2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 #include <linux/workqueue.h>
259 #include <linux/irq.h>
261 #include <asm/processor.h>
262 #include <asm/uaccess.h>
264 #include <asm/irq_regs.h>
267 #define CREATE_TRACE_POINTS
268 #include <trace/events/random.h>
271 * Configuration information
273 #define INPUT_POOL_SHIFT 12
274 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
275 #define OUTPUT_POOL_SHIFT 10
276 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
277 #define SEC_XFER_SIZE 512
278 #define EXTRACT_SIZE 10
280 #define DEBUG_RANDOM_BOOT 0
282 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
285 * To allow fractional bits to be tracked, the entropy_count field is
286 * denominated in units of 1/8th bits.
288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
289 * credit_entropy_bits() needs to be 64 bits wide.
291 #define ENTROPY_SHIFT 3
292 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
295 * The minimum number of bits of entropy before we wake up a read on
296 * /dev/random. Should be enough to do a significant reseed.
298 static int random_read_wakeup_bits
= 64;
301 * If the entropy count falls under this number of bits, then we
302 * should wake up processes which are selecting or polling on write
303 * access to /dev/random.
305 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
308 * The minimum number of seconds between urandom pool reseeding. We
309 * do this to limit the amount of entropy that can be drained from the
310 * input pool even if there are heavy demands on /dev/urandom.
312 static int random_min_urandom_seed
= 60;
315 * Originally, we used a primitive polynomial of degree .poolwords
316 * over GF(2). The taps for various sizes are defined below. They
317 * were chosen to be evenly spaced except for the last tap, which is 1
318 * to get the twisting happening as fast as possible.
320 * For the purposes of better mixing, we use the CRC-32 polynomial as
321 * well to make a (modified) twisted Generalized Feedback Shift
322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
323 * generators. ACM Transactions on Modeling and Computer Simulation
324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
325 * GFSR generators II. ACM Transactions on Modeling and Computer
326 * Simulation 4:254-266)
328 * Thanks to Colin Plumb for suggesting this.
330 * The mixing operation is much less sensitive than the output hash,
331 * where we use SHA-1. All that we want of mixing operation is that
332 * it be a good non-cryptographic hash; i.e. it not produce collisions
333 * when fed "random" data of the sort we expect to see. As long as
334 * the pool state differs for different inputs, we have preserved the
335 * input entropy and done a good job. The fact that an intelligent
336 * attacker can construct inputs that will produce controlled
337 * alterations to the pool's state is not important because we don't
338 * consider such inputs to contribute any randomness. The only
339 * property we need with respect to them is that the attacker can't
340 * increase his/her knowledge of the pool's state. Since all
341 * additions are reversible (knowing the final state and the input,
342 * you can reconstruct the initial state), if an attacker has any
343 * uncertainty about the initial state, he/she can only shuffle that
344 * uncertainty about, but never cause any collisions (which would
345 * decrease the uncertainty).
347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
348 * Videau in their paper, "The Linux Pseudorandom Number Generator
349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
350 * paper, they point out that we are not using a true Twisted GFSR,
351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
352 * is, with only three taps, instead of the six that we are using).
353 * As a result, the resulting polynomial is neither primitive nor
354 * irreducible, and hence does not have a maximal period over
355 * GF(2**32). They suggest a slight change to the generator
356 * polynomial which improves the resulting TGFSR polynomial to be
357 * irreducible, which we have made here.
359 static struct poolinfo
{
360 int poolbitshift
, poolwords
, poolbytes
, poolbits
, poolfracbits
;
361 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
362 int tap1
, tap2
, tap3
, tap4
, tap5
;
363 } poolinfo_table
[] = {
364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
366 { S(128), 104, 76, 51, 25, 1 },
367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
369 { S(32), 26, 19, 14, 7, 1 },
371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
372 { S(2048), 1638, 1231, 819, 411, 1 },
374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
375 { S(1024), 817, 615, 412, 204, 1 },
377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
378 { S(1024), 819, 616, 410, 207, 2 },
380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
381 { S(512), 411, 308, 208, 104, 1 },
383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
384 { S(512), 409, 307, 206, 102, 2 },
385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
386 { S(512), 409, 309, 205, 103, 2 },
388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
389 { S(256), 205, 155, 101, 52, 1 },
391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
392 { S(128), 103, 78, 51, 27, 2 },
394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
395 { S(64), 52, 39, 26, 14, 1 },
400 * Static global variables
402 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
403 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
404 static struct fasync_struct
*fasync
;
406 /**********************************************************************
408 * OS independent entropy store. Here are the functions which handle
409 * storing entropy in an entropy pool.
411 **********************************************************************/
413 struct entropy_store
;
414 struct entropy_store
{
415 /* read-only data: */
416 const struct poolinfo
*poolinfo
;
419 struct entropy_store
*pull
;
420 struct work_struct push_work
;
422 /* read-write data: */
423 unsigned long last_pulled
;
425 unsigned short add_ptr
;
426 unsigned short input_rotate
;
429 unsigned int initialized
:1;
430 unsigned int limit
:1;
431 unsigned int last_data_init
:1;
432 __u8 last_data
[EXTRACT_SIZE
];
435 static void push_to_pool(struct work_struct
*work
);
436 static __u32 input_pool_data
[INPUT_POOL_WORDS
];
437 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
];
438 static __u32 nonblocking_pool_data
[OUTPUT_POOL_WORDS
];
440 static struct entropy_store input_pool
= {
441 .poolinfo
= &poolinfo_table
[0],
444 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
445 .pool
= input_pool_data
448 static struct entropy_store blocking_pool
= {
449 .poolinfo
= &poolinfo_table
[1],
453 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
454 .pool
= blocking_pool_data
,
455 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
459 static struct entropy_store nonblocking_pool
= {
460 .poolinfo
= &poolinfo_table
[1],
461 .name
= "nonblocking",
463 .lock
= __SPIN_LOCK_UNLOCKED(nonblocking_pool
.lock
),
464 .pool
= nonblocking_pool_data
,
465 .push_work
= __WORK_INITIALIZER(nonblocking_pool
.push_work
,
469 static __u32
const twist_table
[8] = {
470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
474 * This function adds bytes into the entropy "pool". It does not
475 * update the entropy estimate. The caller should call
476 * credit_entropy_bits if this is appropriate.
478 * The pool is stirred with a primitive polynomial of the appropriate
479 * degree, and then twisted. We twist by three bits at a time because
480 * it's cheap to do so and helps slightly in the expected case where
481 * the entropy is concentrated in the low-order bits.
483 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
484 int nbytes
, __u8 out
[64])
486 unsigned long i
, j
, tap1
, tap2
, tap3
, tap4
, tap5
;
488 int wordmask
= r
->poolinfo
->poolwords
- 1;
489 const char *bytes
= in
;
492 tap1
= r
->poolinfo
->tap1
;
493 tap2
= r
->poolinfo
->tap2
;
494 tap3
= r
->poolinfo
->tap3
;
495 tap4
= r
->poolinfo
->tap4
;
496 tap5
= r
->poolinfo
->tap5
;
499 input_rotate
= ACCESS_ONCE(r
->input_rotate
);
500 i
= ACCESS_ONCE(r
->add_ptr
);
502 /* mix one byte at a time to simplify size handling and churn faster */
504 w
= rol32(*bytes
++, input_rotate
);
505 i
= (i
- 1) & wordmask
;
507 /* XOR in the various taps */
509 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
510 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
511 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
512 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
513 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
515 /* Mix the result back in with a twist */
516 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
519 * Normally, we add 7 bits of rotation to the pool.
520 * At the beginning of the pool, add an extra 7 bits
521 * rotation, so that successive passes spread the
522 * input bits across the pool evenly.
524 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
527 ACCESS_ONCE(r
->input_rotate
) = input_rotate
;
528 ACCESS_ONCE(r
->add_ptr
) = i
;
532 for (j
= 0; j
< 16; j
++)
533 ((__u32
*)out
)[j
] = r
->pool
[(i
- j
) & wordmask
];
536 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
537 int nbytes
, __u8 out
[64])
539 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
540 _mix_pool_bytes(r
, in
, nbytes
, out
);
543 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
544 int nbytes
, __u8 out
[64])
548 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
549 spin_lock_irqsave(&r
->lock
, flags
);
550 _mix_pool_bytes(r
, in
, nbytes
, out
);
551 spin_unlock_irqrestore(&r
->lock
, flags
);
557 unsigned short count
;
558 unsigned char rotate
;
559 unsigned char last_timer_intr
;
563 * This is a fast mixing routine used by the interrupt randomness
564 * collector. It's hardcoded for an 128 bit pool and assumes that any
565 * locks that might be needed are taken by the caller.
567 static void fast_mix(struct fast_pool
*f
, __u32 input
[4])
570 unsigned input_rotate
= f
->rotate
;
572 w
= rol32(input
[0], input_rotate
) ^ f
->pool
[0] ^ f
->pool
[3];
573 f
->pool
[0] = (w
>> 3) ^ twist_table
[w
& 7];
574 input_rotate
= (input_rotate
+ 14) & 31;
575 w
= rol32(input
[1], input_rotate
) ^ f
->pool
[1] ^ f
->pool
[0];
576 f
->pool
[1] = (w
>> 3) ^ twist_table
[w
& 7];
577 input_rotate
= (input_rotate
+ 7) & 31;
578 w
= rol32(input
[2], input_rotate
) ^ f
->pool
[2] ^ f
->pool
[1];
579 f
->pool
[2] = (w
>> 3) ^ twist_table
[w
& 7];
580 input_rotate
= (input_rotate
+ 7) & 31;
581 w
= rol32(input
[3], input_rotate
) ^ f
->pool
[3] ^ f
->pool
[2];
582 f
->pool
[3] = (w
>> 3) ^ twist_table
[w
& 7];
583 input_rotate
= (input_rotate
+ 7) & 31;
585 f
->rotate
= input_rotate
;
590 * Credit (or debit) the entropy store with n bits of entropy.
591 * Use credit_entropy_bits_safe() if the value comes from userspace
592 * or otherwise should be checked for extreme values.
594 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
596 int entropy_count
, orig
;
597 const int pool_size
= r
->poolinfo
->poolfracbits
;
598 int nfrac
= nbits
<< ENTROPY_SHIFT
;
604 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
607 entropy_count
+= nfrac
;
610 * Credit: we have to account for the possibility of
611 * overwriting already present entropy. Even in the
612 * ideal case of pure Shannon entropy, new contributions
613 * approach the full value asymptotically:
615 * entropy <- entropy + (pool_size - entropy) *
616 * (1 - exp(-add_entropy/pool_size))
618 * For add_entropy <= pool_size/2 then
619 * (1 - exp(-add_entropy/pool_size)) >=
620 * (add_entropy/pool_size)*0.7869...
621 * so we can approximate the exponential with
622 * 3/4*add_entropy/pool_size and still be on the
623 * safe side by adding at most pool_size/2 at a time.
625 * The use of pool_size-2 in the while statement is to
626 * prevent rounding artifacts from making the loop
627 * arbitrarily long; this limits the loop to log2(pool_size)*2
628 * turns no matter how large nbits is.
631 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
632 /* The +2 corresponds to the /4 in the denominator */
635 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
637 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
639 entropy_count
+= add
;
641 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
644 if (entropy_count
< 0) {
645 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
646 r
->name
, entropy_count
);
649 } else if (entropy_count
> pool_size
)
650 entropy_count
= pool_size
;
651 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
654 r
->entropy_total
+= nbits
;
655 if (!r
->initialized
&& r
->entropy_total
> 128) {
657 r
->entropy_total
= 0;
658 if (r
== &nonblocking_pool
) {
659 prandom_reseed_late();
660 pr_notice("random: %s pool is initialized\n", r
->name
);
664 trace_credit_entropy_bits(r
->name
, nbits
,
665 entropy_count
>> ENTROPY_SHIFT
,
666 r
->entropy_total
, _RET_IP_
);
668 if (r
== &input_pool
) {
669 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
671 /* should we wake readers? */
672 if (entropy_bits
>= random_read_wakeup_bits
) {
673 wake_up_interruptible(&random_read_wait
);
674 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
676 /* If the input pool is getting full, send some
677 * entropy to the two output pools, flipping back and
678 * forth between them, until the output pools are 75%
681 if (entropy_bits
> random_write_wakeup_bits
&&
683 r
->entropy_total
>= 2*random_read_wakeup_bits
) {
684 static struct entropy_store
*last
= &blocking_pool
;
685 struct entropy_store
*other
= &blocking_pool
;
687 if (last
== &blocking_pool
)
688 other
= &nonblocking_pool
;
689 if (other
->entropy_count
<=
690 3 * other
->poolinfo
->poolfracbits
/ 4)
692 if (last
->entropy_count
<=
693 3 * last
->poolinfo
->poolfracbits
/ 4) {
694 schedule_work(&last
->push_work
);
695 r
->entropy_total
= 0;
701 static void credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
703 const int nbits_max
= (int)(~0U >> (ENTROPY_SHIFT
+ 1));
705 /* Cap the value to avoid overflows */
706 nbits
= min(nbits
, nbits_max
);
707 nbits
= max(nbits
, -nbits_max
);
709 credit_entropy_bits(r
, nbits
);
712 /*********************************************************************
714 * Entropy input management
716 *********************************************************************/
718 /* There is one of these per entropy source */
719 struct timer_rand_state
{
721 long last_delta
, last_delta2
;
722 unsigned dont_count_entropy
:1;
725 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
728 * Add device- or boot-specific data to the input and nonblocking
729 * pools to help initialize them to unique values.
731 * None of this adds any entropy, it is meant to avoid the
732 * problem of the nonblocking pool having similar initial state
733 * across largely identical devices.
735 void add_device_randomness(const void *buf
, unsigned int size
)
737 unsigned long time
= random_get_entropy() ^ jiffies
;
740 trace_add_device_randomness(size
, _RET_IP_
);
741 spin_lock_irqsave(&input_pool
.lock
, flags
);
742 _mix_pool_bytes(&input_pool
, buf
, size
, NULL
);
743 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
), NULL
);
744 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
746 spin_lock_irqsave(&nonblocking_pool
.lock
, flags
);
747 _mix_pool_bytes(&nonblocking_pool
, buf
, size
, NULL
);
748 _mix_pool_bytes(&nonblocking_pool
, &time
, sizeof(time
), NULL
);
749 spin_unlock_irqrestore(&nonblocking_pool
.lock
, flags
);
751 EXPORT_SYMBOL(add_device_randomness
);
753 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
756 * This function adds entropy to the entropy "pool" by using timing
757 * delays. It uses the timer_rand_state structure to make an estimate
758 * of how many bits of entropy this call has added to the pool.
760 * The number "num" is also added to the pool - it should somehow describe
761 * the type of event which just happened. This is currently 0-255 for
762 * keyboard scan codes, and 256 upwards for interrupts.
765 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
767 struct entropy_store
*r
;
773 long delta
, delta2
, delta3
;
777 sample
.jiffies
= jiffies
;
778 sample
.cycles
= random_get_entropy();
780 r
= nonblocking_pool
.initialized
? &input_pool
: &nonblocking_pool
;
781 mix_pool_bytes(r
, &sample
, sizeof(sample
), NULL
);
784 * Calculate number of bits of randomness we probably added.
785 * We take into account the first, second and third-order deltas
786 * in order to make our estimate.
789 if (!state
->dont_count_entropy
) {
790 delta
= sample
.jiffies
- state
->last_time
;
791 state
->last_time
= sample
.jiffies
;
793 delta2
= delta
- state
->last_delta
;
794 state
->last_delta
= delta
;
796 delta3
= delta2
- state
->last_delta2
;
797 state
->last_delta2
= delta2
;
811 * delta is now minimum absolute delta.
812 * Round down by 1 bit on general principles,
813 * and limit entropy entimate to 12 bits.
815 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
820 void add_input_randomness(unsigned int type
, unsigned int code
,
823 static unsigned char last_value
;
825 /* ignore autorepeat and the like */
826 if (value
== last_value
)
830 add_timer_randomness(&input_timer_state
,
831 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
832 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
834 EXPORT_SYMBOL_GPL(add_input_randomness
);
836 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
838 void add_interrupt_randomness(int irq
, int irq_flags
)
840 struct entropy_store
*r
;
841 struct fast_pool
*fast_pool
= &__get_cpu_var(irq_randomness
);
842 struct pt_regs
*regs
= get_irq_regs();
843 unsigned long now
= jiffies
;
844 cycles_t cycles
= random_get_entropy();
845 __u32 input
[4], c_high
, j_high
;
850 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
851 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
852 input
[0] = cycles
^ j_high
^ irq
;
853 input
[1] = now
^ c_high
;
854 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
858 fast_mix(fast_pool
, input
);
860 if ((fast_pool
->count
& 63) && !time_after(now
, fast_pool
->last
+ HZ
))
863 fast_pool
->last
= now
;
865 r
= nonblocking_pool
.initialized
? &input_pool
: &nonblocking_pool
;
866 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
), NULL
);
869 * If we don't have a valid cycle counter, and we see
870 * back-to-back timer interrupts, then skip giving credit for
871 * any entropy, otherwise credit 1 bit.
875 if (irq_flags
& __IRQF_TIMER
) {
876 if (fast_pool
->last_timer_intr
)
878 fast_pool
->last_timer_intr
= 1;
880 fast_pool
->last_timer_intr
= 0;
884 * If we have architectural seed generator, produce a seed and
885 * add it to the pool. For the sake of paranoia count it as
888 if (arch_get_random_seed_long(&seed
)) {
889 __mix_pool_bytes(r
, &seed
, sizeof(seed
), NULL
);
890 credit
+= sizeof(seed
) * 4;
893 credit_entropy_bits(r
, credit
);
897 void add_disk_randomness(struct gendisk
*disk
)
899 if (!disk
|| !disk
->random
)
901 /* first major is 1, so we get >= 0x200 here */
902 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
903 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
907 /*********************************************************************
909 * Entropy extraction routines
911 *********************************************************************/
913 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
914 size_t nbytes
, int min
, int rsvd
);
917 * This utility inline function is responsible for transferring entropy
918 * from the primary pool to the secondary extraction pool. We make
919 * sure we pull enough for a 'catastrophic reseed'.
921 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
922 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
924 if (r
->limit
== 0 && random_min_urandom_seed
) {
925 unsigned long now
= jiffies
;
928 r
->last_pulled
+ random_min_urandom_seed
* HZ
))
930 r
->last_pulled
= now
;
933 r
->entropy_count
< (nbytes
<< (ENTROPY_SHIFT
+ 3)) &&
934 r
->entropy_count
< r
->poolinfo
->poolfracbits
)
935 _xfer_secondary_pool(r
, nbytes
);
938 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
940 __u32 tmp
[OUTPUT_POOL_WORDS
];
942 /* For /dev/random's pool, always leave two wakeups' worth */
943 int rsvd_bytes
= r
->limit
? 0 : random_read_wakeup_bits
/ 4;
946 /* pull at least as much as a wakeup */
947 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
948 /* but never more than the buffer size */
949 bytes
= min_t(int, bytes
, sizeof(tmp
));
951 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
952 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
953 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
954 random_read_wakeup_bits
/ 8, rsvd_bytes
);
955 mix_pool_bytes(r
, tmp
, bytes
, NULL
);
956 credit_entropy_bits(r
, bytes
*8);
960 * Used as a workqueue function so that when the input pool is getting
961 * full, we can "spill over" some entropy to the output pools. That
962 * way the output pools can store some of the excess entropy instead
963 * of letting it go to waste.
965 static void push_to_pool(struct work_struct
*work
)
967 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
970 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
971 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
972 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
976 * This function decides how many bytes to actually take from the
977 * given pool, and also debits the entropy count accordingly.
979 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
983 int entropy_count
, orig
;
986 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
988 /* Can we pull enough? */
990 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
991 have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
993 /* If limited, never pull more than available */
995 ibytes
= min_t(size_t, ibytes
, have_bytes
- reserved
);
998 entropy_count
= max_t(int, 0,
999 entropy_count
- (ibytes
<< (ENTROPY_SHIFT
+ 3)));
1000 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1003 trace_debit_entropy(r
->name
, 8 * ibytes
);
1005 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1006 wake_up_interruptible(&random_write_wait
);
1007 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1014 * This function does the actual extraction for extract_entropy and
1015 * extract_entropy_user.
1017 * Note: we assume that .poolwords is a multiple of 16 words.
1019 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1024 unsigned long l
[LONGS(20)];
1026 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1028 unsigned long flags
;
1031 * If we have an architectural hardware random number
1032 * generator, use it for SHA's initial vector
1035 for (i
= 0; i
< LONGS(20); i
++) {
1037 if (!arch_get_random_long(&v
))
1042 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1043 spin_lock_irqsave(&r
->lock
, flags
);
1044 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1045 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1048 * We mix the hash back into the pool to prevent backtracking
1049 * attacks (where the attacker knows the state of the pool
1050 * plus the current outputs, and attempts to find previous
1051 * ouputs), unless the hash function can be inverted. By
1052 * mixing at least a SHA1 worth of hash data back, we make
1053 * brute-forcing the feedback as hard as brute-forcing the
1056 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
), extract
);
1057 spin_unlock_irqrestore(&r
->lock
, flags
);
1060 * To avoid duplicates, we atomically extract a portion of the
1061 * pool while mixing, and hash one final time.
1063 sha_transform(hash
.w
, extract
, workspace
);
1064 memset(extract
, 0, sizeof(extract
));
1065 memset(workspace
, 0, sizeof(workspace
));
1068 * In case the hash function has some recognizable output
1069 * pattern, we fold it in half. Thus, we always feed back
1070 * twice as much data as we output.
1072 hash
.w
[0] ^= hash
.w
[3];
1073 hash
.w
[1] ^= hash
.w
[4];
1074 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1076 memcpy(out
, &hash
, EXTRACT_SIZE
);
1077 memset(&hash
, 0, sizeof(hash
));
1081 * This function extracts randomness from the "entropy pool", and
1082 * returns it in a buffer.
1084 * The min parameter specifies the minimum amount we can pull before
1085 * failing to avoid races that defeat catastrophic reseeding while the
1086 * reserved parameter indicates how much entropy we must leave in the
1087 * pool after each pull to avoid starving other readers.
1089 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1090 size_t nbytes
, int min
, int reserved
)
1093 __u8 tmp
[EXTRACT_SIZE
];
1094 unsigned long flags
;
1096 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1098 spin_lock_irqsave(&r
->lock
, flags
);
1099 if (!r
->last_data_init
) {
1100 r
->last_data_init
= 1;
1101 spin_unlock_irqrestore(&r
->lock
, flags
);
1102 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1103 ENTROPY_BITS(r
), _RET_IP_
);
1104 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1105 extract_buf(r
, tmp
);
1106 spin_lock_irqsave(&r
->lock
, flags
);
1107 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1109 spin_unlock_irqrestore(&r
->lock
, flags
);
1112 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1113 xfer_secondary_pool(r
, nbytes
);
1114 nbytes
= account(r
, nbytes
, min
, reserved
);
1117 extract_buf(r
, tmp
);
1120 spin_lock_irqsave(&r
->lock
, flags
);
1121 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1122 panic("Hardware RNG duplicated output!\n");
1123 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1124 spin_unlock_irqrestore(&r
->lock
, flags
);
1126 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1127 memcpy(buf
, tmp
, i
);
1133 /* Wipe data just returned from memory */
1134 memset(tmp
, 0, sizeof(tmp
));
1140 * This function extracts randomness from the "entropy pool", and
1141 * returns it in a userspace buffer.
1143 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1147 __u8 tmp
[EXTRACT_SIZE
];
1149 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1150 xfer_secondary_pool(r
, nbytes
);
1151 nbytes
= account(r
, nbytes
, 0, 0);
1154 if (need_resched()) {
1155 if (signal_pending(current
)) {
1163 extract_buf(r
, tmp
);
1164 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1165 if (copy_to_user(buf
, tmp
, i
)) {
1175 /* Wipe data just returned from memory */
1176 memset(tmp
, 0, sizeof(tmp
));
1182 * This function is the exported kernel interface. It returns some
1183 * number of good random numbers, suitable for key generation, seeding
1184 * TCP sequence numbers, etc. It does not rely on the hardware random
1185 * number generator. For random bytes direct from the hardware RNG
1186 * (when available), use get_random_bytes_arch().
1188 void get_random_bytes(void *buf
, int nbytes
)
1190 #if DEBUG_RANDOM_BOOT > 0
1191 if (unlikely(nonblocking_pool
.initialized
== 0))
1192 printk(KERN_NOTICE
"random: %pF get_random_bytes called "
1193 "with %d bits of entropy available\n",
1195 nonblocking_pool
.entropy_total
);
1197 trace_get_random_bytes(nbytes
, _RET_IP_
);
1198 extract_entropy(&nonblocking_pool
, buf
, nbytes
, 0, 0);
1200 EXPORT_SYMBOL(get_random_bytes
);
1203 * This function will use the architecture-specific hardware random
1204 * number generator if it is available. The arch-specific hw RNG will
1205 * almost certainly be faster than what we can do in software, but it
1206 * is impossible to verify that it is implemented securely (as
1207 * opposed, to, say, the AES encryption of a sequence number using a
1208 * key known by the NSA). So it's useful if we need the speed, but
1209 * only if we're willing to trust the hardware manufacturer not to
1210 * have put in a back door.
1212 void get_random_bytes_arch(void *buf
, int nbytes
)
1216 trace_get_random_bytes_arch(nbytes
, _RET_IP_
);
1219 int chunk
= min(nbytes
, (int)sizeof(unsigned long));
1221 if (!arch_get_random_long(&v
))
1224 memcpy(p
, &v
, chunk
);
1230 extract_entropy(&nonblocking_pool
, p
, nbytes
, 0, 0);
1232 EXPORT_SYMBOL(get_random_bytes_arch
);
1236 * init_std_data - initialize pool with system data
1238 * @r: pool to initialize
1240 * This function clears the pool's entropy count and mixes some system
1241 * data into the pool to prepare it for use. The pool is not cleared
1242 * as that can only decrease the entropy in the pool.
1244 static void init_std_data(struct entropy_store
*r
)
1247 ktime_t now
= ktime_get_real();
1250 r
->last_pulled
= jiffies
;
1251 mix_pool_bytes(r
, &now
, sizeof(now
), NULL
);
1252 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1253 if (!arch_get_random_seed_long(&rv
) &&
1254 !arch_get_random_long(&rv
))
1255 rv
= random_get_entropy();
1256 mix_pool_bytes(r
, &rv
, sizeof(rv
), NULL
);
1258 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())), NULL
);
1262 * Note that setup_arch() may call add_device_randomness()
1263 * long before we get here. This allows seeding of the pools
1264 * with some platform dependent data very early in the boot
1265 * process. But it limits our options here. We must use
1266 * statically allocated structures that already have all
1267 * initializations complete at compile time. We should also
1268 * take care not to overwrite the precious per platform data
1271 static int rand_initialize(void)
1273 init_std_data(&input_pool
);
1274 init_std_data(&blocking_pool
);
1275 init_std_data(&nonblocking_pool
);
1278 early_initcall(rand_initialize
);
1281 void rand_initialize_disk(struct gendisk
*disk
)
1283 struct timer_rand_state
*state
;
1286 * If kzalloc returns null, we just won't use that entropy
1289 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1291 state
->last_time
= INITIAL_JIFFIES
;
1292 disk
->random
= state
;
1298 * Attempt an emergency refill using arch_get_random_seed_long().
1300 * As with add_interrupt_randomness() be paranoid and only
1301 * credit the output as 50% entropic.
1303 static int arch_random_refill(void)
1305 const unsigned int nlongs
= 64; /* Arbitrary number */
1308 unsigned long buf
[nlongs
];
1310 if (!arch_has_random_seed())
1313 for (i
= 0; i
< nlongs
; i
++) {
1314 if (arch_get_random_seed_long(&buf
[n
]))
1319 unsigned int rand_bytes
= n
* sizeof(unsigned long);
1321 mix_pool_bytes(&input_pool
, buf
, rand_bytes
, NULL
);
1322 credit_entropy_bits(&input_pool
, rand_bytes
*4);
1329 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1336 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1338 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1341 trace_random_read(n
*8, (nbytes
-n
)*8,
1342 ENTROPY_BITS(&blocking_pool
),
1343 ENTROPY_BITS(&input_pool
));
1347 /* Pool is (near) empty. Maybe wait and retry. */
1349 /* First try an emergency refill */
1350 if (arch_random_refill())
1353 if (file
->f_flags
& O_NONBLOCK
)
1356 wait_event_interruptible(random_read_wait
,
1357 ENTROPY_BITS(&input_pool
) >=
1358 random_read_wakeup_bits
);
1359 if (signal_pending(current
))
1360 return -ERESTARTSYS
;
1365 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1369 if (unlikely(nonblocking_pool
.initialized
== 0))
1370 printk_once(KERN_NOTICE
"random: %s urandom read "
1371 "with %d bits of entropy available\n",
1372 current
->comm
, nonblocking_pool
.entropy_total
);
1374 ret
= extract_entropy_user(&nonblocking_pool
, buf
, nbytes
);
1376 trace_urandom_read(8 * nbytes
, ENTROPY_BITS(&nonblocking_pool
),
1377 ENTROPY_BITS(&input_pool
));
1382 random_poll(struct file
*file
, poll_table
* wait
)
1386 poll_wait(file
, &random_read_wait
, wait
);
1387 poll_wait(file
, &random_write_wait
, wait
);
1389 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1390 mask
|= POLLIN
| POLLRDNORM
;
1391 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1392 mask
|= POLLOUT
| POLLWRNORM
;
1397 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1401 const char __user
*p
= buffer
;
1404 bytes
= min(count
, sizeof(buf
));
1405 if (copy_from_user(&buf
, p
, bytes
))
1411 mix_pool_bytes(r
, buf
, bytes
, NULL
);
1418 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
1419 size_t count
, loff_t
*ppos
)
1423 ret
= write_pool(&blocking_pool
, buffer
, count
);
1426 ret
= write_pool(&nonblocking_pool
, buffer
, count
);
1430 return (ssize_t
)count
;
1433 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1435 int size
, ent_count
;
1436 int __user
*p
= (int __user
*)arg
;
1441 /* inherently racy, no point locking */
1442 ent_count
= ENTROPY_BITS(&input_pool
);
1443 if (put_user(ent_count
, p
))
1446 case RNDADDTOENTCNT
:
1447 if (!capable(CAP_SYS_ADMIN
))
1449 if (get_user(ent_count
, p
))
1451 credit_entropy_bits_safe(&input_pool
, ent_count
);
1454 if (!capable(CAP_SYS_ADMIN
))
1456 if (get_user(ent_count
, p
++))
1460 if (get_user(size
, p
++))
1462 retval
= write_pool(&input_pool
, (const char __user
*)p
,
1466 credit_entropy_bits_safe(&input_pool
, ent_count
);
1471 * Clear the entropy pool counters. We no longer clear
1472 * the entropy pool, as that's silly.
1474 if (!capable(CAP_SYS_ADMIN
))
1476 input_pool
.entropy_count
= 0;
1477 nonblocking_pool
.entropy_count
= 0;
1478 blocking_pool
.entropy_count
= 0;
1485 static int random_fasync(int fd
, struct file
*filp
, int on
)
1487 return fasync_helper(fd
, filp
, on
, &fasync
);
1490 const struct file_operations random_fops
= {
1491 .read
= random_read
,
1492 .write
= random_write
,
1493 .poll
= random_poll
,
1494 .unlocked_ioctl
= random_ioctl
,
1495 .fasync
= random_fasync
,
1496 .llseek
= noop_llseek
,
1499 const struct file_operations urandom_fops
= {
1500 .read
= urandom_read
,
1501 .write
= random_write
,
1502 .unlocked_ioctl
= random_ioctl
,
1503 .fasync
= random_fasync
,
1504 .llseek
= noop_llseek
,
1507 /***************************************************************
1508 * Random UUID interface
1510 * Used here for a Boot ID, but can be useful for other kernel
1512 ***************************************************************/
1515 * Generate random UUID
1517 void generate_random_uuid(unsigned char uuid_out
[16])
1519 get_random_bytes(uuid_out
, 16);
1520 /* Set UUID version to 4 --- truly random generation */
1521 uuid_out
[6] = (uuid_out
[6] & 0x0F) | 0x40;
1522 /* Set the UUID variant to DCE */
1523 uuid_out
[8] = (uuid_out
[8] & 0x3F) | 0x80;
1525 EXPORT_SYMBOL(generate_random_uuid
);
1527 /********************************************************************
1531 ********************************************************************/
1533 #ifdef CONFIG_SYSCTL
1535 #include <linux/sysctl.h>
1537 static int min_read_thresh
= 8, min_write_thresh
;
1538 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
1539 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
1540 static char sysctl_bootid
[16];
1543 * This function is used to return both the bootid UUID, and random
1544 * UUID. The difference is in whether table->data is NULL; if it is,
1545 * then a new UUID is generated and returned to the user.
1547 * If the user accesses this via the proc interface, the UUID will be
1548 * returned as an ASCII string in the standard UUID format; if via the
1549 * sysctl system call, as 16 bytes of binary data.
1551 static int proc_do_uuid(struct ctl_table
*table
, int write
,
1552 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1554 struct ctl_table fake_table
;
1555 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
1560 generate_random_uuid(uuid
);
1562 static DEFINE_SPINLOCK(bootid_spinlock
);
1564 spin_lock(&bootid_spinlock
);
1566 generate_random_uuid(uuid
);
1567 spin_unlock(&bootid_spinlock
);
1570 sprintf(buf
, "%pU", uuid
);
1572 fake_table
.data
= buf
;
1573 fake_table
.maxlen
= sizeof(buf
);
1575 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
1579 * Return entropy available scaled to integral bits
1581 static int proc_do_entropy(ctl_table
*table
, int write
,
1582 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1584 ctl_table fake_table
;
1587 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
1589 fake_table
.data
= &entropy_count
;
1590 fake_table
.maxlen
= sizeof(entropy_count
);
1592 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
1595 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
1596 extern struct ctl_table random_table
[];
1597 struct ctl_table random_table
[] = {
1599 .procname
= "poolsize",
1600 .data
= &sysctl_poolsize
,
1601 .maxlen
= sizeof(int),
1603 .proc_handler
= proc_dointvec
,
1606 .procname
= "entropy_avail",
1607 .maxlen
= sizeof(int),
1609 .proc_handler
= proc_do_entropy
,
1610 .data
= &input_pool
.entropy_count
,
1613 .procname
= "read_wakeup_threshold",
1614 .data
= &random_read_wakeup_bits
,
1615 .maxlen
= sizeof(int),
1617 .proc_handler
= proc_dointvec_minmax
,
1618 .extra1
= &min_read_thresh
,
1619 .extra2
= &max_read_thresh
,
1622 .procname
= "write_wakeup_threshold",
1623 .data
= &random_write_wakeup_bits
,
1624 .maxlen
= sizeof(int),
1626 .proc_handler
= proc_dointvec_minmax
,
1627 .extra1
= &min_write_thresh
,
1628 .extra2
= &max_write_thresh
,
1631 .procname
= "urandom_min_reseed_secs",
1632 .data
= &random_min_urandom_seed
,
1633 .maxlen
= sizeof(int),
1635 .proc_handler
= proc_dointvec
,
1638 .procname
= "boot_id",
1639 .data
= &sysctl_bootid
,
1642 .proc_handler
= proc_do_uuid
,
1648 .proc_handler
= proc_do_uuid
,
1652 #endif /* CONFIG_SYSCTL */
1654 static u32 random_int_secret
[MD5_MESSAGE_BYTES
/ 4] ____cacheline_aligned
;
1656 int random_int_secret_init(void)
1658 get_random_bytes(random_int_secret
, sizeof(random_int_secret
));
1663 * Get a random word for internal kernel use only. Similar to urandom but
1664 * with the goal of minimal entropy pool depletion. As a result, the random
1665 * value is not cryptographically secure but for several uses the cost of
1666 * depleting entropy is too high
1668 static DEFINE_PER_CPU(__u32
[MD5_DIGEST_WORDS
], get_random_int_hash
);
1669 unsigned int get_random_int(void)
1674 if (arch_get_random_int(&ret
))
1677 hash
= get_cpu_var(get_random_int_hash
);
1679 hash
[0] += current
->pid
+ jiffies
+ random_get_entropy();
1680 md5_transform(hash
, random_int_secret
);
1682 put_cpu_var(get_random_int_hash
);
1686 EXPORT_SYMBOL(get_random_int
);
1689 * randomize_range() returns a start address such that
1691 * [...... <range> .....]
1694 * a <range> with size "len" starting at the return value is inside in the
1695 * area defined by [start, end], but is otherwise randomized.
1698 randomize_range(unsigned long start
, unsigned long end
, unsigned long len
)
1700 unsigned long range
= end
- len
- start
;
1702 if (end
<= start
+ len
)
1704 return PAGE_ALIGN(get_random_int() % range
+ start
);