * nanosecond time, offset, and write, so if TSCs are in
1349 * sync, we can match exact offset, and if not, we can match
1350 * exact software computation in compute_guest_tsc()
1352 * These values are tracked in kvm->arch.cur_xxx variables.
1354 kvm
->arch
.cur_tsc_generation
++;
1355 kvm
->arch
.cur_tsc_nsec
= ns
;
1356 kvm
->arch
.cur_tsc_write
= data
;
1357 kvm
->arch
.cur_tsc_offset
= offset
;
1359 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1360 kvm
->arch
.cur_tsc_generation
, data
);
1364 * We also track th most recent recorded KHZ, write and time to
1365 * allow the matching interval to be extended at each write.
1367 kvm
->arch
.last_tsc_nsec
= ns
;
1368 kvm
->arch
.last_tsc_write
= data
;
1369 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1371 vcpu
->arch
.last_guest_tsc
= data
;
1373 /* Keep track of which generation this VCPU has synchronized to */
1374 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1375 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1376 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1378 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1379 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1380 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1381 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1383 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1385 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1386 } else if (!already_matched
) {
1387 kvm
->arch
.nr_vcpus_matched_tsc
++;
1390 kvm_track_tsc_matching(vcpu
);
1391 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1394 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1396 #ifdef CONFIG_X86_64
1398 static cycle_t
read_tsc(void)
1404 * Empirically, a fence (of type that depends on the CPU)
1405 * before rdtsc is enough to ensure that rdtsc is ordered
1406 * with respect to loads. The various CPU manuals are unclear
1407 * as to whether rdtsc can be reordered with later loads,
1408 * but no one has ever seen it happen.
1411 ret
= (cycle_t
)vget_cycles();
1413 last
= pvclock_gtod_data
.clock
.cycle_last
;
1415 if (likely(ret
>= last
))
1419 * GCC likes to generate cmov here, but this branch is extremely
1420 * predictable (it's just a funciton of time and the likely is
1421 * very likely) and there's a data dependence, so force GCC
1422 * to generate a branch instead. I don't barrier() because
1423 * we don't actually need a barrier, and if this function
1424 * ever gets inlined it will generate worse code.
1430 static inline u64
vgettsc(cycle_t
*cycle_now
)
1433 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1435 *cycle_now
= read_tsc();
1437 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1438 return v
* gtod
->clock
.mult
;
1441 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1443 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1449 seq
= read_seqcount_begin(>od
->seq
);
1450 mode
= gtod
->clock
.vclock_mode
;
1451 ns
= gtod
->nsec_base
;
1452 ns
+= vgettsc(cycle_now
);
1453 ns
>>= gtod
->clock
.shift
;
1454 ns
+= gtod
->boot_ns
;
1455 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1461 /* returns true if host is using tsc clocksource */
1462 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1464 /* checked again under seqlock below */
1465 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1468 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1474 * Assuming a stable TSC across physical CPUS, and a stable TSC
1475 * across virtual CPUs, the following condition is possible.
1476 * Each numbered line represents an event visible to both
1477 * CPUs at the next numbered event.
1479 * "timespecX" represents host monotonic time. "tscX" represents
1482 * VCPU0 on CPU0 | VCPU1 on CPU1
1484 * 1. read timespec0,tsc0
1485 * 2. | timespec1 = timespec0 + N
1487 * 3. transition to guest | transition to guest
1488 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1489 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1490 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1492 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1495 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1497 * - 0 < N - M => M < N
1499 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1500 * always the case (the difference between two distinct xtime instances
1501 * might be smaller then the difference between corresponding TSC reads,
1502 * when updating guest vcpus pvclock areas).
1504 * To avoid that problem, do not allow visibility of distinct
1505 * system_timestamp/tsc_timestamp values simultaneously: use a master
1506 * copy of host monotonic time values. Update that master copy
1509 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1513 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1515 #ifdef CONFIG_X86_64
1516 struct kvm_arch
*ka
= &kvm
->arch
;
1518 bool host_tsc_clocksource
, vcpus_matched
;
1520 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1521 atomic_read(&kvm
->online_vcpus
));
1524 * If the host uses TSC clock, then passthrough TSC as stable
1527 host_tsc_clocksource
= kvm_get_time_and_clockread(
1528 &ka
->master_kernel_ns
,
1529 &ka
->master_cycle_now
);
1531 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1532 && !backwards_tsc_observed
;
1534 if (ka
->use_master_clock
)
1535 atomic_set(&kvm_guest_has_master_clock
, 1);
1537 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1538 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1543 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1545 #ifdef CONFIG_X86_64
1547 struct kvm_vcpu
*vcpu
;
1548 struct kvm_arch
*ka
= &kvm
->arch
;
1550 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1551 kvm_make_mclock_inprogress_request(kvm
);
1552 /* no guest entries from this point */
1553 pvclock_update_vm_gtod_copy(kvm
);
1555 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1556 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1558 /* guest entries allowed */
1559 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1560 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1562 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1566 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1568 unsigned long flags
, this_tsc_khz
;
1569 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1570 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1572 u64 tsc_timestamp
, host_tsc
;
1573 struct pvclock_vcpu_time_info guest_hv_clock
;
1575 bool use_master_clock
;
1581 * If the host uses TSC clock, then passthrough TSC as stable
1584 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1585 use_master_clock
= ka
->use_master_clock
;
1586 if (use_master_clock
) {
1587 host_tsc
= ka
->master_cycle_now
;
1588 kernel_ns
= ka
->master_kernel_ns
;
1590 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1592 /* Keep irq disabled to prevent changes to the clock */
1593 local_irq_save(flags
);
1594 this_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1595 if (unlikely(this_tsc_khz
== 0)) {
1596 local_irq_restore(flags
);
1597 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1600 if (!use_master_clock
) {
1601 host_tsc
= native_read_tsc();
1602 kernel_ns
= get_kernel_ns();
1605 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
, host_tsc
);
1608 * We may have to catch up the TSC to match elapsed wall clock
1609 * time for two reasons, even if kvmclock is used.
1610 * 1) CPU could have been running below the maximum TSC rate
1611 * 2) Broken TSC compensation resets the base at each VCPU
1612 * entry to avoid unknown leaps of TSC even when running
1613 * again on the same CPU. This may cause apparent elapsed
1614 * time to disappear, and the guest to stand still or run
1617 if (vcpu
->tsc_catchup
) {
1618 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1619 if (tsc
> tsc_timestamp
) {
1620 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1621 tsc_timestamp
= tsc
;
1625 local_irq_restore(flags
);
1627 if (!vcpu
->pv_time_enabled
)
1630 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1631 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1632 &vcpu
->hv_clock
.tsc_shift
,
1633 &vcpu
->hv_clock
.tsc_to_system_mul
);
1634 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1637 /* With all the info we got, fill in the values */
1638 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1639 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1640 vcpu
->last_guest_tsc
= tsc_timestamp
;
1642 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1643 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1647 * The interface expects us to write an even number signaling that the
1648 * update is finished. Since the guest won't see the intermediate
1649 * state, we just increase by 2 at the end.
1651 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 2;
1653 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1654 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1656 if (vcpu
->pvclock_set_guest_stopped_request
) {
1657 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1658 vcpu
->pvclock_set_guest_stopped_request
= false;
1661 /* If the host uses TSC clocksource, then it is stable */
1662 if (use_master_clock
)
1663 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1665 vcpu
->hv_clock
.flags
= pvclock_flags
;
1667 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1669 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1671 sizeof(vcpu
->hv_clock
));
1676 * kvmclock updates which are isolated to a given vcpu, such as
1677 * vcpu->cpu migration, should not allow system_timestamp from
1678 * the rest of the vcpus to remain static. Otherwise ntp frequency
1679 * correction applies to one vcpu's system_timestamp but not
1682 * So in those cases, request a kvmclock update for all vcpus.
1683 * We need to rate-limit these requests though, as they can
1684 * considerably slow guests that have a large number of vcpus.
1685 * The time for a remote vcpu to update its kvmclock is bound
1686 * by the delay we use to rate-limit the updates.
1689 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1691 static void kvmclock_update_fn(struct work_struct
*work
)
1694 struct delayed_work
*dwork
= to_delayed_work(work
);
1695 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1696 kvmclock_update_work
);
1697 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1698 struct kvm_vcpu
*vcpu
;
1700 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1701 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1702 kvm_vcpu_kick(vcpu
);
1706 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1708 struct kvm
*kvm
= v
->kvm
;
1710 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1711 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1712 KVMCLOCK_UPDATE_DELAY
);
1715 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1717 static void kvmclock_sync_fn(struct work_struct
*work
)
1719 struct delayed_work
*dwork
= to_delayed_work(work
);
1720 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1721 kvmclock_sync_work
);
1722 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1724 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1725 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1726 KVMCLOCK_SYNC_PERIOD
);
1729 static bool msr_mtrr_valid(unsigned msr
)
1732 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1733 case MSR_MTRRfix64K_00000
:
1734 case MSR_MTRRfix16K_80000
:
1735 case MSR_MTRRfix16K_A0000
:
1736 case MSR_MTRRfix4K_C0000
:
1737 case MSR_MTRRfix4K_C8000
:
1738 case MSR_MTRRfix4K_D0000
:
1739 case MSR_MTRRfix4K_D8000
:
1740 case MSR_MTRRfix4K_E0000
:
1741 case MSR_MTRRfix4K_E8000
:
1742 case MSR_MTRRfix4K_F0000
:
1743 case MSR_MTRRfix4K_F8000
:
1744 case MSR_MTRRdefType
:
1745 case MSR_IA32_CR_PAT
:
1753 static bool valid_pat_type(unsigned t
)
1755 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1758 static bool valid_mtrr_type(unsigned t
)
1760 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1763 bool kvm_mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1768 if (!msr_mtrr_valid(msr
))
1771 if (msr
== MSR_IA32_CR_PAT
) {
1772 for (i
= 0; i
< 8; i
++)
1773 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1776 } else if (msr
== MSR_MTRRdefType
) {
1779 return valid_mtrr_type(data
& 0xff);
1780 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1781 for (i
= 0; i
< 8 ; i
++)
1782 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1787 /* variable MTRRs */
1788 WARN_ON(!(msr
>= 0x200 && msr
< 0x200 + 2 * KVM_NR_VAR_MTRR
));
1790 mask
= (~0ULL) << cpuid_maxphyaddr(vcpu
);
1791 if ((msr
& 1) == 0) {
1793 if (!valid_mtrr_type(data
& 0xff))
1800 kvm_inject_gp(vcpu
, 0);
1806 EXPORT_SYMBOL_GPL(kvm_mtrr_valid
);
1808 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1810 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1812 if (!kvm_mtrr_valid(vcpu
, msr
, data
))
1815 if (msr
== MSR_MTRRdefType
) {
1816 vcpu
->arch
.mtrr_state
.def_type
= data
;
1817 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1818 } else if (msr
== MSR_MTRRfix64K_00000
)
1820 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1821 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1822 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1823 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1824 else if (msr
== MSR_IA32_CR_PAT
)
1825 vcpu
->arch
.pat
= data
;
1826 else { /* Variable MTRRs */
1827 int idx
, is_mtrr_mask
;
1830 idx
= (msr
- 0x200) / 2;
1831 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1834 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1837 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1841 kvm_mmu_reset_context(vcpu
);
1845 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1847 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1848 unsigned bank_num
= mcg_cap
& 0xff;
1851 case MSR_IA32_MCG_STATUS
:
1852 vcpu
->arch
.mcg_status
= data
;
1854 case MSR_IA32_MCG_CTL
:
1855 if (!(mcg_cap
& MCG_CTL_P
))
1857 if (data
!= 0 && data
!= ~(u64
)0)
1859 vcpu
->arch
.mcg_ctl
= data
;
1862 if (msr
>= MSR_IA32_MC0_CTL
&&
1863 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1864 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1865 /* only 0 or all 1s can be written to IA32_MCi_CTL
1866 * some Linux kernels though clear bit 10 in bank 4 to
1867 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1868 * this to avoid an uncatched #GP in the guest
1870 if ((offset
& 0x3) == 0 &&
1871 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1873 vcpu
->arch
.mce_banks
[offset
] = data
;
1881 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1883 struct kvm
*kvm
= vcpu
->kvm
;
1884 int lm
= is_long_mode(vcpu
);
1885 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1886 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1887 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1888 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1889 u32 page_num
= data
& ~PAGE_MASK
;
1890 u64 page_addr
= data
& PAGE_MASK
;
1895 if (page_num
>= blob_size
)
1898 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1903 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1912 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1914 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1917 static bool kvm_hv_msr_partition_wide(u32 msr
)
1921 case HV_X64_MSR_GUEST_OS_ID
:
1922 case HV_X64_MSR_HYPERCALL
:
1923 case HV_X64_MSR_REFERENCE_TSC
:
1924 case HV_X64_MSR_TIME_REF_COUNT
:
1932 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1934 struct kvm
*kvm
= vcpu
->kvm
;
1937 case HV_X64_MSR_GUEST_OS_ID
:
1938 kvm
->arch
.hv_guest_os_id
= data
;
1939 /* setting guest os id to zero disables hypercall page */
1940 if (!kvm
->arch
.hv_guest_os_id
)
1941 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1943 case HV_X64_MSR_HYPERCALL
: {
1948 /* if guest os id is not set hypercall should remain disabled */
1949 if (!kvm
->arch
.hv_guest_os_id
)
1951 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1952 kvm
->arch
.hv_hypercall
= data
;
1955 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1956 addr
= gfn_to_hva(kvm
, gfn
);
1957 if (kvm_is_error_hva(addr
))
1959 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1960 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1961 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1963 kvm
->arch
.hv_hypercall
= data
;
1964 mark_page_dirty(kvm
, gfn
);
1967 case HV_X64_MSR_REFERENCE_TSC
: {
1969 HV_REFERENCE_TSC_PAGE tsc_ref
;
1970 memset(&tsc_ref
, 0, sizeof(tsc_ref
));
1971 kvm
->arch
.hv_tsc_page
= data
;
1972 if (!(data
& HV_X64_MSR_TSC_REFERENCE_ENABLE
))
1974 gfn
= data
>> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
;
1975 if (kvm_write_guest(kvm
, gfn
<< HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
,
1976 &tsc_ref
, sizeof(tsc_ref
)))
1978 mark_page_dirty(kvm
, gfn
);
1982 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1983 "data 0x%llx\n", msr
, data
);
1989 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1992 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1996 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1997 vcpu
->arch
.hv_vapic
= data
;
1998 if (kvm_lapic_enable_pv_eoi(vcpu
, 0))
2002 gfn
= data
>> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
;
2003 addr
= gfn_to_hva(vcpu
->kvm
, gfn
);
2004 if (kvm_is_error_hva(addr
))
2006 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
2008 vcpu
->arch
.hv_vapic
= data
;
2009 mark_page_dirty(vcpu
->kvm
, gfn
);
2010 if (kvm_lapic_enable_pv_eoi(vcpu
, gfn_to_gpa(gfn
) | KVM_MSR_ENABLED
))
2014 case HV_X64_MSR_EOI
:
2015 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
2016 case HV_X64_MSR_ICR
:
2017 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
2018 case HV_X64_MSR_TPR
:
2019 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
2021 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
2022 "data 0x%llx\n", msr
, data
);
2029 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2031 gpa_t gpa
= data
& ~0x3f;
2033 /* Bits 2:5 are reserved, Should be zero */
2037 vcpu
->arch
.apf
.msr_val
= data
;
2039 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2040 kvm_clear_async_pf_completion_queue(vcpu
);
2041 kvm_async_pf_hash_reset(vcpu
);
2045 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2049 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2050 kvm_async_pf_wakeup_all(vcpu
);
2054 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2056 vcpu
->arch
.pv_time_enabled
= false;
2059 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
2063 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2066 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
2067 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2068 vcpu
->arch
.st
.accum_steal
= delta
;
2071 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2073 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2076 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2077 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2080 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
2081 vcpu
->arch
.st
.steal
.version
+= 2;
2082 vcpu
->arch
.st
.accum_steal
= 0;
2084 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2085 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2088 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2091 u32 msr
= msr_info
->index
;
2092 u64 data
= msr_info
->data
;
2095 case MSR_AMD64_NB_CFG
:
2096 case MSR_IA32_UCODE_REV
:
2097 case MSR_IA32_UCODE_WRITE
:
2098 case MSR_VM_HSAVE_PA
:
2099 case MSR_AMD64_PATCH_LOADER
:
2100 case MSR_AMD64_BU_CFG2
:
2104 return set_efer(vcpu
, data
);
2106 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2107 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2108 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2109 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2111 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2116 case MSR_FAM10H_MMIO_CONF_BASE
:
2118 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2123 case MSR_IA32_DEBUGCTLMSR
:
2125 /* We support the non-activated case already */
2127 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2128 /* Values other than LBR and BTF are vendor-specific,
2129 thus reserved and should throw a #GP */
2132 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2135 case 0x200 ... 0x2ff:
2136 return set_msr_mtrr(vcpu
, msr
, data
);
2137 case MSR_IA32_APICBASE
:
2138 return kvm_set_apic_base(vcpu
, msr_info
);
2139 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2140 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2141 case MSR_IA32_TSCDEADLINE
:
2142 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2144 case MSR_IA32_TSC_ADJUST
:
2145 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2146 if (!msr_info
->host_initiated
) {
2147 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2148 kvm_x86_ops
->adjust_tsc_offset(vcpu
, adj
, true);
2150 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2153 case MSR_IA32_MISC_ENABLE
:
2154 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2156 case MSR_KVM_WALL_CLOCK_NEW
:
2157 case MSR_KVM_WALL_CLOCK
:
2158 vcpu
->kvm
->arch
.wall_clock
= data
;
2159 kvm_write_wall_clock(vcpu
->kvm
, data
);
2161 case MSR_KVM_SYSTEM_TIME_NEW
:
2162 case MSR_KVM_SYSTEM_TIME
: {
2164 kvmclock_reset(vcpu
);
2166 vcpu
->arch
.time
= data
;
2167 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2169 /* we verify if the enable bit is set... */
2173 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2175 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2176 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2177 sizeof(struct pvclock_vcpu_time_info
)))
2178 vcpu
->arch
.pv_time_enabled
= false;
2180 vcpu
->arch
.pv_time_enabled
= true;
2184 case MSR_KVM_ASYNC_PF_EN
:
2185 if (kvm_pv_enable_async_pf(vcpu
, data
))
2188 case MSR_KVM_STEAL_TIME
:
2190 if (unlikely(!sched_info_on()))
2193 if (data
& KVM_STEAL_RESERVED_MASK
)
2196 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2197 data
& KVM_STEAL_VALID_BITS
,
2198 sizeof(struct kvm_steal_time
)))
2201 vcpu
->arch
.st
.msr_val
= data
;
2203 if (!(data
& KVM_MSR_ENABLED
))
2206 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2209 accumulate_steal_time(vcpu
);
2212 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2215 case MSR_KVM_PV_EOI_EN
:
2216 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2220 case MSR_IA32_MCG_CTL
:
2221 case MSR_IA32_MCG_STATUS
:
2222 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2223 return set_msr_mce(vcpu
, msr
, data
);
2225 /* Performance counters are not protected by a CPUID bit,
2226 * so we should check all of them in the generic path for the sake of
2227 * cross vendor migration.
2228 * Writing a zero into the event select MSRs disables them,
2229 * which we perfectly emulate ;-). Any other value should be at least
2230 * reported, some guests depend on them.
2232 case MSR_K7_EVNTSEL0
:
2233 case MSR_K7_EVNTSEL1
:
2234 case MSR_K7_EVNTSEL2
:
2235 case MSR_K7_EVNTSEL3
:
2237 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2238 "0x%x data 0x%llx\n", msr
, data
);
2240 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2241 * so we ignore writes to make it happy.
2243 case MSR_K7_PERFCTR0
:
2244 case MSR_K7_PERFCTR1
:
2245 case MSR_K7_PERFCTR2
:
2246 case MSR_K7_PERFCTR3
:
2247 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2248 "0x%x data 0x%llx\n", msr
, data
);
2250 case MSR_P6_PERFCTR0
:
2251 case MSR_P6_PERFCTR1
:
2253 case MSR_P6_EVNTSEL0
:
2254 case MSR_P6_EVNTSEL1
:
2255 if (kvm_pmu_msr(vcpu
, msr
))
2256 return kvm_pmu_set_msr(vcpu
, msr_info
);
2258 if (pr
|| data
!= 0)
2259 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2260 "0x%x data 0x%llx\n", msr
, data
);
2262 case MSR_K7_CLK_CTL
:
2264 * Ignore all writes to this no longer documented MSR.
2265 * Writes are only relevant for old K7 processors,
2266 * all pre-dating SVM, but a recommended workaround from
2267 * AMD for these chips. It is possible to specify the
2268 * affected processor models on the command line, hence
2269 * the need to ignore the workaround.
2272 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2273 if (kvm_hv_msr_partition_wide(msr
)) {
2275 mutex_lock(&vcpu
->kvm
->lock
);
2276 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
2277 mutex_unlock(&vcpu
->kvm
->lock
);
2280 return set_msr_hyperv(vcpu
, msr
, data
);
2282 case MSR_IA32_BBL_CR_CTL3
:
2283 /* Drop writes to this legacy MSR -- see rdmsr
2284 * counterpart for further detail.
2286 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2288 case MSR_AMD64_OSVW_ID_LENGTH
:
2289 if (!guest_cpuid_has_osvw(vcpu
))
2291 vcpu
->arch
.osvw
.length
= data
;
2293 case MSR_AMD64_OSVW_STATUS
:
2294 if (!guest_cpuid_has_osvw(vcpu
))
2296 vcpu
->arch
.osvw
.status
= data
;
2299 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2300 return xen_hvm_config(vcpu
, data
);
2301 if (kvm_pmu_msr(vcpu
, msr
))
2302 return kvm_pmu_set_msr(vcpu
, msr_info
);
2304 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2308 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2315 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2319 * Reads an msr value (of 'msr_index') into 'pdata'.
2320 * Returns 0 on success, non-0 otherwise.
2321 * Assumes vcpu_load() was already called.
2323 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2325 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
2328 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2330 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
2332 if (!msr_mtrr_valid(msr
))
2335 if (msr
== MSR_MTRRdefType
)
2336 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
2337 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
2338 else if (msr
== MSR_MTRRfix64K_00000
)
2340 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
2341 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
2342 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
2343 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
2344 else if (msr
== MSR_IA32_CR_PAT
)
2345 *pdata
= vcpu
->arch
.pat
;
2346 else { /* Variable MTRRs */
2347 int idx
, is_mtrr_mask
;
2350 idx
= (msr
- 0x200) / 2;
2351 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
2354 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
2357 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
2364 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2367 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2368 unsigned bank_num
= mcg_cap
& 0xff;
2371 case MSR_IA32_P5_MC_ADDR
:
2372 case MSR_IA32_P5_MC_TYPE
:
2375 case MSR_IA32_MCG_CAP
:
2376 data
= vcpu
->arch
.mcg_cap
;
2378 case MSR_IA32_MCG_CTL
:
2379 if (!(mcg_cap
& MCG_CTL_P
))
2381 data
= vcpu
->arch
.mcg_ctl
;
2383 case MSR_IA32_MCG_STATUS
:
2384 data
= vcpu
->arch
.mcg_status
;
2387 if (msr
>= MSR_IA32_MC0_CTL
&&
2388 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2389 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2390 data
= vcpu
->arch
.mce_banks
[offset
];
2399 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2402 struct kvm
*kvm
= vcpu
->kvm
;
2405 case HV_X64_MSR_GUEST_OS_ID
:
2406 data
= kvm
->arch
.hv_guest_os_id
;
2408 case HV_X64_MSR_HYPERCALL
:
2409 data
= kvm
->arch
.hv_hypercall
;
2411 case HV_X64_MSR_TIME_REF_COUNT
: {
2413 div_u64(get_kernel_ns() + kvm
->arch
.kvmclock_offset
, 100);
2416 case HV_X64_MSR_REFERENCE_TSC
:
2417 data
= kvm
->arch
.hv_tsc_page
;
2420 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2428 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2433 case HV_X64_MSR_VP_INDEX
: {
2436 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
) {
2444 case HV_X64_MSR_EOI
:
2445 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
2446 case HV_X64_MSR_ICR
:
2447 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
2448 case HV_X64_MSR_TPR
:
2449 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
2450 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2451 data
= vcpu
->arch
.hv_vapic
;
2454 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2461 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2466 case MSR_IA32_PLATFORM_ID
:
2467 case MSR_IA32_EBL_CR_POWERON
:
2468 case MSR_IA32_DEBUGCTLMSR
:
2469 case MSR_IA32_LASTBRANCHFROMIP
:
2470 case MSR_IA32_LASTBRANCHTOIP
:
2471 case MSR_IA32_LASTINTFROMIP
:
2472 case MSR_IA32_LASTINTTOIP
:
2475 case MSR_VM_HSAVE_PA
:
2476 case MSR_K7_EVNTSEL0
:
2477 case MSR_K7_EVNTSEL1
:
2478 case MSR_K7_EVNTSEL2
:
2479 case MSR_K7_EVNTSEL3
:
2480 case MSR_K7_PERFCTR0
:
2481 case MSR_K7_PERFCTR1
:
2482 case MSR_K7_PERFCTR2
:
2483 case MSR_K7_PERFCTR3
:
2484 case MSR_K8_INT_PENDING_MSG
:
2485 case MSR_AMD64_NB_CFG
:
2486 case MSR_FAM10H_MMIO_CONF_BASE
:
2487 case MSR_AMD64_BU_CFG2
:
2490 case MSR_P6_PERFCTR0
:
2491 case MSR_P6_PERFCTR1
:
2492 case MSR_P6_EVNTSEL0
:
2493 case MSR_P6_EVNTSEL1
:
2494 if (kvm_pmu_msr(vcpu
, msr
))
2495 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2498 case MSR_IA32_UCODE_REV
:
2499 data
= 0x100000000ULL
;
2502 data
= 0x500 | KVM_NR_VAR_MTRR
;
2504 case 0x200 ... 0x2ff:
2505 return get_msr_mtrr(vcpu
, msr
, pdata
);
2506 case 0xcd: /* fsb frequency */
2510 * MSR_EBC_FREQUENCY_ID
2511 * Conservative value valid for even the basic CPU models.
2512 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2513 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2514 * and 266MHz for model 3, or 4. Set Core Clock
2515 * Frequency to System Bus Frequency Ratio to 1 (bits
2516 * 31:24) even though these are only valid for CPU
2517 * models > 2, however guests may end up dividing or
2518 * multiplying by zero otherwise.
2520 case MSR_EBC_FREQUENCY_ID
:
2523 case MSR_IA32_APICBASE
:
2524 data
= kvm_get_apic_base(vcpu
);
2526 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2527 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
2529 case MSR_IA32_TSCDEADLINE
:
2530 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2532 case MSR_IA32_TSC_ADJUST
:
2533 data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2535 case MSR_IA32_MISC_ENABLE
:
2536 data
= vcpu
->arch
.ia32_misc_enable_msr
;
2538 case MSR_IA32_PERF_STATUS
:
2539 /* TSC increment by tick */
2541 /* CPU multiplier */
2542 data
|= (((uint64_t)4ULL) << 40);
2545 data
= vcpu
->arch
.efer
;
2547 case MSR_KVM_WALL_CLOCK
:
2548 case MSR_KVM_WALL_CLOCK_NEW
:
2549 data
= vcpu
->kvm
->arch
.wall_clock
;
2551 case MSR_KVM_SYSTEM_TIME
:
2552 case MSR_KVM_SYSTEM_TIME_NEW
:
2553 data
= vcpu
->arch
.time
;
2555 case MSR_KVM_ASYNC_PF_EN
:
2556 data
= vcpu
->arch
.apf
.msr_val
;
2558 case MSR_KVM_STEAL_TIME
:
2559 data
= vcpu
->arch
.st
.msr_val
;
2561 case MSR_KVM_PV_EOI_EN
:
2562 data
= vcpu
->arch
.pv_eoi
.msr_val
;
2564 case MSR_IA32_P5_MC_ADDR
:
2565 case MSR_IA32_P5_MC_TYPE
:
2566 case MSR_IA32_MCG_CAP
:
2567 case MSR_IA32_MCG_CTL
:
2568 case MSR_IA32_MCG_STATUS
:
2569 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2570 return get_msr_mce(vcpu
, msr
, pdata
);
2571 case MSR_K7_CLK_CTL
:
2573 * Provide expected ramp-up count for K7. All other
2574 * are set to zero, indicating minimum divisors for
2577 * This prevents guest kernels on AMD host with CPU
2578 * type 6, model 8 and higher from exploding due to
2579 * the rdmsr failing.
2583 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2584 if (kvm_hv_msr_partition_wide(msr
)) {
2586 mutex_lock(&vcpu
->kvm
->lock
);
2587 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
2588 mutex_unlock(&vcpu
->kvm
->lock
);
2591 return get_msr_hyperv(vcpu
, msr
, pdata
);
2593 case MSR_IA32_BBL_CR_CTL3
:
2594 /* This legacy MSR exists but isn't fully documented in current
2595 * silicon. It is however accessed by winxp in very narrow
2596 * scenarios where it sets bit #19, itself documented as
2597 * a "reserved" bit. Best effort attempt to source coherent
2598 * read data here should the balance of the register be
2599 * interpreted by the guest:
2601 * L2 cache control register 3: 64GB range, 256KB size,
2602 * enabled, latency 0x1, configured
2606 case MSR_AMD64_OSVW_ID_LENGTH
:
2607 if (!guest_cpuid_has_osvw(vcpu
))
2609 data
= vcpu
->arch
.osvw
.length
;
2611 case MSR_AMD64_OSVW_STATUS
:
2612 if (!guest_cpuid_has_osvw(vcpu
))
2614 data
= vcpu
->arch
.osvw
.status
;
2617 if (kvm_pmu_msr(vcpu
, msr
))
2618 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2620 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
2623 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
2631 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2634 * Read or write a bunch of msrs. All parameters are kernel addresses.
2636 * @return number of msrs set successfully.
2638 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2639 struct kvm_msr_entry
*entries
,
2640 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2641 unsigned index
, u64
*data
))
2645 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2646 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2647 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2649 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2655 * Read or write a bunch of msrs. Parameters are user addresses.
2657 * @return number of msrs set successfully.
2659 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2660 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2661 unsigned index
, u64
*data
),
2664 struct kvm_msrs msrs
;
2665 struct kvm_msr_entry
*entries
;
2670 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2674 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2677 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2678 entries
= memdup_user(user_msrs
->entries
, size
);
2679 if (IS_ERR(entries
)) {
2680 r
= PTR_ERR(entries
);
2684 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2689 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2700 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2705 case KVM_CAP_IRQCHIP
:
2707 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2708 case KVM_CAP_SET_TSS_ADDR
:
2709 case KVM_CAP_EXT_CPUID
:
2710 case KVM_CAP_EXT_EMUL_CPUID
:
2711 case KVM_CAP_CLOCKSOURCE
:
2713 case KVM_CAP_NOP_IO_DELAY
:
2714 case KVM_CAP_MP_STATE
:
2715 case KVM_CAP_SYNC_MMU
:
2716 case KVM_CAP_USER_NMI
:
2717 case KVM_CAP_REINJECT_CONTROL
:
2718 case KVM_CAP_IRQ_INJECT_STATUS
:
2720 case KVM_CAP_IOEVENTFD
:
2721 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2723 case KVM_CAP_PIT_STATE2
:
2724 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2725 case KVM_CAP_XEN_HVM
:
2726 case KVM_CAP_ADJUST_CLOCK
:
2727 case KVM_CAP_VCPU_EVENTS
:
2728 case KVM_CAP_HYPERV
:
2729 case KVM_CAP_HYPERV_VAPIC
:
2730 case KVM_CAP_HYPERV_SPIN
:
2731 case KVM_CAP_PCI_SEGMENT
:
2732 case KVM_CAP_DEBUGREGS
:
2733 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2735 case KVM_CAP_ASYNC_PF
:
2736 case KVM_CAP_GET_TSC_KHZ
:
2737 case KVM_CAP_KVMCLOCK_CTRL
:
2738 case KVM_CAP_READONLY_MEM
:
2739 case KVM_CAP_HYPERV_TIME
:
2740 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2741 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2742 case KVM_CAP_ASSIGN_DEV_IRQ
:
2743 case KVM_CAP_PCI_2_3
:
2747 case KVM_CAP_COALESCED_MMIO
:
2748 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2751 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2753 case KVM_CAP_NR_VCPUS
:
2754 r
= KVM_SOFT_MAX_VCPUS
;
2756 case KVM_CAP_MAX_VCPUS
:
2759 case KVM_CAP_NR_MEMSLOTS
:
2760 r
= KVM_USER_MEM_SLOTS
;
2762 case KVM_CAP_PV_MMU
: /* obsolete */
2765 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2767 r
= iommu_present(&pci_bus_type
);
2771 r
= KVM_MAX_MCE_BANKS
;
2776 case KVM_CAP_TSC_CONTROL
:
2777 r
= kvm_has_tsc_control
;
2779 case KVM_CAP_TSC_DEADLINE_TIMER
:
2780 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2790 long kvm_arch_dev_ioctl(struct file
*filp
,
2791 unsigned int ioctl
, unsigned long arg
)
2793 void __user
*argp
= (void __user
*)arg
;
2797 case KVM_GET_MSR_INDEX_LIST
: {
2798 struct kvm_msr_list __user
*user_msr_list
= argp
;
2799 struct kvm_msr_list msr_list
;
2803 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2806 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2807 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2810 if (n
< msr_list
.nmsrs
)
2813 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2814 num_msrs_to_save
* sizeof(u32
)))
2816 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2818 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2823 case KVM_GET_SUPPORTED_CPUID
:
2824 case KVM_GET_EMULATED_CPUID
: {
2825 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2826 struct kvm_cpuid2 cpuid
;
2829 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2832 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2838 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2843 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2846 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2848 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2860 static void wbinvd_ipi(void *garbage
)
2865 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2867 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2870 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2872 /* Address WBINVD may be executed by guest */
2873 if (need_emulate_wbinvd(vcpu
)) {
2874 if (kvm_x86_ops
->has_wbinvd_exit())
2875 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2876 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2877 smp_call_function_single(vcpu
->cpu
,
2878 wbinvd_ipi
, NULL
, 1);
2881 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2883 /* Apply any externally detected TSC adjustments (due to suspend) */
2884 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2885 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2886 vcpu
->arch
.tsc_offset_adjustment
= 0;
2887 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2890 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2891 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2892 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2894 mark_tsc_unstable("KVM discovered backwards TSC");
2895 if (check_tsc_unstable()) {
2896 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2897 vcpu
->arch
.last_guest_tsc
);
2898 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2899 vcpu
->arch
.tsc_catchup
= 1;
2902 * On a host with synchronized TSC, there is no need to update
2903 * kvmclock on vcpu->cpu migration
2905 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2906 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2907 if (vcpu
->cpu
!= cpu
)
2908 kvm_migrate_timers(vcpu
);
2912 accumulate_steal_time(vcpu
);
2913 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2916 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2918 kvm_x86_ops
->vcpu_put(vcpu
);
2919 kvm_put_guest_fpu(vcpu
);
2920 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2923 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2924 struct kvm_lapic_state
*s
)
2926 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2927 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2932 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2933 struct kvm_lapic_state
*s
)
2935 kvm_apic_post_state_restore(vcpu
, s
);
2936 update_cr8_intercept(vcpu
);
2941 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2942 struct kvm_interrupt
*irq
)
2944 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2946 if (irqchip_in_kernel(vcpu
->kvm
))
2949 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2950 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2955 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2957 kvm_inject_nmi(vcpu
);
2962 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2963 struct kvm_tpr_access_ctl
*tac
)
2967 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2971 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2975 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2978 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2980 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2983 vcpu
->arch
.mcg_cap
= mcg_cap
;
2984 /* Init IA32_MCG_CTL to all 1s */
2985 if (mcg_cap
& MCG_CTL_P
)
2986 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2987 /* Init IA32_MCi_CTL to all 1s */
2988 for (bank
= 0; bank
< bank_num
; bank
++)
2989 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2994 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2995 struct kvm_x86_mce
*mce
)
2997 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2998 unsigned bank_num
= mcg_cap
& 0xff;
2999 u64
*banks
= vcpu
->arch
.mce_banks
;
3001 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3004 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3005 * reporting is disabled
3007 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3008 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3010 banks
+= 4 * mce
->bank
;
3012 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3013 * reporting is disabled for the bank
3015 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3017 if (mce
->status
& MCI_STATUS_UC
) {
3018 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3019 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3020 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3023 if (banks
[1] & MCI_STATUS_VAL
)
3024 mce
->status
|= MCI_STATUS_OVER
;
3025 banks
[2] = mce
->addr
;
3026 banks
[3] = mce
->misc
;
3027 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3028 banks
[1] = mce
->status
;
3029 kvm_queue_exception(vcpu
, MC_VECTOR
);
3030 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3031 || !(banks
[1] & MCI_STATUS_UC
)) {
3032 if (banks
[1] & MCI_STATUS_VAL
)
3033 mce
->status
|= MCI_STATUS_OVER
;
3034 banks
[2] = mce
->addr
;
3035 banks
[3] = mce
->misc
;
3036 banks
[1] = mce
->status
;
3038 banks
[1] |= MCI_STATUS_OVER
;
3042 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3043 struct kvm_vcpu_events
*events
)
3046 events
->exception
.injected
=
3047 vcpu
->arch
.exception
.pending
&&
3048 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3049 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3050 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3051 events
->exception
.pad
= 0;
3052 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3054 events
->interrupt
.injected
=
3055 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
3056 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3057 events
->interrupt
.soft
= 0;
3058 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3060 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3061 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3062 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3063 events
->nmi
.pad
= 0;
3065 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3067 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3068 | KVM_VCPUEVENT_VALID_SHADOW
);
3069 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3072 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3073 struct kvm_vcpu_events
*events
)
3075 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3076 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3077 | KVM_VCPUEVENT_VALID_SHADOW
))
3081 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3082 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3083 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3084 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3086 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3087 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3088 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3089 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3090 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3091 events
->interrupt
.shadow
);
3093 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3094 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3095 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3096 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3098 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3099 kvm_vcpu_has_lapic(vcpu
))
3100 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3102 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3107 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3108 struct kvm_debugregs
*dbgregs
)
3112 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3113 kvm_get_dr(vcpu
, 6, &val
);
3115 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3117 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3120 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3121 struct kvm_debugregs
*dbgregs
)
3126 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3127 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3128 kvm_update_dr6(vcpu
);
3129 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3130 kvm_update_dr7(vcpu
);
3135 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3137 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3139 struct xsave_struct
*xsave
= &vcpu
->arch
.guest_fpu
.state
->xsave
;
3140 u64 xstate_bv
= xsave
->xsave_hdr
.xstate_bv
;
3144 * Copy legacy XSAVE area, to avoid complications with CPUID
3145 * leaves 0 and 1 in the loop below.
3147 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3150 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3153 * Copy each region from the possibly compacted offset to the
3154 * non-compacted offset.
3156 valid
= xstate_bv
& ~XSTATE_FPSSE
;
3158 u64 feature
= valid
& -valid
;
3159 int index
= fls64(feature
) - 1;
3160 void *src
= get_xsave_addr(xsave
, feature
);
3163 u32 size
, offset
, ecx
, edx
;
3164 cpuid_count(XSTATE_CPUID
, index
,
3165 &size
, &offset
, &ecx
, &edx
);
3166 memcpy(dest
+ offset
, src
, size
);
3173 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3175 struct xsave_struct
*xsave
= &vcpu
->arch
.guest_fpu
.state
->xsave
;
3176 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3180 * Copy legacy XSAVE area, to avoid complications with CPUID
3181 * leaves 0 and 1 in the loop below.
3183 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3185 /* Set XSTATE_BV and possibly XCOMP_BV. */
3186 xsave
->xsave_hdr
.xstate_bv
= xstate_bv
;
3188 xsave
->xsave_hdr
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3191 * Copy each region from the non-compacted offset to the
3192 * possibly compacted offset.
3194 valid
= xstate_bv
& ~XSTATE_FPSSE
;
3196 u64 feature
= valid
& -valid
;
3197 int index
= fls64(feature
) - 1;
3198 void *dest
= get_xsave_addr(xsave
, feature
);
3201 u32 size
, offset
, ecx
, edx
;
3202 cpuid_count(XSTATE_CPUID
, index
,
3203 &size
, &offset
, &ecx
, &edx
);
3204 memcpy(dest
, src
+ offset
, size
);
3212 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3213 struct kvm_xsave
*guest_xsave
)
3215 if (cpu_has_xsave
) {
3216 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3217 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3219 memcpy(guest_xsave
->region
,
3220 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
3221 sizeof(struct i387_fxsave_struct
));
3222 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3227 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3228 struct kvm_xsave
*guest_xsave
)
3231 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3233 if (cpu_has_xsave
) {
3235 * Here we allow setting states that are not present in
3236 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3237 * with old userspace.
3239 if (xstate_bv
& ~kvm_supported_xcr0())
3241 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3243 if (xstate_bv
& ~XSTATE_FPSSE
)
3245 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
3246 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
3251 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3252 struct kvm_xcrs
*guest_xcrs
)
3254 if (!cpu_has_xsave
) {
3255 guest_xcrs
->nr_xcrs
= 0;
3259 guest_xcrs
->nr_xcrs
= 1;
3260 guest_xcrs
->flags
= 0;
3261 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3262 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3265 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3266 struct kvm_xcrs
*guest_xcrs
)
3273 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3276 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3277 /* Only support XCR0 currently */
3278 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3279 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3280 guest_xcrs
->xcrs
[i
].value
);
3289 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3290 * stopped by the hypervisor. This function will be called from the host only.
3291 * EINVAL is returned when the host attempts to set the flag for a guest that
3292 * does not support pv clocks.
3294 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3296 if (!vcpu
->arch
.pv_time_enabled
)
3298 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3299 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3303 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3304 unsigned int ioctl
, unsigned long arg
)
3306 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3307 void __user
*argp
= (void __user
*)arg
;
3310 struct kvm_lapic_state
*lapic
;
3311 struct kvm_xsave
*xsave
;
3312 struct kvm_xcrs
*xcrs
;
3318 case KVM_GET_LAPIC
: {
3320 if (!vcpu
->arch
.apic
)
3322 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3327 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3331 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3336 case KVM_SET_LAPIC
: {
3338 if (!vcpu
->arch
.apic
)
3340 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3341 if (IS_ERR(u
.lapic
))
3342 return PTR_ERR(u
.lapic
);
3344 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3347 case KVM_INTERRUPT
: {
3348 struct kvm_interrupt irq
;
3351 if (copy_from_user(&irq
, argp
, sizeof irq
))
3353 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3357 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3360 case KVM_SET_CPUID
: {
3361 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3362 struct kvm_cpuid cpuid
;
3365 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3367 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3370 case KVM_SET_CPUID2
: {
3371 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3372 struct kvm_cpuid2 cpuid
;
3375 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3377 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3378 cpuid_arg
->entries
);
3381 case KVM_GET_CPUID2
: {
3382 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3383 struct kvm_cpuid2 cpuid
;
3386 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3388 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3389 cpuid_arg
->entries
);
3393 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3399 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3402 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3404 case KVM_TPR_ACCESS_REPORTING
: {
3405 struct kvm_tpr_access_ctl tac
;
3408 if (copy_from_user(&tac
, argp
, sizeof tac
))
3410 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3414 if (copy_to_user(argp
, &tac
, sizeof tac
))
3419 case KVM_SET_VAPIC_ADDR
: {
3420 struct kvm_vapic_addr va
;
3423 if (!irqchip_in_kernel(vcpu
->kvm
))
3426 if (copy_from_user(&va
, argp
, sizeof va
))
3428 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3431 case KVM_X86_SETUP_MCE
: {
3435 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3437 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3440 case KVM_X86_SET_MCE
: {
3441 struct kvm_x86_mce mce
;
3444 if (copy_from_user(&mce
, argp
, sizeof mce
))
3446 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3449 case KVM_GET_VCPU_EVENTS
: {
3450 struct kvm_vcpu_events events
;
3452 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3455 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3460 case KVM_SET_VCPU_EVENTS
: {
3461 struct kvm_vcpu_events events
;
3464 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3467 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3470 case KVM_GET_DEBUGREGS
: {
3471 struct kvm_debugregs dbgregs
;
3473 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3476 if (copy_to_user(argp
, &dbgregs
,
3477 sizeof(struct kvm_debugregs
)))
3482 case KVM_SET_DEBUGREGS
: {
3483 struct kvm_debugregs dbgregs
;
3486 if (copy_from_user(&dbgregs
, argp
,
3487 sizeof(struct kvm_debugregs
)))
3490 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3493 case KVM_GET_XSAVE
: {
3494 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3499 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3502 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3507 case KVM_SET_XSAVE
: {
3508 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3509 if (IS_ERR(u
.xsave
))
3510 return PTR_ERR(u
.xsave
);
3512 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3515 case KVM_GET_XCRS
: {
3516 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3521 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3524 if (copy_to_user(argp
, u
.xcrs
,
3525 sizeof(struct kvm_xcrs
)))
3530 case KVM_SET_XCRS
: {
3531 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3533 return PTR_ERR(u
.xcrs
);
3535 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3538 case KVM_SET_TSC_KHZ
: {
3542 user_tsc_khz
= (u32
)arg
;
3544 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3547 if (user_tsc_khz
== 0)
3548 user_tsc_khz
= tsc_khz
;
3550 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
3555 case KVM_GET_TSC_KHZ
: {
3556 r
= vcpu
->arch
.virtual_tsc_khz
;
3559 case KVM_KVMCLOCK_CTRL
: {
3560 r
= kvm_set_guest_paused(vcpu
);
3571 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3573 return VM_FAULT_SIGBUS
;
3576 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3580 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3582 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3586 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3589 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3593 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3594 u32 kvm_nr_mmu_pages
)
3596 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3599 mutex_lock(&kvm
->slots_lock
);
3601 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3602 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3604 mutex_unlock(&kvm
->slots_lock
);
3608 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3610 return kvm
->arch
.n_max_mmu_pages
;
3613 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3618 switch (chip
->chip_id
) {
3619 case KVM_IRQCHIP_PIC_MASTER
:
3620 memcpy(&chip
->chip
.pic
,
3621 &pic_irqchip(kvm
)->pics
[0],
3622 sizeof(struct kvm_pic_state
));
3624 case KVM_IRQCHIP_PIC_SLAVE
:
3625 memcpy(&chip
->chip
.pic
,
3626 &pic_irqchip(kvm
)->pics
[1],
3627 sizeof(struct kvm_pic_state
));
3629 case KVM_IRQCHIP_IOAPIC
:
3630 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3639 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3644 switch (chip
->chip_id
) {
3645 case KVM_IRQCHIP_PIC_MASTER
:
3646 spin_lock(&pic_irqchip(kvm
)->lock
);
3647 memcpy(&pic_irqchip(kvm
)->pics
[0],
3649 sizeof(struct kvm_pic_state
));
3650 spin_unlock(&pic_irqchip(kvm
)->lock
);
3652 case KVM_IRQCHIP_PIC_SLAVE
:
3653 spin_lock(&pic_irqchip(kvm
)->lock
);
3654 memcpy(&pic_irqchip(kvm
)->pics
[1],
3656 sizeof(struct kvm_pic_state
));
3657 spin_unlock(&pic_irqchip(kvm
)->lock
);
3659 case KVM_IRQCHIP_IOAPIC
:
3660 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3666 kvm_pic_update_irq(pic_irqchip(kvm
));
3670 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3674 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3675 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3676 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3680 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3684 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3685 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3686 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3687 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3691 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3695 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3696 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3697 sizeof(ps
->channels
));
3698 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3699 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3700 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3704 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3706 int r
= 0, start
= 0;
3707 u32 prev_legacy
, cur_legacy
;
3708 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3709 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3710 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3711 if (!prev_legacy
&& cur_legacy
)
3713 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3714 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3715 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3716 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3717 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3721 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3722 struct kvm_reinject_control
*control
)
3724 if (!kvm
->arch
.vpit
)
3726 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3727 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3728 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3733 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3734 * @kvm: kvm instance
3735 * @log: slot id and address to which we copy the log
3737 * We need to keep it in mind that VCPU threads can write to the bitmap
3738 * concurrently. So, to avoid losing data, we keep the following order for
3741 * 1. Take a snapshot of the bit and clear it if needed.
3742 * 2. Write protect the corresponding page.
3743 * 3. Flush TLB's if needed.
3744 * 4. Copy the snapshot to the userspace.
3746 * Between 2 and 3, the guest may write to the page using the remaining TLB
3747 * entry. This is not a problem because the page will be reported dirty at
3748 * step 4 using the snapshot taken before and step 3 ensures that successive
3749 * writes will be logged for the next call.
3751 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3754 struct kvm_memory_slot
*memslot
;
3756 unsigned long *dirty_bitmap
;
3757 unsigned long *dirty_bitmap_buffer
;
3758 bool is_dirty
= false;
3760 mutex_lock(&kvm
->slots_lock
);
3763 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
3766 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3768 dirty_bitmap
= memslot
->dirty_bitmap
;
3773 n
= kvm_dirty_bitmap_bytes(memslot
);
3775 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
3776 memset(dirty_bitmap_buffer
, 0, n
);
3778 spin_lock(&kvm
->mmu_lock
);
3780 for (i
= 0; i
< n
/ sizeof(long); i
++) {
3784 if (!dirty_bitmap
[i
])
3789 mask
= xchg(&dirty_bitmap
[i
], 0);
3790 dirty_bitmap_buffer
[i
] = mask
;
3792 offset
= i
* BITS_PER_LONG
;
3793 kvm_mmu_write_protect_pt_masked(kvm
, memslot
, offset
, mask
);
3796 spin_unlock(&kvm
->mmu_lock
);
3798 /* See the comments in kvm_mmu_slot_remove_write_access(). */
3799 lockdep_assert_held(&kvm
->slots_lock
);
3802 * All the TLBs can be flushed out of mmu lock, see the comments in
3803 * kvm_mmu_slot_remove_write_access().
3806 kvm_flush_remote_tlbs(kvm
);
3809 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
3814 mutex_unlock(&kvm
->slots_lock
);
3818 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3821 if (!irqchip_in_kernel(kvm
))
3824 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3825 irq_event
->irq
, irq_event
->level
,
3830 long kvm_arch_vm_ioctl(struct file
*filp
,
3831 unsigned int ioctl
, unsigned long arg
)
3833 struct kvm
*kvm
= filp
->private_data
;
3834 void __user
*argp
= (void __user
*)arg
;
3837 * This union makes it completely explicit to gcc-3.x
3838 * that these two variables' stack usage should be
3839 * combined, not added together.
3842 struct kvm_pit_state ps
;
3843 struct kvm_pit_state2 ps2
;
3844 struct kvm_pit_config pit_config
;
3848 case KVM_SET_TSS_ADDR
:
3849 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3851 case KVM_SET_IDENTITY_MAP_ADDR
: {
3855 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3857 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3860 case KVM_SET_NR_MMU_PAGES
:
3861 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3863 case KVM_GET_NR_MMU_PAGES
:
3864 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3866 case KVM_CREATE_IRQCHIP
: {
3867 struct kvm_pic
*vpic
;
3869 mutex_lock(&kvm
->lock
);
3872 goto create_irqchip_unlock
;
3874 if (atomic_read(&kvm
->online_vcpus
))
3875 goto create_irqchip_unlock
;
3877 vpic
= kvm_create_pic(kvm
);
3879 r
= kvm_ioapic_init(kvm
);
3881 mutex_lock(&kvm
->slots_lock
);
3882 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3884 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3886 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3888 mutex_unlock(&kvm
->slots_lock
);
3890 goto create_irqchip_unlock
;
3893 goto create_irqchip_unlock
;
3895 kvm
->arch
.vpic
= vpic
;
3897 r
= kvm_setup_default_irq_routing(kvm
);
3899 mutex_lock(&kvm
->slots_lock
);
3900 mutex_lock(&kvm
->irq_lock
);
3901 kvm_ioapic_destroy(kvm
);
3902 kvm_destroy_pic(kvm
);
3903 mutex_unlock(&kvm
->irq_lock
);
3904 mutex_unlock(&kvm
->slots_lock
);
3906 create_irqchip_unlock
:
3907 mutex_unlock(&kvm
->lock
);
3910 case KVM_CREATE_PIT
:
3911 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3913 case KVM_CREATE_PIT2
:
3915 if (copy_from_user(&u
.pit_config
, argp
,
3916 sizeof(struct kvm_pit_config
)))
3919 mutex_lock(&kvm
->slots_lock
);
3922 goto create_pit_unlock
;
3924 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3928 mutex_unlock(&kvm
->slots_lock
);
3930 case KVM_GET_IRQCHIP
: {
3931 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3932 struct kvm_irqchip
*chip
;
3934 chip
= memdup_user(argp
, sizeof(*chip
));
3941 if (!irqchip_in_kernel(kvm
))
3942 goto get_irqchip_out
;
3943 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3945 goto get_irqchip_out
;
3947 if (copy_to_user(argp
, chip
, sizeof *chip
))
3948 goto get_irqchip_out
;
3954 case KVM_SET_IRQCHIP
: {
3955 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3956 struct kvm_irqchip
*chip
;
3958 chip
= memdup_user(argp
, sizeof(*chip
));
3965 if (!irqchip_in_kernel(kvm
))
3966 goto set_irqchip_out
;
3967 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3969 goto set_irqchip_out
;
3977 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3980 if (!kvm
->arch
.vpit
)
3982 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3986 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3993 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3996 if (!kvm
->arch
.vpit
)
3998 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4001 case KVM_GET_PIT2
: {
4003 if (!kvm
->arch
.vpit
)
4005 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4009 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4014 case KVM_SET_PIT2
: {
4016 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4019 if (!kvm
->arch
.vpit
)
4021 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4024 case KVM_REINJECT_CONTROL
: {
4025 struct kvm_reinject_control control
;
4027 if (copy_from_user(&control
, argp
, sizeof(control
)))
4029 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4032 case KVM_XEN_HVM_CONFIG
: {
4034 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
4035 sizeof(struct kvm_xen_hvm_config
)))
4038 if (kvm
->arch
.xen_hvm_config
.flags
)
4043 case KVM_SET_CLOCK
: {
4044 struct kvm_clock_data user_ns
;
4049 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4057 local_irq_disable();
4058 now_ns
= get_kernel_ns();
4059 delta
= user_ns
.clock
- now_ns
;
4061 kvm
->arch
.kvmclock_offset
= delta
;
4062 kvm_gen_update_masterclock(kvm
);
4065 case KVM_GET_CLOCK
: {
4066 struct kvm_clock_data user_ns
;
4069 local_irq_disable();
4070 now_ns
= get_kernel_ns();
4071 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
4074 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4077 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4084 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4090 static void kvm_init_msr_list(void)
4095 /* skip the first msrs in the list. KVM-specific */
4096 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4097 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4101 * Even MSRs that are valid in the host may not be exposed
4102 * to the guests in some cases. We could work around this
4103 * in VMX with the generic MSR save/load machinery, but it
4104 * is not really worthwhile since it will really only
4105 * happen with nested virtualization.
4107 switch (msrs_to_save
[i
]) {
4108 case MSR_IA32_BNDCFGS
:
4109 if (!kvm_x86_ops
->mpx_supported())
4117 msrs_to_save
[j
] = msrs_to_save
[i
];
4120 num_msrs_to_save
= j
;
4123 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4131 if (!(vcpu
->arch
.apic
&&
4132 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4133 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
4144 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4151 if (!(vcpu
->arch
.apic
&&
4152 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4153 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
4155 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4165 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4166 struct kvm_segment
*var
, int seg
)
4168 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4171 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4172 struct kvm_segment
*var
, int seg
)
4174 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4177 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4178 struct x86_exception
*exception
)
4182 BUG_ON(!mmu_is_nested(vcpu
));
4184 /* NPT walks are always user-walks */
4185 access
|= PFERR_USER_MASK
;
4186 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4191 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4192 struct x86_exception
*exception
)
4194 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4195 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4198 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4199 struct x86_exception
*exception
)
4201 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4202 access
|= PFERR_FETCH_MASK
;
4203 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4206 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4207 struct x86_exception
*exception
)
4209 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4210 access
|= PFERR_WRITE_MASK
;
4211 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4214 /* uses this to access any guest's mapped memory without checking CPL */
4215 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4216 struct x86_exception
*exception
)
4218 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4221 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4222 struct kvm_vcpu
*vcpu
, u32 access
,
4223 struct x86_exception
*exception
)
4226 int r
= X86EMUL_CONTINUE
;
4229 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4231 unsigned offset
= addr
& (PAGE_SIZE
-1);
4232 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4235 if (gpa
== UNMAPPED_GVA
)
4236 return X86EMUL_PROPAGATE_FAULT
;
4237 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
, data
,
4240 r
= X86EMUL_IO_NEEDED
;
4252 /* used for instruction fetching */
4253 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4254 gva_t addr
, void *val
, unsigned int bytes
,
4255 struct x86_exception
*exception
)
4257 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4258 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4262 /* Inline kvm_read_guest_virt_helper for speed. */
4263 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4265 if (unlikely(gpa
== UNMAPPED_GVA
))
4266 return X86EMUL_PROPAGATE_FAULT
;
4268 offset
= addr
& (PAGE_SIZE
-1);
4269 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4270 bytes
= (unsigned)PAGE_SIZE
- offset
;
4271 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
, val
,
4273 if (unlikely(ret
< 0))
4274 return X86EMUL_IO_NEEDED
;
4276 return X86EMUL_CONTINUE
;
4279 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4280 gva_t addr
, void *val
, unsigned int bytes
,
4281 struct x86_exception
*exception
)
4283 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4284 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4286 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4289 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4291 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4292 gva_t addr
, void *val
, unsigned int bytes
,
4293 struct x86_exception
*exception
)
4295 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4296 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4299 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4300 gva_t addr
, void *val
,
4302 struct x86_exception
*exception
)
4304 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4306 int r
= X86EMUL_CONTINUE
;
4309 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4312 unsigned offset
= addr
& (PAGE_SIZE
-1);
4313 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4316 if (gpa
== UNMAPPED_GVA
)
4317 return X86EMUL_PROPAGATE_FAULT
;
4318 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4320 r
= X86EMUL_IO_NEEDED
;
4331 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4333 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4334 gpa_t
*gpa
, struct x86_exception
*exception
,
4337 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4338 | (write
? PFERR_WRITE_MASK
: 0);
4340 if (vcpu_match_mmio_gva(vcpu
, gva
)
4341 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4342 vcpu
->arch
.access
, access
)) {
4343 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4344 (gva
& (PAGE_SIZE
- 1));
4345 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4349 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4351 if (*gpa
== UNMAPPED_GVA
)
4354 /* For APIC access vmexit */
4355 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4358 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4359 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4366 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4367 const void *val
, int bytes
)
4371 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4374 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4378 struct read_write_emulator_ops
{
4379 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4381 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4382 void *val
, int bytes
);
4383 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4384 int bytes
, void *val
);
4385 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4386 void *val
, int bytes
);
4390 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4392 if (vcpu
->mmio_read_completed
) {
4393 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4394 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4395 vcpu
->mmio_read_completed
= 0;
4402 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4403 void *val
, int bytes
)
4405 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4408 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4409 void *val
, int bytes
)
4411 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4414 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4416 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4417 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4420 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4421 void *val
, int bytes
)
4423 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4424 return X86EMUL_IO_NEEDED
;
4427 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4428 void *val
, int bytes
)
4430 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4432 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4433 return X86EMUL_CONTINUE
;
4436 static const struct read_write_emulator_ops read_emultor
= {
4437 .read_write_prepare
= read_prepare
,
4438 .read_write_emulate
= read_emulate
,
4439 .read_write_mmio
= vcpu_mmio_read
,
4440 .read_write_exit_mmio
= read_exit_mmio
,
4443 static const struct read_write_emulator_ops write_emultor
= {
4444 .read_write_emulate
= write_emulate
,
4445 .read_write_mmio
= write_mmio
,
4446 .read_write_exit_mmio
= write_exit_mmio
,
4450 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4452 struct x86_exception
*exception
,
4453 struct kvm_vcpu
*vcpu
,
4454 const struct read_write_emulator_ops
*ops
)
4458 bool write
= ops
->write
;
4459 struct kvm_mmio_fragment
*frag
;
4461 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4464 return X86EMUL_PROPAGATE_FAULT
;
4466 /* For APIC access vmexit */
4470 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4471 return X86EMUL_CONTINUE
;
4475 * Is this MMIO handled locally?
4477 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4478 if (handled
== bytes
)
4479 return X86EMUL_CONTINUE
;
4485 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4486 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4490 return X86EMUL_CONTINUE
;
4493 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
4494 void *val
, unsigned int bytes
,
4495 struct x86_exception
*exception
,
4496 const struct read_write_emulator_ops
*ops
)
4498 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4502 if (ops
->read_write_prepare
&&
4503 ops
->read_write_prepare(vcpu
, val
, bytes
))
4504 return X86EMUL_CONTINUE
;
4506 vcpu
->mmio_nr_fragments
= 0;
4508 /* Crossing a page boundary? */
4509 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4512 now
= -addr
& ~PAGE_MASK
;
4513 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4516 if (rc
!= X86EMUL_CONTINUE
)
4523 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4525 if (rc
!= X86EMUL_CONTINUE
)
4528 if (!vcpu
->mmio_nr_fragments
)
4531 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4533 vcpu
->mmio_needed
= 1;
4534 vcpu
->mmio_cur_fragment
= 0;
4536 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4537 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4538 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4539 vcpu
->run
->mmio
.phys_addr
= gpa
;
4541 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4544 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4548 struct x86_exception
*exception
)
4550 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4551 exception
, &read_emultor
);
4554 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4558 struct x86_exception
*exception
)
4560 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4561 exception
, &write_emultor
);
4564 #define CMPXCHG_TYPE(t, ptr, old, new) \
4565 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4567 #ifdef CONFIG_X86_64
4568 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4570 # define CMPXCHG64(ptr, old, new) \
4571 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4574 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4579 struct x86_exception
*exception
)
4581 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4587 /* guests cmpxchg8b have to be emulated atomically */
4588 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4591 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4593 if (gpa
== UNMAPPED_GVA
||
4594 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4597 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4600 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4601 if (is_error_page(page
))
4604 kaddr
= kmap_atomic(page
);
4605 kaddr
+= offset_in_page(gpa
);
4608 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4611 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4614 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4617 exchanged
= CMPXCHG64(kaddr
, old
, new);
4622 kunmap_atomic(kaddr
);
4623 kvm_release_page_dirty(page
);
4626 return X86EMUL_CMPXCHG_FAILED
;
4628 mark_page_dirty(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4629 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4631 return X86EMUL_CONTINUE
;
4634 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4636 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4639 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4641 /* TODO: String I/O for in kernel device */
4644 if (vcpu
->arch
.pio
.in
)
4645 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4646 vcpu
->arch
.pio
.size
, pd
);
4648 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4649 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4654 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4655 unsigned short port
, void *val
,
4656 unsigned int count
, bool in
)
4658 vcpu
->arch
.pio
.port
= port
;
4659 vcpu
->arch
.pio
.in
= in
;
4660 vcpu
->arch
.pio
.count
= count
;
4661 vcpu
->arch
.pio
.size
= size
;
4663 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4664 vcpu
->arch
.pio
.count
= 0;
4668 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4669 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4670 vcpu
->run
->io
.size
= size
;
4671 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4672 vcpu
->run
->io
.count
= count
;
4673 vcpu
->run
->io
.port
= port
;
4678 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4679 int size
, unsigned short port
, void *val
,
4682 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4685 if (vcpu
->arch
.pio
.count
)
4688 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4691 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4692 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4693 vcpu
->arch
.pio
.count
= 0;
4700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4701 int size
, unsigned short port
,
4702 const void *val
, unsigned int count
)
4704 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4706 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4707 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4708 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4711 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4713 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4716 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4718 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4721 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4723 if (!need_emulate_wbinvd(vcpu
))
4724 return X86EMUL_CONTINUE
;
4726 if (kvm_x86_ops
->has_wbinvd_exit()) {
4727 int cpu
= get_cpu();
4729 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4730 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4731 wbinvd_ipi
, NULL
, 1);
4733 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4736 return X86EMUL_CONTINUE
;
4738 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4740 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4742 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4745 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4747 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4750 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4753 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4756 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4758 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4763 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4764 unsigned long value
;
4768 value
= kvm_read_cr0(vcpu
);
4771 value
= vcpu
->arch
.cr2
;
4774 value
= kvm_read_cr3(vcpu
);
4777 value
= kvm_read_cr4(vcpu
);
4780 value
= kvm_get_cr8(vcpu
);
4783 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4790 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4792 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4797 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4800 vcpu
->arch
.cr2
= val
;
4803 res
= kvm_set_cr3(vcpu
, val
);
4806 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4809 res
= kvm_set_cr8(vcpu
, val
);
4812 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4819 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4821 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4824 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4826 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4829 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4831 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4834 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4836 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4839 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4841 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4844 static unsigned long emulator_get_cached_segment_base(
4845 struct x86_emulate_ctxt
*ctxt
, int seg
)
4847 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4850 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4851 struct desc_struct
*desc
, u32
*base3
,
4854 struct kvm_segment var
;
4856 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4857 *selector
= var
.selector
;
4860 memset(desc
, 0, sizeof(*desc
));
4866 set_desc_limit(desc
, var
.limit
);
4867 set_desc_base(desc
, (unsigned long)var
.base
);
4868 #ifdef CONFIG_X86_64
4870 *base3
= var
.base
>> 32;
4872 desc
->type
= var
.type
;
4874 desc
->dpl
= var
.dpl
;
4875 desc
->p
= var
.present
;
4876 desc
->avl
= var
.avl
;
4884 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4885 struct desc_struct
*desc
, u32 base3
,
4888 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4889 struct kvm_segment var
;
4891 var
.selector
= selector
;
4892 var
.base
= get_desc_base(desc
);
4893 #ifdef CONFIG_X86_64
4894 var
.base
|= ((u64
)base3
) << 32;
4896 var
.limit
= get_desc_limit(desc
);
4898 var
.limit
= (var
.limit
<< 12) | 0xfff;
4899 var
.type
= desc
->type
;
4900 var
.dpl
= desc
->dpl
;
4905 var
.avl
= desc
->avl
;
4906 var
.present
= desc
->p
;
4907 var
.unusable
= !var
.present
;
4910 kvm_set_segment(vcpu
, &var
, seg
);
4914 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4915 u32 msr_index
, u64
*pdata
)
4917 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4920 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4921 u32 msr_index
, u64 data
)
4923 struct msr_data msr
;
4926 msr
.index
= msr_index
;
4927 msr
.host_initiated
= false;
4928 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4931 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
4934 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt
), pmc
);
4937 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4938 u32 pmc
, u64
*pdata
)
4940 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4943 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4945 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4948 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4951 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4953 * CR0.TS may reference the host fpu state, not the guest fpu state,
4954 * so it may be clear at this point.
4959 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4964 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4965 struct x86_instruction_info
*info
,
4966 enum x86_intercept_stage stage
)
4968 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4972 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4974 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4977 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4979 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4982 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4984 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4987 static const struct x86_emulate_ops emulate_ops
= {
4988 .read_gpr
= emulator_read_gpr
,
4989 .write_gpr
= emulator_write_gpr
,
4990 .read_std
= kvm_read_guest_virt_system
,
4991 .write_std
= kvm_write_guest_virt_system
,
4992 .fetch
= kvm_fetch_guest_virt
,
4993 .read_emulated
= emulator_read_emulated
,
4994 .write_emulated
= emulator_write_emulated
,
4995 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4996 .invlpg
= emulator_invlpg
,
4997 .pio_in_emulated
= emulator_pio_in_emulated
,
4998 .pio_out_emulated
= emulator_pio_out_emulated
,
4999 .get_segment
= emulator_get_segment
,
5000 .set_segment
= emulator_set_segment
,
5001 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5002 .get_gdt
= emulator_get_gdt
,
5003 .get_idt
= emulator_get_idt
,
5004 .set_gdt
= emulator_set_gdt
,
5005 .set_idt
= emulator_set_idt
,
5006 .get_cr
= emulator_get_cr
,
5007 .set_cr
= emulator_set_cr
,
5008 .cpl
= emulator_get_cpl
,
5009 .get_dr
= emulator_get_dr
,
5010 .set_dr
= emulator_set_dr
,
5011 .set_msr
= emulator_set_msr
,
5012 .get_msr
= emulator_get_msr
,
5013 .check_pmc
= emulator_check_pmc
,
5014 .read_pmc
= emulator_read_pmc
,
5015 .halt
= emulator_halt
,
5016 .wbinvd
= emulator_wbinvd
,
5017 .fix_hypercall
= emulator_fix_hypercall
,
5018 .get_fpu
= emulator_get_fpu
,
5019 .put_fpu
= emulator_put_fpu
,
5020 .intercept
= emulator_intercept
,
5021 .get_cpuid
= emulator_get_cpuid
,
5024 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5026 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5028 * an sti; sti; sequence only disable interrupts for the first
5029 * instruction. So, if the last instruction, be it emulated or
5030 * not, left the system with the INT_STI flag enabled, it
5031 * means that the last instruction is an sti. We should not
5032 * leave the flag on in this case. The same goes for mov ss
5034 if (int_shadow
& mask
)
5036 if (unlikely(int_shadow
|| mask
)) {
5037 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5039 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5043 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5045 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5046 if (ctxt
->exception
.vector
== PF_VECTOR
)
5047 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5049 if (ctxt
->exception
.error_code_valid
)
5050 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5051 ctxt
->exception
.error_code
);
5053 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5057 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5059 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5062 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5064 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5065 ctxt
->eip
= kvm_rip_read(vcpu
);
5066 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5067 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5068 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5069 cs_db
? X86EMUL_MODE_PROT32
:
5070 X86EMUL_MODE_PROT16
;
5071 ctxt
->guest_mode
= is_guest_mode(vcpu
);
5073 init_decode_cache(ctxt
);
5074 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5077 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5079 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5082 init_emulate_ctxt(vcpu
);
5086 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5087 ret
= emulate_int_real(ctxt
, irq
);
5089 if (ret
!= X86EMUL_CONTINUE
)
5090 return EMULATE_FAIL
;
5092 ctxt
->eip
= ctxt
->_eip
;
5093 kvm_rip_write(vcpu
, ctxt
->eip
);
5094 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5096 if (irq
== NMI_VECTOR
)
5097 vcpu
->arch
.nmi_pending
= 0;
5099 vcpu
->arch
.interrupt
.pending
= false;
5101 return EMULATE_DONE
;
5103 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5105 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5107 int r
= EMULATE_DONE
;
5109 ++vcpu
->stat
.insn_emulation_fail
;
5110 trace_kvm_emulate_insn_failed(vcpu
);
5111 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5112 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5113 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5114 vcpu
->run
->internal
.ndata
= 0;
5117 kvm_queue_exception(vcpu
, UD_VECTOR
);
5122 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5123 bool write_fault_to_shadow_pgtable
,
5129 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5132 if (!vcpu
->arch
.mmu
.direct_map
) {
5134 * Write permission should be allowed since only
5135 * write access need to be emulated.
5137 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5140 * If the mapping is invalid in guest, let cpu retry
5141 * it to generate fault.
5143 if (gpa
== UNMAPPED_GVA
)
5148 * Do not retry the unhandleable instruction if it faults on the
5149 * readonly host memory, otherwise it will goto a infinite loop:
5150 * retry instruction -> write #PF -> emulation fail -> retry
5151 * instruction -> ...
5153 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5156 * If the instruction failed on the error pfn, it can not be fixed,
5157 * report the error to userspace.
5159 if (is_error_noslot_pfn(pfn
))
5162 kvm_release_pfn_clean(pfn
);
5164 /* The instructions are well-emulated on direct mmu. */
5165 if (vcpu
->arch
.mmu
.direct_map
) {
5166 unsigned int indirect_shadow_pages
;
5168 spin_lock(&vcpu
->kvm
->mmu_lock
);
5169 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5170 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5172 if (indirect_shadow_pages
)
5173 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5179 * if emulation was due to access to shadowed page table
5180 * and it failed try to unshadow page and re-enter the
5181 * guest to let CPU execute the instruction.
5183 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5186 * If the access faults on its page table, it can not
5187 * be fixed by unprotecting shadow page and it should
5188 * be reported to userspace.
5190 return !write_fault_to_shadow_pgtable
;
5193 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5194 unsigned long cr2
, int emulation_type
)
5196 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5197 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5199 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5200 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5203 * If the emulation is caused by #PF and it is non-page_table
5204 * writing instruction, it means the VM-EXIT is caused by shadow
5205 * page protected, we can zap the shadow page and retry this
5206 * instruction directly.
5208 * Note: if the guest uses a non-page-table modifying instruction
5209 * on the PDE that points to the instruction, then we will unmap
5210 * the instruction and go to an infinite loop. So, we cache the
5211 * last retried eip and the last fault address, if we meet the eip
5212 * and the address again, we can break out of the potential infinite
5215 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5217 if (!(emulation_type
& EMULTYPE_RETRY
))
5220 if (x86_page_table_writing_insn(ctxt
))
5223 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5226 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5227 vcpu
->arch
.last_retry_addr
= cr2
;
5229 if (!vcpu
->arch
.mmu
.direct_map
)
5230 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5232 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5237 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5238 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5240 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5249 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5250 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5255 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5257 struct kvm_run
*kvm_run
= vcpu
->run
;
5260 * rflags is the old, "raw" value of the flags. The new value has
5261 * not been saved yet.
5263 * This is correct even for TF set by the guest, because "the
5264 * processor will not generate this exception after the instruction
5265 * that sets the TF flag".
5267 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5268 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5269 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5271 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5272 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5273 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5274 *r
= EMULATE_USER_EXIT
;
5276 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5278 * "Certain debug exceptions may clear bit 0-3. The
5279 * remaining contents of the DR6 register are never
5280 * cleared by the processor".
5282 vcpu
->arch
.dr6
&= ~15;
5283 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5284 kvm_queue_exception(vcpu
, DB_VECTOR
);
5289 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5291 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5292 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5293 struct kvm_run
*kvm_run
= vcpu
->run
;
5294 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5295 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5296 vcpu
->arch
.guest_debug_dr7
,
5300 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5301 kvm_run
->debug
.arch
.pc
= eip
;
5302 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5303 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5304 *r
= EMULATE_USER_EXIT
;
5309 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5310 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5311 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5312 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5317 vcpu
->arch
.dr6
&= ~15;
5318 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5319 kvm_queue_exception(vcpu
, DB_VECTOR
);
5328 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5335 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5336 bool writeback
= true;
5337 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5340 * Clear write_fault_to_shadow_pgtable here to ensure it is
5343 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5344 kvm_clear_exception_queue(vcpu
);
5346 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5347 init_emulate_ctxt(vcpu
);
5350 * We will reenter on the same instruction since
5351 * we do not set complete_userspace_io. This does not
5352 * handle watchpoints yet, those would be handled in
5355 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5358 ctxt
->interruptibility
= 0;
5359 ctxt
->have_exception
= false;
5360 ctxt
->exception
.vector
= -1;
5361 ctxt
->perm_ok
= false;
5363 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5365 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5367 trace_kvm_emulate_insn_start(vcpu
);
5368 ++vcpu
->stat
.insn_emulation
;
5369 if (r
!= EMULATION_OK
) {
5370 if (emulation_type
& EMULTYPE_TRAP_UD
)
5371 return EMULATE_FAIL
;
5372 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5374 return EMULATE_DONE
;
5375 if (emulation_type
& EMULTYPE_SKIP
)
5376 return EMULATE_FAIL
;
5377 return handle_emulation_failure(vcpu
);
5381 if (emulation_type
& EMULTYPE_SKIP
) {
5382 kvm_rip_write(vcpu
, ctxt
->_eip
);
5383 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5384 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5385 return EMULATE_DONE
;
5388 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5389 return EMULATE_DONE
;
5391 /* this is needed for vmware backdoor interface to work since it
5392 changes registers values during IO operation */
5393 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5394 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5395 emulator_invalidate_register_cache(ctxt
);
5399 r
= x86_emulate_insn(ctxt
);
5401 if (r
== EMULATION_INTERCEPTED
)
5402 return EMULATE_DONE
;
5404 if (r
== EMULATION_FAILED
) {
5405 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5407 return EMULATE_DONE
;
5409 return handle_emulation_failure(vcpu
);
5412 if (ctxt
->have_exception
) {
5414 if (inject_emulated_exception(vcpu
))
5416 } else if (vcpu
->arch
.pio
.count
) {
5417 if (!vcpu
->arch
.pio
.in
) {
5418 /* FIXME: return into emulator if single-stepping. */
5419 vcpu
->arch
.pio
.count
= 0;
5422 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5424 r
= EMULATE_USER_EXIT
;
5425 } else if (vcpu
->mmio_needed
) {
5426 if (!vcpu
->mmio_is_write
)
5428 r
= EMULATE_USER_EXIT
;
5429 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5430 } else if (r
== EMULATION_RESTART
)
5436 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5437 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5438 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5439 kvm_rip_write(vcpu
, ctxt
->eip
);
5440 if (r
== EMULATE_DONE
)
5441 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5442 if (!ctxt
->have_exception
||
5443 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5444 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5447 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5448 * do nothing, and it will be requested again as soon as
5449 * the shadow expires. But we still need to check here,
5450 * because POPF has no interrupt shadow.
5452 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5453 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5455 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5459 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5461 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5463 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5464 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5465 size
, port
, &val
, 1);
5466 /* do not return to emulator after return from userspace */
5467 vcpu
->arch
.pio
.count
= 0;
5470 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5472 static void tsc_bad(void *info
)
5474 __this_cpu_write(cpu_tsc_khz
, 0);
5477 static void tsc_khz_changed(void *data
)
5479 struct cpufreq_freqs
*freq
= data
;
5480 unsigned long khz
= 0;
5484 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5485 khz
= cpufreq_quick_get(raw_smp_processor_id());
5488 __this_cpu_write(cpu_tsc_khz
, khz
);
5491 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5494 struct cpufreq_freqs
*freq
= data
;
5496 struct kvm_vcpu
*vcpu
;
5497 int i
, send_ipi
= 0;
5500 * We allow guests to temporarily run on slowing clocks,
5501 * provided we notify them after, or to run on accelerating
5502 * clocks, provided we notify them before. Thus time never
5505 * However, we have a problem. We can't atomically update
5506 * the frequency of a given CPU from this function; it is
5507 * merely a notifier, which can be called from any CPU.
5508 * Changing the TSC frequency at arbitrary points in time
5509 * requires a recomputation of local variables related to
5510 * the TSC for each VCPU. We must flag these local variables
5511 * to be updated and be sure the update takes place with the
5512 * new frequency before any guests proceed.
5514 * Unfortunately, the combination of hotplug CPU and frequency
5515 * change creates an intractable locking scenario; the order
5516 * of when these callouts happen is undefined with respect to
5517 * CPU hotplug, and they can race with each other. As such,
5518 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5519 * undefined; you can actually have a CPU frequency change take
5520 * place in between the computation of X and the setting of the
5521 * variable. To protect against this problem, all updates of
5522 * the per_cpu tsc_khz variable are done in an interrupt
5523 * protected IPI, and all callers wishing to update the value
5524 * must wait for a synchronous IPI to complete (which is trivial
5525 * if the caller is on the CPU already). This establishes the
5526 * necessary total order on variable updates.
5528 * Note that because a guest time update may take place
5529 * anytime after the setting of the VCPU's request bit, the
5530 * correct TSC value must be set before the request. However,
5531 * to ensure the update actually makes it to any guest which
5532 * starts running in hardware virtualization between the set
5533 * and the acquisition of the spinlock, we must also ping the
5534 * CPU after setting the request bit.
5538 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5540 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5543 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5545 spin_lock(&kvm_lock
);
5546 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5547 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5548 if (vcpu
->cpu
!= freq
->cpu
)
5550 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5551 if (vcpu
->cpu
!= smp_processor_id())
5555 spin_unlock(&kvm_lock
);
5557 if (freq
->old
< freq
->new && send_ipi
) {
5559 * We upscale the frequency. Must make the guest
5560 * doesn't see old kvmclock values while running with
5561 * the new frequency, otherwise we risk the guest sees
5562 * time go backwards.
5564 * In case we update the frequency for another cpu
5565 * (which might be in guest context) send an interrupt
5566 * to kick the cpu out of guest context. Next time
5567 * guest context is entered kvmclock will be updated,
5568 * so the guest will not see stale values.
5570 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5575 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5576 .notifier_call
= kvmclock_cpufreq_notifier
5579 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5580 unsigned long action
, void *hcpu
)
5582 unsigned int cpu
= (unsigned long)hcpu
;
5586 case CPU_DOWN_FAILED
:
5587 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5589 case CPU_DOWN_PREPARE
:
5590 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5596 static struct notifier_block kvmclock_cpu_notifier_block
= {
5597 .notifier_call
= kvmclock_cpu_notifier
,
5598 .priority
= -INT_MAX
5601 static void kvm_timer_init(void)
5605 max_tsc_khz
= tsc_khz
;
5607 cpu_notifier_register_begin();
5608 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5609 #ifdef CONFIG_CPU_FREQ
5610 struct cpufreq_policy policy
;
5611 memset(&policy
, 0, sizeof(policy
));
5613 cpufreq_get_policy(&policy
, cpu
);
5614 if (policy
.cpuinfo
.max_freq
)
5615 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5618 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5619 CPUFREQ_TRANSITION_NOTIFIER
);
5621 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5622 for_each_online_cpu(cpu
)
5623 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5625 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5626 cpu_notifier_register_done();
5630 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5632 int kvm_is_in_guest(void)
5634 return __this_cpu_read(current_vcpu
) != NULL
;
5637 static int kvm_is_user_mode(void)
5641 if (__this_cpu_read(current_vcpu
))
5642 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5644 return user_mode
!= 0;
5647 static unsigned long kvm_get_guest_ip(void)
5649 unsigned long ip
= 0;
5651 if (__this_cpu_read(current_vcpu
))
5652 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5657 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5658 .is_in_guest
= kvm_is_in_guest
,
5659 .is_user_mode
= kvm_is_user_mode
,
5660 .get_guest_ip
= kvm_get_guest_ip
,
5663 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5665 __this_cpu_write(current_vcpu
, vcpu
);
5667 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5669 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5671 __this_cpu_write(current_vcpu
, NULL
);
5673 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5675 static void kvm_set_mmio_spte_mask(void)
5678 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5681 * Set the reserved bits and the present bit of an paging-structure
5682 * entry to generate page fault with PFER.RSV = 1.
5684 /* Mask the reserved physical address bits. */
5685 mask
= rsvd_bits(maxphyaddr
, 51);
5687 /* Bit 62 is always reserved for 32bit host. */
5688 mask
|= 0x3ull
<< 62;
5690 /* Set the present bit. */
5693 #ifdef CONFIG_X86_64
5695 * If reserved bit is not supported, clear the present bit to disable
5698 if (maxphyaddr
== 52)
5702 kvm_mmu_set_mmio_spte_mask(mask
);
5705 #ifdef CONFIG_X86_64
5706 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5710 struct kvm_vcpu
*vcpu
;
5713 spin_lock(&kvm_lock
);
5714 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5715 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5716 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5717 atomic_set(&kvm_guest_has_master_clock
, 0);
5718 spin_unlock(&kvm_lock
);
5721 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5724 * Notification about pvclock gtod data update.
5726 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5729 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5730 struct timekeeper
*tk
= priv
;
5732 update_pvclock_gtod(tk
);
5734 /* disable master clock if host does not trust, or does not
5735 * use, TSC clocksource
5737 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5738 atomic_read(&kvm_guest_has_master_clock
) != 0)
5739 queue_work(system_long_wq
, &pvclock_gtod_work
);
5744 static struct notifier_block pvclock_gtod_notifier
= {
5745 .notifier_call
= pvclock_gtod_notify
,
5749 int kvm_arch_init(void *opaque
)
5752 struct kvm_x86_ops
*ops
= opaque
;
5755 printk(KERN_ERR
"kvm: already loaded the other module\n");
5760 if (!ops
->cpu_has_kvm_support()) {
5761 printk(KERN_ERR
"kvm: no hardware support\n");
5765 if (ops
->disabled_by_bios()) {
5766 printk(KERN_ERR
"kvm: disabled by bios\n");
5772 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5774 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5778 r
= kvm_mmu_module_init();
5780 goto out_free_percpu
;
5782 kvm_set_mmio_spte_mask();
5785 kvm_init_msr_list();
5787 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5788 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5792 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5795 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5798 #ifdef CONFIG_X86_64
5799 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5805 free_percpu(shared_msrs
);
5810 void kvm_arch_exit(void)
5812 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5814 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5815 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5816 CPUFREQ_TRANSITION_NOTIFIER
);
5817 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5818 #ifdef CONFIG_X86_64
5819 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5822 kvm_mmu_module_exit();
5823 free_percpu(shared_msrs
);
5826 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5828 ++vcpu
->stat
.halt_exits
;
5829 if (irqchip_in_kernel(vcpu
->kvm
)) {
5830 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5833 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5837 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5839 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5841 u64 param
, ingpa
, outgpa
, ret
;
5842 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5843 bool fast
, longmode
;
5846 * hypercall generates UD from non zero cpl and real mode
5849 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5850 kvm_queue_exception(vcpu
, UD_VECTOR
);
5854 longmode
= is_64_bit_mode(vcpu
);
5857 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5858 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5859 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5860 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5861 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5862 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5864 #ifdef CONFIG_X86_64
5866 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5867 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5868 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5872 code
= param
& 0xffff;
5873 fast
= (param
>> 16) & 0x1;
5874 rep_cnt
= (param
>> 32) & 0xfff;
5875 rep_idx
= (param
>> 48) & 0xfff;
5877 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5880 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5881 kvm_vcpu_on_spin(vcpu
);
5884 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5888 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5890 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5892 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5893 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5900 * kvm_pv_kick_cpu_op: Kick a vcpu.
5902 * @apicid - apicid of vcpu to be kicked.
5904 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5906 struct kvm_lapic_irq lapic_irq
;
5908 lapic_irq
.shorthand
= 0;
5909 lapic_irq
.dest_mode
= 0;
5910 lapic_irq
.dest_id
= apicid
;
5912 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5913 kvm_irq_delivery_to_apic(kvm
, 0, &lapic_irq
, NULL
);
5916 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5918 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5919 int op_64_bit
, r
= 1;
5921 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5922 return kvm_hv_hypercall(vcpu
);
5924 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5925 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5926 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5927 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5928 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5930 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5932 op_64_bit
= is_64_bit_mode(vcpu
);
5941 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5947 case KVM_HC_VAPIC_POLL_IRQ
:
5950 case KVM_HC_KICK_CPU
:
5951 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
5961 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5962 ++vcpu
->stat
.hypercalls
;
5965 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5967 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5969 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5970 char instruction
[3];
5971 unsigned long rip
= kvm_rip_read(vcpu
);
5973 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5975 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5979 * Check if userspace requested an interrupt window, and that the
5980 * interrupt window is open.
5982 * No need to exit to userspace if we already have an interrupt queued.
5984 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5986 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5987 vcpu
->run
->request_interrupt_window
&&
5988 kvm_arch_interrupt_allowed(vcpu
));
5991 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5993 struct kvm_run
*kvm_run
= vcpu
->run
;
5995 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5996 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5997 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5998 if (irqchip_in_kernel(vcpu
->kvm
))
5999 kvm_run
->ready_for_interrupt_injection
= 1;
6001 kvm_run
->ready_for_interrupt_injection
=
6002 kvm_arch_interrupt_allowed(vcpu
) &&
6003 !kvm_cpu_has_interrupt(vcpu
) &&
6004 !kvm_event_needs_reinjection(vcpu
);
6007 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6011 if (!kvm_x86_ops
->update_cr8_intercept
)
6014 if (!vcpu
->arch
.apic
)
6017 if (!vcpu
->arch
.apic
->vapic_addr
)
6018 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6025 tpr
= kvm_lapic_get_cr8(vcpu
);
6027 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6030 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6034 /* try to reinject previous events if any */
6035 if (vcpu
->arch
.exception
.pending
) {
6036 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6037 vcpu
->arch
.exception
.has_error_code
,
6038 vcpu
->arch
.exception
.error_code
);
6040 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6041 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6044 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6045 (vcpu
->arch
.dr7
& DR7_GD
)) {
6046 vcpu
->arch
.dr7
&= ~DR7_GD
;
6047 kvm_update_dr7(vcpu
);
6050 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6051 vcpu
->arch
.exception
.has_error_code
,
6052 vcpu
->arch
.exception
.error_code
,
6053 vcpu
->arch
.exception
.reinject
);
6057 if (vcpu
->arch
.nmi_injected
) {
6058 kvm_x86_ops
->set_nmi(vcpu
);
6062 if (vcpu
->arch
.interrupt
.pending
) {
6063 kvm_x86_ops
->set_irq(vcpu
);
6067 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6068 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6073 /* try to inject new event if pending */
6074 if (vcpu
->arch
.nmi_pending
) {
6075 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
6076 --vcpu
->arch
.nmi_pending
;
6077 vcpu
->arch
.nmi_injected
= true;
6078 kvm_x86_ops
->set_nmi(vcpu
);
6080 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6082 * Because interrupts can be injected asynchronously, we are
6083 * calling check_nested_events again here to avoid a race condition.
6084 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6085 * proposal and current concerns. Perhaps we should be setting
6086 * KVM_REQ_EVENT only on certain events and not unconditionally?
6088 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6089 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6093 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6094 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6096 kvm_x86_ops
->set_irq(vcpu
);
6102 static void process_nmi(struct kvm_vcpu
*vcpu
)
6107 * x86 is limited to one NMI running, and one NMI pending after it.
6108 * If an NMI is already in progress, limit further NMIs to just one.
6109 * Otherwise, allow two (and we'll inject the first one immediately).
6111 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6114 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6115 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6116 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6119 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6121 u64 eoi_exit_bitmap
[4];
6124 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6127 memset(eoi_exit_bitmap
, 0, 32);
6130 kvm_ioapic_scan_entry(vcpu
, eoi_exit_bitmap
, tmr
);
6131 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6132 kvm_apic_update_tmr(vcpu
, tmr
);
6135 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6137 ++vcpu
->stat
.tlb_flush
;
6138 kvm_x86_ops
->tlb_flush(vcpu
);
6141 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6143 struct page
*page
= NULL
;
6145 if (!irqchip_in_kernel(vcpu
->kvm
))
6148 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6151 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6152 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6155 * Do not pin apic access page in memory, the MMU notifier
6156 * will call us again if it is migrated or swapped out.
6160 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6162 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6163 unsigned long address
)
6166 * The physical address of apic access page is stored in the VMCS.
6167 * Update it when it becomes invalid.
6169 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6170 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6174 * Returns 1 to let __vcpu_run() continue the guest execution loop without
6175 * exiting to the userspace. Otherwise, the value will be returned to the
6178 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6181 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
6182 vcpu
->run
->request_interrupt_window
;
6183 bool req_immediate_exit
= false;
6185 if (vcpu
->requests
) {
6186 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6187 kvm_mmu_unload(vcpu
);
6188 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6189 __kvm_migrate_timers(vcpu
);
6190 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6191 kvm_gen_update_masterclock(vcpu
->kvm
);
6192 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6193 kvm_gen_kvmclock_update(vcpu
);
6194 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6195 r
= kvm_guest_time_update(vcpu
);
6199 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6200 kvm_mmu_sync_roots(vcpu
);
6201 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6202 kvm_vcpu_flush_tlb(vcpu
);
6203 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6204 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6208 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6209 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6213 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6214 vcpu
->fpu_active
= 0;
6215 kvm_x86_ops
->fpu_deactivate(vcpu
);
6217 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6218 /* Page is swapped out. Do synthetic halt */
6219 vcpu
->arch
.apf
.halted
= true;
6223 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6224 record_steal_time(vcpu
);
6225 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6227 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6228 kvm_handle_pmu_event(vcpu
);
6229 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6230 kvm_deliver_pmi(vcpu
);
6231 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6232 vcpu_scan_ioapic(vcpu
);
6233 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6234 kvm_vcpu_reload_apic_access_page(vcpu
);
6237 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6238 kvm_apic_accept_events(vcpu
);
6239 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6244 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6245 req_immediate_exit
= true;
6246 /* enable NMI/IRQ window open exits if needed */
6247 else if (vcpu
->arch
.nmi_pending
)
6248 kvm_x86_ops
->enable_nmi_window(vcpu
);
6249 else if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6250 kvm_x86_ops
->enable_irq_window(vcpu
);
6252 if (kvm_lapic_enabled(vcpu
)) {
6254 * Update architecture specific hints for APIC
6255 * virtual interrupt delivery.
6257 if (kvm_x86_ops
->hwapic_irr_update
)
6258 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6259 kvm_lapic_find_highest_irr(vcpu
));
6260 update_cr8_intercept(vcpu
);
6261 kvm_lapic_sync_to_vapic(vcpu
);
6265 r
= kvm_mmu_reload(vcpu
);
6267 goto cancel_injection
;
6272 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6273 if (vcpu
->fpu_active
)
6274 kvm_load_guest_fpu(vcpu
);
6275 kvm_load_guest_xcr0(vcpu
);
6277 vcpu
->mode
= IN_GUEST_MODE
;
6279 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6281 /* We should set ->mode before check ->requests,
6282 * see the comment in make_all_cpus_request.
6284 smp_mb__after_srcu_read_unlock();
6286 local_irq_disable();
6288 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6289 || need_resched() || signal_pending(current
)) {
6290 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6294 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6296 goto cancel_injection
;
6299 if (req_immediate_exit
)
6300 smp_send_reschedule(vcpu
->cpu
);
6304 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6306 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6307 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6308 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6309 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6310 set_debugreg(vcpu
->arch
.dr6
, 6);
6313 trace_kvm_entry(vcpu
->vcpu_id
);
6314 kvm_x86_ops
->run(vcpu
);
6317 * Do this here before restoring debug registers on the host. And
6318 * since we do this before handling the vmexit, a DR access vmexit
6319 * can (a) read the correct value of the debug registers, (b) set
6320 * KVM_DEBUGREG_WONT_EXIT again.
6322 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6325 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6326 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6327 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6328 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6332 * If the guest has used debug registers, at least dr7
6333 * will be disabled while returning to the host.
6334 * If we don't have active breakpoints in the host, we don't
6335 * care about the messed up debug address registers. But if
6336 * we have some of them active, restore the old state.
6338 if (hw_breakpoint_active())
6339 hw_breakpoint_restore();
6341 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
,
6344 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6347 /* Interrupt is enabled by handle_external_intr() */
6348 kvm_x86_ops
->handle_external_intr(vcpu
);
6353 * We must have an instruction between local_irq_enable() and
6354 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6355 * the interrupt shadow. The stat.exits increment will do nicely.
6356 * But we need to prevent reordering, hence this barrier():
6364 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6367 * Profile KVM exit RIPs:
6369 if (unlikely(prof_on
== KVM_PROFILING
)) {
6370 unsigned long rip
= kvm_rip_read(vcpu
);
6371 profile_hit(KVM_PROFILING
, (void *)rip
);
6374 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6375 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6377 if (vcpu
->arch
.apic_attention
)
6378 kvm_lapic_sync_from_vapic(vcpu
);
6380 r
= kvm_x86_ops
->handle_exit(vcpu
);
6384 kvm_x86_ops
->cancel_injection(vcpu
);
6385 if (unlikely(vcpu
->arch
.apic_attention
))
6386 kvm_lapic_sync_from_vapic(vcpu
);
6392 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
6395 struct kvm
*kvm
= vcpu
->kvm
;
6397 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6401 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6402 !vcpu
->arch
.apf
.halted
)
6403 r
= vcpu_enter_guest(vcpu
);
6405 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6406 kvm_vcpu_block(vcpu
);
6407 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6408 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
)) {
6409 kvm_apic_accept_events(vcpu
);
6410 switch(vcpu
->arch
.mp_state
) {
6411 case KVM_MP_STATE_HALTED
:
6412 vcpu
->arch
.pv
.pv_unhalted
= false;
6413 vcpu
->arch
.mp_state
=
6414 KVM_MP_STATE_RUNNABLE
;
6415 case KVM_MP_STATE_RUNNABLE
:
6416 vcpu
->arch
.apf
.halted
= false;
6418 case KVM_MP_STATE_INIT_RECEIVED
:
6430 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6431 if (kvm_cpu_has_pending_timer(vcpu
))
6432 kvm_inject_pending_timer_irqs(vcpu
);
6434 if (dm_request_for_irq_injection(vcpu
)) {
6436 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6437 ++vcpu
->stat
.request_irq_exits
;
6440 kvm_check_async_pf_completion(vcpu
);
6442 if (signal_pending(current
)) {
6444 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6445 ++vcpu
->stat
.signal_exits
;
6447 if (need_resched()) {
6448 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6450 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6454 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6459 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6462 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6463 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6464 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6465 if (r
!= EMULATE_DONE
)
6470 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6472 BUG_ON(!vcpu
->arch
.pio
.count
);
6474 return complete_emulated_io(vcpu
);
6478 * Implements the following, as a state machine:
6482 * for each mmio piece in the fragment
6490 * for each mmio piece in the fragment
6495 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6497 struct kvm_run
*run
= vcpu
->run
;
6498 struct kvm_mmio_fragment
*frag
;
6501 BUG_ON(!vcpu
->mmio_needed
);
6503 /* Complete previous fragment */
6504 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6505 len
= min(8u, frag
->len
);
6506 if (!vcpu
->mmio_is_write
)
6507 memcpy(frag
->data
, run
->mmio
.data
, len
);
6509 if (frag
->len
<= 8) {
6510 /* Switch to the next fragment. */
6512 vcpu
->mmio_cur_fragment
++;
6514 /* Go forward to the next mmio piece. */
6520 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6521 vcpu
->mmio_needed
= 0;
6523 /* FIXME: return into emulator if single-stepping. */
6524 if (vcpu
->mmio_is_write
)
6526 vcpu
->mmio_read_completed
= 1;
6527 return complete_emulated_io(vcpu
);
6530 run
->exit_reason
= KVM_EXIT_MMIO
;
6531 run
->mmio
.phys_addr
= frag
->gpa
;
6532 if (vcpu
->mmio_is_write
)
6533 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6534 run
->mmio
.len
= min(8u, frag
->len
);
6535 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6536 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6546 if (!tsk_used_math(current
) && init_fpu(current
))
6549 if (vcpu
->sigset_active
)
6550 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6552 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6553 kvm_vcpu_block(vcpu
);
6554 kvm_apic_accept_events(vcpu
);
6555 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6560 /* re-sync apic's tpr */
6561 if (!irqchip_in_kernel(vcpu
->kvm
)) {
6562 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6568 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6569 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6570 vcpu
->arch
.complete_userspace_io
= NULL
;
6575 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6577 r
= __vcpu_run(vcpu
);
6580 post_kvm_run_save(vcpu
);
6581 if (vcpu
->sigset_active
)
6582 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6587 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6589 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6591 * We are here if userspace calls get_regs() in the middle of
6592 * instruction emulation. Registers state needs to be copied
6593 * back from emulation context to vcpu. Userspace shouldn't do
6594 * that usually, but some bad designed PV devices (vmware
6595 * backdoor interface) need this to work
6597 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6598 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6600 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6601 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6602 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6603 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6604 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6605 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6606 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6607 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6608 #ifdef CONFIG_X86_64
6609 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6610 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6611 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6612 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6613 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6614 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6615 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6616 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6619 regs
->rip
= kvm_rip_read(vcpu
);
6620 regs
->rflags
= kvm_get_rflags(vcpu
);
6625 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6627 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6628 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6630 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6631 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6632 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6633 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6634 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6635 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6636 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6637 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6638 #ifdef CONFIG_X86_64
6639 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6640 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6641 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6642 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6643 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6644 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6645 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6646 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6649 kvm_rip_write(vcpu
, regs
->rip
);
6650 kvm_set_rflags(vcpu
, regs
->rflags
);
6652 vcpu
->arch
.exception
.pending
= false;
6654 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6659 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6661 struct kvm_segment cs
;
6663 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6667 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6669 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6670 struct kvm_sregs
*sregs
)
6674 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6675 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6676 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6677 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6678 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6679 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6681 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6682 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6684 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6685 sregs
->idt
.limit
= dt
.size
;
6686 sregs
->idt
.base
= dt
.address
;
6687 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6688 sregs
->gdt
.limit
= dt
.size
;
6689 sregs
->gdt
.base
= dt
.address
;
6691 sregs
->cr0
= kvm_read_cr0(vcpu
);
6692 sregs
->cr2
= vcpu
->arch
.cr2
;
6693 sregs
->cr3
= kvm_read_cr3(vcpu
);
6694 sregs
->cr4
= kvm_read_cr4(vcpu
);
6695 sregs
->cr8
= kvm_get_cr8(vcpu
);
6696 sregs
->efer
= vcpu
->arch
.efer
;
6697 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6699 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6701 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6702 set_bit(vcpu
->arch
.interrupt
.nr
,
6703 (unsigned long *)sregs
->interrupt_bitmap
);
6708 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6709 struct kvm_mp_state
*mp_state
)
6711 kvm_apic_accept_events(vcpu
);
6712 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
6713 vcpu
->arch
.pv
.pv_unhalted
)
6714 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
6716 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6722 struct kvm_mp_state
*mp_state
)
6724 if (!kvm_vcpu_has_lapic(vcpu
) &&
6725 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
6728 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
6729 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
6730 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
6732 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6733 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6737 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
6738 int reason
, bool has_error_code
, u32 error_code
)
6740 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6743 init_emulate_ctxt(vcpu
);
6745 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
6746 has_error_code
, error_code
);
6749 return EMULATE_FAIL
;
6751 kvm_rip_write(vcpu
, ctxt
->eip
);
6752 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6753 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6754 return EMULATE_DONE
;
6756 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6758 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6759 struct kvm_sregs
*sregs
)
6761 struct msr_data apic_base_msr
;
6762 int mmu_reset_needed
= 0;
6763 int pending_vec
, max_bits
, idx
;
6766 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
6769 dt
.size
= sregs
->idt
.limit
;
6770 dt
.address
= sregs
->idt
.base
;
6771 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6772 dt
.size
= sregs
->gdt
.limit
;
6773 dt
.address
= sregs
->gdt
.base
;
6774 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6776 vcpu
->arch
.cr2
= sregs
->cr2
;
6777 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6778 vcpu
->arch
.cr3
= sregs
->cr3
;
6779 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6781 kvm_set_cr8(vcpu
, sregs
->cr8
);
6783 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6784 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6785 apic_base_msr
.data
= sregs
->apic_base
;
6786 apic_base_msr
.host_initiated
= true;
6787 kvm_set_apic_base(vcpu
, &apic_base_msr
);
6789 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6790 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6791 vcpu
->arch
.cr0
= sregs
->cr0
;
6793 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6794 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6795 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6796 kvm_update_cpuid(vcpu
);
6798 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6799 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6800 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6801 mmu_reset_needed
= 1;
6803 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6805 if (mmu_reset_needed
)
6806 kvm_mmu_reset_context(vcpu
);
6808 max_bits
= KVM_NR_INTERRUPTS
;
6809 pending_vec
= find_first_bit(
6810 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6811 if (pending_vec
< max_bits
) {
6812 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6813 pr_debug("Set back pending irq %d\n", pending_vec
);
6816 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6817 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6818 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6819 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6820 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6821 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6823 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6824 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6826 update_cr8_intercept(vcpu
);
6828 /* Older userspace won't unhalt the vcpu on reset. */
6829 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6830 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6832 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6834 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6839 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6840 struct kvm_guest_debug
*dbg
)
6842 unsigned long rflags
;
6845 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6847 if (vcpu
->arch
.exception
.pending
)
6849 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6850 kvm_queue_exception(vcpu
, DB_VECTOR
);
6852 kvm_queue_exception(vcpu
, BP_VECTOR
);
6856 * Read rflags as long as potentially injected trace flags are still
6859 rflags
= kvm_get_rflags(vcpu
);
6861 vcpu
->guest_debug
= dbg
->control
;
6862 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6863 vcpu
->guest_debug
= 0;
6865 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6866 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6867 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6868 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
6870 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6871 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6873 kvm_update_dr7(vcpu
);
6875 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6876 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6877 get_segment_base(vcpu
, VCPU_SREG_CS
);
6880 * Trigger an rflags update that will inject or remove the trace
6883 kvm_set_rflags(vcpu
, rflags
);
6885 kvm_x86_ops
->update_db_bp_intercept(vcpu
);
6895 * Translate a guest virtual address to a guest physical address.
6897 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6898 struct kvm_translation
*tr
)
6900 unsigned long vaddr
= tr
->linear_address
;
6904 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6905 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6906 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6907 tr
->physical_address
= gpa
;
6908 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6915 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6917 struct i387_fxsave_struct
*fxsave
=
6918 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6920 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6921 fpu
->fcw
= fxsave
->cwd
;
6922 fpu
->fsw
= fxsave
->swd
;
6923 fpu
->ftwx
= fxsave
->twd
;
6924 fpu
->last_opcode
= fxsave
->fop
;
6925 fpu
->last_ip
= fxsave
->rip
;
6926 fpu
->last_dp
= fxsave
->rdp
;
6927 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6932 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6934 struct i387_fxsave_struct
*fxsave
=
6935 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6937 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6938 fxsave
->cwd
= fpu
->fcw
;
6939 fxsave
->swd
= fpu
->fsw
;
6940 fxsave
->twd
= fpu
->ftwx
;
6941 fxsave
->fop
= fpu
->last_opcode
;
6942 fxsave
->rip
= fpu
->last_ip
;
6943 fxsave
->rdp
= fpu
->last_dp
;
6944 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6949 int fx_init(struct kvm_vcpu
*vcpu
)
6953 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6957 fpu_finit(&vcpu
->arch
.guest_fpu
);
6959 vcpu
->arch
.guest_fpu
.state
->xsave
.xsave_hdr
.xcomp_bv
=
6960 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
6963 * Ensure guest xcr0 is valid for loading
6965 vcpu
->arch
.xcr0
= XSTATE_FP
;
6967 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6971 EXPORT_SYMBOL_GPL(fx_init
);
6973 static void fx_free(struct kvm_vcpu
*vcpu
)
6975 fpu_free(&vcpu
->arch
.guest_fpu
);
6978 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6980 if (vcpu
->guest_fpu_loaded
)
6984 * Restore all possible states in the guest,
6985 * and assume host would use all available bits.
6986 * Guest xcr0 would be loaded later.
6988 kvm_put_guest_xcr0(vcpu
);
6989 vcpu
->guest_fpu_loaded
= 1;
6990 __kernel_fpu_begin();
6991 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6995 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6997 kvm_put_guest_xcr0(vcpu
);
6999 if (!vcpu
->guest_fpu_loaded
)
7002 vcpu
->guest_fpu_loaded
= 0;
7003 fpu_save_init(&vcpu
->arch
.guest_fpu
);
7005 ++vcpu
->stat
.fpu_reload
;
7006 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
7010 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7012 kvmclock_reset(vcpu
);
7014 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7016 kvm_x86_ops
->vcpu_free(vcpu
);
7019 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7022 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7023 printk_once(KERN_WARNING
7024 "kvm: SMP vm created on host with unstable TSC; "
7025 "guest TSC will not be reliable\n");
7026 return kvm_x86_ops
->vcpu_create(kvm
, id
);
7029 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7033 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
7034 r
= vcpu_load(vcpu
);
7037 kvm_vcpu_reset(vcpu
);
7038 kvm_mmu_setup(vcpu
);
7044 int kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7047 struct msr_data msr
;
7048 struct kvm
*kvm
= vcpu
->kvm
;
7050 r
= vcpu_load(vcpu
);
7054 msr
.index
= MSR_IA32_TSC
;
7055 msr
.host_initiated
= true;
7056 kvm_write_tsc(vcpu
, &msr
);
7059 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7060 KVMCLOCK_SYNC_PERIOD
);
7065 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7068 vcpu
->arch
.apf
.msr_val
= 0;
7070 r
= vcpu_load(vcpu
);
7072 kvm_mmu_unload(vcpu
);
7076 kvm_x86_ops
->vcpu_free(vcpu
);
7079 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
)
7081 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7082 vcpu
->arch
.nmi_pending
= 0;
7083 vcpu
->arch
.nmi_injected
= false;
7084 kvm_clear_interrupt_queue(vcpu
);
7085 kvm_clear_exception_queue(vcpu
);
7087 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7088 vcpu
->arch
.dr6
= DR6_INIT
;
7089 kvm_update_dr6(vcpu
);
7090 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7091 kvm_update_dr7(vcpu
);
7093 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7094 vcpu
->arch
.apf
.msr_val
= 0;
7095 vcpu
->arch
.st
.msr_val
= 0;
7097 kvmclock_reset(vcpu
);
7099 kvm_clear_async_pf_completion_queue(vcpu
);
7100 kvm_async_pf_hash_reset(vcpu
);
7101 vcpu
->arch
.apf
.halted
= false;
7103 kvm_pmu_reset(vcpu
);
7105 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7106 vcpu
->arch
.regs_avail
= ~0;
7107 vcpu
->arch
.regs_dirty
= ~0;
7109 kvm_x86_ops
->vcpu_reset(vcpu
);
7112 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7114 struct kvm_segment cs
;
7116 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7117 cs
.selector
= vector
<< 8;
7118 cs
.base
= vector
<< 12;
7119 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7120 kvm_rip_write(vcpu
, 0);
7123 int kvm_arch_hardware_enable(void)
7126 struct kvm_vcpu
*vcpu
;
7131 bool stable
, backwards_tsc
= false;
7133 kvm_shared_msr_cpu_online();
7134 ret
= kvm_x86_ops
->hardware_enable();
7138 local_tsc
= native_read_tsc();
7139 stable
= !check_tsc_unstable();
7140 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7141 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7142 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7143 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7144 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7145 backwards_tsc
= true;
7146 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7147 max_tsc
= vcpu
->arch
.last_host_tsc
;
7153 * Sometimes, even reliable TSCs go backwards. This happens on
7154 * platforms that reset TSC during suspend or hibernate actions, but
7155 * maintain synchronization. We must compensate. Fortunately, we can
7156 * detect that condition here, which happens early in CPU bringup,
7157 * before any KVM threads can be running. Unfortunately, we can't
7158 * bring the TSCs fully up to date with real time, as we aren't yet far
7159 * enough into CPU bringup that we know how much real time has actually
7160 * elapsed; our helper function, get_kernel_ns() will be using boot
7161 * variables that haven't been updated yet.
7163 * So we simply find the maximum observed TSC above, then record the
7164 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7165 * the adjustment will be applied. Note that we accumulate
7166 * adjustments, in case multiple suspend cycles happen before some VCPU
7167 * gets a chance to run again. In the event that no KVM threads get a
7168 * chance to run, we will miss the entire elapsed period, as we'll have
7169 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7170 * loose cycle time. This isn't too big a deal, since the loss will be
7171 * uniform across all VCPUs (not to mention the scenario is extremely
7172 * unlikely). It is possible that a second hibernate recovery happens
7173 * much faster than a first, causing the observed TSC here to be
7174 * smaller; this would require additional padding adjustment, which is
7175 * why we set last_host_tsc to the local tsc observed here.
7177 * N.B. - this code below runs only on platforms with reliable TSC,
7178 * as that is the only way backwards_tsc is set above. Also note
7179 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7180 * have the same delta_cyc adjustment applied if backwards_tsc
7181 * is detected. Note further, this adjustment is only done once,
7182 * as we reset last_host_tsc on all VCPUs to stop this from being
7183 * called multiple times (one for each physical CPU bringup).
7185 * Platforms with unreliable TSCs don't have to deal with this, they
7186 * will be compensated by the logic in vcpu_load, which sets the TSC to
7187 * catchup mode. This will catchup all VCPUs to real time, but cannot
7188 * guarantee that they stay in perfect synchronization.
7190 if (backwards_tsc
) {
7191 u64 delta_cyc
= max_tsc
- local_tsc
;
7192 backwards_tsc_observed
= true;
7193 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7194 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7195 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7196 vcpu
->arch
.last_host_tsc
= local_tsc
;
7197 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7201 * We have to disable TSC offset matching.. if you were
7202 * booting a VM while issuing an S4 host suspend....
7203 * you may have some problem. Solving this issue is
7204 * left as an exercise to the reader.
7206 kvm
->arch
.last_tsc_nsec
= 0;
7207 kvm
->arch
.last_tsc_write
= 0;
7214 void kvm_arch_hardware_disable(void)
7216 kvm_x86_ops
->hardware_disable();
7217 drop_user_return_notifiers();
7220 int kvm_arch_hardware_setup(void)
7222 return kvm_x86_ops
->hardware_setup();
7225 void kvm_arch_hardware_unsetup(void)
7227 kvm_x86_ops
->hardware_unsetup();
7230 void kvm_arch_check_processor_compat(void *rtn
)
7232 kvm_x86_ops
->check_processor_compatibility(rtn
);
7235 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
7237 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
7240 struct static_key kvm_no_apic_vcpu __read_mostly
;
7242 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7248 BUG_ON(vcpu
->kvm
== NULL
);
7251 vcpu
->arch
.pv
.pv_unhalted
= false;
7252 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7253 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
7254 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7256 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7258 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7263 vcpu
->arch
.pio_data
= page_address(page
);
7265 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7267 r
= kvm_mmu_create(vcpu
);
7269 goto fail_free_pio_data
;
7271 if (irqchip_in_kernel(kvm
)) {
7272 r
= kvm_create_lapic(vcpu
);
7274 goto fail_mmu_destroy
;
7276 static_key_slow_inc(&kvm_no_apic_vcpu
);
7278 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7280 if (!vcpu
->arch
.mce_banks
) {
7282 goto fail_free_lapic
;
7284 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7286 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7288 goto fail_free_mce_banks
;
7293 goto fail_free_wbinvd_dirty_mask
;
7295 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7296 vcpu
->arch
.pv_time_enabled
= false;
7298 vcpu
->arch
.guest_supported_xcr0
= 0;
7299 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7301 kvm_async_pf_hash_reset(vcpu
);
7305 fail_free_wbinvd_dirty_mask
:
7306 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7307 fail_free_mce_banks
:
7308 kfree(vcpu
->arch
.mce_banks
);
7310 kvm_free_lapic(vcpu
);
7312 kvm_mmu_destroy(vcpu
);
7314 free_page((unsigned long)vcpu
->arch
.pio_data
);
7319 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7323 kvm_pmu_destroy(vcpu
);
7324 kfree(vcpu
->arch
.mce_banks
);
7325 kvm_free_lapic(vcpu
);
7326 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7327 kvm_mmu_destroy(vcpu
);
7328 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7329 free_page((unsigned long)vcpu
->arch
.pio_data
);
7330 if (!irqchip_in_kernel(vcpu
->kvm
))
7331 static_key_slow_dec(&kvm_no_apic_vcpu
);
7334 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7336 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7339 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7344 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7345 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7346 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7347 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7348 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7350 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7351 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7352 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7353 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7354 &kvm
->arch
.irq_sources_bitmap
);
7356 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7357 mutex_init(&kvm
->arch
.apic_map_lock
);
7358 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7360 pvclock_update_vm_gtod_copy(kvm
);
7362 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7363 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7368 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7371 r
= vcpu_load(vcpu
);
7373 kvm_mmu_unload(vcpu
);
7377 static void kvm_free_vcpus(struct kvm
*kvm
)
7380 struct kvm_vcpu
*vcpu
;
7383 * Unpin any mmu pages first.
7385 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7386 kvm_clear_async_pf_completion_queue(vcpu
);
7387 kvm_unload_vcpu_mmu(vcpu
);
7389 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7390 kvm_arch_vcpu_free(vcpu
);
7392 mutex_lock(&kvm
->lock
);
7393 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7394 kvm
->vcpus
[i
] = NULL
;
7396 atomic_set(&kvm
->online_vcpus
, 0);
7397 mutex_unlock(&kvm
->lock
);
7400 void kvm_arch_sync_events(struct kvm
*kvm
)
7402 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7403 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7404 kvm_free_all_assigned_devices(kvm
);
7408 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7410 if (current
->mm
== kvm
->mm
) {
7412 * Free memory regions allocated on behalf of userspace,
7413 * unless the the memory map has changed due to process exit
7416 struct kvm_userspace_memory_region mem
;
7417 memset(&mem
, 0, sizeof(mem
));
7418 mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
7419 kvm_set_memory_region(kvm
, &mem
);
7421 mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
7422 kvm_set_memory_region(kvm
, &mem
);
7424 mem
.slot
= TSS_PRIVATE_MEMSLOT
;
7425 kvm_set_memory_region(kvm
, &mem
);
7427 kvm_iommu_unmap_guest(kvm
);
7428 kfree(kvm
->arch
.vpic
);
7429 kfree(kvm
->arch
.vioapic
);
7430 kvm_free_vcpus(kvm
);
7431 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7434 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
7435 struct kvm_memory_slot
*dont
)
7439 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7440 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7441 kvm_kvfree(free
->arch
.rmap
[i
]);
7442 free
->arch
.rmap
[i
] = NULL
;
7447 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7448 dont
->arch
.lpage_info
[i
- 1]) {
7449 kvm_kvfree(free
->arch
.lpage_info
[i
- 1]);
7450 free
->arch
.lpage_info
[i
- 1] = NULL
;
7455 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
7456 unsigned long npages
)
7460 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7465 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7466 slot
->base_gfn
, level
) + 1;
7468 slot
->arch
.rmap
[i
] =
7469 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7470 if (!slot
->arch
.rmap
[i
])
7475 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
7476 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
7477 if (!slot
->arch
.lpage_info
[i
- 1])
7480 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7481 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
7482 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7483 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
7484 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7486 * If the gfn and userspace address are not aligned wrt each
7487 * other, or if explicitly asked to, disable large page
7488 * support for this slot
7490 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7491 !kvm_largepages_enabled()) {
7494 for (j
= 0; j
< lpages
; ++j
)
7495 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
7502 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7503 kvm_kvfree(slot
->arch
.rmap
[i
]);
7504 slot
->arch
.rmap
[i
] = NULL
;
7508 kvm_kvfree(slot
->arch
.lpage_info
[i
- 1]);
7509 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7514 void kvm_arch_memslots_updated(struct kvm
*kvm
)
7517 * memslots->generation has been incremented.
7518 * mmio generation may have reached its maximum value.
7520 kvm_mmu_invalidate_mmio_sptes(kvm
);
7523 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7524 struct kvm_memory_slot
*memslot
,
7525 struct kvm_userspace_memory_region
*mem
,
7526 enum kvm_mr_change change
)
7529 * Only private memory slots need to be mapped here since
7530 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7532 if ((memslot
->id
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_CREATE
)) {
7533 unsigned long userspace_addr
;
7536 * MAP_SHARED to prevent internal slot pages from being moved
7539 userspace_addr
= vm_mmap(NULL
, 0, memslot
->npages
* PAGE_SIZE
,
7540 PROT_READ
| PROT_WRITE
,
7541 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7543 if (IS_ERR((void *)userspace_addr
))
7544 return PTR_ERR((void *)userspace_addr
);
7546 memslot
->userspace_addr
= userspace_addr
;
7552 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
7553 struct kvm_userspace_memory_region
*mem
,
7554 const struct kvm_memory_slot
*old
,
7555 enum kvm_mr_change change
)
7558 int nr_mmu_pages
= 0;
7560 if ((mem
->slot
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_DELETE
)) {
7563 ret
= vm_munmap(old
->userspace_addr
,
7564 old
->npages
* PAGE_SIZE
);
7567 "kvm_vm_ioctl_set_memory_region: "
7568 "failed to munmap memory\n");
7571 if (!kvm
->arch
.n_requested_mmu_pages
)
7572 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
7575 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
7577 * Write protect all pages for dirty logging.
7579 * All the sptes including the large sptes which point to this
7580 * slot are set to readonly. We can not create any new large
7581 * spte on this slot until the end of the logging.
7583 * See the comments in fast_page_fault().
7585 if ((change
!= KVM_MR_DELETE
) && (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
7586 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
7589 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
7591 kvm_mmu_invalidate_zap_all_pages(kvm
);
7594 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
7595 struct kvm_memory_slot
*slot
)
7597 kvm_mmu_invalidate_zap_all_pages(kvm
);
7600 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
7602 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7603 kvm_x86_ops
->check_nested_events(vcpu
, false);
7605 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7606 !vcpu
->arch
.apf
.halted
)
7607 || !list_empty_careful(&vcpu
->async_pf
.done
)
7608 || kvm_apic_has_events(vcpu
)
7609 || vcpu
->arch
.pv
.pv_unhalted
7610 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
7611 (kvm_arch_interrupt_allowed(vcpu
) &&
7612 kvm_cpu_has_interrupt(vcpu
));
7615 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
7617 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
7620 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
7622 return kvm_x86_ops
->interrupt_allowed(vcpu
);
7625 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
7627 if (is_64_bit_mode(vcpu
))
7628 return kvm_rip_read(vcpu
);
7629 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
7630 kvm_rip_read(vcpu
));
7632 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
7634 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
7636 return kvm_get_linear_rip(vcpu
) == linear_rip
;
7638 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
7640 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
7642 unsigned long rflags
;
7644 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
7645 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7646 rflags
&= ~X86_EFLAGS_TF
;
7649 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
7651 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
7653 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
7654 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
7655 rflags
|= X86_EFLAGS_TF
;
7656 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
7659 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
7661 __kvm_set_rflags(vcpu
, rflags
);
7662 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7664 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
7666 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
7670 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
7674 r
= kvm_mmu_reload(vcpu
);
7678 if (!vcpu
->arch
.mmu
.direct_map
&&
7679 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
7682 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
7685 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
7687 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
7690 static inline u32
kvm_async_pf_next_probe(u32 key
)
7692 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
7695 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7697 u32 key
= kvm_async_pf_hash_fn(gfn
);
7699 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
7700 key
= kvm_async_pf_next_probe(key
);
7702 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
7705 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7708 u32 key
= kvm_async_pf_hash_fn(gfn
);
7710 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
7711 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
7712 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
7713 key
= kvm_async_pf_next_probe(key
);
7718 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7720 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
7723 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7727 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
7729 vcpu
->arch
.apf
.gfns
[i
] = ~0;
7731 j
= kvm_async_pf_next_probe(j
);
7732 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
7734 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
7736 * k lies cyclically in ]i,j]
7738 * |....j i.k.| or |.k..j i...|
7740 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
7741 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
7746 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
7749 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
7753 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
7754 struct kvm_async_pf
*work
)
7756 struct x86_exception fault
;
7758 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
7759 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7761 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
7762 (vcpu
->arch
.apf
.send_user_only
&&
7763 kvm_x86_ops
->get_cpl(vcpu
) == 0))
7764 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
7765 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
7766 fault
.vector
= PF_VECTOR
;
7767 fault
.error_code_valid
= true;
7768 fault
.error_code
= 0;
7769 fault
.nested_page_fault
= false;
7770 fault
.address
= work
->arch
.token
;
7771 kvm_inject_page_fault(vcpu
, &fault
);
7775 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
7776 struct kvm_async_pf
*work
)
7778 struct x86_exception fault
;
7780 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
7781 if (work
->wakeup_all
)
7782 work
->arch
.token
= ~0; /* broadcast wakeup */
7784 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7786 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
7787 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
7788 fault
.vector
= PF_VECTOR
;
7789 fault
.error_code_valid
= true;
7790 fault
.error_code
= 0;
7791 fault
.nested_page_fault
= false;
7792 fault
.address
= work
->arch
.token
;
7793 kvm_inject_page_fault(vcpu
, &fault
);
7795 vcpu
->arch
.apf
.halted
= false;
7796 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7799 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
7801 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
7804 return !kvm_event_needs_reinjection(vcpu
) &&
7805 kvm_x86_ops
->interrupt_allowed(vcpu
);
7808 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
7810 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
7812 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
7814 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
7816 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
7818 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
7820 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
7822 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
7824 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
7826 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
7827 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
7828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
7829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
7830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
7831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
7832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
7833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
7834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
7835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
7836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
7837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
7838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
7839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);