arm64: defconfig: defconfig update for 3.19
[linux/fpc-iii.git] / security / keys / encrypted-keys / encrypted.c
blob7bed4ad7cd764a9fb9560282da63d93eeab6076b
1 /*
2 * Copyright (C) 2010 IBM Corporation
3 * Copyright (C) 2010 Politecnico di Torino, Italy
4 * TORSEC group -- http://security.polito.it
6 * Authors:
7 * Mimi Zohar <zohar@us.ibm.com>
8 * Roberto Sassu <roberto.sassu@polito.it>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2 of the License.
14 * See Documentation/security/keys-trusted-encrypted.txt
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/parser.h>
22 #include <linux/string.h>
23 #include <linux/err.h>
24 #include <keys/user-type.h>
25 #include <keys/trusted-type.h>
26 #include <keys/encrypted-type.h>
27 #include <linux/key-type.h>
28 #include <linux/random.h>
29 #include <linux/rcupdate.h>
30 #include <linux/scatterlist.h>
31 #include <linux/crypto.h>
32 #include <linux/ctype.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha.h>
35 #include <crypto/aes.h>
37 #include "encrypted.h"
38 #include "ecryptfs_format.h"
40 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
41 static const char KEY_USER_PREFIX[] = "user:";
42 static const char hash_alg[] = "sha256";
43 static const char hmac_alg[] = "hmac(sha256)";
44 static const char blkcipher_alg[] = "cbc(aes)";
45 static const char key_format_default[] = "default";
46 static const char key_format_ecryptfs[] = "ecryptfs";
47 static unsigned int ivsize;
48 static int blksize;
50 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
51 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
52 #define KEY_ECRYPTFS_DESC_LEN 16
53 #define HASH_SIZE SHA256_DIGEST_SIZE
54 #define MAX_DATA_SIZE 4096
55 #define MIN_DATA_SIZE 20
57 struct sdesc {
58 struct shash_desc shash;
59 char ctx[];
62 static struct crypto_shash *hashalg;
63 static struct crypto_shash *hmacalg;
65 enum {
66 Opt_err = -1, Opt_new, Opt_load, Opt_update
69 enum {
70 Opt_error = -1, Opt_default, Opt_ecryptfs
73 static const match_table_t key_format_tokens = {
74 {Opt_default, "default"},
75 {Opt_ecryptfs, "ecryptfs"},
76 {Opt_error, NULL}
79 static const match_table_t key_tokens = {
80 {Opt_new, "new"},
81 {Opt_load, "load"},
82 {Opt_update, "update"},
83 {Opt_err, NULL}
86 static int aes_get_sizes(void)
88 struct crypto_blkcipher *tfm;
90 tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91 if (IS_ERR(tfm)) {
92 pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93 PTR_ERR(tfm));
94 return PTR_ERR(tfm);
96 ivsize = crypto_blkcipher_ivsize(tfm);
97 blksize = crypto_blkcipher_blocksize(tfm);
98 crypto_free_blkcipher(tfm);
99 return 0;
103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
105 * The description of a encrypted key with format 'ecryptfs' must contain
106 * exactly 16 hexadecimal characters.
109 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
111 int i;
113 if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114 pr_err("encrypted_key: key description must be %d hexadecimal "
115 "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116 return -EINVAL;
119 for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120 if (!isxdigit(ecryptfs_desc[i])) {
121 pr_err("encrypted_key: key description must contain "
122 "only hexadecimal characters\n");
123 return -EINVAL;
127 return 0;
131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
133 * key-type:= "trusted:" | "user:"
134 * desc:= master-key description
136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137 * only the master key description is permitted to change, not the key-type.
138 * The key-type remains constant.
140 * On success returns 0, otherwise -EINVAL.
142 static int valid_master_desc(const char *new_desc, const char *orig_desc)
144 if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
145 if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
146 goto out;
147 if (orig_desc)
148 if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
149 goto out;
150 } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
151 if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
152 goto out;
153 if (orig_desc)
154 if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
155 goto out;
156 } else
157 goto out;
158 return 0;
159 out:
160 return -EINVAL;
164 * datablob_parse - parse the keyctl data
166 * datablob format:
167 * new [<format>] <master-key name> <decrypted data length>
168 * load [<format>] <master-key name> <decrypted data length>
169 * <encrypted iv + data>
170 * update <new-master-key name>
172 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
173 * which is null terminated.
175 * On success returns 0, otherwise -EINVAL.
177 static int datablob_parse(char *datablob, const char **format,
178 char **master_desc, char **decrypted_datalen,
179 char **hex_encoded_iv)
181 substring_t args[MAX_OPT_ARGS];
182 int ret = -EINVAL;
183 int key_cmd;
184 int key_format;
185 char *p, *keyword;
187 keyword = strsep(&datablob, " \t");
188 if (!keyword) {
189 pr_info("encrypted_key: insufficient parameters specified\n");
190 return ret;
192 key_cmd = match_token(keyword, key_tokens, args);
194 /* Get optional format: default | ecryptfs */
195 p = strsep(&datablob, " \t");
196 if (!p) {
197 pr_err("encrypted_key: insufficient parameters specified\n");
198 return ret;
201 key_format = match_token(p, key_format_tokens, args);
202 switch (key_format) {
203 case Opt_ecryptfs:
204 case Opt_default:
205 *format = p;
206 *master_desc = strsep(&datablob, " \t");
207 break;
208 case Opt_error:
209 *master_desc = p;
210 break;
213 if (!*master_desc) {
214 pr_info("encrypted_key: master key parameter is missing\n");
215 goto out;
218 if (valid_master_desc(*master_desc, NULL) < 0) {
219 pr_info("encrypted_key: master key parameter \'%s\' "
220 "is invalid\n", *master_desc);
221 goto out;
224 if (decrypted_datalen) {
225 *decrypted_datalen = strsep(&datablob, " \t");
226 if (!*decrypted_datalen) {
227 pr_info("encrypted_key: keylen parameter is missing\n");
228 goto out;
232 switch (key_cmd) {
233 case Opt_new:
234 if (!decrypted_datalen) {
235 pr_info("encrypted_key: keyword \'%s\' not allowed "
236 "when called from .update method\n", keyword);
237 break;
239 ret = 0;
240 break;
241 case Opt_load:
242 if (!decrypted_datalen) {
243 pr_info("encrypted_key: keyword \'%s\' not allowed "
244 "when called from .update method\n", keyword);
245 break;
247 *hex_encoded_iv = strsep(&datablob, " \t");
248 if (!*hex_encoded_iv) {
249 pr_info("encrypted_key: hex blob is missing\n");
250 break;
252 ret = 0;
253 break;
254 case Opt_update:
255 if (decrypted_datalen) {
256 pr_info("encrypted_key: keyword \'%s\' not allowed "
257 "when called from .instantiate method\n",
258 keyword);
259 break;
261 ret = 0;
262 break;
263 case Opt_err:
264 pr_info("encrypted_key: keyword \'%s\' not recognized\n",
265 keyword);
266 break;
268 out:
269 return ret;
273 * datablob_format - format as an ascii string, before copying to userspace
275 static char *datablob_format(struct encrypted_key_payload *epayload,
276 size_t asciiblob_len)
278 char *ascii_buf, *bufp;
279 u8 *iv = epayload->iv;
280 int len;
281 int i;
283 ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
284 if (!ascii_buf)
285 goto out;
287 ascii_buf[asciiblob_len] = '\0';
289 /* copy datablob master_desc and datalen strings */
290 len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
291 epayload->master_desc, epayload->datalen);
293 /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
294 bufp = &ascii_buf[len];
295 for (i = 0; i < (asciiblob_len - len) / 2; i++)
296 bufp = hex_byte_pack(bufp, iv[i]);
297 out:
298 return ascii_buf;
302 * request_user_key - request the user key
304 * Use a user provided key to encrypt/decrypt an encrypted-key.
306 static struct key *request_user_key(const char *master_desc, u8 **master_key,
307 size_t *master_keylen)
309 struct user_key_payload *upayload;
310 struct key *ukey;
312 ukey = request_key(&key_type_user, master_desc, NULL);
313 if (IS_ERR(ukey))
314 goto error;
316 down_read(&ukey->sem);
317 upayload = ukey->payload.data;
318 *master_key = upayload->data;
319 *master_keylen = upayload->datalen;
320 error:
321 return ukey;
324 static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
326 struct sdesc *sdesc;
327 int size;
329 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
330 sdesc = kmalloc(size, GFP_KERNEL);
331 if (!sdesc)
332 return ERR_PTR(-ENOMEM);
333 sdesc->shash.tfm = alg;
334 sdesc->shash.flags = 0x0;
335 return sdesc;
338 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
339 const u8 *buf, unsigned int buflen)
341 struct sdesc *sdesc;
342 int ret;
344 sdesc = alloc_sdesc(hmacalg);
345 if (IS_ERR(sdesc)) {
346 pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
347 return PTR_ERR(sdesc);
350 ret = crypto_shash_setkey(hmacalg, key, keylen);
351 if (!ret)
352 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
353 kfree(sdesc);
354 return ret;
357 static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
359 struct sdesc *sdesc;
360 int ret;
362 sdesc = alloc_sdesc(hashalg);
363 if (IS_ERR(sdesc)) {
364 pr_info("encrypted_key: can't alloc %s\n", hash_alg);
365 return PTR_ERR(sdesc);
368 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
369 kfree(sdesc);
370 return ret;
373 enum derived_key_type { ENC_KEY, AUTH_KEY };
375 /* Derive authentication/encryption key from trusted key */
376 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
377 const u8 *master_key, size_t master_keylen)
379 u8 *derived_buf;
380 unsigned int derived_buf_len;
381 int ret;
383 derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
384 if (derived_buf_len < HASH_SIZE)
385 derived_buf_len = HASH_SIZE;
387 derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
388 if (!derived_buf) {
389 pr_err("encrypted_key: out of memory\n");
390 return -ENOMEM;
392 if (key_type)
393 strcpy(derived_buf, "AUTH_KEY");
394 else
395 strcpy(derived_buf, "ENC_KEY");
397 memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
398 master_keylen);
399 ret = calc_hash(derived_key, derived_buf, derived_buf_len);
400 kfree(derived_buf);
401 return ret;
404 static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
405 unsigned int key_len, const u8 *iv,
406 unsigned int ivsize)
408 int ret;
410 desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
411 if (IS_ERR(desc->tfm)) {
412 pr_err("encrypted_key: failed to load %s transform (%ld)\n",
413 blkcipher_alg, PTR_ERR(desc->tfm));
414 return PTR_ERR(desc->tfm);
416 desc->flags = 0;
418 ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
419 if (ret < 0) {
420 pr_err("encrypted_key: failed to setkey (%d)\n", ret);
421 crypto_free_blkcipher(desc->tfm);
422 return ret;
424 crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
425 return 0;
428 static struct key *request_master_key(struct encrypted_key_payload *epayload,
429 u8 **master_key, size_t *master_keylen)
431 struct key *mkey = NULL;
433 if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
434 KEY_TRUSTED_PREFIX_LEN)) {
435 mkey = request_trusted_key(epayload->master_desc +
436 KEY_TRUSTED_PREFIX_LEN,
437 master_key, master_keylen);
438 } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
439 KEY_USER_PREFIX_LEN)) {
440 mkey = request_user_key(epayload->master_desc +
441 KEY_USER_PREFIX_LEN,
442 master_key, master_keylen);
443 } else
444 goto out;
446 if (IS_ERR(mkey)) {
447 int ret = PTR_ERR(mkey);
449 if (ret == -ENOTSUPP)
450 pr_info("encrypted_key: key %s not supported",
451 epayload->master_desc);
452 else
453 pr_info("encrypted_key: key %s not found",
454 epayload->master_desc);
455 goto out;
458 dump_master_key(*master_key, *master_keylen);
459 out:
460 return mkey;
463 /* Before returning data to userspace, encrypt decrypted data. */
464 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
465 const u8 *derived_key,
466 unsigned int derived_keylen)
468 struct scatterlist sg_in[2];
469 struct scatterlist sg_out[1];
470 struct blkcipher_desc desc;
471 unsigned int encrypted_datalen;
472 unsigned int padlen;
473 char pad[16];
474 int ret;
476 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
477 padlen = encrypted_datalen - epayload->decrypted_datalen;
479 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
480 epayload->iv, ivsize);
481 if (ret < 0)
482 goto out;
483 dump_decrypted_data(epayload);
485 memset(pad, 0, sizeof pad);
486 sg_init_table(sg_in, 2);
487 sg_set_buf(&sg_in[0], epayload->decrypted_data,
488 epayload->decrypted_datalen);
489 sg_set_buf(&sg_in[1], pad, padlen);
491 sg_init_table(sg_out, 1);
492 sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
494 ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
495 crypto_free_blkcipher(desc.tfm);
496 if (ret < 0)
497 pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
498 else
499 dump_encrypted_data(epayload, encrypted_datalen);
500 out:
501 return ret;
504 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
505 const u8 *master_key, size_t master_keylen)
507 u8 derived_key[HASH_SIZE];
508 u8 *digest;
509 int ret;
511 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
512 if (ret < 0)
513 goto out;
515 digest = epayload->format + epayload->datablob_len;
516 ret = calc_hmac(digest, derived_key, sizeof derived_key,
517 epayload->format, epayload->datablob_len);
518 if (!ret)
519 dump_hmac(NULL, digest, HASH_SIZE);
520 out:
521 return ret;
524 /* verify HMAC before decrypting encrypted key */
525 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
526 const u8 *format, const u8 *master_key,
527 size_t master_keylen)
529 u8 derived_key[HASH_SIZE];
530 u8 digest[HASH_SIZE];
531 int ret;
532 char *p;
533 unsigned short len;
535 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
536 if (ret < 0)
537 goto out;
539 len = epayload->datablob_len;
540 if (!format) {
541 p = epayload->master_desc;
542 len -= strlen(epayload->format) + 1;
543 } else
544 p = epayload->format;
546 ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
547 if (ret < 0)
548 goto out;
549 ret = memcmp(digest, epayload->format + epayload->datablob_len,
550 sizeof digest);
551 if (ret) {
552 ret = -EINVAL;
553 dump_hmac("datablob",
554 epayload->format + epayload->datablob_len,
555 HASH_SIZE);
556 dump_hmac("calc", digest, HASH_SIZE);
558 out:
559 return ret;
562 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
563 const u8 *derived_key,
564 unsigned int derived_keylen)
566 struct scatterlist sg_in[1];
567 struct scatterlist sg_out[2];
568 struct blkcipher_desc desc;
569 unsigned int encrypted_datalen;
570 char pad[16];
571 int ret;
573 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
574 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
575 epayload->iv, ivsize);
576 if (ret < 0)
577 goto out;
578 dump_encrypted_data(epayload, encrypted_datalen);
580 memset(pad, 0, sizeof pad);
581 sg_init_table(sg_in, 1);
582 sg_init_table(sg_out, 2);
583 sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
584 sg_set_buf(&sg_out[0], epayload->decrypted_data,
585 epayload->decrypted_datalen);
586 sg_set_buf(&sg_out[1], pad, sizeof pad);
588 ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
589 crypto_free_blkcipher(desc.tfm);
590 if (ret < 0)
591 goto out;
592 dump_decrypted_data(epayload);
593 out:
594 return ret;
597 /* Allocate memory for decrypted key and datablob. */
598 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
599 const char *format,
600 const char *master_desc,
601 const char *datalen)
603 struct encrypted_key_payload *epayload = NULL;
604 unsigned short datablob_len;
605 unsigned short decrypted_datalen;
606 unsigned short payload_datalen;
607 unsigned int encrypted_datalen;
608 unsigned int format_len;
609 long dlen;
610 int ret;
612 ret = kstrtol(datalen, 10, &dlen);
613 if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
614 return ERR_PTR(-EINVAL);
616 format_len = (!format) ? strlen(key_format_default) : strlen(format);
617 decrypted_datalen = dlen;
618 payload_datalen = decrypted_datalen;
619 if (format && !strcmp(format, key_format_ecryptfs)) {
620 if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
621 pr_err("encrypted_key: keylen for the ecryptfs format "
622 "must be equal to %d bytes\n",
623 ECRYPTFS_MAX_KEY_BYTES);
624 return ERR_PTR(-EINVAL);
626 decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
627 payload_datalen = sizeof(struct ecryptfs_auth_tok);
630 encrypted_datalen = roundup(decrypted_datalen, blksize);
632 datablob_len = format_len + 1 + strlen(master_desc) + 1
633 + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
635 ret = key_payload_reserve(key, payload_datalen + datablob_len
636 + HASH_SIZE + 1);
637 if (ret < 0)
638 return ERR_PTR(ret);
640 epayload = kzalloc(sizeof(*epayload) + payload_datalen +
641 datablob_len + HASH_SIZE + 1, GFP_KERNEL);
642 if (!epayload)
643 return ERR_PTR(-ENOMEM);
645 epayload->payload_datalen = payload_datalen;
646 epayload->decrypted_datalen = decrypted_datalen;
647 epayload->datablob_len = datablob_len;
648 return epayload;
651 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
652 const char *format, const char *hex_encoded_iv)
654 struct key *mkey;
655 u8 derived_key[HASH_SIZE];
656 u8 *master_key;
657 u8 *hmac;
658 const char *hex_encoded_data;
659 unsigned int encrypted_datalen;
660 size_t master_keylen;
661 size_t asciilen;
662 int ret;
664 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
665 asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
666 if (strlen(hex_encoded_iv) != asciilen)
667 return -EINVAL;
669 hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
670 ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
671 if (ret < 0)
672 return -EINVAL;
673 ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
674 encrypted_datalen);
675 if (ret < 0)
676 return -EINVAL;
678 hmac = epayload->format + epayload->datablob_len;
679 ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
680 HASH_SIZE);
681 if (ret < 0)
682 return -EINVAL;
684 mkey = request_master_key(epayload, &master_key, &master_keylen);
685 if (IS_ERR(mkey))
686 return PTR_ERR(mkey);
688 ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
689 if (ret < 0) {
690 pr_err("encrypted_key: bad hmac (%d)\n", ret);
691 goto out;
694 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
695 if (ret < 0)
696 goto out;
698 ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
699 if (ret < 0)
700 pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
701 out:
702 up_read(&mkey->sem);
703 key_put(mkey);
704 return ret;
707 static void __ekey_init(struct encrypted_key_payload *epayload,
708 const char *format, const char *master_desc,
709 const char *datalen)
711 unsigned int format_len;
713 format_len = (!format) ? strlen(key_format_default) : strlen(format);
714 epayload->format = epayload->payload_data + epayload->payload_datalen;
715 epayload->master_desc = epayload->format + format_len + 1;
716 epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
717 epayload->iv = epayload->datalen + strlen(datalen) + 1;
718 epayload->encrypted_data = epayload->iv + ivsize + 1;
719 epayload->decrypted_data = epayload->payload_data;
721 if (!format)
722 memcpy(epayload->format, key_format_default, format_len);
723 else {
724 if (!strcmp(format, key_format_ecryptfs))
725 epayload->decrypted_data =
726 ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
728 memcpy(epayload->format, format, format_len);
731 memcpy(epayload->master_desc, master_desc, strlen(master_desc));
732 memcpy(epayload->datalen, datalen, strlen(datalen));
736 * encrypted_init - initialize an encrypted key
738 * For a new key, use a random number for both the iv and data
739 * itself. For an old key, decrypt the hex encoded data.
741 static int encrypted_init(struct encrypted_key_payload *epayload,
742 const char *key_desc, const char *format,
743 const char *master_desc, const char *datalen,
744 const char *hex_encoded_iv)
746 int ret = 0;
748 if (format && !strcmp(format, key_format_ecryptfs)) {
749 ret = valid_ecryptfs_desc(key_desc);
750 if (ret < 0)
751 return ret;
753 ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
754 key_desc);
757 __ekey_init(epayload, format, master_desc, datalen);
758 if (!hex_encoded_iv) {
759 get_random_bytes(epayload->iv, ivsize);
761 get_random_bytes(epayload->decrypted_data,
762 epayload->decrypted_datalen);
763 } else
764 ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
765 return ret;
769 * encrypted_instantiate - instantiate an encrypted key
771 * Decrypt an existing encrypted datablob or create a new encrypted key
772 * based on a kernel random number.
774 * On success, return 0. Otherwise return errno.
776 static int encrypted_instantiate(struct key *key,
777 struct key_preparsed_payload *prep)
779 struct encrypted_key_payload *epayload = NULL;
780 char *datablob = NULL;
781 const char *format = NULL;
782 char *master_desc = NULL;
783 char *decrypted_datalen = NULL;
784 char *hex_encoded_iv = NULL;
785 size_t datalen = prep->datalen;
786 int ret;
788 if (datalen <= 0 || datalen > 32767 || !prep->data)
789 return -EINVAL;
791 datablob = kmalloc(datalen + 1, GFP_KERNEL);
792 if (!datablob)
793 return -ENOMEM;
794 datablob[datalen] = 0;
795 memcpy(datablob, prep->data, datalen);
796 ret = datablob_parse(datablob, &format, &master_desc,
797 &decrypted_datalen, &hex_encoded_iv);
798 if (ret < 0)
799 goto out;
801 epayload = encrypted_key_alloc(key, format, master_desc,
802 decrypted_datalen);
803 if (IS_ERR(epayload)) {
804 ret = PTR_ERR(epayload);
805 goto out;
807 ret = encrypted_init(epayload, key->description, format, master_desc,
808 decrypted_datalen, hex_encoded_iv);
809 if (ret < 0) {
810 kfree(epayload);
811 goto out;
814 rcu_assign_keypointer(key, epayload);
815 out:
816 kfree(datablob);
817 return ret;
820 static void encrypted_rcu_free(struct rcu_head *rcu)
822 struct encrypted_key_payload *epayload;
824 epayload = container_of(rcu, struct encrypted_key_payload, rcu);
825 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
826 kfree(epayload);
830 * encrypted_update - update the master key description
832 * Change the master key description for an existing encrypted key.
833 * The next read will return an encrypted datablob using the new
834 * master key description.
836 * On success, return 0. Otherwise return errno.
838 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
840 struct encrypted_key_payload *epayload = key->payload.data;
841 struct encrypted_key_payload *new_epayload;
842 char *buf;
843 char *new_master_desc = NULL;
844 const char *format = NULL;
845 size_t datalen = prep->datalen;
846 int ret = 0;
848 if (datalen <= 0 || datalen > 32767 || !prep->data)
849 return -EINVAL;
851 buf = kmalloc(datalen + 1, GFP_KERNEL);
852 if (!buf)
853 return -ENOMEM;
855 buf[datalen] = 0;
856 memcpy(buf, prep->data, datalen);
857 ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
858 if (ret < 0)
859 goto out;
861 ret = valid_master_desc(new_master_desc, epayload->master_desc);
862 if (ret < 0)
863 goto out;
865 new_epayload = encrypted_key_alloc(key, epayload->format,
866 new_master_desc, epayload->datalen);
867 if (IS_ERR(new_epayload)) {
868 ret = PTR_ERR(new_epayload);
869 goto out;
872 __ekey_init(new_epayload, epayload->format, new_master_desc,
873 epayload->datalen);
875 memcpy(new_epayload->iv, epayload->iv, ivsize);
876 memcpy(new_epayload->payload_data, epayload->payload_data,
877 epayload->payload_datalen);
879 rcu_assign_keypointer(key, new_epayload);
880 call_rcu(&epayload->rcu, encrypted_rcu_free);
881 out:
882 kfree(buf);
883 return ret;
887 * encrypted_read - format and copy the encrypted data to userspace
889 * The resulting datablob format is:
890 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
892 * On success, return to userspace the encrypted key datablob size.
894 static long encrypted_read(const struct key *key, char __user *buffer,
895 size_t buflen)
897 struct encrypted_key_payload *epayload;
898 struct key *mkey;
899 u8 *master_key;
900 size_t master_keylen;
901 char derived_key[HASH_SIZE];
902 char *ascii_buf;
903 size_t asciiblob_len;
904 int ret;
906 epayload = rcu_dereference_key(key);
908 /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
909 asciiblob_len = epayload->datablob_len + ivsize + 1
910 + roundup(epayload->decrypted_datalen, blksize)
911 + (HASH_SIZE * 2);
913 if (!buffer || buflen < asciiblob_len)
914 return asciiblob_len;
916 mkey = request_master_key(epayload, &master_key, &master_keylen);
917 if (IS_ERR(mkey))
918 return PTR_ERR(mkey);
920 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
921 if (ret < 0)
922 goto out;
924 ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
925 if (ret < 0)
926 goto out;
928 ret = datablob_hmac_append(epayload, master_key, master_keylen);
929 if (ret < 0)
930 goto out;
932 ascii_buf = datablob_format(epayload, asciiblob_len);
933 if (!ascii_buf) {
934 ret = -ENOMEM;
935 goto out;
938 up_read(&mkey->sem);
939 key_put(mkey);
941 if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
942 ret = -EFAULT;
943 kfree(ascii_buf);
945 return asciiblob_len;
946 out:
947 up_read(&mkey->sem);
948 key_put(mkey);
949 return ret;
953 * encrypted_destroy - before freeing the key, clear the decrypted data
955 * Before freeing the key, clear the memory containing the decrypted
956 * key data.
958 static void encrypted_destroy(struct key *key)
960 struct encrypted_key_payload *epayload = key->payload.data;
962 if (!epayload)
963 return;
965 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
966 kfree(key->payload.data);
969 struct key_type key_type_encrypted = {
970 .name = "encrypted",
971 .instantiate = encrypted_instantiate,
972 .update = encrypted_update,
973 .destroy = encrypted_destroy,
974 .describe = user_describe,
975 .read = encrypted_read,
977 EXPORT_SYMBOL_GPL(key_type_encrypted);
979 static void encrypted_shash_release(void)
981 if (hashalg)
982 crypto_free_shash(hashalg);
983 if (hmacalg)
984 crypto_free_shash(hmacalg);
987 static int __init encrypted_shash_alloc(void)
989 int ret;
991 hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
992 if (IS_ERR(hmacalg)) {
993 pr_info("encrypted_key: could not allocate crypto %s\n",
994 hmac_alg);
995 return PTR_ERR(hmacalg);
998 hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
999 if (IS_ERR(hashalg)) {
1000 pr_info("encrypted_key: could not allocate crypto %s\n",
1001 hash_alg);
1002 ret = PTR_ERR(hashalg);
1003 goto hashalg_fail;
1006 return 0;
1008 hashalg_fail:
1009 crypto_free_shash(hmacalg);
1010 return ret;
1013 static int __init init_encrypted(void)
1015 int ret;
1017 ret = encrypted_shash_alloc();
1018 if (ret < 0)
1019 return ret;
1020 ret = aes_get_sizes();
1021 if (ret < 0)
1022 goto out;
1023 ret = register_key_type(&key_type_encrypted);
1024 if (ret < 0)
1025 goto out;
1026 return 0;
1027 out:
1028 encrypted_shash_release();
1029 return ret;
1033 static void __exit cleanup_encrypted(void)
1035 encrypted_shash_release();
1036 unregister_key_type(&key_type_encrypted);
1039 late_initcall(init_encrypted);
1040 module_exit(cleanup_encrypted);
1042 MODULE_LICENSE("GPL");