2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
8 #include <asm/cacheflush.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
28 #include "mm_internal.h"
31 * Tables translating between page_cache_type_t and pte encoding.
32 * Minimal supported modes are defined statically, modified if more supported
33 * cache modes are available.
34 * Index into __cachemode2pte_tbl is the cachemode.
35 * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
36 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
38 uint16_t __cachemode2pte_tbl
[_PAGE_CACHE_MODE_NUM
] = {
39 [_PAGE_CACHE_MODE_WB
] = 0,
40 [_PAGE_CACHE_MODE_WC
] = _PAGE_PWT
,
41 [_PAGE_CACHE_MODE_UC_MINUS
] = _PAGE_PCD
,
42 [_PAGE_CACHE_MODE_UC
] = _PAGE_PCD
| _PAGE_PWT
,
43 [_PAGE_CACHE_MODE_WT
] = _PAGE_PCD
,
44 [_PAGE_CACHE_MODE_WP
] = _PAGE_PCD
,
46 EXPORT_SYMBOL_GPL(__cachemode2pte_tbl
);
47 uint8_t __pte2cachemode_tbl
[8] = {
48 [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB
,
49 [__pte2cm_idx(_PAGE_PWT
)] = _PAGE_CACHE_MODE_WC
,
50 [__pte2cm_idx(_PAGE_PCD
)] = _PAGE_CACHE_MODE_UC_MINUS
,
51 [__pte2cm_idx(_PAGE_PWT
| _PAGE_PCD
)] = _PAGE_CACHE_MODE_UC
,
52 [__pte2cm_idx(_PAGE_PAT
)] = _PAGE_CACHE_MODE_WB
,
53 [__pte2cm_idx(_PAGE_PWT
| _PAGE_PAT
)] = _PAGE_CACHE_MODE_WC
,
54 [__pte2cm_idx(_PAGE_PCD
| _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC_MINUS
,
55 [__pte2cm_idx(_PAGE_PWT
| _PAGE_PCD
| _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC
,
57 EXPORT_SYMBOL_GPL(__pte2cachemode_tbl
);
59 static unsigned long __initdata pgt_buf_start
;
60 static unsigned long __initdata pgt_buf_end
;
61 static unsigned long __initdata pgt_buf_top
;
63 static unsigned long min_pfn_mapped
;
65 static bool __initdata can_use_brk_pgt
= true;
68 * Pages returned are already directly mapped.
70 * Changing that is likely to break Xen, see commit:
72 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
74 * for detailed information.
76 __ref
void *alloc_low_pages(unsigned int num
)
84 order
= get_order((unsigned long)num
<< PAGE_SHIFT
);
85 return (void *)__get_free_pages(GFP_ATOMIC
| __GFP_NOTRACK
|
89 if ((pgt_buf_end
+ num
) > pgt_buf_top
|| !can_use_brk_pgt
) {
91 if (min_pfn_mapped
>= max_pfn_mapped
)
92 panic("alloc_low_pages: ran out of memory");
93 ret
= memblock_find_in_range(min_pfn_mapped
<< PAGE_SHIFT
,
94 max_pfn_mapped
<< PAGE_SHIFT
,
95 PAGE_SIZE
* num
, PAGE_SIZE
);
97 panic("alloc_low_pages: can not alloc memory");
98 memblock_reserve(ret
, PAGE_SIZE
* num
);
99 pfn
= ret
>> PAGE_SHIFT
;
103 printk(KERN_DEBUG
"BRK [%#010lx, %#010lx] PGTABLE\n",
104 pfn
<< PAGE_SHIFT
, (pgt_buf_end
<< PAGE_SHIFT
) - 1);
107 for (i
= 0; i
< num
; i
++) {
110 adr
= __va((pfn
+ i
) << PAGE_SHIFT
);
114 return __va(pfn
<< PAGE_SHIFT
);
117 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
118 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
119 RESERVE_BRK(early_pgt_alloc
, INIT_PGT_BUF_SIZE
);
120 void __init
early_alloc_pgt_buf(void)
122 unsigned long tables
= INIT_PGT_BUF_SIZE
;
125 base
= __pa(extend_brk(tables
, PAGE_SIZE
));
127 pgt_buf_start
= base
>> PAGE_SHIFT
;
128 pgt_buf_end
= pgt_buf_start
;
129 pgt_buf_top
= pgt_buf_start
+ (tables
>> PAGE_SHIFT
);
135 #ifdef CONFIG_DIRECT_GBPAGES
140 static void __init
init_gbpages(void)
143 if (direct_gbpages
&& cpu_has_gbpages
)
144 printk(KERN_INFO
"Using GB pages for direct mapping\n");
153 unsigned page_size_mask
;
156 static int page_size_mask
;
158 static void __init
probe_page_size_mask(void)
162 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
164 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
165 * This will simplify cpa(), which otherwise needs to support splitting
166 * large pages into small in interrupt context, etc.
169 page_size_mask
|= 1 << PG_LEVEL_1G
;
171 page_size_mask
|= 1 << PG_LEVEL_2M
;
174 /* Enable PSE if available */
176 set_in_cr4(X86_CR4_PSE
);
178 /* Enable PGE if available */
180 set_in_cr4(X86_CR4_PGE
);
181 __supported_pte_mask
|= _PAGE_GLOBAL
;
186 #define NR_RANGE_MR 3
187 #else /* CONFIG_X86_64 */
188 #define NR_RANGE_MR 5
191 static int __meminit
save_mr(struct map_range
*mr
, int nr_range
,
192 unsigned long start_pfn
, unsigned long end_pfn
,
193 unsigned long page_size_mask
)
195 if (start_pfn
< end_pfn
) {
196 if (nr_range
>= NR_RANGE_MR
)
197 panic("run out of range for init_memory_mapping\n");
198 mr
[nr_range
].start
= start_pfn
<<PAGE_SHIFT
;
199 mr
[nr_range
].end
= end_pfn
<<PAGE_SHIFT
;
200 mr
[nr_range
].page_size_mask
= page_size_mask
;
208 * adjust the page_size_mask for small range to go with
209 * big page size instead small one if nearby are ram too.
211 static void __init_refok
adjust_range_page_size_mask(struct map_range
*mr
,
216 for (i
= 0; i
< nr_range
; i
++) {
217 if ((page_size_mask
& (1<<PG_LEVEL_2M
)) &&
218 !(mr
[i
].page_size_mask
& (1<<PG_LEVEL_2M
))) {
219 unsigned long start
= round_down(mr
[i
].start
, PMD_SIZE
);
220 unsigned long end
= round_up(mr
[i
].end
, PMD_SIZE
);
223 if ((end
>> PAGE_SHIFT
) > max_low_pfn
)
227 if (memblock_is_region_memory(start
, end
- start
))
228 mr
[i
].page_size_mask
|= 1<<PG_LEVEL_2M
;
230 if ((page_size_mask
& (1<<PG_LEVEL_1G
)) &&
231 !(mr
[i
].page_size_mask
& (1<<PG_LEVEL_1G
))) {
232 unsigned long start
= round_down(mr
[i
].start
, PUD_SIZE
);
233 unsigned long end
= round_up(mr
[i
].end
, PUD_SIZE
);
235 if (memblock_is_region_memory(start
, end
- start
))
236 mr
[i
].page_size_mask
|= 1<<PG_LEVEL_1G
;
241 static int __meminit
split_mem_range(struct map_range
*mr
, int nr_range
,
245 unsigned long start_pfn
, end_pfn
, limit_pfn
;
249 limit_pfn
= PFN_DOWN(end
);
251 /* head if not big page alignment ? */
252 pfn
= start_pfn
= PFN_DOWN(start
);
255 * Don't use a large page for the first 2/4MB of memory
256 * because there are often fixed size MTRRs in there
257 * and overlapping MTRRs into large pages can cause
261 end_pfn
= PFN_DOWN(PMD_SIZE
);
263 end_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
264 #else /* CONFIG_X86_64 */
265 end_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
267 if (end_pfn
> limit_pfn
)
269 if (start_pfn
< end_pfn
) {
270 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
274 /* big page (2M) range */
275 start_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
277 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
278 #else /* CONFIG_X86_64 */
279 end_pfn
= round_up(pfn
, PFN_DOWN(PUD_SIZE
));
280 if (end_pfn
> round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
)))
281 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
284 if (start_pfn
< end_pfn
) {
285 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
286 page_size_mask
& (1<<PG_LEVEL_2M
));
291 /* big page (1G) range */
292 start_pfn
= round_up(pfn
, PFN_DOWN(PUD_SIZE
));
293 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PUD_SIZE
));
294 if (start_pfn
< end_pfn
) {
295 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
297 ((1<<PG_LEVEL_2M
)|(1<<PG_LEVEL_1G
)));
301 /* tail is not big page (1G) alignment */
302 start_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
303 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
304 if (start_pfn
< end_pfn
) {
305 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
306 page_size_mask
& (1<<PG_LEVEL_2M
));
311 /* tail is not big page (2M) alignment */
314 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
317 adjust_range_page_size_mask(mr
, nr_range
);
319 /* try to merge same page size and continuous */
320 for (i
= 0; nr_range
> 1 && i
< nr_range
- 1; i
++) {
321 unsigned long old_start
;
322 if (mr
[i
].end
!= mr
[i
+1].start
||
323 mr
[i
].page_size_mask
!= mr
[i
+1].page_size_mask
)
326 old_start
= mr
[i
].start
;
327 memmove(&mr
[i
], &mr
[i
+1],
328 (nr_range
- 1 - i
) * sizeof(struct map_range
));
329 mr
[i
--].start
= old_start
;
333 for (i
= 0; i
< nr_range
; i
++)
334 printk(KERN_DEBUG
" [mem %#010lx-%#010lx] page %s\n",
335 mr
[i
].start
, mr
[i
].end
- 1,
336 (mr
[i
].page_size_mask
& (1<<PG_LEVEL_1G
))?"1G":(
337 (mr
[i
].page_size_mask
& (1<<PG_LEVEL_2M
))?"2M":"4k"));
342 struct range pfn_mapped
[E820_X_MAX
];
345 static void add_pfn_range_mapped(unsigned long start_pfn
, unsigned long end_pfn
)
347 nr_pfn_mapped
= add_range_with_merge(pfn_mapped
, E820_X_MAX
,
348 nr_pfn_mapped
, start_pfn
, end_pfn
);
349 nr_pfn_mapped
= clean_sort_range(pfn_mapped
, E820_X_MAX
);
351 max_pfn_mapped
= max(max_pfn_mapped
, end_pfn
);
353 if (start_pfn
< (1UL<<(32-PAGE_SHIFT
)))
354 max_low_pfn_mapped
= max(max_low_pfn_mapped
,
355 min(end_pfn
, 1UL<<(32-PAGE_SHIFT
)));
358 bool pfn_range_is_mapped(unsigned long start_pfn
, unsigned long end_pfn
)
362 for (i
= 0; i
< nr_pfn_mapped
; i
++)
363 if ((start_pfn
>= pfn_mapped
[i
].start
) &&
364 (end_pfn
<= pfn_mapped
[i
].end
))
371 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
372 * This runs before bootmem is initialized and gets pages directly from
373 * the physical memory. To access them they are temporarily mapped.
375 unsigned long __init_refok
init_memory_mapping(unsigned long start
,
378 struct map_range mr
[NR_RANGE_MR
];
379 unsigned long ret
= 0;
382 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
385 memset(mr
, 0, sizeof(mr
));
386 nr_range
= split_mem_range(mr
, 0, start
, end
);
388 for (i
= 0; i
< nr_range
; i
++)
389 ret
= kernel_physical_mapping_init(mr
[i
].start
, mr
[i
].end
,
390 mr
[i
].page_size_mask
);
392 add_pfn_range_mapped(start
>> PAGE_SHIFT
, ret
>> PAGE_SHIFT
);
394 return ret
>> PAGE_SHIFT
;
398 * We need to iterate through the E820 memory map and create direct mappings
399 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
400 * create direct mappings for all pfns from [0 to max_low_pfn) and
401 * [4GB to max_pfn) because of possible memory holes in high addresses
402 * that cannot be marked as UC by fixed/variable range MTRRs.
403 * Depending on the alignment of E820 ranges, this may possibly result
404 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
406 * init_mem_mapping() calls init_range_memory_mapping() with big range.
407 * That range would have hole in the middle or ends, and only ram parts
408 * will be mapped in init_range_memory_mapping().
410 static unsigned long __init
init_range_memory_mapping(
411 unsigned long r_start
,
414 unsigned long start_pfn
, end_pfn
;
415 unsigned long mapped_ram_size
= 0;
418 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, NULL
) {
419 u64 start
= clamp_val(PFN_PHYS(start_pfn
), r_start
, r_end
);
420 u64 end
= clamp_val(PFN_PHYS(end_pfn
), r_start
, r_end
);
425 * if it is overlapping with brk pgt, we need to
426 * alloc pgt buf from memblock instead.
428 can_use_brk_pgt
= max(start
, (u64
)pgt_buf_end
<<PAGE_SHIFT
) >=
429 min(end
, (u64
)pgt_buf_top
<<PAGE_SHIFT
);
430 init_memory_mapping(start
, end
);
431 mapped_ram_size
+= end
- start
;
432 can_use_brk_pgt
= true;
435 return mapped_ram_size
;
438 static unsigned long __init
get_new_step_size(unsigned long step_size
)
441 * Explain why we shift by 5 and why we don't have to worry about
442 * 'step_size << 5' overflowing:
444 * initial mapped size is PMD_SIZE (2M).
445 * We can not set step_size to be PUD_SIZE (1G) yet.
446 * In worse case, when we cross the 1G boundary, and
447 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
448 * to map 1G range with PTE. Use 5 as shift for now.
450 * Don't need to worry about overflow, on 32bit, when step_size
451 * is 0, round_down() returns 0 for start, and that turns it
452 * into 0x100000000ULL.
454 return step_size
<< 5;
458 * memory_map_top_down - Map [map_start, map_end) top down
459 * @map_start: start address of the target memory range
460 * @map_end: end address of the target memory range
462 * This function will setup direct mapping for memory range
463 * [map_start, map_end) in top-down. That said, the page tables
464 * will be allocated at the end of the memory, and we map the
465 * memory in top-down.
467 static void __init
memory_map_top_down(unsigned long map_start
,
468 unsigned long map_end
)
470 unsigned long real_end
, start
, last_start
;
471 unsigned long step_size
;
473 unsigned long mapped_ram_size
= 0;
474 unsigned long new_mapped_ram_size
;
476 /* xen has big range in reserved near end of ram, skip it at first.*/
477 addr
= memblock_find_in_range(map_start
, map_end
, PMD_SIZE
, PMD_SIZE
);
478 real_end
= addr
+ PMD_SIZE
;
480 /* step_size need to be small so pgt_buf from BRK could cover it */
481 step_size
= PMD_SIZE
;
482 max_pfn_mapped
= 0; /* will get exact value next */
483 min_pfn_mapped
= real_end
>> PAGE_SHIFT
;
484 last_start
= start
= real_end
;
487 * We start from the top (end of memory) and go to the bottom.
488 * The memblock_find_in_range() gets us a block of RAM from the
489 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
492 while (last_start
> map_start
) {
493 if (last_start
> step_size
) {
494 start
= round_down(last_start
- 1, step_size
);
495 if (start
< map_start
)
499 new_mapped_ram_size
= init_range_memory_mapping(start
,
502 min_pfn_mapped
= last_start
>> PAGE_SHIFT
;
503 /* only increase step_size after big range get mapped */
504 if (new_mapped_ram_size
> mapped_ram_size
)
505 step_size
= get_new_step_size(step_size
);
506 mapped_ram_size
+= new_mapped_ram_size
;
509 if (real_end
< map_end
)
510 init_range_memory_mapping(real_end
, map_end
);
514 * memory_map_bottom_up - Map [map_start, map_end) bottom up
515 * @map_start: start address of the target memory range
516 * @map_end: end address of the target memory range
518 * This function will setup direct mapping for memory range
519 * [map_start, map_end) in bottom-up. Since we have limited the
520 * bottom-up allocation above the kernel, the page tables will
521 * be allocated just above the kernel and we map the memory
522 * in [map_start, map_end) in bottom-up.
524 static void __init
memory_map_bottom_up(unsigned long map_start
,
525 unsigned long map_end
)
527 unsigned long next
, new_mapped_ram_size
, start
;
528 unsigned long mapped_ram_size
= 0;
529 /* step_size need to be small so pgt_buf from BRK could cover it */
530 unsigned long step_size
= PMD_SIZE
;
533 min_pfn_mapped
= start
>> PAGE_SHIFT
;
536 * We start from the bottom (@map_start) and go to the top (@map_end).
537 * The memblock_find_in_range() gets us a block of RAM from the
538 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
541 while (start
< map_end
) {
542 if (map_end
- start
> step_size
) {
543 next
= round_up(start
+ 1, step_size
);
549 new_mapped_ram_size
= init_range_memory_mapping(start
, next
);
552 if (new_mapped_ram_size
> mapped_ram_size
)
553 step_size
= get_new_step_size(step_size
);
554 mapped_ram_size
+= new_mapped_ram_size
;
558 void __init
init_mem_mapping(void)
562 probe_page_size_mask();
565 end
= max_pfn
<< PAGE_SHIFT
;
567 end
= max_low_pfn
<< PAGE_SHIFT
;
570 /* the ISA range is always mapped regardless of memory holes */
571 init_memory_mapping(0, ISA_END_ADDRESS
);
574 * If the allocation is in bottom-up direction, we setup direct mapping
575 * in bottom-up, otherwise we setup direct mapping in top-down.
577 if (memblock_bottom_up()) {
578 unsigned long kernel_end
= __pa_symbol(_end
);
581 * we need two separate calls here. This is because we want to
582 * allocate page tables above the kernel. So we first map
583 * [kernel_end, end) to make memory above the kernel be mapped
584 * as soon as possible. And then use page tables allocated above
585 * the kernel to map [ISA_END_ADDRESS, kernel_end).
587 memory_map_bottom_up(kernel_end
, end
);
588 memory_map_bottom_up(ISA_END_ADDRESS
, kernel_end
);
590 memory_map_top_down(ISA_END_ADDRESS
, end
);
594 if (max_pfn
> max_low_pfn
) {
595 /* can we preseve max_low_pfn ?*/
596 max_low_pfn
= max_pfn
;
599 early_ioremap_page_table_range_init();
602 load_cr3(swapper_pg_dir
);
605 early_memtest(0, max_pfn_mapped
<< PAGE_SHIFT
);
609 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
610 * is valid. The argument is a physical page number.
613 * On x86, access has to be given to the first megabyte of ram because that area
614 * contains bios code and data regions used by X and dosemu and similar apps.
615 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
616 * mmio resources as well as potential bios/acpi data regions.
618 int devmem_is_allowed(unsigned long pagenr
)
622 if (iomem_is_exclusive(pagenr
<< PAGE_SHIFT
))
624 if (!page_is_ram(pagenr
))
629 void free_init_pages(char *what
, unsigned long begin
, unsigned long end
)
631 unsigned long begin_aligned
, end_aligned
;
633 /* Make sure boundaries are page aligned */
634 begin_aligned
= PAGE_ALIGN(begin
);
635 end_aligned
= end
& PAGE_MASK
;
637 if (WARN_ON(begin_aligned
!= begin
|| end_aligned
!= end
)) {
638 begin
= begin_aligned
;
646 * If debugging page accesses then do not free this memory but
647 * mark them not present - any buggy init-section access will
648 * create a kernel page fault:
650 #ifdef CONFIG_DEBUG_PAGEALLOC
651 printk(KERN_INFO
"debug: unmapping init [mem %#010lx-%#010lx]\n",
653 set_memory_np(begin
, (end
- begin
) >> PAGE_SHIFT
);
656 * We just marked the kernel text read only above, now that
657 * we are going to free part of that, we need to make that
658 * writeable and non-executable first.
660 set_memory_nx(begin
, (end
- begin
) >> PAGE_SHIFT
);
661 set_memory_rw(begin
, (end
- begin
) >> PAGE_SHIFT
);
663 free_reserved_area((void *)begin
, (void *)end
, POISON_FREE_INITMEM
, what
);
667 void free_initmem(void)
669 free_init_pages("unused kernel",
670 (unsigned long)(&__init_begin
),
671 (unsigned long)(&__init_end
));
674 #ifdef CONFIG_BLK_DEV_INITRD
675 void __init
free_initrd_mem(unsigned long start
, unsigned long end
)
677 #ifdef CONFIG_MICROCODE_EARLY
679 * Remember, initrd memory may contain microcode or other useful things.
680 * Before we lose initrd mem, we need to find a place to hold them
681 * now that normal virtual memory is enabled.
683 save_microcode_in_initrd();
687 * end could be not aligned, and We can not align that,
688 * decompresser could be confused by aligned initrd_end
689 * We already reserve the end partial page before in
690 * - i386_start_kernel()
691 * - x86_64_start_kernel()
692 * - relocate_initrd()
693 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
695 free_init_pages("initrd", start
, PAGE_ALIGN(end
));
699 void __init
zone_sizes_init(void)
701 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
703 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
705 #ifdef CONFIG_ZONE_DMA
706 max_zone_pfns
[ZONE_DMA
] = min(MAX_DMA_PFN
, max_low_pfn
);
708 #ifdef CONFIG_ZONE_DMA32
709 max_zone_pfns
[ZONE_DMA32
] = min(MAX_DMA32_PFN
, max_low_pfn
);
711 max_zone_pfns
[ZONE_NORMAL
] = max_low_pfn
;
712 #ifdef CONFIG_HIGHMEM
713 max_zone_pfns
[ZONE_HIGHMEM
] = max_pfn
;
716 free_area_init_nodes(max_zone_pfns
);
719 void update_cache_mode_entry(unsigned entry
, enum page_cache_mode cache
)
721 /* entry 0 MUST be WB (hardwired to speed up translations) */
722 BUG_ON(!entry
&& cache
!= _PAGE_CACHE_MODE_WB
);
724 __cachemode2pte_tbl
[cache
] = __cm_idx2pte(entry
);
725 __pte2cachemode_tbl
[entry
] = cache
;