arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / arch / x86 / mm / gup.c
blobd7547824e76369d6e14ed6ddd7ee39a55ef94a2e
1 /*
2 * Lockless get_user_pages_fast for x86
4 * Copyright (C) 2008 Nick Piggin
5 * Copyright (C) 2008 Novell Inc.
6 */
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/vmstat.h>
10 #include <linux/highmem.h>
11 #include <linux/swap.h>
13 #include <asm/pgtable.h>
15 static inline pte_t gup_get_pte(pte_t *ptep)
17 #ifndef CONFIG_X86_PAE
18 return READ_ONCE(*ptep);
19 #else
21 * With get_user_pages_fast, we walk down the pagetables without taking
22 * any locks. For this we would like to load the pointers atomically,
23 * but that is not possible (without expensive cmpxchg8b) on PAE. What
24 * we do have is the guarantee that a pte will only either go from not
25 * present to present, or present to not present or both -- it will not
26 * switch to a completely different present page without a TLB flush in
27 * between; something that we are blocking by holding interrupts off.
29 * Setting ptes from not present to present goes:
30 * ptep->pte_high = h;
31 * smp_wmb();
32 * ptep->pte_low = l;
34 * And present to not present goes:
35 * ptep->pte_low = 0;
36 * smp_wmb();
37 * ptep->pte_high = 0;
39 * We must ensure here that the load of pte_low sees l iff pte_high
40 * sees h. We load pte_high *after* loading pte_low, which ensures we
41 * don't see an older value of pte_high. *Then* we recheck pte_low,
42 * which ensures that we haven't picked up a changed pte high. We might
43 * have got rubbish values from pte_low and pte_high, but we are
44 * guaranteed that pte_low will not have the present bit set *unless*
45 * it is 'l'. And get_user_pages_fast only operates on present ptes, so
46 * we're safe.
48 * gup_get_pte should not be used or copied outside gup.c without being
49 * very careful -- it does not atomically load the pte or anything that
50 * is likely to be useful for you.
52 pte_t pte;
54 retry:
55 pte.pte_low = ptep->pte_low;
56 smp_rmb();
57 pte.pte_high = ptep->pte_high;
58 smp_rmb();
59 if (unlikely(pte.pte_low != ptep->pte_low))
60 goto retry;
62 return pte;
63 #endif
67 * The performance critical leaf functions are made noinline otherwise gcc
68 * inlines everything into a single function which results in too much
69 * register pressure.
71 static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
72 unsigned long end, int write, struct page **pages, int *nr)
74 unsigned long mask;
75 pte_t *ptep;
77 mask = _PAGE_PRESENT|_PAGE_USER;
78 if (write)
79 mask |= _PAGE_RW;
81 ptep = pte_offset_map(&pmd, addr);
82 do {
83 pte_t pte = gup_get_pte(ptep);
84 struct page *page;
86 /* Similar to the PMD case, NUMA hinting must take slow path */
87 if (pte_numa(pte)) {
88 pte_unmap(ptep);
89 return 0;
92 if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
93 pte_unmap(ptep);
94 return 0;
96 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
97 page = pte_page(pte);
98 get_page(page);
99 SetPageReferenced(page);
100 pages[*nr] = page;
101 (*nr)++;
103 } while (ptep++, addr += PAGE_SIZE, addr != end);
104 pte_unmap(ptep - 1);
106 return 1;
109 static inline void get_head_page_multiple(struct page *page, int nr)
111 VM_BUG_ON_PAGE(page != compound_head(page), page);
112 VM_BUG_ON_PAGE(page_count(page) == 0, page);
113 atomic_add(nr, &page->_count);
114 SetPageReferenced(page);
117 static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
118 unsigned long end, int write, struct page **pages, int *nr)
120 unsigned long mask;
121 pte_t pte = *(pte_t *)&pmd;
122 struct page *head, *page;
123 int refs;
125 mask = _PAGE_PRESENT|_PAGE_USER;
126 if (write)
127 mask |= _PAGE_RW;
128 if ((pte_flags(pte) & mask) != mask)
129 return 0;
130 /* hugepages are never "special" */
131 VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
132 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
134 refs = 0;
135 head = pte_page(pte);
136 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
137 do {
138 VM_BUG_ON_PAGE(compound_head(page) != head, page);
139 pages[*nr] = page;
140 if (PageTail(page))
141 get_huge_page_tail(page);
142 (*nr)++;
143 page++;
144 refs++;
145 } while (addr += PAGE_SIZE, addr != end);
146 get_head_page_multiple(head, refs);
148 return 1;
151 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
152 int write, struct page **pages, int *nr)
154 unsigned long next;
155 pmd_t *pmdp;
157 pmdp = pmd_offset(&pud, addr);
158 do {
159 pmd_t pmd = *pmdp;
161 next = pmd_addr_end(addr, end);
163 * The pmd_trans_splitting() check below explains why
164 * pmdp_splitting_flush has to flush the tlb, to stop
165 * this gup-fast code from running while we set the
166 * splitting bit in the pmd. Returning zero will take
167 * the slow path that will call wait_split_huge_page()
168 * if the pmd is still in splitting state. gup-fast
169 * can't because it has irq disabled and
170 * wait_split_huge_page() would never return as the
171 * tlb flush IPI wouldn't run.
173 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
174 return 0;
175 if (unlikely(pmd_large(pmd))) {
177 * NUMA hinting faults need to be handled in the GUP
178 * slowpath for accounting purposes and so that they
179 * can be serialised against THP migration.
181 if (pmd_numa(pmd))
182 return 0;
183 if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
184 return 0;
185 } else {
186 if (!gup_pte_range(pmd, addr, next, write, pages, nr))
187 return 0;
189 } while (pmdp++, addr = next, addr != end);
191 return 1;
194 static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
195 unsigned long end, int write, struct page **pages, int *nr)
197 unsigned long mask;
198 pte_t pte = *(pte_t *)&pud;
199 struct page *head, *page;
200 int refs;
202 mask = _PAGE_PRESENT|_PAGE_USER;
203 if (write)
204 mask |= _PAGE_RW;
205 if ((pte_flags(pte) & mask) != mask)
206 return 0;
207 /* hugepages are never "special" */
208 VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
209 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
211 refs = 0;
212 head = pte_page(pte);
213 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
214 do {
215 VM_BUG_ON_PAGE(compound_head(page) != head, page);
216 pages[*nr] = page;
217 if (PageTail(page))
218 get_huge_page_tail(page);
219 (*nr)++;
220 page++;
221 refs++;
222 } while (addr += PAGE_SIZE, addr != end);
223 get_head_page_multiple(head, refs);
225 return 1;
228 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
229 int write, struct page **pages, int *nr)
231 unsigned long next;
232 pud_t *pudp;
234 pudp = pud_offset(&pgd, addr);
235 do {
236 pud_t pud = *pudp;
238 next = pud_addr_end(addr, end);
239 if (pud_none(pud))
240 return 0;
241 if (unlikely(pud_large(pud))) {
242 if (!gup_huge_pud(pud, addr, next, write, pages, nr))
243 return 0;
244 } else {
245 if (!gup_pmd_range(pud, addr, next, write, pages, nr))
246 return 0;
248 } while (pudp++, addr = next, addr != end);
250 return 1;
254 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
255 * back to the regular GUP.
257 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
258 struct page **pages)
260 struct mm_struct *mm = current->mm;
261 unsigned long addr, len, end;
262 unsigned long next;
263 unsigned long flags;
264 pgd_t *pgdp;
265 int nr = 0;
267 start &= PAGE_MASK;
268 addr = start;
269 len = (unsigned long) nr_pages << PAGE_SHIFT;
270 end = start + len;
271 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
272 (void __user *)start, len)))
273 return 0;
276 * XXX: batch / limit 'nr', to avoid large irq off latency
277 * needs some instrumenting to determine the common sizes used by
278 * important workloads (eg. DB2), and whether limiting the batch size
279 * will decrease performance.
281 * It seems like we're in the clear for the moment. Direct-IO is
282 * the main guy that batches up lots of get_user_pages, and even
283 * they are limited to 64-at-a-time which is not so many.
286 * This doesn't prevent pagetable teardown, but does prevent
287 * the pagetables and pages from being freed on x86.
289 * So long as we atomically load page table pointers versus teardown
290 * (which we do on x86, with the above PAE exception), we can follow the
291 * address down to the the page and take a ref on it.
293 local_irq_save(flags);
294 pgdp = pgd_offset(mm, addr);
295 do {
296 pgd_t pgd = *pgdp;
298 next = pgd_addr_end(addr, end);
299 if (pgd_none(pgd))
300 break;
301 if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
302 break;
303 } while (pgdp++, addr = next, addr != end);
304 local_irq_restore(flags);
306 return nr;
310 * get_user_pages_fast() - pin user pages in memory
311 * @start: starting user address
312 * @nr_pages: number of pages from start to pin
313 * @write: whether pages will be written to
314 * @pages: array that receives pointers to the pages pinned.
315 * Should be at least nr_pages long.
317 * Attempt to pin user pages in memory without taking mm->mmap_sem.
318 * If not successful, it will fall back to taking the lock and
319 * calling get_user_pages().
321 * Returns number of pages pinned. This may be fewer than the number
322 * requested. If nr_pages is 0 or negative, returns 0. If no pages
323 * were pinned, returns -errno.
325 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
326 struct page **pages)
328 struct mm_struct *mm = current->mm;
329 unsigned long addr, len, end;
330 unsigned long next;
331 pgd_t *pgdp;
332 int nr = 0;
334 start &= PAGE_MASK;
335 addr = start;
336 len = (unsigned long) nr_pages << PAGE_SHIFT;
338 end = start + len;
339 if (end < start)
340 goto slow_irqon;
342 #ifdef CONFIG_X86_64
343 if (end >> __VIRTUAL_MASK_SHIFT)
344 goto slow_irqon;
345 #endif
348 * XXX: batch / limit 'nr', to avoid large irq off latency
349 * needs some instrumenting to determine the common sizes used by
350 * important workloads (eg. DB2), and whether limiting the batch size
351 * will decrease performance.
353 * It seems like we're in the clear for the moment. Direct-IO is
354 * the main guy that batches up lots of get_user_pages, and even
355 * they are limited to 64-at-a-time which is not so many.
358 * This doesn't prevent pagetable teardown, but does prevent
359 * the pagetables and pages from being freed on x86.
361 * So long as we atomically load page table pointers versus teardown
362 * (which we do on x86, with the above PAE exception), we can follow the
363 * address down to the the page and take a ref on it.
365 local_irq_disable();
366 pgdp = pgd_offset(mm, addr);
367 do {
368 pgd_t pgd = *pgdp;
370 next = pgd_addr_end(addr, end);
371 if (pgd_none(pgd))
372 goto slow;
373 if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
374 goto slow;
375 } while (pgdp++, addr = next, addr != end);
376 local_irq_enable();
378 VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
379 return nr;
382 int ret;
384 slow:
385 local_irq_enable();
386 slow_irqon:
387 /* Try to get the remaining pages with get_user_pages */
388 start += nr << PAGE_SHIFT;
389 pages += nr;
391 down_read(&mm->mmap_sem);
392 ret = get_user_pages(current, mm, start,
393 (end - start) >> PAGE_SHIFT, write, 0, pages, NULL);
394 up_read(&mm->mmap_sem);
396 /* Have to be a bit careful with return values */
397 if (nr > 0) {
398 if (ret < 0)
399 ret = nr;
400 else
401 ret += nr;
404 return ret;