arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / arch / x86 / mm / init.c
bloba97ee0801475a2e25df60f336c552408fe1d2b63
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
28 #include "mm_internal.h"
31 * Tables translating between page_cache_type_t and pte encoding.
32 * Minimal supported modes are defined statically, modified if more supported
33 * cache modes are available.
34 * Index into __cachemode2pte_tbl is the cachemode.
35 * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
36 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
38 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
39 [_PAGE_CACHE_MODE_WB] = 0,
40 [_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
41 [_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
42 [_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
43 [_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
44 [_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
46 EXPORT_SYMBOL_GPL(__cachemode2pte_tbl);
47 uint8_t __pte2cachemode_tbl[8] = {
48 [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
49 [__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
50 [__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
51 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
52 [__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
53 [__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
54 [__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
55 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
57 EXPORT_SYMBOL_GPL(__pte2cachemode_tbl);
59 static unsigned long __initdata pgt_buf_start;
60 static unsigned long __initdata pgt_buf_end;
61 static unsigned long __initdata pgt_buf_top;
63 static unsigned long min_pfn_mapped;
65 static bool __initdata can_use_brk_pgt = true;
68 * Pages returned are already directly mapped.
70 * Changing that is likely to break Xen, see commit:
72 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
74 * for detailed information.
76 __ref void *alloc_low_pages(unsigned int num)
78 unsigned long pfn;
79 int i;
81 if (after_bootmem) {
82 unsigned int order;
84 order = get_order((unsigned long)num << PAGE_SHIFT);
85 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
86 __GFP_ZERO, order);
89 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
90 unsigned long ret;
91 if (min_pfn_mapped >= max_pfn_mapped)
92 panic("alloc_low_pages: ran out of memory");
93 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
94 max_pfn_mapped << PAGE_SHIFT,
95 PAGE_SIZE * num , PAGE_SIZE);
96 if (!ret)
97 panic("alloc_low_pages: can not alloc memory");
98 memblock_reserve(ret, PAGE_SIZE * num);
99 pfn = ret >> PAGE_SHIFT;
100 } else {
101 pfn = pgt_buf_end;
102 pgt_buf_end += num;
103 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
104 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
107 for (i = 0; i < num; i++) {
108 void *adr;
110 adr = __va((pfn + i) << PAGE_SHIFT);
111 clear_page(adr);
114 return __va(pfn << PAGE_SHIFT);
117 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
118 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
119 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
120 void __init early_alloc_pgt_buf(void)
122 unsigned long tables = INIT_PGT_BUF_SIZE;
123 phys_addr_t base;
125 base = __pa(extend_brk(tables, PAGE_SIZE));
127 pgt_buf_start = base >> PAGE_SHIFT;
128 pgt_buf_end = pgt_buf_start;
129 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
132 int after_bootmem;
134 int direct_gbpages
135 #ifdef CONFIG_DIRECT_GBPAGES
137 #endif
140 static void __init init_gbpages(void)
142 #ifdef CONFIG_X86_64
143 if (direct_gbpages && cpu_has_gbpages)
144 printk(KERN_INFO "Using GB pages for direct mapping\n");
145 else
146 direct_gbpages = 0;
147 #endif
150 struct map_range {
151 unsigned long start;
152 unsigned long end;
153 unsigned page_size_mask;
156 static int page_size_mask;
158 static void __init probe_page_size_mask(void)
160 init_gbpages();
162 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
164 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
165 * This will simplify cpa(), which otherwise needs to support splitting
166 * large pages into small in interrupt context, etc.
168 if (direct_gbpages)
169 page_size_mask |= 1 << PG_LEVEL_1G;
170 if (cpu_has_pse)
171 page_size_mask |= 1 << PG_LEVEL_2M;
172 #endif
174 /* Enable PSE if available */
175 if (cpu_has_pse)
176 set_in_cr4(X86_CR4_PSE);
178 /* Enable PGE if available */
179 if (cpu_has_pge) {
180 set_in_cr4(X86_CR4_PGE);
181 __supported_pte_mask |= _PAGE_GLOBAL;
185 #ifdef CONFIG_X86_32
186 #define NR_RANGE_MR 3
187 #else /* CONFIG_X86_64 */
188 #define NR_RANGE_MR 5
189 #endif
191 static int __meminit save_mr(struct map_range *mr, int nr_range,
192 unsigned long start_pfn, unsigned long end_pfn,
193 unsigned long page_size_mask)
195 if (start_pfn < end_pfn) {
196 if (nr_range >= NR_RANGE_MR)
197 panic("run out of range for init_memory_mapping\n");
198 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
199 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
200 mr[nr_range].page_size_mask = page_size_mask;
201 nr_range++;
204 return nr_range;
208 * adjust the page_size_mask for small range to go with
209 * big page size instead small one if nearby are ram too.
211 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
212 int nr_range)
214 int i;
216 for (i = 0; i < nr_range; i++) {
217 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
218 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
219 unsigned long start = round_down(mr[i].start, PMD_SIZE);
220 unsigned long end = round_up(mr[i].end, PMD_SIZE);
222 #ifdef CONFIG_X86_32
223 if ((end >> PAGE_SHIFT) > max_low_pfn)
224 continue;
225 #endif
227 if (memblock_is_region_memory(start, end - start))
228 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
230 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
231 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
232 unsigned long start = round_down(mr[i].start, PUD_SIZE);
233 unsigned long end = round_up(mr[i].end, PUD_SIZE);
235 if (memblock_is_region_memory(start, end - start))
236 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
241 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
242 unsigned long start,
243 unsigned long end)
245 unsigned long start_pfn, end_pfn, limit_pfn;
246 unsigned long pfn;
247 int i;
249 limit_pfn = PFN_DOWN(end);
251 /* head if not big page alignment ? */
252 pfn = start_pfn = PFN_DOWN(start);
253 #ifdef CONFIG_X86_32
255 * Don't use a large page for the first 2/4MB of memory
256 * because there are often fixed size MTRRs in there
257 * and overlapping MTRRs into large pages can cause
258 * slowdowns.
260 if (pfn == 0)
261 end_pfn = PFN_DOWN(PMD_SIZE);
262 else
263 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
264 #else /* CONFIG_X86_64 */
265 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
266 #endif
267 if (end_pfn > limit_pfn)
268 end_pfn = limit_pfn;
269 if (start_pfn < end_pfn) {
270 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
271 pfn = end_pfn;
274 /* big page (2M) range */
275 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
276 #ifdef CONFIG_X86_32
277 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
278 #else /* CONFIG_X86_64 */
279 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
280 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
281 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
282 #endif
284 if (start_pfn < end_pfn) {
285 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
286 page_size_mask & (1<<PG_LEVEL_2M));
287 pfn = end_pfn;
290 #ifdef CONFIG_X86_64
291 /* big page (1G) range */
292 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
293 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
294 if (start_pfn < end_pfn) {
295 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
296 page_size_mask &
297 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
298 pfn = end_pfn;
301 /* tail is not big page (1G) alignment */
302 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
303 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
304 if (start_pfn < end_pfn) {
305 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
306 page_size_mask & (1<<PG_LEVEL_2M));
307 pfn = end_pfn;
309 #endif
311 /* tail is not big page (2M) alignment */
312 start_pfn = pfn;
313 end_pfn = limit_pfn;
314 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
316 if (!after_bootmem)
317 adjust_range_page_size_mask(mr, nr_range);
319 /* try to merge same page size and continuous */
320 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
321 unsigned long old_start;
322 if (mr[i].end != mr[i+1].start ||
323 mr[i].page_size_mask != mr[i+1].page_size_mask)
324 continue;
325 /* move it */
326 old_start = mr[i].start;
327 memmove(&mr[i], &mr[i+1],
328 (nr_range - 1 - i) * sizeof(struct map_range));
329 mr[i--].start = old_start;
330 nr_range--;
333 for (i = 0; i < nr_range; i++)
334 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
335 mr[i].start, mr[i].end - 1,
336 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
337 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
339 return nr_range;
342 struct range pfn_mapped[E820_X_MAX];
343 int nr_pfn_mapped;
345 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
347 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
348 nr_pfn_mapped, start_pfn, end_pfn);
349 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
351 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
353 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
354 max_low_pfn_mapped = max(max_low_pfn_mapped,
355 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
358 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
360 int i;
362 for (i = 0; i < nr_pfn_mapped; i++)
363 if ((start_pfn >= pfn_mapped[i].start) &&
364 (end_pfn <= pfn_mapped[i].end))
365 return true;
367 return false;
371 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
372 * This runs before bootmem is initialized and gets pages directly from
373 * the physical memory. To access them they are temporarily mapped.
375 unsigned long __init_refok init_memory_mapping(unsigned long start,
376 unsigned long end)
378 struct map_range mr[NR_RANGE_MR];
379 unsigned long ret = 0;
380 int nr_range, i;
382 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
383 start, end - 1);
385 memset(mr, 0, sizeof(mr));
386 nr_range = split_mem_range(mr, 0, start, end);
388 for (i = 0; i < nr_range; i++)
389 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
390 mr[i].page_size_mask);
392 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
394 return ret >> PAGE_SHIFT;
398 * We need to iterate through the E820 memory map and create direct mappings
399 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
400 * create direct mappings for all pfns from [0 to max_low_pfn) and
401 * [4GB to max_pfn) because of possible memory holes in high addresses
402 * that cannot be marked as UC by fixed/variable range MTRRs.
403 * Depending on the alignment of E820 ranges, this may possibly result
404 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
406 * init_mem_mapping() calls init_range_memory_mapping() with big range.
407 * That range would have hole in the middle or ends, and only ram parts
408 * will be mapped in init_range_memory_mapping().
410 static unsigned long __init init_range_memory_mapping(
411 unsigned long r_start,
412 unsigned long r_end)
414 unsigned long start_pfn, end_pfn;
415 unsigned long mapped_ram_size = 0;
416 int i;
418 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
419 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
420 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
421 if (start >= end)
422 continue;
425 * if it is overlapping with brk pgt, we need to
426 * alloc pgt buf from memblock instead.
428 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
429 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
430 init_memory_mapping(start, end);
431 mapped_ram_size += end - start;
432 can_use_brk_pgt = true;
435 return mapped_ram_size;
438 static unsigned long __init get_new_step_size(unsigned long step_size)
441 * Explain why we shift by 5 and why we don't have to worry about
442 * 'step_size << 5' overflowing:
444 * initial mapped size is PMD_SIZE (2M).
445 * We can not set step_size to be PUD_SIZE (1G) yet.
446 * In worse case, when we cross the 1G boundary, and
447 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
448 * to map 1G range with PTE. Use 5 as shift for now.
450 * Don't need to worry about overflow, on 32bit, when step_size
451 * is 0, round_down() returns 0 for start, and that turns it
452 * into 0x100000000ULL.
454 return step_size << 5;
458 * memory_map_top_down - Map [map_start, map_end) top down
459 * @map_start: start address of the target memory range
460 * @map_end: end address of the target memory range
462 * This function will setup direct mapping for memory range
463 * [map_start, map_end) in top-down. That said, the page tables
464 * will be allocated at the end of the memory, and we map the
465 * memory in top-down.
467 static void __init memory_map_top_down(unsigned long map_start,
468 unsigned long map_end)
470 unsigned long real_end, start, last_start;
471 unsigned long step_size;
472 unsigned long addr;
473 unsigned long mapped_ram_size = 0;
474 unsigned long new_mapped_ram_size;
476 /* xen has big range in reserved near end of ram, skip it at first.*/
477 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
478 real_end = addr + PMD_SIZE;
480 /* step_size need to be small so pgt_buf from BRK could cover it */
481 step_size = PMD_SIZE;
482 max_pfn_mapped = 0; /* will get exact value next */
483 min_pfn_mapped = real_end >> PAGE_SHIFT;
484 last_start = start = real_end;
487 * We start from the top (end of memory) and go to the bottom.
488 * The memblock_find_in_range() gets us a block of RAM from the
489 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
490 * for page table.
492 while (last_start > map_start) {
493 if (last_start > step_size) {
494 start = round_down(last_start - 1, step_size);
495 if (start < map_start)
496 start = map_start;
497 } else
498 start = map_start;
499 new_mapped_ram_size = init_range_memory_mapping(start,
500 last_start);
501 last_start = start;
502 min_pfn_mapped = last_start >> PAGE_SHIFT;
503 /* only increase step_size after big range get mapped */
504 if (new_mapped_ram_size > mapped_ram_size)
505 step_size = get_new_step_size(step_size);
506 mapped_ram_size += new_mapped_ram_size;
509 if (real_end < map_end)
510 init_range_memory_mapping(real_end, map_end);
514 * memory_map_bottom_up - Map [map_start, map_end) bottom up
515 * @map_start: start address of the target memory range
516 * @map_end: end address of the target memory range
518 * This function will setup direct mapping for memory range
519 * [map_start, map_end) in bottom-up. Since we have limited the
520 * bottom-up allocation above the kernel, the page tables will
521 * be allocated just above the kernel and we map the memory
522 * in [map_start, map_end) in bottom-up.
524 static void __init memory_map_bottom_up(unsigned long map_start,
525 unsigned long map_end)
527 unsigned long next, new_mapped_ram_size, start;
528 unsigned long mapped_ram_size = 0;
529 /* step_size need to be small so pgt_buf from BRK could cover it */
530 unsigned long step_size = PMD_SIZE;
532 start = map_start;
533 min_pfn_mapped = start >> PAGE_SHIFT;
536 * We start from the bottom (@map_start) and go to the top (@map_end).
537 * The memblock_find_in_range() gets us a block of RAM from the
538 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
539 * for page table.
541 while (start < map_end) {
542 if (map_end - start > step_size) {
543 next = round_up(start + 1, step_size);
544 if (next > map_end)
545 next = map_end;
546 } else
547 next = map_end;
549 new_mapped_ram_size = init_range_memory_mapping(start, next);
550 start = next;
552 if (new_mapped_ram_size > mapped_ram_size)
553 step_size = get_new_step_size(step_size);
554 mapped_ram_size += new_mapped_ram_size;
558 void __init init_mem_mapping(void)
560 unsigned long end;
562 probe_page_size_mask();
564 #ifdef CONFIG_X86_64
565 end = max_pfn << PAGE_SHIFT;
566 #else
567 end = max_low_pfn << PAGE_SHIFT;
568 #endif
570 /* the ISA range is always mapped regardless of memory holes */
571 init_memory_mapping(0, ISA_END_ADDRESS);
574 * If the allocation is in bottom-up direction, we setup direct mapping
575 * in bottom-up, otherwise we setup direct mapping in top-down.
577 if (memblock_bottom_up()) {
578 unsigned long kernel_end = __pa_symbol(_end);
581 * we need two separate calls here. This is because we want to
582 * allocate page tables above the kernel. So we first map
583 * [kernel_end, end) to make memory above the kernel be mapped
584 * as soon as possible. And then use page tables allocated above
585 * the kernel to map [ISA_END_ADDRESS, kernel_end).
587 memory_map_bottom_up(kernel_end, end);
588 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
589 } else {
590 memory_map_top_down(ISA_END_ADDRESS, end);
593 #ifdef CONFIG_X86_64
594 if (max_pfn > max_low_pfn) {
595 /* can we preseve max_low_pfn ?*/
596 max_low_pfn = max_pfn;
598 #else
599 early_ioremap_page_table_range_init();
600 #endif
602 load_cr3(swapper_pg_dir);
603 __flush_tlb_all();
605 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
609 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
610 * is valid. The argument is a physical page number.
613 * On x86, access has to be given to the first megabyte of ram because that area
614 * contains bios code and data regions used by X and dosemu and similar apps.
615 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
616 * mmio resources as well as potential bios/acpi data regions.
618 int devmem_is_allowed(unsigned long pagenr)
620 if (pagenr < 256)
621 return 1;
622 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
623 return 0;
624 if (!page_is_ram(pagenr))
625 return 1;
626 return 0;
629 void free_init_pages(char *what, unsigned long begin, unsigned long end)
631 unsigned long begin_aligned, end_aligned;
633 /* Make sure boundaries are page aligned */
634 begin_aligned = PAGE_ALIGN(begin);
635 end_aligned = end & PAGE_MASK;
637 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
638 begin = begin_aligned;
639 end = end_aligned;
642 if (begin >= end)
643 return;
646 * If debugging page accesses then do not free this memory but
647 * mark them not present - any buggy init-section access will
648 * create a kernel page fault:
650 #ifdef CONFIG_DEBUG_PAGEALLOC
651 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
652 begin, end - 1);
653 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
654 #else
656 * We just marked the kernel text read only above, now that
657 * we are going to free part of that, we need to make that
658 * writeable and non-executable first.
660 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
661 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
663 free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
664 #endif
667 void free_initmem(void)
669 free_init_pages("unused kernel",
670 (unsigned long)(&__init_begin),
671 (unsigned long)(&__init_end));
674 #ifdef CONFIG_BLK_DEV_INITRD
675 void __init free_initrd_mem(unsigned long start, unsigned long end)
677 #ifdef CONFIG_MICROCODE_EARLY
679 * Remember, initrd memory may contain microcode or other useful things.
680 * Before we lose initrd mem, we need to find a place to hold them
681 * now that normal virtual memory is enabled.
683 save_microcode_in_initrd();
684 #endif
687 * end could be not aligned, and We can not align that,
688 * decompresser could be confused by aligned initrd_end
689 * We already reserve the end partial page before in
690 * - i386_start_kernel()
691 * - x86_64_start_kernel()
692 * - relocate_initrd()
693 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
695 free_init_pages("initrd", start, PAGE_ALIGN(end));
697 #endif
699 void __init zone_sizes_init(void)
701 unsigned long max_zone_pfns[MAX_NR_ZONES];
703 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
705 #ifdef CONFIG_ZONE_DMA
706 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
707 #endif
708 #ifdef CONFIG_ZONE_DMA32
709 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
710 #endif
711 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
712 #ifdef CONFIG_HIGHMEM
713 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
714 #endif
716 free_area_init_nodes(max_zone_pfns);
719 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
721 /* entry 0 MUST be WB (hardwired to speed up translations) */
722 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
724 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
725 __pte2cachemode_tbl[entry] = cache;