arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / arch / x86 / mm / tlb.c
blobee61c36d64f84dd944873ec0acf80b4f8ad06da7
1 #include <linux/init.h>
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
17 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
18 = { &init_mm, 0, };
21 * Smarter SMP flushing macros.
22 * c/o Linus Torvalds.
24 * These mean you can really definitely utterly forget about
25 * writing to user space from interrupts. (Its not allowed anyway).
27 * Optimizations Manfred Spraul <manfred@colorfullife.com>
29 * More scalable flush, from Andi Kleen
31 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
34 struct flush_tlb_info {
35 struct mm_struct *flush_mm;
36 unsigned long flush_start;
37 unsigned long flush_end;
41 * We cannot call mmdrop() because we are in interrupt context,
42 * instead update mm->cpu_vm_mask.
44 void leave_mm(int cpu)
46 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
47 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
48 BUG();
49 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
50 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
51 load_cr3(swapper_pg_dir);
53 * This gets called in the idle path where RCU
54 * functions differently. Tracing normally
55 * uses RCU, so we have to call the tracepoint
56 * specially here.
58 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
61 EXPORT_SYMBOL_GPL(leave_mm);
64 * The flush IPI assumes that a thread switch happens in this order:
65 * [cpu0: the cpu that switches]
66 * 1) switch_mm() either 1a) or 1b)
67 * 1a) thread switch to a different mm
68 * 1a1) set cpu_tlbstate to TLBSTATE_OK
69 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
70 * if cpu0 was in lazy tlb mode.
71 * 1a2) update cpu active_mm
72 * Now cpu0 accepts tlb flushes for the new mm.
73 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
74 * Now the other cpus will send tlb flush ipis.
75 * 1a4) change cr3.
76 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
77 * Stop ipi delivery for the old mm. This is not synchronized with
78 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
79 * mm, and in the worst case we perform a superfluous tlb flush.
80 * 1b) thread switch without mm change
81 * cpu active_mm is correct, cpu0 already handles flush ipis.
82 * 1b1) set cpu_tlbstate to TLBSTATE_OK
83 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
84 * Atomically set the bit [other cpus will start sending flush ipis],
85 * and test the bit.
86 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
87 * 2) switch %%esp, ie current
89 * The interrupt must handle 2 special cases:
90 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
91 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
92 * runs in kernel space, the cpu could load tlb entries for user space
93 * pages.
95 * The good news is that cpu_tlbstate is local to each cpu, no
96 * write/read ordering problems.
100 * TLB flush funcation:
101 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
102 * 2) Leave the mm if we are in the lazy tlb mode.
104 static void flush_tlb_func(void *info)
106 struct flush_tlb_info *f = info;
108 inc_irq_stat(irq_tlb_count);
110 if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
111 return;
112 if (!f->flush_end)
113 f->flush_end = f->flush_start + PAGE_SIZE;
115 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
116 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
117 if (f->flush_end == TLB_FLUSH_ALL) {
118 local_flush_tlb();
119 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
120 } else {
121 unsigned long addr;
122 unsigned long nr_pages =
123 f->flush_end - f->flush_start / PAGE_SIZE;
124 addr = f->flush_start;
125 while (addr < f->flush_end) {
126 __flush_tlb_single(addr);
127 addr += PAGE_SIZE;
129 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
131 } else
132 leave_mm(smp_processor_id());
136 void native_flush_tlb_others(const struct cpumask *cpumask,
137 struct mm_struct *mm, unsigned long start,
138 unsigned long end)
140 struct flush_tlb_info info;
141 info.flush_mm = mm;
142 info.flush_start = start;
143 info.flush_end = end;
145 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
146 if (is_uv_system()) {
147 unsigned int cpu;
149 cpu = smp_processor_id();
150 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
151 if (cpumask)
152 smp_call_function_many(cpumask, flush_tlb_func,
153 &info, 1);
154 return;
156 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
159 void flush_tlb_current_task(void)
161 struct mm_struct *mm = current->mm;
163 preempt_disable();
165 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
166 local_flush_tlb();
167 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
168 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
169 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
170 preempt_enable();
174 * See Documentation/x86/tlb.txt for details. We choose 33
175 * because it is large enough to cover the vast majority (at
176 * least 95%) of allocations, and is small enough that we are
177 * confident it will not cause too much overhead. Each single
178 * flush is about 100 ns, so this caps the maximum overhead at
179 * _about_ 3,000 ns.
181 * This is in units of pages.
183 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
185 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
186 unsigned long end, unsigned long vmflag)
188 unsigned long addr;
189 /* do a global flush by default */
190 unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
192 preempt_disable();
193 if (current->active_mm != mm)
194 goto out;
196 if (!current->mm) {
197 leave_mm(smp_processor_id());
198 goto out;
201 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
202 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
204 if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
205 base_pages_to_flush = TLB_FLUSH_ALL;
206 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
207 local_flush_tlb();
208 } else {
209 /* flush range by one by one 'invlpg' */
210 for (addr = start; addr < end; addr += PAGE_SIZE) {
211 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
212 __flush_tlb_single(addr);
215 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
216 out:
217 if (base_pages_to_flush == TLB_FLUSH_ALL) {
218 start = 0UL;
219 end = TLB_FLUSH_ALL;
221 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
222 flush_tlb_others(mm_cpumask(mm), mm, start, end);
223 preempt_enable();
226 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
228 struct mm_struct *mm = vma->vm_mm;
230 preempt_disable();
232 if (current->active_mm == mm) {
233 if (current->mm)
234 __flush_tlb_one(start);
235 else
236 leave_mm(smp_processor_id());
239 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
240 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
242 preempt_enable();
245 static void do_flush_tlb_all(void *info)
247 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
248 __flush_tlb_all();
249 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
250 leave_mm(smp_processor_id());
253 void flush_tlb_all(void)
255 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
256 on_each_cpu(do_flush_tlb_all, NULL, 1);
259 static void do_kernel_range_flush(void *info)
261 struct flush_tlb_info *f = info;
262 unsigned long addr;
264 /* flush range by one by one 'invlpg' */
265 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
266 __flush_tlb_single(addr);
269 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
272 /* Balance as user space task's flush, a bit conservative */
273 if (end == TLB_FLUSH_ALL ||
274 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
275 on_each_cpu(do_flush_tlb_all, NULL, 1);
276 } else {
277 struct flush_tlb_info info;
278 info.flush_start = start;
279 info.flush_end = end;
280 on_each_cpu(do_kernel_range_flush, &info, 1);
284 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
285 size_t count, loff_t *ppos)
287 char buf[32];
288 unsigned int len;
290 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
291 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
294 static ssize_t tlbflush_write_file(struct file *file,
295 const char __user *user_buf, size_t count, loff_t *ppos)
297 char buf[32];
298 ssize_t len;
299 int ceiling;
301 len = min(count, sizeof(buf) - 1);
302 if (copy_from_user(buf, user_buf, len))
303 return -EFAULT;
305 buf[len] = '\0';
306 if (kstrtoint(buf, 0, &ceiling))
307 return -EINVAL;
309 if (ceiling < 0)
310 return -EINVAL;
312 tlb_single_page_flush_ceiling = ceiling;
313 return count;
316 static const struct file_operations fops_tlbflush = {
317 .read = tlbflush_read_file,
318 .write = tlbflush_write_file,
319 .llseek = default_llseek,
322 static int __init create_tlb_single_page_flush_ceiling(void)
324 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
325 arch_debugfs_dir, NULL, &fops_tlbflush);
326 return 0;
328 late_initcall(create_tlb_single_page_flush_ceiling);