arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / arch / x86 / mm / pageattr.c
blob536ea2fb6e335677df559390520c3312976dcb81
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
29 * The current flushing context - we pass it instead of 5 arguments:
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 int numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
50 static DEFINE_SPINLOCK(cpa_lock);
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59 void update_page_count(int level, unsigned long pages)
61 /* Protect against CPA */
62 spin_lock(&pgd_lock);
63 direct_pages_count[level] += pages;
64 spin_unlock(&pgd_lock);
67 static void split_page_count(int level)
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
73 void arch_report_meminfo(struct seq_file *m)
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
94 #ifdef CONFIG_X86_64
96 static inline unsigned long highmap_start_pfn(void)
98 return __pa_symbol(_text) >> PAGE_SHIFT;
101 static inline unsigned long highmap_end_pfn(void)
103 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
106 #endif
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
117 return addr >= start && addr < end;
121 * Flushing functions
125 * clflush_cache_range - flush a cache range with clflush
126 * @vaddr: virtual start address
127 * @size: number of bytes to flush
129 * clflushopt is an unordered instruction which needs fencing with mfence or
130 * sfence to avoid ordering issues.
132 void clflush_cache_range(void *vaddr, unsigned int size)
134 void *vend = vaddr + size - 1;
136 mb();
138 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139 clflushopt(vaddr);
141 * Flush any possible final partial cacheline:
143 clflushopt(vend);
145 mb();
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
149 static void __cpa_flush_all(void *arg)
151 unsigned long cache = (unsigned long)arg;
154 * Flush all to work around Errata in early athlons regarding
155 * large page flushing.
157 __flush_tlb_all();
159 if (cache && boot_cpu_data.x86 >= 4)
160 wbinvd();
163 static void cpa_flush_all(unsigned long cache)
165 BUG_ON(irqs_disabled());
167 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
170 static void __cpa_flush_range(void *arg)
173 * We could optimize that further and do individual per page
174 * tlb invalidates for a low number of pages. Caveat: we must
175 * flush the high aliases on 64bit as well.
177 __flush_tlb_all();
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
182 unsigned int i, level;
183 unsigned long addr;
185 BUG_ON(irqs_disabled());
186 WARN_ON(PAGE_ALIGN(start) != start);
188 on_each_cpu(__cpa_flush_range, NULL, 1);
190 if (!cache)
191 return;
194 * We only need to flush on one CPU,
195 * clflush is a MESI-coherent instruction that
196 * will cause all other CPUs to flush the same
197 * cachelines:
199 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200 pte_t *pte = lookup_address(addr, &level);
203 * Only flush present addresses:
205 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206 clflush_cache_range((void *) addr, PAGE_SIZE);
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211 int in_flags, struct page **pages)
213 unsigned int i, level;
214 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
216 BUG_ON(irqs_disabled());
218 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
220 if (!cache || do_wbinvd)
221 return;
224 * We only need to flush on one CPU,
225 * clflush is a MESI-coherent instruction that
226 * will cause all other CPUs to flush the same
227 * cachelines:
229 for (i = 0; i < numpages; i++) {
230 unsigned long addr;
231 pte_t *pte;
233 if (in_flags & CPA_PAGES_ARRAY)
234 addr = (unsigned long)page_address(pages[i]);
235 else
236 addr = start[i];
238 pte = lookup_address(addr, &level);
241 * Only flush present addresses:
243 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244 clflush_cache_range((void *)addr, PAGE_SIZE);
249 * Certain areas of memory on x86 require very specific protection flags,
250 * for example the BIOS area or kernel text. Callers don't always get this
251 * right (again, ioremap() on BIOS memory is not uncommon) so this function
252 * checks and fixes these known static required protection bits.
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255 unsigned long pfn)
257 pgprot_t forbidden = __pgprot(0);
260 * The BIOS area between 640k and 1Mb needs to be executable for
261 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
263 #ifdef CONFIG_PCI_BIOS
264 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265 pgprot_val(forbidden) |= _PAGE_NX;
266 #endif
269 * The kernel text needs to be executable for obvious reasons
270 * Does not cover __inittext since that is gone later on. On
271 * 64bit we do not enforce !NX on the low mapping
273 if (within(address, (unsigned long)_text, (unsigned long)_etext))
274 pgprot_val(forbidden) |= _PAGE_NX;
277 * The .rodata section needs to be read-only. Using the pfn
278 * catches all aliases.
280 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
281 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
282 pgprot_val(forbidden) |= _PAGE_RW;
284 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
286 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
287 * kernel text mappings for the large page aligned text, rodata sections
288 * will be always read-only. For the kernel identity mappings covering
289 * the holes caused by this alignment can be anything that user asks.
291 * This will preserve the large page mappings for kernel text/data
292 * at no extra cost.
294 if (kernel_set_to_readonly &&
295 within(address, (unsigned long)_text,
296 (unsigned long)__end_rodata_hpage_align)) {
297 unsigned int level;
300 * Don't enforce the !RW mapping for the kernel text mapping,
301 * if the current mapping is already using small page mapping.
302 * No need to work hard to preserve large page mappings in this
303 * case.
305 * This also fixes the Linux Xen paravirt guest boot failure
306 * (because of unexpected read-only mappings for kernel identity
307 * mappings). In this paravirt guest case, the kernel text
308 * mapping and the kernel identity mapping share the same
309 * page-table pages. Thus we can't really use different
310 * protections for the kernel text and identity mappings. Also,
311 * these shared mappings are made of small page mappings.
312 * Thus this don't enforce !RW mapping for small page kernel
313 * text mapping logic will help Linux Xen parvirt guest boot
314 * as well.
316 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
317 pgprot_val(forbidden) |= _PAGE_RW;
319 #endif
321 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
323 return prot;
327 * Lookup the page table entry for a virtual address in a specific pgd.
328 * Return a pointer to the entry and the level of the mapping.
330 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
331 unsigned int *level)
333 pud_t *pud;
334 pmd_t *pmd;
336 *level = PG_LEVEL_NONE;
338 if (pgd_none(*pgd))
339 return NULL;
341 pud = pud_offset(pgd, address);
342 if (pud_none(*pud))
343 return NULL;
345 *level = PG_LEVEL_1G;
346 if (pud_large(*pud) || !pud_present(*pud))
347 return (pte_t *)pud;
349 pmd = pmd_offset(pud, address);
350 if (pmd_none(*pmd))
351 return NULL;
353 *level = PG_LEVEL_2M;
354 if (pmd_large(*pmd) || !pmd_present(*pmd))
355 return (pte_t *)pmd;
357 *level = PG_LEVEL_4K;
359 return pte_offset_kernel(pmd, address);
363 * Lookup the page table entry for a virtual address. Return a pointer
364 * to the entry and the level of the mapping.
366 * Note: We return pud and pmd either when the entry is marked large
367 * or when the present bit is not set. Otherwise we would return a
368 * pointer to a nonexisting mapping.
370 pte_t *lookup_address(unsigned long address, unsigned int *level)
372 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
374 EXPORT_SYMBOL_GPL(lookup_address);
376 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
377 unsigned int *level)
379 if (cpa->pgd)
380 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
381 address, level);
383 return lookup_address(address, level);
387 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
388 * or NULL if not present.
390 pmd_t *lookup_pmd_address(unsigned long address)
392 pgd_t *pgd;
393 pud_t *pud;
395 pgd = pgd_offset_k(address);
396 if (pgd_none(*pgd))
397 return NULL;
399 pud = pud_offset(pgd, address);
400 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
401 return NULL;
403 return pmd_offset(pud, address);
407 * This is necessary because __pa() does not work on some
408 * kinds of memory, like vmalloc() or the alloc_remap()
409 * areas on 32-bit NUMA systems. The percpu areas can
410 * end up in this kind of memory, for instance.
412 * This could be optimized, but it is only intended to be
413 * used at inititalization time, and keeping it
414 * unoptimized should increase the testing coverage for
415 * the more obscure platforms.
417 phys_addr_t slow_virt_to_phys(void *__virt_addr)
419 unsigned long virt_addr = (unsigned long)__virt_addr;
420 phys_addr_t phys_addr;
421 unsigned long offset;
422 enum pg_level level;
423 unsigned long psize;
424 unsigned long pmask;
425 pte_t *pte;
427 pte = lookup_address(virt_addr, &level);
428 BUG_ON(!pte);
429 psize = page_level_size(level);
430 pmask = page_level_mask(level);
431 offset = virt_addr & ~pmask;
432 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
433 return (phys_addr | offset);
435 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
438 * Set the new pmd in all the pgds we know about:
440 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
442 /* change init_mm */
443 set_pte_atomic(kpte, pte);
444 #ifdef CONFIG_X86_32
445 if (!SHARED_KERNEL_PMD) {
446 struct page *page;
448 list_for_each_entry(page, &pgd_list, lru) {
449 pgd_t *pgd;
450 pud_t *pud;
451 pmd_t *pmd;
453 pgd = (pgd_t *)page_address(page) + pgd_index(address);
454 pud = pud_offset(pgd, address);
455 pmd = pmd_offset(pud, address);
456 set_pte_atomic((pte_t *)pmd, pte);
459 #endif
462 static int
463 try_preserve_large_page(pte_t *kpte, unsigned long address,
464 struct cpa_data *cpa)
466 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
467 pte_t new_pte, old_pte, *tmp;
468 pgprot_t old_prot, new_prot, req_prot;
469 int i, do_split = 1;
470 enum pg_level level;
472 if (cpa->force_split)
473 return 1;
475 spin_lock(&pgd_lock);
477 * Check for races, another CPU might have split this page
478 * up already:
480 tmp = _lookup_address_cpa(cpa, address, &level);
481 if (tmp != kpte)
482 goto out_unlock;
484 switch (level) {
485 case PG_LEVEL_2M:
486 #ifdef CONFIG_X86_64
487 case PG_LEVEL_1G:
488 #endif
489 psize = page_level_size(level);
490 pmask = page_level_mask(level);
491 break;
492 default:
493 do_split = -EINVAL;
494 goto out_unlock;
498 * Calculate the number of pages, which fit into this large
499 * page starting at address:
501 nextpage_addr = (address + psize) & pmask;
502 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
503 if (numpages < cpa->numpages)
504 cpa->numpages = numpages;
507 * We are safe now. Check whether the new pgprot is the same:
508 * Convert protection attributes to 4k-format, as cpa->mask* are set
509 * up accordingly.
511 old_pte = *kpte;
512 old_prot = req_prot = pgprot_large_2_4k(pte_pgprot(old_pte));
514 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
515 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
518 * req_prot is in format of 4k pages. It must be converted to large
519 * page format: the caching mode includes the PAT bit located at
520 * different bit positions in the two formats.
522 req_prot = pgprot_4k_2_large(req_prot);
525 * Set the PSE and GLOBAL flags only if the PRESENT flag is
526 * set otherwise pmd_present/pmd_huge will return true even on
527 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
528 * for the ancient hardware that doesn't support it.
530 if (pgprot_val(req_prot) & _PAGE_PRESENT)
531 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
532 else
533 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
535 req_prot = canon_pgprot(req_prot);
538 * old_pte points to the large page base address. So we need
539 * to add the offset of the virtual address:
541 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
542 cpa->pfn = pfn;
544 new_prot = static_protections(req_prot, address, pfn);
547 * We need to check the full range, whether
548 * static_protection() requires a different pgprot for one of
549 * the pages in the range we try to preserve:
551 addr = address & pmask;
552 pfn = pte_pfn(old_pte);
553 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
554 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
556 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
557 goto out_unlock;
561 * If there are no changes, return. maxpages has been updated
562 * above:
564 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
565 do_split = 0;
566 goto out_unlock;
570 * We need to change the attributes. Check, whether we can
571 * change the large page in one go. We request a split, when
572 * the address is not aligned and the number of pages is
573 * smaller than the number of pages in the large page. Note
574 * that we limited the number of possible pages already to
575 * the number of pages in the large page.
577 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
579 * The address is aligned and the number of pages
580 * covers the full page.
582 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
583 __set_pmd_pte(kpte, address, new_pte);
584 cpa->flags |= CPA_FLUSHTLB;
585 do_split = 0;
588 out_unlock:
589 spin_unlock(&pgd_lock);
591 return do_split;
594 static int
595 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
596 struct page *base)
598 pte_t *pbase = (pte_t *)page_address(base);
599 unsigned long pfn, pfninc = 1;
600 unsigned int i, level;
601 pte_t *tmp;
602 pgprot_t ref_prot;
604 spin_lock(&pgd_lock);
606 * Check for races, another CPU might have split this page
607 * up for us already:
609 tmp = _lookup_address_cpa(cpa, address, &level);
610 if (tmp != kpte) {
611 spin_unlock(&pgd_lock);
612 return 1;
615 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
616 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
618 /* promote PAT bit to correct position */
619 if (level == PG_LEVEL_2M)
620 ref_prot = pgprot_large_2_4k(ref_prot);
622 #ifdef CONFIG_X86_64
623 if (level == PG_LEVEL_1G) {
624 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
626 * Set the PSE flags only if the PRESENT flag is set
627 * otherwise pmd_present/pmd_huge will return true
628 * even on a non present pmd.
630 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
631 pgprot_val(ref_prot) |= _PAGE_PSE;
632 else
633 pgprot_val(ref_prot) &= ~_PAGE_PSE;
635 #endif
638 * Set the GLOBAL flags only if the PRESENT flag is set
639 * otherwise pmd/pte_present will return true even on a non
640 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
641 * for the ancient hardware that doesn't support it.
643 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
644 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
645 else
646 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
649 * Get the target pfn from the original entry:
651 pfn = pte_pfn(*kpte);
652 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
653 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
655 if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
656 PFN_DOWN(__pa(address)) + 1))
657 split_page_count(level);
660 * Install the new, split up pagetable.
662 * We use the standard kernel pagetable protections for the new
663 * pagetable protections, the actual ptes set above control the
664 * primary protection behavior:
666 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
669 * Intel Atom errata AAH41 workaround.
671 * The real fix should be in hw or in a microcode update, but
672 * we also probabilistically try to reduce the window of having
673 * a large TLB mixed with 4K TLBs while instruction fetches are
674 * going on.
676 __flush_tlb_all();
677 spin_unlock(&pgd_lock);
679 return 0;
682 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
683 unsigned long address)
685 struct page *base;
687 if (!debug_pagealloc)
688 spin_unlock(&cpa_lock);
689 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
690 if (!debug_pagealloc)
691 spin_lock(&cpa_lock);
692 if (!base)
693 return -ENOMEM;
695 if (__split_large_page(cpa, kpte, address, base))
696 __free_page(base);
698 return 0;
701 static bool try_to_free_pte_page(pte_t *pte)
703 int i;
705 for (i = 0; i < PTRS_PER_PTE; i++)
706 if (!pte_none(pte[i]))
707 return false;
709 free_page((unsigned long)pte);
710 return true;
713 static bool try_to_free_pmd_page(pmd_t *pmd)
715 int i;
717 for (i = 0; i < PTRS_PER_PMD; i++)
718 if (!pmd_none(pmd[i]))
719 return false;
721 free_page((unsigned long)pmd);
722 return true;
725 static bool try_to_free_pud_page(pud_t *pud)
727 int i;
729 for (i = 0; i < PTRS_PER_PUD; i++)
730 if (!pud_none(pud[i]))
731 return false;
733 free_page((unsigned long)pud);
734 return true;
737 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
739 pte_t *pte = pte_offset_kernel(pmd, start);
741 while (start < end) {
742 set_pte(pte, __pte(0));
744 start += PAGE_SIZE;
745 pte++;
748 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
749 pmd_clear(pmd);
750 return true;
752 return false;
755 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
756 unsigned long start, unsigned long end)
758 if (unmap_pte_range(pmd, start, end))
759 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
760 pud_clear(pud);
763 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
765 pmd_t *pmd = pmd_offset(pud, start);
768 * Not on a 2MB page boundary?
770 if (start & (PMD_SIZE - 1)) {
771 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
772 unsigned long pre_end = min_t(unsigned long, end, next_page);
774 __unmap_pmd_range(pud, pmd, start, pre_end);
776 start = pre_end;
777 pmd++;
781 * Try to unmap in 2M chunks.
783 while (end - start >= PMD_SIZE) {
784 if (pmd_large(*pmd))
785 pmd_clear(pmd);
786 else
787 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
789 start += PMD_SIZE;
790 pmd++;
794 * 4K leftovers?
796 if (start < end)
797 return __unmap_pmd_range(pud, pmd, start, end);
800 * Try again to free the PMD page if haven't succeeded above.
802 if (!pud_none(*pud))
803 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
804 pud_clear(pud);
807 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
809 pud_t *pud = pud_offset(pgd, start);
812 * Not on a GB page boundary?
814 if (start & (PUD_SIZE - 1)) {
815 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
816 unsigned long pre_end = min_t(unsigned long, end, next_page);
818 unmap_pmd_range(pud, start, pre_end);
820 start = pre_end;
821 pud++;
825 * Try to unmap in 1G chunks?
827 while (end - start >= PUD_SIZE) {
829 if (pud_large(*pud))
830 pud_clear(pud);
831 else
832 unmap_pmd_range(pud, start, start + PUD_SIZE);
834 start += PUD_SIZE;
835 pud++;
839 * 2M leftovers?
841 if (start < end)
842 unmap_pmd_range(pud, start, end);
845 * No need to try to free the PUD page because we'll free it in
846 * populate_pgd's error path
850 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
852 pgd_t *pgd_entry = root + pgd_index(addr);
854 unmap_pud_range(pgd_entry, addr, end);
856 if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
857 pgd_clear(pgd_entry);
860 static int alloc_pte_page(pmd_t *pmd)
862 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
863 if (!pte)
864 return -1;
866 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
867 return 0;
870 static int alloc_pmd_page(pud_t *pud)
872 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
873 if (!pmd)
874 return -1;
876 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
877 return 0;
880 static void populate_pte(struct cpa_data *cpa,
881 unsigned long start, unsigned long end,
882 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
884 pte_t *pte;
886 pte = pte_offset_kernel(pmd, start);
888 while (num_pages-- && start < end) {
890 /* deal with the NX bit */
891 if (!(pgprot_val(pgprot) & _PAGE_NX))
892 cpa->pfn &= ~_PAGE_NX;
894 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
896 start += PAGE_SIZE;
897 cpa->pfn += PAGE_SIZE;
898 pte++;
902 static int populate_pmd(struct cpa_data *cpa,
903 unsigned long start, unsigned long end,
904 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
906 unsigned int cur_pages = 0;
907 pmd_t *pmd;
908 pgprot_t pmd_pgprot;
911 * Not on a 2M boundary?
913 if (start & (PMD_SIZE - 1)) {
914 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
915 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
917 pre_end = min_t(unsigned long, pre_end, next_page);
918 cur_pages = (pre_end - start) >> PAGE_SHIFT;
919 cur_pages = min_t(unsigned int, num_pages, cur_pages);
922 * Need a PTE page?
924 pmd = pmd_offset(pud, start);
925 if (pmd_none(*pmd))
926 if (alloc_pte_page(pmd))
927 return -1;
929 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
931 start = pre_end;
935 * We mapped them all?
937 if (num_pages == cur_pages)
938 return cur_pages;
940 pmd_pgprot = pgprot_4k_2_large(pgprot);
942 while (end - start >= PMD_SIZE) {
945 * We cannot use a 1G page so allocate a PMD page if needed.
947 if (pud_none(*pud))
948 if (alloc_pmd_page(pud))
949 return -1;
951 pmd = pmd_offset(pud, start);
953 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
954 massage_pgprot(pmd_pgprot)));
956 start += PMD_SIZE;
957 cpa->pfn += PMD_SIZE;
958 cur_pages += PMD_SIZE >> PAGE_SHIFT;
962 * Map trailing 4K pages.
964 if (start < end) {
965 pmd = pmd_offset(pud, start);
966 if (pmd_none(*pmd))
967 if (alloc_pte_page(pmd))
968 return -1;
970 populate_pte(cpa, start, end, num_pages - cur_pages,
971 pmd, pgprot);
973 return num_pages;
976 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
977 pgprot_t pgprot)
979 pud_t *pud;
980 unsigned long end;
981 int cur_pages = 0;
982 pgprot_t pud_pgprot;
984 end = start + (cpa->numpages << PAGE_SHIFT);
987 * Not on a Gb page boundary? => map everything up to it with
988 * smaller pages.
990 if (start & (PUD_SIZE - 1)) {
991 unsigned long pre_end;
992 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
994 pre_end = min_t(unsigned long, end, next_page);
995 cur_pages = (pre_end - start) >> PAGE_SHIFT;
996 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
998 pud = pud_offset(pgd, start);
1001 * Need a PMD page?
1003 if (pud_none(*pud))
1004 if (alloc_pmd_page(pud))
1005 return -1;
1007 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1008 pud, pgprot);
1009 if (cur_pages < 0)
1010 return cur_pages;
1012 start = pre_end;
1015 /* We mapped them all? */
1016 if (cpa->numpages == cur_pages)
1017 return cur_pages;
1019 pud = pud_offset(pgd, start);
1020 pud_pgprot = pgprot_4k_2_large(pgprot);
1023 * Map everything starting from the Gb boundary, possibly with 1G pages
1025 while (end - start >= PUD_SIZE) {
1026 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1027 massage_pgprot(pud_pgprot)));
1029 start += PUD_SIZE;
1030 cpa->pfn += PUD_SIZE;
1031 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1032 pud++;
1035 /* Map trailing leftover */
1036 if (start < end) {
1037 int tmp;
1039 pud = pud_offset(pgd, start);
1040 if (pud_none(*pud))
1041 if (alloc_pmd_page(pud))
1042 return -1;
1044 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1045 pud, pgprot);
1046 if (tmp < 0)
1047 return cur_pages;
1049 cur_pages += tmp;
1051 return cur_pages;
1055 * Restrictions for kernel page table do not necessarily apply when mapping in
1056 * an alternate PGD.
1058 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1060 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1061 pud_t *pud = NULL; /* shut up gcc */
1062 pgd_t *pgd_entry;
1063 int ret;
1065 pgd_entry = cpa->pgd + pgd_index(addr);
1068 * Allocate a PUD page and hand it down for mapping.
1070 if (pgd_none(*pgd_entry)) {
1071 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1072 if (!pud)
1073 return -1;
1075 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1078 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1079 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1081 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1082 if (ret < 0) {
1083 unmap_pgd_range(cpa->pgd, addr,
1084 addr + (cpa->numpages << PAGE_SHIFT));
1085 return ret;
1088 cpa->numpages = ret;
1089 return 0;
1092 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1093 int primary)
1095 if (cpa->pgd)
1096 return populate_pgd(cpa, vaddr);
1099 * Ignore all non primary paths.
1101 if (!primary)
1102 return 0;
1105 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1106 * to have holes.
1107 * Also set numpages to '1' indicating that we processed cpa req for
1108 * one virtual address page and its pfn. TBD: numpages can be set based
1109 * on the initial value and the level returned by lookup_address().
1111 if (within(vaddr, PAGE_OFFSET,
1112 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1113 cpa->numpages = 1;
1114 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1115 return 0;
1116 } else {
1117 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1118 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1119 *cpa->vaddr);
1121 return -EFAULT;
1125 static int __change_page_attr(struct cpa_data *cpa, int primary)
1127 unsigned long address;
1128 int do_split, err;
1129 unsigned int level;
1130 pte_t *kpte, old_pte;
1132 if (cpa->flags & CPA_PAGES_ARRAY) {
1133 struct page *page = cpa->pages[cpa->curpage];
1134 if (unlikely(PageHighMem(page)))
1135 return 0;
1136 address = (unsigned long)page_address(page);
1137 } else if (cpa->flags & CPA_ARRAY)
1138 address = cpa->vaddr[cpa->curpage];
1139 else
1140 address = *cpa->vaddr;
1141 repeat:
1142 kpte = _lookup_address_cpa(cpa, address, &level);
1143 if (!kpte)
1144 return __cpa_process_fault(cpa, address, primary);
1146 old_pte = *kpte;
1147 if (!pte_val(old_pte))
1148 return __cpa_process_fault(cpa, address, primary);
1150 if (level == PG_LEVEL_4K) {
1151 pte_t new_pte;
1152 pgprot_t new_prot = pte_pgprot(old_pte);
1153 unsigned long pfn = pte_pfn(old_pte);
1155 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1156 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1158 new_prot = static_protections(new_prot, address, pfn);
1161 * Set the GLOBAL flags only if the PRESENT flag is
1162 * set otherwise pte_present will return true even on
1163 * a non present pte. The canon_pgprot will clear
1164 * _PAGE_GLOBAL for the ancient hardware that doesn't
1165 * support it.
1167 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1168 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1169 else
1170 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1173 * We need to keep the pfn from the existing PTE,
1174 * after all we're only going to change it's attributes
1175 * not the memory it points to
1177 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1178 cpa->pfn = pfn;
1180 * Do we really change anything ?
1182 if (pte_val(old_pte) != pte_val(new_pte)) {
1183 set_pte_atomic(kpte, new_pte);
1184 cpa->flags |= CPA_FLUSHTLB;
1186 cpa->numpages = 1;
1187 return 0;
1191 * Check, whether we can keep the large page intact
1192 * and just change the pte:
1194 do_split = try_preserve_large_page(kpte, address, cpa);
1196 * When the range fits into the existing large page,
1197 * return. cp->numpages and cpa->tlbflush have been updated in
1198 * try_large_page:
1200 if (do_split <= 0)
1201 return do_split;
1204 * We have to split the large page:
1206 err = split_large_page(cpa, kpte, address);
1207 if (!err) {
1209 * Do a global flush tlb after splitting the large page
1210 * and before we do the actual change page attribute in the PTE.
1212 * With out this, we violate the TLB application note, that says
1213 * "The TLBs may contain both ordinary and large-page
1214 * translations for a 4-KByte range of linear addresses. This
1215 * may occur if software modifies the paging structures so that
1216 * the page size used for the address range changes. If the two
1217 * translations differ with respect to page frame or attributes
1218 * (e.g., permissions), processor behavior is undefined and may
1219 * be implementation-specific."
1221 * We do this global tlb flush inside the cpa_lock, so that we
1222 * don't allow any other cpu, with stale tlb entries change the
1223 * page attribute in parallel, that also falls into the
1224 * just split large page entry.
1226 flush_tlb_all();
1227 goto repeat;
1230 return err;
1233 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1235 static int cpa_process_alias(struct cpa_data *cpa)
1237 struct cpa_data alias_cpa;
1238 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1239 unsigned long vaddr;
1240 int ret;
1242 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1243 return 0;
1246 * No need to redo, when the primary call touched the direct
1247 * mapping already:
1249 if (cpa->flags & CPA_PAGES_ARRAY) {
1250 struct page *page = cpa->pages[cpa->curpage];
1251 if (unlikely(PageHighMem(page)))
1252 return 0;
1253 vaddr = (unsigned long)page_address(page);
1254 } else if (cpa->flags & CPA_ARRAY)
1255 vaddr = cpa->vaddr[cpa->curpage];
1256 else
1257 vaddr = *cpa->vaddr;
1259 if (!(within(vaddr, PAGE_OFFSET,
1260 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1262 alias_cpa = *cpa;
1263 alias_cpa.vaddr = &laddr;
1264 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1266 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1267 if (ret)
1268 return ret;
1271 #ifdef CONFIG_X86_64
1273 * If the primary call didn't touch the high mapping already
1274 * and the physical address is inside the kernel map, we need
1275 * to touch the high mapped kernel as well:
1277 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1278 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1279 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1280 __START_KERNEL_map - phys_base;
1281 alias_cpa = *cpa;
1282 alias_cpa.vaddr = &temp_cpa_vaddr;
1283 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1286 * The high mapping range is imprecise, so ignore the
1287 * return value.
1289 __change_page_attr_set_clr(&alias_cpa, 0);
1291 #endif
1293 return 0;
1296 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1298 int ret, numpages = cpa->numpages;
1300 while (numpages) {
1302 * Store the remaining nr of pages for the large page
1303 * preservation check.
1305 cpa->numpages = numpages;
1306 /* for array changes, we can't use large page */
1307 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1308 cpa->numpages = 1;
1310 if (!debug_pagealloc)
1311 spin_lock(&cpa_lock);
1312 ret = __change_page_attr(cpa, checkalias);
1313 if (!debug_pagealloc)
1314 spin_unlock(&cpa_lock);
1315 if (ret)
1316 return ret;
1318 if (checkalias) {
1319 ret = cpa_process_alias(cpa);
1320 if (ret)
1321 return ret;
1325 * Adjust the number of pages with the result of the
1326 * CPA operation. Either a large page has been
1327 * preserved or a single page update happened.
1329 BUG_ON(cpa->numpages > numpages);
1330 numpages -= cpa->numpages;
1331 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1332 cpa->curpage++;
1333 else
1334 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1337 return 0;
1340 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1341 pgprot_t mask_set, pgprot_t mask_clr,
1342 int force_split, int in_flag,
1343 struct page **pages)
1345 struct cpa_data cpa;
1346 int ret, cache, checkalias;
1347 unsigned long baddr = 0;
1349 memset(&cpa, 0, sizeof(cpa));
1352 * Check, if we are requested to change a not supported
1353 * feature:
1355 mask_set = canon_pgprot(mask_set);
1356 mask_clr = canon_pgprot(mask_clr);
1357 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1358 return 0;
1360 /* Ensure we are PAGE_SIZE aligned */
1361 if (in_flag & CPA_ARRAY) {
1362 int i;
1363 for (i = 0; i < numpages; i++) {
1364 if (addr[i] & ~PAGE_MASK) {
1365 addr[i] &= PAGE_MASK;
1366 WARN_ON_ONCE(1);
1369 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1371 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1372 * No need to cehck in that case
1374 if (*addr & ~PAGE_MASK) {
1375 *addr &= PAGE_MASK;
1377 * People should not be passing in unaligned addresses:
1379 WARN_ON_ONCE(1);
1382 * Save address for cache flush. *addr is modified in the call
1383 * to __change_page_attr_set_clr() below.
1385 baddr = *addr;
1388 /* Must avoid aliasing mappings in the highmem code */
1389 kmap_flush_unused();
1391 vm_unmap_aliases();
1393 cpa.vaddr = addr;
1394 cpa.pages = pages;
1395 cpa.numpages = numpages;
1396 cpa.mask_set = mask_set;
1397 cpa.mask_clr = mask_clr;
1398 cpa.flags = 0;
1399 cpa.curpage = 0;
1400 cpa.force_split = force_split;
1402 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1403 cpa.flags |= in_flag;
1405 /* No alias checking for _NX bit modifications */
1406 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1408 ret = __change_page_attr_set_clr(&cpa, checkalias);
1411 * Check whether we really changed something:
1413 if (!(cpa.flags & CPA_FLUSHTLB))
1414 goto out;
1417 * No need to flush, when we did not set any of the caching
1418 * attributes:
1420 cache = !!pgprot2cachemode(mask_set);
1423 * On success we use CLFLUSH, when the CPU supports it to
1424 * avoid the WBINVD. If the CPU does not support it and in the
1425 * error case we fall back to cpa_flush_all (which uses
1426 * WBINVD):
1428 if (!ret && cpu_has_clflush) {
1429 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1430 cpa_flush_array(addr, numpages, cache,
1431 cpa.flags, pages);
1432 } else
1433 cpa_flush_range(baddr, numpages, cache);
1434 } else
1435 cpa_flush_all(cache);
1437 out:
1438 return ret;
1441 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1442 pgprot_t mask, int array)
1444 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1445 (array ? CPA_ARRAY : 0), NULL);
1448 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1449 pgprot_t mask, int array)
1451 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1452 (array ? CPA_ARRAY : 0), NULL);
1455 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1456 pgprot_t mask)
1458 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1459 CPA_PAGES_ARRAY, pages);
1462 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1463 pgprot_t mask)
1465 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1466 CPA_PAGES_ARRAY, pages);
1469 int _set_memory_uc(unsigned long addr, int numpages)
1472 * for now UC MINUS. see comments in ioremap_nocache()
1474 return change_page_attr_set(&addr, numpages,
1475 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1479 int set_memory_uc(unsigned long addr, int numpages)
1481 int ret;
1484 * for now UC MINUS. see comments in ioremap_nocache()
1486 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1487 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1488 if (ret)
1489 goto out_err;
1491 ret = _set_memory_uc(addr, numpages);
1492 if (ret)
1493 goto out_free;
1495 return 0;
1497 out_free:
1498 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1499 out_err:
1500 return ret;
1502 EXPORT_SYMBOL(set_memory_uc);
1504 static int _set_memory_array(unsigned long *addr, int addrinarray,
1505 enum page_cache_mode new_type)
1507 int i, j;
1508 int ret;
1511 * for now UC MINUS. see comments in ioremap_nocache()
1513 for (i = 0; i < addrinarray; i++) {
1514 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1515 new_type, NULL);
1516 if (ret)
1517 goto out_free;
1520 ret = change_page_attr_set(addr, addrinarray,
1521 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1524 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1525 ret = change_page_attr_set_clr(addr, addrinarray,
1526 cachemode2pgprot(
1527 _PAGE_CACHE_MODE_WC),
1528 __pgprot(_PAGE_CACHE_MASK),
1529 0, CPA_ARRAY, NULL);
1530 if (ret)
1531 goto out_free;
1533 return 0;
1535 out_free:
1536 for (j = 0; j < i; j++)
1537 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1539 return ret;
1542 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1544 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1546 EXPORT_SYMBOL(set_memory_array_uc);
1548 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1550 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1552 EXPORT_SYMBOL(set_memory_array_wc);
1554 int _set_memory_wc(unsigned long addr, int numpages)
1556 int ret;
1557 unsigned long addr_copy = addr;
1559 ret = change_page_attr_set(&addr, numpages,
1560 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1562 if (!ret) {
1563 ret = change_page_attr_set_clr(&addr_copy, numpages,
1564 cachemode2pgprot(
1565 _PAGE_CACHE_MODE_WC),
1566 __pgprot(_PAGE_CACHE_MASK),
1567 0, 0, NULL);
1569 return ret;
1572 int set_memory_wc(unsigned long addr, int numpages)
1574 int ret;
1576 if (!pat_enabled)
1577 return set_memory_uc(addr, numpages);
1579 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1580 _PAGE_CACHE_MODE_WC, NULL);
1581 if (ret)
1582 goto out_err;
1584 ret = _set_memory_wc(addr, numpages);
1585 if (ret)
1586 goto out_free;
1588 return 0;
1590 out_free:
1591 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1592 out_err:
1593 return ret;
1595 EXPORT_SYMBOL(set_memory_wc);
1597 int _set_memory_wb(unsigned long addr, int numpages)
1599 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1600 return change_page_attr_clear(&addr, numpages,
1601 __pgprot(_PAGE_CACHE_MASK), 0);
1604 int set_memory_wb(unsigned long addr, int numpages)
1606 int ret;
1608 ret = _set_memory_wb(addr, numpages);
1609 if (ret)
1610 return ret;
1612 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1613 return 0;
1615 EXPORT_SYMBOL(set_memory_wb);
1617 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1619 int i;
1620 int ret;
1622 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1623 ret = change_page_attr_clear(addr, addrinarray,
1624 __pgprot(_PAGE_CACHE_MASK), 1);
1625 if (ret)
1626 return ret;
1628 for (i = 0; i < addrinarray; i++)
1629 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1631 return 0;
1633 EXPORT_SYMBOL(set_memory_array_wb);
1635 int set_memory_x(unsigned long addr, int numpages)
1637 if (!(__supported_pte_mask & _PAGE_NX))
1638 return 0;
1640 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1642 EXPORT_SYMBOL(set_memory_x);
1644 int set_memory_nx(unsigned long addr, int numpages)
1646 if (!(__supported_pte_mask & _PAGE_NX))
1647 return 0;
1649 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1651 EXPORT_SYMBOL(set_memory_nx);
1653 int set_memory_ro(unsigned long addr, int numpages)
1655 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1657 EXPORT_SYMBOL_GPL(set_memory_ro);
1659 int set_memory_rw(unsigned long addr, int numpages)
1661 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1663 EXPORT_SYMBOL_GPL(set_memory_rw);
1665 int set_memory_np(unsigned long addr, int numpages)
1667 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1670 int set_memory_4k(unsigned long addr, int numpages)
1672 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1673 __pgprot(0), 1, 0, NULL);
1676 int set_pages_uc(struct page *page, int numpages)
1678 unsigned long addr = (unsigned long)page_address(page);
1680 return set_memory_uc(addr, numpages);
1682 EXPORT_SYMBOL(set_pages_uc);
1684 static int _set_pages_array(struct page **pages, int addrinarray,
1685 enum page_cache_mode new_type)
1687 unsigned long start;
1688 unsigned long end;
1689 int i;
1690 int free_idx;
1691 int ret;
1693 for (i = 0; i < addrinarray; i++) {
1694 if (PageHighMem(pages[i]))
1695 continue;
1696 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1697 end = start + PAGE_SIZE;
1698 if (reserve_memtype(start, end, new_type, NULL))
1699 goto err_out;
1702 ret = cpa_set_pages_array(pages, addrinarray,
1703 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS));
1704 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1705 ret = change_page_attr_set_clr(NULL, addrinarray,
1706 cachemode2pgprot(
1707 _PAGE_CACHE_MODE_WC),
1708 __pgprot(_PAGE_CACHE_MASK),
1709 0, CPA_PAGES_ARRAY, pages);
1710 if (ret)
1711 goto err_out;
1712 return 0; /* Success */
1713 err_out:
1714 free_idx = i;
1715 for (i = 0; i < free_idx; i++) {
1716 if (PageHighMem(pages[i]))
1717 continue;
1718 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1719 end = start + PAGE_SIZE;
1720 free_memtype(start, end);
1722 return -EINVAL;
1725 int set_pages_array_uc(struct page **pages, int addrinarray)
1727 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1729 EXPORT_SYMBOL(set_pages_array_uc);
1731 int set_pages_array_wc(struct page **pages, int addrinarray)
1733 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1735 EXPORT_SYMBOL(set_pages_array_wc);
1737 int set_pages_wb(struct page *page, int numpages)
1739 unsigned long addr = (unsigned long)page_address(page);
1741 return set_memory_wb(addr, numpages);
1743 EXPORT_SYMBOL(set_pages_wb);
1745 int set_pages_array_wb(struct page **pages, int addrinarray)
1747 int retval;
1748 unsigned long start;
1749 unsigned long end;
1750 int i;
1752 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1753 retval = cpa_clear_pages_array(pages, addrinarray,
1754 __pgprot(_PAGE_CACHE_MASK));
1755 if (retval)
1756 return retval;
1758 for (i = 0; i < addrinarray; i++) {
1759 if (PageHighMem(pages[i]))
1760 continue;
1761 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1762 end = start + PAGE_SIZE;
1763 free_memtype(start, end);
1766 return 0;
1768 EXPORT_SYMBOL(set_pages_array_wb);
1770 int set_pages_x(struct page *page, int numpages)
1772 unsigned long addr = (unsigned long)page_address(page);
1774 return set_memory_x(addr, numpages);
1776 EXPORT_SYMBOL(set_pages_x);
1778 int set_pages_nx(struct page *page, int numpages)
1780 unsigned long addr = (unsigned long)page_address(page);
1782 return set_memory_nx(addr, numpages);
1784 EXPORT_SYMBOL(set_pages_nx);
1786 int set_pages_ro(struct page *page, int numpages)
1788 unsigned long addr = (unsigned long)page_address(page);
1790 return set_memory_ro(addr, numpages);
1793 int set_pages_rw(struct page *page, int numpages)
1795 unsigned long addr = (unsigned long)page_address(page);
1797 return set_memory_rw(addr, numpages);
1800 #ifdef CONFIG_DEBUG_PAGEALLOC
1802 static int __set_pages_p(struct page *page, int numpages)
1804 unsigned long tempaddr = (unsigned long) page_address(page);
1805 struct cpa_data cpa = { .vaddr = &tempaddr,
1806 .pgd = NULL,
1807 .numpages = numpages,
1808 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1809 .mask_clr = __pgprot(0),
1810 .flags = 0};
1813 * No alias checking needed for setting present flag. otherwise,
1814 * we may need to break large pages for 64-bit kernel text
1815 * mappings (this adds to complexity if we want to do this from
1816 * atomic context especially). Let's keep it simple!
1818 return __change_page_attr_set_clr(&cpa, 0);
1821 static int __set_pages_np(struct page *page, int numpages)
1823 unsigned long tempaddr = (unsigned long) page_address(page);
1824 struct cpa_data cpa = { .vaddr = &tempaddr,
1825 .pgd = NULL,
1826 .numpages = numpages,
1827 .mask_set = __pgprot(0),
1828 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1829 .flags = 0};
1832 * No alias checking needed for setting not present flag. otherwise,
1833 * we may need to break large pages for 64-bit kernel text
1834 * mappings (this adds to complexity if we want to do this from
1835 * atomic context especially). Let's keep it simple!
1837 return __change_page_attr_set_clr(&cpa, 0);
1840 void __kernel_map_pages(struct page *page, int numpages, int enable)
1842 if (PageHighMem(page))
1843 return;
1844 if (!enable) {
1845 debug_check_no_locks_freed(page_address(page),
1846 numpages * PAGE_SIZE);
1850 * The return value is ignored as the calls cannot fail.
1851 * Large pages for identity mappings are not used at boot time
1852 * and hence no memory allocations during large page split.
1854 if (enable)
1855 __set_pages_p(page, numpages);
1856 else
1857 __set_pages_np(page, numpages);
1860 * We should perform an IPI and flush all tlbs,
1861 * but that can deadlock->flush only current cpu:
1863 __flush_tlb_all();
1865 arch_flush_lazy_mmu_mode();
1868 #ifdef CONFIG_HIBERNATION
1870 bool kernel_page_present(struct page *page)
1872 unsigned int level;
1873 pte_t *pte;
1875 if (PageHighMem(page))
1876 return false;
1878 pte = lookup_address((unsigned long)page_address(page), &level);
1879 return (pte_val(*pte) & _PAGE_PRESENT);
1882 #endif /* CONFIG_HIBERNATION */
1884 #endif /* CONFIG_DEBUG_PAGEALLOC */
1886 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1887 unsigned numpages, unsigned long page_flags)
1889 int retval = -EINVAL;
1891 struct cpa_data cpa = {
1892 .vaddr = &address,
1893 .pfn = pfn,
1894 .pgd = pgd,
1895 .numpages = numpages,
1896 .mask_set = __pgprot(0),
1897 .mask_clr = __pgprot(0),
1898 .flags = 0,
1901 if (!(__supported_pte_mask & _PAGE_NX))
1902 goto out;
1904 if (!(page_flags & _PAGE_NX))
1905 cpa.mask_clr = __pgprot(_PAGE_NX);
1907 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1909 retval = __change_page_attr_set_clr(&cpa, 0);
1910 __flush_tlb_all();
1912 out:
1913 return retval;
1916 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1917 unsigned numpages)
1919 unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1923 * The testcases use internal knowledge of the implementation that shouldn't
1924 * be exposed to the rest of the kernel. Include these directly here.
1926 #ifdef CONFIG_CPA_DEBUG
1927 #include "pageattr-test.c"
1928 #endif