arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / arch / x86 / mm / pat.c
blobedf299c8ff6c774dea8116092a41b15102d9cf1c
1 /*
2 * Handle caching attributes in page tables (PAT)
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
33 #include "pat_internal.h"
34 #include "mm_internal.h"
36 #ifdef CONFIG_X86_PAT
37 int __read_mostly pat_enabled = 1;
39 static inline void pat_disable(const char *reason)
41 pat_enabled = 0;
42 printk(KERN_INFO "%s\n", reason);
45 static int __init nopat(char *str)
47 pat_disable("PAT support disabled.");
48 return 0;
50 early_param("nopat", nopat);
51 #else
52 static inline void pat_disable(const char *reason)
54 (void)reason;
56 #endif
59 int pat_debug_enable;
61 static int __init pat_debug_setup(char *str)
63 pat_debug_enable = 1;
64 return 0;
66 __setup("debugpat", pat_debug_setup);
68 static u64 __read_mostly boot_pat_state;
70 #ifdef CONFIG_X86_PAT
72 * X86 PAT uses page flags WC and Uncached together to keep track of
73 * memory type of pages that have backing page struct. X86 PAT supports 3
74 * different memory types, _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC and
75 * _PAGE_CACHE_MODE_UC_MINUS and fourth state where page's memory type has not
76 * been changed from its default (value of -1 used to denote this).
77 * Note we do not support _PAGE_CACHE_MODE_UC here.
80 #define _PGMT_DEFAULT 0
81 #define _PGMT_WC (1UL << PG_arch_1)
82 #define _PGMT_UC_MINUS (1UL << PG_uncached)
83 #define _PGMT_WB (1UL << PG_uncached | 1UL << PG_arch_1)
84 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
85 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
87 static inline enum page_cache_mode get_page_memtype(struct page *pg)
89 unsigned long pg_flags = pg->flags & _PGMT_MASK;
91 if (pg_flags == _PGMT_DEFAULT)
92 return -1;
93 else if (pg_flags == _PGMT_WC)
94 return _PAGE_CACHE_MODE_WC;
95 else if (pg_flags == _PGMT_UC_MINUS)
96 return _PAGE_CACHE_MODE_UC_MINUS;
97 else
98 return _PAGE_CACHE_MODE_WB;
101 static inline void set_page_memtype(struct page *pg,
102 enum page_cache_mode memtype)
104 unsigned long memtype_flags;
105 unsigned long old_flags;
106 unsigned long new_flags;
108 switch (memtype) {
109 case _PAGE_CACHE_MODE_WC:
110 memtype_flags = _PGMT_WC;
111 break;
112 case _PAGE_CACHE_MODE_UC_MINUS:
113 memtype_flags = _PGMT_UC_MINUS;
114 break;
115 case _PAGE_CACHE_MODE_WB:
116 memtype_flags = _PGMT_WB;
117 break;
118 default:
119 memtype_flags = _PGMT_DEFAULT;
120 break;
123 do {
124 old_flags = pg->flags;
125 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
126 } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
128 #else
129 static inline enum page_cache_mode get_page_memtype(struct page *pg)
131 return -1;
133 static inline void set_page_memtype(struct page *pg,
134 enum page_cache_mode memtype)
137 #endif
139 enum {
140 PAT_UC = 0, /* uncached */
141 PAT_WC = 1, /* Write combining */
142 PAT_WT = 4, /* Write Through */
143 PAT_WP = 5, /* Write Protected */
144 PAT_WB = 6, /* Write Back (default) */
145 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
148 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
150 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
152 enum page_cache_mode cache;
153 char *cache_mode;
155 switch (pat_val) {
156 case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
157 case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
158 case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
159 case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
160 case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
161 case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
162 default: cache = CM(WB); cache_mode = "WB "; break;
165 memcpy(msg, cache_mode, 4);
167 return cache;
170 #undef CM
173 * Update the cache mode to pgprot translation tables according to PAT
174 * configuration.
175 * Using lower indices is preferred, so we start with highest index.
177 void pat_init_cache_modes(void)
179 int i;
180 enum page_cache_mode cache;
181 char pat_msg[33];
182 u64 pat;
184 rdmsrl(MSR_IA32_CR_PAT, pat);
185 pat_msg[32] = 0;
186 for (i = 7; i >= 0; i--) {
187 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
188 pat_msg + 4 * i);
189 update_cache_mode_entry(i, cache);
191 pr_info("PAT configuration [0-7]: %s\n", pat_msg);
194 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
196 void pat_init(void)
198 u64 pat;
199 bool boot_cpu = !boot_pat_state;
201 if (!pat_enabled)
202 return;
204 if (!cpu_has_pat) {
205 if (!boot_pat_state) {
206 pat_disable("PAT not supported by CPU.");
207 return;
208 } else {
210 * If this happens we are on a secondary CPU, but
211 * switched to PAT on the boot CPU. We have no way to
212 * undo PAT.
214 printk(KERN_ERR "PAT enabled, "
215 "but not supported by secondary CPU\n");
216 BUG();
220 /* Set PWT to Write-Combining. All other bits stay the same */
222 * PTE encoding used in Linux:
223 * PAT
224 * |PCD
225 * ||PWT
226 * |||
227 * 000 WB _PAGE_CACHE_WB
228 * 001 WC _PAGE_CACHE_WC
229 * 010 UC- _PAGE_CACHE_UC_MINUS
230 * 011 UC _PAGE_CACHE_UC
231 * PAT bit unused
233 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
234 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
236 /* Boot CPU check */
237 if (!boot_pat_state)
238 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
240 wrmsrl(MSR_IA32_CR_PAT, pat);
242 if (boot_cpu)
243 pat_init_cache_modes();
246 #undef PAT
248 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
251 * Does intersection of PAT memory type and MTRR memory type and returns
252 * the resulting memory type as PAT understands it.
253 * (Type in pat and mtrr will not have same value)
254 * The intersection is based on "Effective Memory Type" tables in IA-32
255 * SDM vol 3a
257 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
258 enum page_cache_mode req_type)
261 * Look for MTRR hint to get the effective type in case where PAT
262 * request is for WB.
264 if (req_type == _PAGE_CACHE_MODE_WB) {
265 u8 mtrr_type;
267 mtrr_type = mtrr_type_lookup(start, end);
268 if (mtrr_type != MTRR_TYPE_WRBACK)
269 return _PAGE_CACHE_MODE_UC_MINUS;
271 return _PAGE_CACHE_MODE_WB;
274 return req_type;
277 struct pagerange_state {
278 unsigned long cur_pfn;
279 int ram;
280 int not_ram;
283 static int
284 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
286 struct pagerange_state *state = arg;
288 state->not_ram |= initial_pfn > state->cur_pfn;
289 state->ram |= total_nr_pages > 0;
290 state->cur_pfn = initial_pfn + total_nr_pages;
292 return state->ram && state->not_ram;
295 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
297 int ret = 0;
298 unsigned long start_pfn = start >> PAGE_SHIFT;
299 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
300 struct pagerange_state state = {start_pfn, 0, 0};
303 * For legacy reasons, physical address range in the legacy ISA
304 * region is tracked as non-RAM. This will allow users of
305 * /dev/mem to map portions of legacy ISA region, even when
306 * some of those portions are listed(or not even listed) with
307 * different e820 types(RAM/reserved/..)
309 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
310 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
312 if (start_pfn < end_pfn) {
313 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
314 &state, pagerange_is_ram_callback);
317 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
321 * For RAM pages, we use page flags to mark the pages with appropriate type.
322 * Here we do two pass:
323 * - Find the memtype of all the pages in the range, look for any conflicts
324 * - In case of no conflicts, set the new memtype for pages in the range
326 static int reserve_ram_pages_type(u64 start, u64 end,
327 enum page_cache_mode req_type,
328 enum page_cache_mode *new_type)
330 struct page *page;
331 u64 pfn;
333 if (req_type == _PAGE_CACHE_MODE_UC) {
334 /* We do not support strong UC */
335 WARN_ON_ONCE(1);
336 req_type = _PAGE_CACHE_MODE_UC_MINUS;
339 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
340 enum page_cache_mode type;
342 page = pfn_to_page(pfn);
343 type = get_page_memtype(page);
344 if (type != -1) {
345 pr_info("reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
346 start, end - 1, type, req_type);
347 if (new_type)
348 *new_type = type;
350 return -EBUSY;
354 if (new_type)
355 *new_type = req_type;
357 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
358 page = pfn_to_page(pfn);
359 set_page_memtype(page, req_type);
361 return 0;
364 static int free_ram_pages_type(u64 start, u64 end)
366 struct page *page;
367 u64 pfn;
369 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
370 page = pfn_to_page(pfn);
371 set_page_memtype(page, -1);
373 return 0;
377 * req_type typically has one of the:
378 * - _PAGE_CACHE_MODE_WB
379 * - _PAGE_CACHE_MODE_WC
380 * - _PAGE_CACHE_MODE_UC_MINUS
381 * - _PAGE_CACHE_MODE_UC
383 * If new_type is NULL, function will return an error if it cannot reserve the
384 * region with req_type. If new_type is non-NULL, function will return
385 * available type in new_type in case of no error. In case of any error
386 * it will return a negative return value.
388 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
389 enum page_cache_mode *new_type)
391 struct memtype *new;
392 enum page_cache_mode actual_type;
393 int is_range_ram;
394 int err = 0;
396 BUG_ON(start >= end); /* end is exclusive */
398 if (!pat_enabled) {
399 /* This is identical to page table setting without PAT */
400 if (new_type) {
401 if (req_type == _PAGE_CACHE_MODE_WC)
402 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
403 else
404 *new_type = req_type;
406 return 0;
409 /* Low ISA region is always mapped WB in page table. No need to track */
410 if (x86_platform.is_untracked_pat_range(start, end)) {
411 if (new_type)
412 *new_type = _PAGE_CACHE_MODE_WB;
413 return 0;
417 * Call mtrr_lookup to get the type hint. This is an
418 * optimization for /dev/mem mmap'ers into WB memory (BIOS
419 * tools and ACPI tools). Use WB request for WB memory and use
420 * UC_MINUS otherwise.
422 actual_type = pat_x_mtrr_type(start, end, req_type);
424 if (new_type)
425 *new_type = actual_type;
427 is_range_ram = pat_pagerange_is_ram(start, end);
428 if (is_range_ram == 1) {
430 err = reserve_ram_pages_type(start, end, req_type, new_type);
432 return err;
433 } else if (is_range_ram < 0) {
434 return -EINVAL;
437 new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
438 if (!new)
439 return -ENOMEM;
441 new->start = start;
442 new->end = end;
443 new->type = actual_type;
445 spin_lock(&memtype_lock);
447 err = rbt_memtype_check_insert(new, new_type);
448 if (err) {
449 printk(KERN_INFO "reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
450 start, end - 1,
451 cattr_name(new->type), cattr_name(req_type));
452 kfree(new);
453 spin_unlock(&memtype_lock);
455 return err;
458 spin_unlock(&memtype_lock);
460 dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
461 start, end - 1, cattr_name(new->type), cattr_name(req_type),
462 new_type ? cattr_name(*new_type) : "-");
464 return err;
467 int free_memtype(u64 start, u64 end)
469 int err = -EINVAL;
470 int is_range_ram;
471 struct memtype *entry;
473 if (!pat_enabled)
474 return 0;
476 /* Low ISA region is always mapped WB. No need to track */
477 if (x86_platform.is_untracked_pat_range(start, end))
478 return 0;
480 is_range_ram = pat_pagerange_is_ram(start, end);
481 if (is_range_ram == 1) {
483 err = free_ram_pages_type(start, end);
485 return err;
486 } else if (is_range_ram < 0) {
487 return -EINVAL;
490 spin_lock(&memtype_lock);
491 entry = rbt_memtype_erase(start, end);
492 spin_unlock(&memtype_lock);
494 if (!entry) {
495 printk(KERN_INFO "%s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
496 current->comm, current->pid, start, end - 1);
497 return -EINVAL;
500 kfree(entry);
502 dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
504 return 0;
509 * lookup_memtype - Looksup the memory type for a physical address
510 * @paddr: physical address of which memory type needs to be looked up
512 * Only to be called when PAT is enabled
514 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
515 * or _PAGE_CACHE_MODE_UC
517 static enum page_cache_mode lookup_memtype(u64 paddr)
519 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
520 struct memtype *entry;
522 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
523 return rettype;
525 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
526 struct page *page;
527 page = pfn_to_page(paddr >> PAGE_SHIFT);
528 rettype = get_page_memtype(page);
530 * -1 from get_page_memtype() implies RAM page is in its
531 * default state and not reserved, and hence of type WB
533 if (rettype == -1)
534 rettype = _PAGE_CACHE_MODE_WB;
536 return rettype;
539 spin_lock(&memtype_lock);
541 entry = rbt_memtype_lookup(paddr);
542 if (entry != NULL)
543 rettype = entry->type;
544 else
545 rettype = _PAGE_CACHE_MODE_UC_MINUS;
547 spin_unlock(&memtype_lock);
548 return rettype;
552 * io_reserve_memtype - Request a memory type mapping for a region of memory
553 * @start: start (physical address) of the region
554 * @end: end (physical address) of the region
555 * @type: A pointer to memtype, with requested type. On success, requested
556 * or any other compatible type that was available for the region is returned
558 * On success, returns 0
559 * On failure, returns non-zero
561 int io_reserve_memtype(resource_size_t start, resource_size_t end,
562 enum page_cache_mode *type)
564 resource_size_t size = end - start;
565 enum page_cache_mode req_type = *type;
566 enum page_cache_mode new_type;
567 int ret;
569 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
571 ret = reserve_memtype(start, end, req_type, &new_type);
572 if (ret)
573 goto out_err;
575 if (!is_new_memtype_allowed(start, size, req_type, new_type))
576 goto out_free;
578 if (kernel_map_sync_memtype(start, size, new_type) < 0)
579 goto out_free;
581 *type = new_type;
582 return 0;
584 out_free:
585 free_memtype(start, end);
586 ret = -EBUSY;
587 out_err:
588 return ret;
592 * io_free_memtype - Release a memory type mapping for a region of memory
593 * @start: start (physical address) of the region
594 * @end: end (physical address) of the region
596 void io_free_memtype(resource_size_t start, resource_size_t end)
598 free_memtype(start, end);
601 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
602 unsigned long size, pgprot_t vma_prot)
604 return vma_prot;
607 #ifdef CONFIG_STRICT_DEVMEM
608 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
609 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
611 return 1;
613 #else
614 /* This check is needed to avoid cache aliasing when PAT is enabled */
615 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
617 u64 from = ((u64)pfn) << PAGE_SHIFT;
618 u64 to = from + size;
619 u64 cursor = from;
621 if (!pat_enabled)
622 return 1;
624 while (cursor < to) {
625 if (!devmem_is_allowed(pfn)) {
626 printk(KERN_INFO "Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx]\n",
627 current->comm, from, to - 1);
628 return 0;
630 cursor += PAGE_SIZE;
631 pfn++;
633 return 1;
635 #endif /* CONFIG_STRICT_DEVMEM */
637 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
638 unsigned long size, pgprot_t *vma_prot)
640 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
642 if (!range_is_allowed(pfn, size))
643 return 0;
645 if (file->f_flags & O_DSYNC)
646 pcm = _PAGE_CACHE_MODE_UC_MINUS;
648 #ifdef CONFIG_X86_32
650 * On the PPro and successors, the MTRRs are used to set
651 * memory types for physical addresses outside main memory,
652 * so blindly setting UC or PWT on those pages is wrong.
653 * For Pentiums and earlier, the surround logic should disable
654 * caching for the high addresses through the KEN pin, but
655 * we maintain the tradition of paranoia in this code.
657 if (!pat_enabled &&
658 !(boot_cpu_has(X86_FEATURE_MTRR) ||
659 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
660 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
661 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
662 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
663 pcm = _PAGE_CACHE_MODE_UC;
665 #endif
667 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
668 cachemode2protval(pcm));
669 return 1;
673 * Change the memory type for the physial address range in kernel identity
674 * mapping space if that range is a part of identity map.
676 int kernel_map_sync_memtype(u64 base, unsigned long size,
677 enum page_cache_mode pcm)
679 unsigned long id_sz;
681 if (base > __pa(high_memory-1))
682 return 0;
685 * some areas in the middle of the kernel identity range
686 * are not mapped, like the PCI space.
688 if (!page_is_ram(base >> PAGE_SHIFT))
689 return 0;
691 id_sz = (__pa(high_memory-1) <= base + size) ?
692 __pa(high_memory) - base :
693 size;
695 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
696 printk(KERN_INFO "%s:%d ioremap_change_attr failed %s "
697 "for [mem %#010Lx-%#010Lx]\n",
698 current->comm, current->pid,
699 cattr_name(pcm),
700 base, (unsigned long long)(base + size-1));
701 return -EINVAL;
703 return 0;
707 * Internal interface to reserve a range of physical memory with prot.
708 * Reserved non RAM regions only and after successful reserve_memtype,
709 * this func also keeps identity mapping (if any) in sync with this new prot.
711 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
712 int strict_prot)
714 int is_ram = 0;
715 int ret;
716 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
717 enum page_cache_mode pcm = want_pcm;
719 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
722 * reserve_pfn_range() for RAM pages. We do not refcount to keep
723 * track of number of mappings of RAM pages. We can assert that
724 * the type requested matches the type of first page in the range.
726 if (is_ram) {
727 if (!pat_enabled)
728 return 0;
730 pcm = lookup_memtype(paddr);
731 if (want_pcm != pcm) {
732 printk(KERN_WARNING "%s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
733 current->comm, current->pid,
734 cattr_name(want_pcm),
735 (unsigned long long)paddr,
736 (unsigned long long)(paddr + size - 1),
737 cattr_name(pcm));
738 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
739 (~_PAGE_CACHE_MASK)) |
740 cachemode2protval(pcm));
742 return 0;
745 ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
746 if (ret)
747 return ret;
749 if (pcm != want_pcm) {
750 if (strict_prot ||
751 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
752 free_memtype(paddr, paddr + size);
753 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
754 " for [mem %#010Lx-%#010Lx], got %s\n",
755 current->comm, current->pid,
756 cattr_name(want_pcm),
757 (unsigned long long)paddr,
758 (unsigned long long)(paddr + size - 1),
759 cattr_name(pcm));
760 return -EINVAL;
763 * We allow returning different type than the one requested in
764 * non strict case.
766 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
767 (~_PAGE_CACHE_MASK)) |
768 cachemode2protval(pcm));
771 if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
772 free_memtype(paddr, paddr + size);
773 return -EINVAL;
775 return 0;
779 * Internal interface to free a range of physical memory.
780 * Frees non RAM regions only.
782 static void free_pfn_range(u64 paddr, unsigned long size)
784 int is_ram;
786 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
787 if (is_ram == 0)
788 free_memtype(paddr, paddr + size);
792 * track_pfn_copy is called when vma that is covering the pfnmap gets
793 * copied through copy_page_range().
795 * If the vma has a linear pfn mapping for the entire range, we get the prot
796 * from pte and reserve the entire vma range with single reserve_pfn_range call.
798 int track_pfn_copy(struct vm_area_struct *vma)
800 resource_size_t paddr;
801 unsigned long prot;
802 unsigned long vma_size = vma->vm_end - vma->vm_start;
803 pgprot_t pgprot;
805 if (vma->vm_flags & VM_PAT) {
807 * reserve the whole chunk covered by vma. We need the
808 * starting address and protection from pte.
810 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
811 WARN_ON_ONCE(1);
812 return -EINVAL;
814 pgprot = __pgprot(prot);
815 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
818 return 0;
822 * prot is passed in as a parameter for the new mapping. If the vma has a
823 * linear pfn mapping for the entire range reserve the entire vma range with
824 * single reserve_pfn_range call.
826 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
827 unsigned long pfn, unsigned long addr, unsigned long size)
829 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
830 enum page_cache_mode pcm;
832 /* reserve the whole chunk starting from paddr */
833 if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
834 int ret;
836 ret = reserve_pfn_range(paddr, size, prot, 0);
837 if (!ret)
838 vma->vm_flags |= VM_PAT;
839 return ret;
842 if (!pat_enabled)
843 return 0;
846 * For anything smaller than the vma size we set prot based on the
847 * lookup.
849 pcm = lookup_memtype(paddr);
851 /* Check memtype for the remaining pages */
852 while (size > PAGE_SIZE) {
853 size -= PAGE_SIZE;
854 paddr += PAGE_SIZE;
855 if (pcm != lookup_memtype(paddr))
856 return -EINVAL;
859 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
860 cachemode2protval(pcm));
862 return 0;
865 int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
866 unsigned long pfn)
868 enum page_cache_mode pcm;
870 if (!pat_enabled)
871 return 0;
873 /* Set prot based on lookup */
874 pcm = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
875 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
876 cachemode2protval(pcm));
878 return 0;
882 * untrack_pfn is called while unmapping a pfnmap for a region.
883 * untrack can be called for a specific region indicated by pfn and size or
884 * can be for the entire vma (in which case pfn, size are zero).
886 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
887 unsigned long size)
889 resource_size_t paddr;
890 unsigned long prot;
892 if (!(vma->vm_flags & VM_PAT))
893 return;
895 /* free the chunk starting from pfn or the whole chunk */
896 paddr = (resource_size_t)pfn << PAGE_SHIFT;
897 if (!paddr && !size) {
898 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
899 WARN_ON_ONCE(1);
900 return;
903 size = vma->vm_end - vma->vm_start;
905 free_pfn_range(paddr, size);
906 vma->vm_flags &= ~VM_PAT;
909 pgprot_t pgprot_writecombine(pgprot_t prot)
911 if (pat_enabled)
912 return __pgprot(pgprot_val(prot) |
913 cachemode2protval(_PAGE_CACHE_MODE_WC));
914 else
915 return pgprot_noncached(prot);
917 EXPORT_SYMBOL_GPL(pgprot_writecombine);
919 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
921 static struct memtype *memtype_get_idx(loff_t pos)
923 struct memtype *print_entry;
924 int ret;
926 print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
927 if (!print_entry)
928 return NULL;
930 spin_lock(&memtype_lock);
931 ret = rbt_memtype_copy_nth_element(print_entry, pos);
932 spin_unlock(&memtype_lock);
934 if (!ret) {
935 return print_entry;
936 } else {
937 kfree(print_entry);
938 return NULL;
942 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
944 if (*pos == 0) {
945 ++*pos;
946 seq_puts(seq, "PAT memtype list:\n");
949 return memtype_get_idx(*pos);
952 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
954 ++*pos;
955 return memtype_get_idx(*pos);
958 static void memtype_seq_stop(struct seq_file *seq, void *v)
962 static int memtype_seq_show(struct seq_file *seq, void *v)
964 struct memtype *print_entry = (struct memtype *)v;
966 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
967 print_entry->start, print_entry->end);
968 kfree(print_entry);
970 return 0;
973 static const struct seq_operations memtype_seq_ops = {
974 .start = memtype_seq_start,
975 .next = memtype_seq_next,
976 .stop = memtype_seq_stop,
977 .show = memtype_seq_show,
980 static int memtype_seq_open(struct inode *inode, struct file *file)
982 return seq_open(file, &memtype_seq_ops);
985 static const struct file_operations memtype_fops = {
986 .open = memtype_seq_open,
987 .read = seq_read,
988 .llseek = seq_lseek,
989 .release = seq_release,
992 static int __init pat_memtype_list_init(void)
994 if (pat_enabled) {
995 debugfs_create_file("pat_memtype_list", S_IRUSR,
996 arch_debugfs_dir, NULL, &memtype_fops);
998 return 0;
1001 late_initcall(pat_memtype_list_init);
1003 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */