mm: Initialize error in shmem_file_aio_read()
[linux/fpc-iii.git] / drivers / mmc / card / block.c
blob452782bffebcfd5977a2935155cbe2b1e143f302
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
45 #include <asm/uaccess.h>
47 #include "queue.h"
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
66 (req->cmd_flags & REQ_META)) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
71 static DEFINE_MUTEX(block_mutex);
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
80 * We've only got one major, so number of mmcblk devices is
81 * limited to 256 / number of minors per device.
83 static int max_devices;
85 /* 256 minors, so at most 256 separate devices */
86 static DECLARE_BITMAP(dev_use, 256);
87 static DECLARE_BITMAP(name_use, 256);
90 * There is one mmc_blk_data per slot.
92 struct mmc_blk_data {
93 spinlock_t lock;
94 struct gendisk *disk;
95 struct mmc_queue queue;
96 struct list_head part;
98 unsigned int flags;
99 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
100 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
101 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
103 unsigned int usage;
104 unsigned int read_only;
105 unsigned int part_type;
106 unsigned int name_idx;
107 unsigned int reset_done;
108 #define MMC_BLK_READ BIT(0)
109 #define MMC_BLK_WRITE BIT(1)
110 #define MMC_BLK_DISCARD BIT(2)
111 #define MMC_BLK_SECDISCARD BIT(3)
114 * Only set in main mmc_blk_data associated
115 * with mmc_card with mmc_set_drvdata, and keeps
116 * track of the current selected device partition.
118 unsigned int part_curr;
119 struct device_attribute force_ro;
120 struct device_attribute power_ro_lock;
121 int area_type;
124 static DEFINE_MUTEX(open_lock);
126 enum {
127 MMC_PACKED_NR_IDX = -1,
128 MMC_PACKED_NR_ZERO,
129 MMC_PACKED_NR_SINGLE,
132 module_param(perdev_minors, int, 0444);
133 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
135 static inline int mmc_blk_part_switch(struct mmc_card *card,
136 struct mmc_blk_data *md);
137 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
139 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
141 struct mmc_packed *packed = mqrq->packed;
143 BUG_ON(!packed);
145 mqrq->cmd_type = MMC_PACKED_NONE;
146 packed->nr_entries = MMC_PACKED_NR_ZERO;
147 packed->idx_failure = MMC_PACKED_NR_IDX;
148 packed->retries = 0;
149 packed->blocks = 0;
152 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
154 struct mmc_blk_data *md;
156 mutex_lock(&open_lock);
157 md = disk->private_data;
158 if (md && md->usage == 0)
159 md = NULL;
160 if (md)
161 md->usage++;
162 mutex_unlock(&open_lock);
164 return md;
167 static inline int mmc_get_devidx(struct gendisk *disk)
169 int devmaj = MAJOR(disk_devt(disk));
170 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
172 if (!devmaj)
173 devidx = disk->first_minor / perdev_minors;
174 return devidx;
177 static void mmc_blk_put(struct mmc_blk_data *md)
179 mutex_lock(&open_lock);
180 md->usage--;
181 if (md->usage == 0) {
182 int devidx = mmc_get_devidx(md->disk);
183 blk_cleanup_queue(md->queue.queue);
185 __clear_bit(devidx, dev_use);
187 put_disk(md->disk);
188 kfree(md);
190 mutex_unlock(&open_lock);
193 static ssize_t power_ro_lock_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
196 int ret;
197 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
198 struct mmc_card *card = md->queue.card;
199 int locked = 0;
201 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
202 locked = 2;
203 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
204 locked = 1;
206 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
208 return ret;
211 static ssize_t power_ro_lock_store(struct device *dev,
212 struct device_attribute *attr, const char *buf, size_t count)
214 int ret;
215 struct mmc_blk_data *md, *part_md;
216 struct mmc_card *card;
217 unsigned long set;
219 if (kstrtoul(buf, 0, &set))
220 return -EINVAL;
222 if (set != 1)
223 return count;
225 md = mmc_blk_get(dev_to_disk(dev));
226 card = md->queue.card;
228 mmc_get_card(card);
230 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
231 card->ext_csd.boot_ro_lock |
232 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
233 card->ext_csd.part_time);
234 if (ret)
235 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
236 else
237 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
239 mmc_put_card(card);
241 if (!ret) {
242 pr_info("%s: Locking boot partition ro until next power on\n",
243 md->disk->disk_name);
244 set_disk_ro(md->disk, 1);
246 list_for_each_entry(part_md, &md->part, part)
247 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
248 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
249 set_disk_ro(part_md->disk, 1);
253 mmc_blk_put(md);
254 return count;
257 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
258 char *buf)
260 int ret;
261 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
263 ret = snprintf(buf, PAGE_SIZE, "%d",
264 get_disk_ro(dev_to_disk(dev)) ^
265 md->read_only);
266 mmc_blk_put(md);
267 return ret;
270 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
271 const char *buf, size_t count)
273 int ret;
274 char *end;
275 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 unsigned long set = simple_strtoul(buf, &end, 0);
277 if (end == buf) {
278 ret = -EINVAL;
279 goto out;
282 set_disk_ro(dev_to_disk(dev), set || md->read_only);
283 ret = count;
284 out:
285 mmc_blk_put(md);
286 return ret;
289 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
291 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
292 int ret = -ENXIO;
294 mutex_lock(&block_mutex);
295 if (md) {
296 if (md->usage == 2)
297 check_disk_change(bdev);
298 ret = 0;
300 if ((mode & FMODE_WRITE) && md->read_only) {
301 mmc_blk_put(md);
302 ret = -EROFS;
305 mutex_unlock(&block_mutex);
307 return ret;
310 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
312 struct mmc_blk_data *md = disk->private_data;
314 mutex_lock(&block_mutex);
315 mmc_blk_put(md);
316 mutex_unlock(&block_mutex);
319 static int
320 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
322 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
323 geo->heads = 4;
324 geo->sectors = 16;
325 return 0;
328 struct mmc_blk_ioc_data {
329 struct mmc_ioc_cmd ic;
330 unsigned char *buf;
331 u64 buf_bytes;
334 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user *user)
337 struct mmc_blk_ioc_data *idata;
338 int err;
340 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
341 if (!idata) {
342 err = -ENOMEM;
343 goto out;
346 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
347 err = -EFAULT;
348 goto idata_err;
351 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
352 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
353 err = -EOVERFLOW;
354 goto idata_err;
357 if (!idata->buf_bytes)
358 return idata;
360 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
361 if (!idata->buf) {
362 err = -ENOMEM;
363 goto idata_err;
366 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
367 idata->ic.data_ptr, idata->buf_bytes)) {
368 err = -EFAULT;
369 goto copy_err;
372 return idata;
374 copy_err:
375 kfree(idata->buf);
376 idata_err:
377 kfree(idata);
378 out:
379 return ERR_PTR(err);
382 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
383 u32 retries_max)
385 int err;
386 u32 retry_count = 0;
388 if (!status || !retries_max)
389 return -EINVAL;
391 do {
392 err = get_card_status(card, status, 5);
393 if (err)
394 break;
396 if (!R1_STATUS(*status) &&
397 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
398 break; /* RPMB programming operation complete */
401 * Rechedule to give the MMC device a chance to continue
402 * processing the previous command without being polled too
403 * frequently.
405 usleep_range(1000, 5000);
406 } while (++retry_count < retries_max);
408 if (retry_count == retries_max)
409 err = -EPERM;
411 return err;
414 static int ioctl_do_sanitize(struct mmc_card *card)
416 int err;
418 if (!mmc_can_sanitize(card)) {
419 pr_warn("%s: %s - SANITIZE is not supported\n",
420 mmc_hostname(card->host), __func__);
421 err = -EOPNOTSUPP;
422 goto out;
425 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
426 mmc_hostname(card->host), __func__);
428 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
429 EXT_CSD_SANITIZE_START, 1,
430 MMC_SANITIZE_REQ_TIMEOUT);
432 if (err)
433 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
434 mmc_hostname(card->host), __func__, err);
436 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
437 __func__);
438 out:
439 return err;
442 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
443 struct mmc_ioc_cmd __user *ic_ptr)
445 struct mmc_blk_ioc_data *idata;
446 struct mmc_blk_data *md;
447 struct mmc_card *card;
448 struct mmc_command cmd = {0};
449 struct mmc_data data = {0};
450 struct mmc_request mrq = {NULL};
451 struct scatterlist sg;
452 int err;
453 int is_rpmb = false;
454 u32 status = 0;
457 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
458 * whole block device, not on a partition. This prevents overspray
459 * between sibling partitions.
461 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
462 return -EPERM;
464 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
465 if (IS_ERR(idata))
466 return PTR_ERR(idata);
468 md = mmc_blk_get(bdev->bd_disk);
469 if (!md) {
470 err = -EINVAL;
471 goto cmd_err;
474 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
475 is_rpmb = true;
477 card = md->queue.card;
478 if (IS_ERR(card)) {
479 err = PTR_ERR(card);
480 goto cmd_done;
483 cmd.opcode = idata->ic.opcode;
484 cmd.arg = idata->ic.arg;
485 cmd.flags = idata->ic.flags;
487 if (idata->buf_bytes) {
488 data.sg = &sg;
489 data.sg_len = 1;
490 data.blksz = idata->ic.blksz;
491 data.blocks = idata->ic.blocks;
493 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
495 if (idata->ic.write_flag)
496 data.flags = MMC_DATA_WRITE;
497 else
498 data.flags = MMC_DATA_READ;
500 /* data.flags must already be set before doing this. */
501 mmc_set_data_timeout(&data, card);
503 /* Allow overriding the timeout_ns for empirical tuning. */
504 if (idata->ic.data_timeout_ns)
505 data.timeout_ns = idata->ic.data_timeout_ns;
507 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
509 * Pretend this is a data transfer and rely on the
510 * host driver to compute timeout. When all host
511 * drivers support cmd.cmd_timeout for R1B, this
512 * can be changed to:
514 * mrq.data = NULL;
515 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
517 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
520 mrq.data = &data;
523 mrq.cmd = &cmd;
525 mmc_get_card(card);
527 err = mmc_blk_part_switch(card, md);
528 if (err)
529 goto cmd_rel_host;
531 if (idata->ic.is_acmd) {
532 err = mmc_app_cmd(card->host, card);
533 if (err)
534 goto cmd_rel_host;
537 if (is_rpmb) {
538 err = mmc_set_blockcount(card, data.blocks,
539 idata->ic.write_flag & (1 << 31));
540 if (err)
541 goto cmd_rel_host;
544 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
545 (cmd.opcode == MMC_SWITCH)) {
546 err = ioctl_do_sanitize(card);
548 if (err)
549 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
550 __func__, err);
552 goto cmd_rel_host;
555 mmc_wait_for_req(card->host, &mrq);
557 if (cmd.error) {
558 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
559 __func__, cmd.error);
560 err = cmd.error;
561 goto cmd_rel_host;
563 if (data.error) {
564 dev_err(mmc_dev(card->host), "%s: data error %d\n",
565 __func__, data.error);
566 err = data.error;
567 goto cmd_rel_host;
571 * According to the SD specs, some commands require a delay after
572 * issuing the command.
574 if (idata->ic.postsleep_min_us)
575 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
577 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
578 err = -EFAULT;
579 goto cmd_rel_host;
582 if (!idata->ic.write_flag) {
583 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
584 idata->buf, idata->buf_bytes)) {
585 err = -EFAULT;
586 goto cmd_rel_host;
590 if (is_rpmb) {
592 * Ensure RPMB command has completed by polling CMD13
593 * "Send Status".
595 err = ioctl_rpmb_card_status_poll(card, &status, 5);
596 if (err)
597 dev_err(mmc_dev(card->host),
598 "%s: Card Status=0x%08X, error %d\n",
599 __func__, status, err);
602 cmd_rel_host:
603 mmc_put_card(card);
605 cmd_done:
606 mmc_blk_put(md);
607 cmd_err:
608 kfree(idata->buf);
609 kfree(idata);
610 return err;
613 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
614 unsigned int cmd, unsigned long arg)
616 int ret = -EINVAL;
617 if (cmd == MMC_IOC_CMD)
618 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
619 return ret;
622 #ifdef CONFIG_COMPAT
623 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
624 unsigned int cmd, unsigned long arg)
626 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
628 #endif
630 static const struct block_device_operations mmc_bdops = {
631 .open = mmc_blk_open,
632 .release = mmc_blk_release,
633 .getgeo = mmc_blk_getgeo,
634 .owner = THIS_MODULE,
635 .ioctl = mmc_blk_ioctl,
636 #ifdef CONFIG_COMPAT
637 .compat_ioctl = mmc_blk_compat_ioctl,
638 #endif
641 static inline int mmc_blk_part_switch(struct mmc_card *card,
642 struct mmc_blk_data *md)
644 int ret;
645 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
647 if (main_md->part_curr == md->part_type)
648 return 0;
650 if (mmc_card_mmc(card)) {
651 u8 part_config = card->ext_csd.part_config;
653 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
654 part_config |= md->part_type;
656 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
657 EXT_CSD_PART_CONFIG, part_config,
658 card->ext_csd.part_time);
659 if (ret)
660 return ret;
662 card->ext_csd.part_config = part_config;
665 main_md->part_curr = md->part_type;
666 return 0;
669 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
671 int err;
672 u32 result;
673 __be32 *blocks;
675 struct mmc_request mrq = {NULL};
676 struct mmc_command cmd = {0};
677 struct mmc_data data = {0};
679 struct scatterlist sg;
681 cmd.opcode = MMC_APP_CMD;
682 cmd.arg = card->rca << 16;
683 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
685 err = mmc_wait_for_cmd(card->host, &cmd, 0);
686 if (err)
687 return (u32)-1;
688 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
689 return (u32)-1;
691 memset(&cmd, 0, sizeof(struct mmc_command));
693 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
694 cmd.arg = 0;
695 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
697 data.blksz = 4;
698 data.blocks = 1;
699 data.flags = MMC_DATA_READ;
700 data.sg = &sg;
701 data.sg_len = 1;
702 mmc_set_data_timeout(&data, card);
704 mrq.cmd = &cmd;
705 mrq.data = &data;
707 blocks = kmalloc(4, GFP_KERNEL);
708 if (!blocks)
709 return (u32)-1;
711 sg_init_one(&sg, blocks, 4);
713 mmc_wait_for_req(card->host, &mrq);
715 result = ntohl(*blocks);
716 kfree(blocks);
718 if (cmd.error || data.error)
719 result = (u32)-1;
721 return result;
724 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
726 struct mmc_command cmd = {0};
727 int err;
729 cmd.opcode = MMC_SEND_STATUS;
730 if (!mmc_host_is_spi(card->host))
731 cmd.arg = card->rca << 16;
732 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
733 err = mmc_wait_for_cmd(card->host, &cmd, retries);
734 if (err == 0)
735 *status = cmd.resp[0];
736 return err;
739 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
740 bool hw_busy_detect, struct request *req, int *gen_err)
742 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
743 int err = 0;
744 u32 status;
746 do {
747 err = get_card_status(card, &status, 5);
748 if (err) {
749 pr_err("%s: error %d requesting status\n",
750 req->rq_disk->disk_name, err);
751 return err;
754 if (status & R1_ERROR) {
755 pr_err("%s: %s: error sending status cmd, status %#x\n",
756 req->rq_disk->disk_name, __func__, status);
757 *gen_err = 1;
760 /* We may rely on the host hw to handle busy detection.*/
761 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
762 hw_busy_detect)
763 break;
766 * Timeout if the device never becomes ready for data and never
767 * leaves the program state.
769 if (time_after(jiffies, timeout)) {
770 pr_err("%s: Card stuck in programming state! %s %s\n",
771 mmc_hostname(card->host),
772 req->rq_disk->disk_name, __func__);
773 return -ETIMEDOUT;
777 * Some cards mishandle the status bits,
778 * so make sure to check both the busy
779 * indication and the card state.
781 } while (!(status & R1_READY_FOR_DATA) ||
782 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
784 return err;
787 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
788 struct request *req, int *gen_err, u32 *stop_status)
790 struct mmc_host *host = card->host;
791 struct mmc_command cmd = {0};
792 int err;
793 bool use_r1b_resp = rq_data_dir(req) == WRITE;
796 * Normally we use R1B responses for WRITE, but in cases where the host
797 * has specified a max_busy_timeout we need to validate it. A failure
798 * means we need to prevent the host from doing hw busy detection, which
799 * is done by converting to a R1 response instead.
801 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
802 use_r1b_resp = false;
804 cmd.opcode = MMC_STOP_TRANSMISSION;
805 if (use_r1b_resp) {
806 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
807 cmd.busy_timeout = timeout_ms;
808 } else {
809 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
812 err = mmc_wait_for_cmd(host, &cmd, 5);
813 if (err)
814 return err;
816 *stop_status = cmd.resp[0];
818 /* No need to check card status in case of READ. */
819 if (rq_data_dir(req) == READ)
820 return 0;
822 if (!mmc_host_is_spi(host) &&
823 (*stop_status & R1_ERROR)) {
824 pr_err("%s: %s: general error sending stop command, resp %#x\n",
825 req->rq_disk->disk_name, __func__, *stop_status);
826 *gen_err = 1;
829 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
832 #define ERR_NOMEDIUM 3
833 #define ERR_RETRY 2
834 #define ERR_ABORT 1
835 #define ERR_CONTINUE 0
837 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
838 bool status_valid, u32 status)
840 switch (error) {
841 case -EILSEQ:
842 /* response crc error, retry the r/w cmd */
843 pr_err("%s: %s sending %s command, card status %#x\n",
844 req->rq_disk->disk_name, "response CRC error",
845 name, status);
846 return ERR_RETRY;
848 case -ETIMEDOUT:
849 pr_err("%s: %s sending %s command, card status %#x\n",
850 req->rq_disk->disk_name, "timed out", name, status);
852 /* If the status cmd initially failed, retry the r/w cmd */
853 if (!status_valid)
854 return ERR_RETRY;
857 * If it was a r/w cmd crc error, or illegal command
858 * (eg, issued in wrong state) then retry - we should
859 * have corrected the state problem above.
861 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
862 return ERR_RETRY;
864 /* Otherwise abort the command */
865 return ERR_ABORT;
867 default:
868 /* We don't understand the error code the driver gave us */
869 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
870 req->rq_disk->disk_name, error, status);
871 return ERR_ABORT;
876 * Initial r/w and stop cmd error recovery.
877 * We don't know whether the card received the r/w cmd or not, so try to
878 * restore things back to a sane state. Essentially, we do this as follows:
879 * - Obtain card status. If the first attempt to obtain card status fails,
880 * the status word will reflect the failed status cmd, not the failed
881 * r/w cmd. If we fail to obtain card status, it suggests we can no
882 * longer communicate with the card.
883 * - Check the card state. If the card received the cmd but there was a
884 * transient problem with the response, it might still be in a data transfer
885 * mode. Try to send it a stop command. If this fails, we can't recover.
886 * - If the r/w cmd failed due to a response CRC error, it was probably
887 * transient, so retry the cmd.
888 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
889 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
890 * illegal cmd, retry.
891 * Otherwise we don't understand what happened, so abort.
893 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
894 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
896 bool prev_cmd_status_valid = true;
897 u32 status, stop_status = 0;
898 int err, retry;
900 if (mmc_card_removed(card))
901 return ERR_NOMEDIUM;
904 * Try to get card status which indicates both the card state
905 * and why there was no response. If the first attempt fails,
906 * we can't be sure the returned status is for the r/w command.
908 for (retry = 2; retry >= 0; retry--) {
909 err = get_card_status(card, &status, 0);
910 if (!err)
911 break;
913 prev_cmd_status_valid = false;
914 pr_err("%s: error %d sending status command, %sing\n",
915 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
918 /* We couldn't get a response from the card. Give up. */
919 if (err) {
920 /* Check if the card is removed */
921 if (mmc_detect_card_removed(card->host))
922 return ERR_NOMEDIUM;
923 return ERR_ABORT;
926 /* Flag ECC errors */
927 if ((status & R1_CARD_ECC_FAILED) ||
928 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
929 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
930 *ecc_err = 1;
932 /* Flag General errors */
933 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
934 if ((status & R1_ERROR) ||
935 (brq->stop.resp[0] & R1_ERROR)) {
936 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
937 req->rq_disk->disk_name, __func__,
938 brq->stop.resp[0], status);
939 *gen_err = 1;
943 * Check the current card state. If it is in some data transfer
944 * mode, tell it to stop (and hopefully transition back to TRAN.)
946 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
947 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
948 err = send_stop(card,
949 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
950 req, gen_err, &stop_status);
951 if (err) {
952 pr_err("%s: error %d sending stop command\n",
953 req->rq_disk->disk_name, err);
955 * If the stop cmd also timed out, the card is probably
956 * not present, so abort. Other errors are bad news too.
958 return ERR_ABORT;
961 if (stop_status & R1_CARD_ECC_FAILED)
962 *ecc_err = 1;
965 /* Check for set block count errors */
966 if (brq->sbc.error)
967 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
968 prev_cmd_status_valid, status);
970 /* Check for r/w command errors */
971 if (brq->cmd.error)
972 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
973 prev_cmd_status_valid, status);
975 /* Data errors */
976 if (!brq->stop.error)
977 return ERR_CONTINUE;
979 /* Now for stop errors. These aren't fatal to the transfer. */
980 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
981 req->rq_disk->disk_name, brq->stop.error,
982 brq->cmd.resp[0], status);
985 * Subsitute in our own stop status as this will give the error
986 * state which happened during the execution of the r/w command.
988 if (stop_status) {
989 brq->stop.resp[0] = stop_status;
990 brq->stop.error = 0;
992 return ERR_CONTINUE;
995 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
996 int type)
998 int err;
1000 if (md->reset_done & type)
1001 return -EEXIST;
1003 md->reset_done |= type;
1004 err = mmc_hw_reset(host);
1005 /* Ensure we switch back to the correct partition */
1006 if (err != -EOPNOTSUPP) {
1007 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
1008 int part_err;
1010 main_md->part_curr = main_md->part_type;
1011 part_err = mmc_blk_part_switch(host->card, md);
1012 if (part_err) {
1014 * We have failed to get back into the correct
1015 * partition, so we need to abort the whole request.
1017 return -ENODEV;
1020 return err;
1023 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1025 md->reset_done &= ~type;
1028 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1030 struct mmc_blk_data *md = mq->data;
1031 struct mmc_card *card = md->queue.card;
1032 unsigned int from, nr, arg;
1033 int err = 0, type = MMC_BLK_DISCARD;
1035 if (!mmc_can_erase(card)) {
1036 err = -EOPNOTSUPP;
1037 goto out;
1040 from = blk_rq_pos(req);
1041 nr = blk_rq_sectors(req);
1043 if (mmc_can_discard(card))
1044 arg = MMC_DISCARD_ARG;
1045 else if (mmc_can_trim(card))
1046 arg = MMC_TRIM_ARG;
1047 else
1048 arg = MMC_ERASE_ARG;
1049 retry:
1050 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1051 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1052 INAND_CMD38_ARG_EXT_CSD,
1053 arg == MMC_TRIM_ARG ?
1054 INAND_CMD38_ARG_TRIM :
1055 INAND_CMD38_ARG_ERASE,
1057 if (err)
1058 goto out;
1060 err = mmc_erase(card, from, nr, arg);
1061 out:
1062 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1063 goto retry;
1064 if (!err)
1065 mmc_blk_reset_success(md, type);
1066 blk_end_request(req, err, blk_rq_bytes(req));
1068 return err ? 0 : 1;
1071 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1072 struct request *req)
1074 struct mmc_blk_data *md = mq->data;
1075 struct mmc_card *card = md->queue.card;
1076 unsigned int from, nr, arg;
1077 int err = 0, type = MMC_BLK_SECDISCARD;
1079 if (!(mmc_can_secure_erase_trim(card))) {
1080 err = -EOPNOTSUPP;
1081 goto out;
1084 from = blk_rq_pos(req);
1085 nr = blk_rq_sectors(req);
1087 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1088 arg = MMC_SECURE_TRIM1_ARG;
1089 else
1090 arg = MMC_SECURE_ERASE_ARG;
1092 retry:
1093 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1094 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1095 INAND_CMD38_ARG_EXT_CSD,
1096 arg == MMC_SECURE_TRIM1_ARG ?
1097 INAND_CMD38_ARG_SECTRIM1 :
1098 INAND_CMD38_ARG_SECERASE,
1100 if (err)
1101 goto out_retry;
1104 err = mmc_erase(card, from, nr, arg);
1105 if (err == -EIO)
1106 goto out_retry;
1107 if (err)
1108 goto out;
1110 if (arg == MMC_SECURE_TRIM1_ARG) {
1111 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1112 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1113 INAND_CMD38_ARG_EXT_CSD,
1114 INAND_CMD38_ARG_SECTRIM2,
1116 if (err)
1117 goto out_retry;
1120 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1121 if (err == -EIO)
1122 goto out_retry;
1123 if (err)
1124 goto out;
1127 out_retry:
1128 if (err && !mmc_blk_reset(md, card->host, type))
1129 goto retry;
1130 if (!err)
1131 mmc_blk_reset_success(md, type);
1132 out:
1133 blk_end_request(req, err, blk_rq_bytes(req));
1135 return err ? 0 : 1;
1138 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1140 struct mmc_blk_data *md = mq->data;
1141 struct mmc_card *card = md->queue.card;
1142 int ret = 0;
1144 ret = mmc_flush_cache(card);
1145 if (ret)
1146 ret = -EIO;
1148 blk_end_request_all(req, ret);
1150 return ret ? 0 : 1;
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1160 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161 struct mmc_card *card,
1162 struct request *req)
1164 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165 /* Legacy mode imposes restrictions on transfers. */
1166 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1167 brq->data.blocks = 1;
1169 if (brq->data.blocks > card->ext_csd.rel_sectors)
1170 brq->data.blocks = card->ext_csd.rel_sectors;
1171 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172 brq->data.blocks = 1;
1176 #define CMD_ERRORS \
1177 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1178 R1_ADDRESS_ERROR | /* Misaligned address */ \
1179 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1180 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1181 R1_CC_ERROR | /* Card controller error */ \
1182 R1_ERROR) /* General/unknown error */
1184 static int mmc_blk_err_check(struct mmc_card *card,
1185 struct mmc_async_req *areq)
1187 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1188 mmc_active);
1189 struct mmc_blk_request *brq = &mq_mrq->brq;
1190 struct request *req = mq_mrq->req;
1191 int ecc_err = 0, gen_err = 0;
1194 * sbc.error indicates a problem with the set block count
1195 * command. No data will have been transferred.
1197 * cmd.error indicates a problem with the r/w command. No
1198 * data will have been transferred.
1200 * stop.error indicates a problem with the stop command. Data
1201 * may have been transferred, or may still be transferring.
1203 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1204 brq->data.error) {
1205 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1206 case ERR_RETRY:
1207 return MMC_BLK_RETRY;
1208 case ERR_ABORT:
1209 return MMC_BLK_ABORT;
1210 case ERR_NOMEDIUM:
1211 return MMC_BLK_NOMEDIUM;
1212 case ERR_CONTINUE:
1213 break;
1218 * Check for errors relating to the execution of the
1219 * initial command - such as address errors. No data
1220 * has been transferred.
1222 if (brq->cmd.resp[0] & CMD_ERRORS) {
1223 pr_err("%s: r/w command failed, status = %#x\n",
1224 req->rq_disk->disk_name, brq->cmd.resp[0]);
1225 return MMC_BLK_ABORT;
1229 * Everything else is either success, or a data error of some
1230 * kind. If it was a write, we may have transitioned to
1231 * program mode, which we have to wait for it to complete.
1233 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1234 int err;
1236 /* Check stop command response */
1237 if (brq->stop.resp[0] & R1_ERROR) {
1238 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1239 req->rq_disk->disk_name, __func__,
1240 brq->stop.resp[0]);
1241 gen_err = 1;
1244 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1245 &gen_err);
1246 if (err)
1247 return MMC_BLK_CMD_ERR;
1250 /* if general error occurs, retry the write operation. */
1251 if (gen_err) {
1252 pr_warn("%s: retrying write for general error\n",
1253 req->rq_disk->disk_name);
1254 return MMC_BLK_RETRY;
1257 if (brq->data.error) {
1258 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1259 req->rq_disk->disk_name, brq->data.error,
1260 (unsigned)blk_rq_pos(req),
1261 (unsigned)blk_rq_sectors(req),
1262 brq->cmd.resp[0], brq->stop.resp[0]);
1264 if (rq_data_dir(req) == READ) {
1265 if (ecc_err)
1266 return MMC_BLK_ECC_ERR;
1267 return MMC_BLK_DATA_ERR;
1268 } else {
1269 return MMC_BLK_CMD_ERR;
1273 if (!brq->data.bytes_xfered)
1274 return MMC_BLK_RETRY;
1276 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1277 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1278 return MMC_BLK_PARTIAL;
1279 else
1280 return MMC_BLK_SUCCESS;
1283 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1284 return MMC_BLK_PARTIAL;
1286 return MMC_BLK_SUCCESS;
1289 static int mmc_blk_packed_err_check(struct mmc_card *card,
1290 struct mmc_async_req *areq)
1292 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1293 mmc_active);
1294 struct request *req = mq_rq->req;
1295 struct mmc_packed *packed = mq_rq->packed;
1296 int err, check, status;
1297 u8 *ext_csd;
1299 BUG_ON(!packed);
1301 packed->retries--;
1302 check = mmc_blk_err_check(card, areq);
1303 err = get_card_status(card, &status, 0);
1304 if (err) {
1305 pr_err("%s: error %d sending status command\n",
1306 req->rq_disk->disk_name, err);
1307 return MMC_BLK_ABORT;
1310 if (status & R1_EXCEPTION_EVENT) {
1311 ext_csd = kzalloc(512, GFP_KERNEL);
1312 if (!ext_csd) {
1313 pr_err("%s: unable to allocate buffer for ext_csd\n",
1314 req->rq_disk->disk_name);
1315 return -ENOMEM;
1318 err = mmc_send_ext_csd(card, ext_csd);
1319 if (err) {
1320 pr_err("%s: error %d sending ext_csd\n",
1321 req->rq_disk->disk_name, err);
1322 check = MMC_BLK_ABORT;
1323 goto free;
1326 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1327 EXT_CSD_PACKED_FAILURE) &&
1328 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1329 EXT_CSD_PACKED_GENERIC_ERROR)) {
1330 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1331 EXT_CSD_PACKED_INDEXED_ERROR) {
1332 packed->idx_failure =
1333 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1334 check = MMC_BLK_PARTIAL;
1336 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1337 "failure index: %d\n",
1338 req->rq_disk->disk_name, packed->nr_entries,
1339 packed->blocks, packed->idx_failure);
1341 free:
1342 kfree(ext_csd);
1345 return check;
1348 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1349 struct mmc_card *card,
1350 int disable_multi,
1351 struct mmc_queue *mq)
1353 u32 readcmd, writecmd;
1354 struct mmc_blk_request *brq = &mqrq->brq;
1355 struct request *req = mqrq->req;
1356 struct mmc_blk_data *md = mq->data;
1357 bool do_data_tag;
1360 * Reliable writes are used to implement Forced Unit Access and
1361 * REQ_META accesses, and are supported only on MMCs.
1363 * XXX: this really needs a good explanation of why REQ_META
1364 * is treated special.
1366 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1367 (req->cmd_flags & REQ_META)) &&
1368 (rq_data_dir(req) == WRITE) &&
1369 (md->flags & MMC_BLK_REL_WR);
1371 memset(brq, 0, sizeof(struct mmc_blk_request));
1372 brq->mrq.cmd = &brq->cmd;
1373 brq->mrq.data = &brq->data;
1375 brq->cmd.arg = blk_rq_pos(req);
1376 if (!mmc_card_blockaddr(card))
1377 brq->cmd.arg <<= 9;
1378 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1379 brq->data.blksz = 512;
1380 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1381 brq->stop.arg = 0;
1382 brq->data.blocks = blk_rq_sectors(req);
1385 * The block layer doesn't support all sector count
1386 * restrictions, so we need to be prepared for too big
1387 * requests.
1389 if (brq->data.blocks > card->host->max_blk_count)
1390 brq->data.blocks = card->host->max_blk_count;
1392 if (brq->data.blocks > 1) {
1394 * After a read error, we redo the request one sector
1395 * at a time in order to accurately determine which
1396 * sectors can be read successfully.
1398 if (disable_multi)
1399 brq->data.blocks = 1;
1401 /* Some controllers can't do multiblock reads due to hw bugs */
1402 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1403 rq_data_dir(req) == READ)
1404 brq->data.blocks = 1;
1407 if (brq->data.blocks > 1 || do_rel_wr) {
1408 /* SPI multiblock writes terminate using a special
1409 * token, not a STOP_TRANSMISSION request.
1411 if (!mmc_host_is_spi(card->host) ||
1412 rq_data_dir(req) == READ)
1413 brq->mrq.stop = &brq->stop;
1414 readcmd = MMC_READ_MULTIPLE_BLOCK;
1415 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1416 } else {
1417 brq->mrq.stop = NULL;
1418 readcmd = MMC_READ_SINGLE_BLOCK;
1419 writecmd = MMC_WRITE_BLOCK;
1421 if (rq_data_dir(req) == READ) {
1422 brq->cmd.opcode = readcmd;
1423 brq->data.flags |= MMC_DATA_READ;
1424 if (brq->mrq.stop)
1425 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1426 MMC_CMD_AC;
1427 } else {
1428 brq->cmd.opcode = writecmd;
1429 brq->data.flags |= MMC_DATA_WRITE;
1430 if (brq->mrq.stop)
1431 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1432 MMC_CMD_AC;
1435 if (do_rel_wr)
1436 mmc_apply_rel_rw(brq, card, req);
1439 * Data tag is used only during writing meta data to speed
1440 * up write and any subsequent read of this meta data
1442 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1443 (req->cmd_flags & REQ_META) &&
1444 (rq_data_dir(req) == WRITE) &&
1445 ((brq->data.blocks * brq->data.blksz) >=
1446 card->ext_csd.data_tag_unit_size);
1449 * Pre-defined multi-block transfers are preferable to
1450 * open ended-ones (and necessary for reliable writes).
1451 * However, it is not sufficient to just send CMD23,
1452 * and avoid the final CMD12, as on an error condition
1453 * CMD12 (stop) needs to be sent anyway. This, coupled
1454 * with Auto-CMD23 enhancements provided by some
1455 * hosts, means that the complexity of dealing
1456 * with this is best left to the host. If CMD23 is
1457 * supported by card and host, we'll fill sbc in and let
1458 * the host deal with handling it correctly. This means
1459 * that for hosts that don't expose MMC_CAP_CMD23, no
1460 * change of behavior will be observed.
1462 * N.B: Some MMC cards experience perf degradation.
1463 * We'll avoid using CMD23-bounded multiblock writes for
1464 * these, while retaining features like reliable writes.
1466 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1467 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1468 do_data_tag)) {
1469 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1470 brq->sbc.arg = brq->data.blocks |
1471 (do_rel_wr ? (1 << 31) : 0) |
1472 (do_data_tag ? (1 << 29) : 0);
1473 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1474 brq->mrq.sbc = &brq->sbc;
1477 mmc_set_data_timeout(&brq->data, card);
1479 brq->data.sg = mqrq->sg;
1480 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1483 * Adjust the sg list so it is the same size as the
1484 * request.
1486 if (brq->data.blocks != blk_rq_sectors(req)) {
1487 int i, data_size = brq->data.blocks << 9;
1488 struct scatterlist *sg;
1490 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1491 data_size -= sg->length;
1492 if (data_size <= 0) {
1493 sg->length += data_size;
1494 i++;
1495 break;
1498 brq->data.sg_len = i;
1501 mqrq->mmc_active.mrq = &brq->mrq;
1502 mqrq->mmc_active.err_check = mmc_blk_err_check;
1504 mmc_queue_bounce_pre(mqrq);
1507 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1508 struct mmc_card *card)
1510 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1511 unsigned int max_seg_sz = queue_max_segment_size(q);
1512 unsigned int len, nr_segs = 0;
1514 do {
1515 len = min(hdr_sz, max_seg_sz);
1516 hdr_sz -= len;
1517 nr_segs++;
1518 } while (hdr_sz);
1520 return nr_segs;
1523 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1525 struct request_queue *q = mq->queue;
1526 struct mmc_card *card = mq->card;
1527 struct request *cur = req, *next = NULL;
1528 struct mmc_blk_data *md = mq->data;
1529 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1530 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1531 unsigned int req_sectors = 0, phys_segments = 0;
1532 unsigned int max_blk_count, max_phys_segs;
1533 bool put_back = true;
1534 u8 max_packed_rw = 0;
1535 u8 reqs = 0;
1537 if (!(md->flags & MMC_BLK_PACKED_CMD))
1538 goto no_packed;
1540 if ((rq_data_dir(cur) == WRITE) &&
1541 mmc_host_packed_wr(card->host))
1542 max_packed_rw = card->ext_csd.max_packed_writes;
1544 if (max_packed_rw == 0)
1545 goto no_packed;
1547 if (mmc_req_rel_wr(cur) &&
1548 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1549 goto no_packed;
1551 if (mmc_large_sector(card) &&
1552 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1553 goto no_packed;
1555 mmc_blk_clear_packed(mqrq);
1557 max_blk_count = min(card->host->max_blk_count,
1558 card->host->max_req_size >> 9);
1559 if (unlikely(max_blk_count > 0xffff))
1560 max_blk_count = 0xffff;
1562 max_phys_segs = queue_max_segments(q);
1563 req_sectors += blk_rq_sectors(cur);
1564 phys_segments += cur->nr_phys_segments;
1566 if (rq_data_dir(cur) == WRITE) {
1567 req_sectors += mmc_large_sector(card) ? 8 : 1;
1568 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1571 do {
1572 if (reqs >= max_packed_rw - 1) {
1573 put_back = false;
1574 break;
1577 spin_lock_irq(q->queue_lock);
1578 next = blk_fetch_request(q);
1579 spin_unlock_irq(q->queue_lock);
1580 if (!next) {
1581 put_back = false;
1582 break;
1585 if (mmc_large_sector(card) &&
1586 !IS_ALIGNED(blk_rq_sectors(next), 8))
1587 break;
1589 if (next->cmd_flags & REQ_DISCARD ||
1590 next->cmd_flags & REQ_FLUSH)
1591 break;
1593 if (rq_data_dir(cur) != rq_data_dir(next))
1594 break;
1596 if (mmc_req_rel_wr(next) &&
1597 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1598 break;
1600 req_sectors += blk_rq_sectors(next);
1601 if (req_sectors > max_blk_count)
1602 break;
1604 phys_segments += next->nr_phys_segments;
1605 if (phys_segments > max_phys_segs)
1606 break;
1608 list_add_tail(&next->queuelist, &mqrq->packed->list);
1609 cur = next;
1610 reqs++;
1611 } while (1);
1613 if (put_back) {
1614 spin_lock_irq(q->queue_lock);
1615 blk_requeue_request(q, next);
1616 spin_unlock_irq(q->queue_lock);
1619 if (reqs > 0) {
1620 list_add(&req->queuelist, &mqrq->packed->list);
1621 mqrq->packed->nr_entries = ++reqs;
1622 mqrq->packed->retries = reqs;
1623 return reqs;
1626 no_packed:
1627 mqrq->cmd_type = MMC_PACKED_NONE;
1628 return 0;
1631 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1632 struct mmc_card *card,
1633 struct mmc_queue *mq)
1635 struct mmc_blk_request *brq = &mqrq->brq;
1636 struct request *req = mqrq->req;
1637 struct request *prq;
1638 struct mmc_blk_data *md = mq->data;
1639 struct mmc_packed *packed = mqrq->packed;
1640 bool do_rel_wr, do_data_tag;
1641 u32 *packed_cmd_hdr;
1642 u8 hdr_blocks;
1643 u8 i = 1;
1645 BUG_ON(!packed);
1647 mqrq->cmd_type = MMC_PACKED_WRITE;
1648 packed->blocks = 0;
1649 packed->idx_failure = MMC_PACKED_NR_IDX;
1651 packed_cmd_hdr = packed->cmd_hdr;
1652 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1653 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1654 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1655 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1658 * Argument for each entry of packed group
1660 list_for_each_entry(prq, &packed->list, queuelist) {
1661 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1662 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1663 (prq->cmd_flags & REQ_META) &&
1664 (rq_data_dir(prq) == WRITE) &&
1665 ((brq->data.blocks * brq->data.blksz) >=
1666 card->ext_csd.data_tag_unit_size);
1667 /* Argument of CMD23 */
1668 packed_cmd_hdr[(i * 2)] =
1669 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1670 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1671 blk_rq_sectors(prq);
1672 /* Argument of CMD18 or CMD25 */
1673 packed_cmd_hdr[((i * 2)) + 1] =
1674 mmc_card_blockaddr(card) ?
1675 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1676 packed->blocks += blk_rq_sectors(prq);
1677 i++;
1680 memset(brq, 0, sizeof(struct mmc_blk_request));
1681 brq->mrq.cmd = &brq->cmd;
1682 brq->mrq.data = &brq->data;
1683 brq->mrq.sbc = &brq->sbc;
1684 brq->mrq.stop = &brq->stop;
1686 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1687 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1688 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1690 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1691 brq->cmd.arg = blk_rq_pos(req);
1692 if (!mmc_card_blockaddr(card))
1693 brq->cmd.arg <<= 9;
1694 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1696 brq->data.blksz = 512;
1697 brq->data.blocks = packed->blocks + hdr_blocks;
1698 brq->data.flags |= MMC_DATA_WRITE;
1700 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1701 brq->stop.arg = 0;
1702 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1704 mmc_set_data_timeout(&brq->data, card);
1706 brq->data.sg = mqrq->sg;
1707 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1709 mqrq->mmc_active.mrq = &brq->mrq;
1710 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1712 mmc_queue_bounce_pre(mqrq);
1715 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1716 struct mmc_blk_request *brq, struct request *req,
1717 int ret)
1719 struct mmc_queue_req *mq_rq;
1720 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1723 * If this is an SD card and we're writing, we can first
1724 * mark the known good sectors as ok.
1726 * If the card is not SD, we can still ok written sectors
1727 * as reported by the controller (which might be less than
1728 * the real number of written sectors, but never more).
1730 if (mmc_card_sd(card)) {
1731 u32 blocks;
1733 blocks = mmc_sd_num_wr_blocks(card);
1734 if (blocks != (u32)-1) {
1735 ret = blk_end_request(req, 0, blocks << 9);
1737 } else {
1738 if (!mmc_packed_cmd(mq_rq->cmd_type))
1739 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1741 return ret;
1744 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1746 struct request *prq;
1747 struct mmc_packed *packed = mq_rq->packed;
1748 int idx = packed->idx_failure, i = 0;
1749 int ret = 0;
1751 BUG_ON(!packed);
1753 while (!list_empty(&packed->list)) {
1754 prq = list_entry_rq(packed->list.next);
1755 if (idx == i) {
1756 /* retry from error index */
1757 packed->nr_entries -= idx;
1758 mq_rq->req = prq;
1759 ret = 1;
1761 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1762 list_del_init(&prq->queuelist);
1763 mmc_blk_clear_packed(mq_rq);
1765 return ret;
1767 list_del_init(&prq->queuelist);
1768 blk_end_request(prq, 0, blk_rq_bytes(prq));
1769 i++;
1772 mmc_blk_clear_packed(mq_rq);
1773 return ret;
1776 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1778 struct request *prq;
1779 struct mmc_packed *packed = mq_rq->packed;
1781 BUG_ON(!packed);
1783 while (!list_empty(&packed->list)) {
1784 prq = list_entry_rq(packed->list.next);
1785 list_del_init(&prq->queuelist);
1786 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1789 mmc_blk_clear_packed(mq_rq);
1792 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1793 struct mmc_queue_req *mq_rq)
1795 struct request *prq;
1796 struct request_queue *q = mq->queue;
1797 struct mmc_packed *packed = mq_rq->packed;
1799 BUG_ON(!packed);
1801 while (!list_empty(&packed->list)) {
1802 prq = list_entry_rq(packed->list.prev);
1803 if (prq->queuelist.prev != &packed->list) {
1804 list_del_init(&prq->queuelist);
1805 spin_lock_irq(q->queue_lock);
1806 blk_requeue_request(mq->queue, prq);
1807 spin_unlock_irq(q->queue_lock);
1808 } else {
1809 list_del_init(&prq->queuelist);
1813 mmc_blk_clear_packed(mq_rq);
1816 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1818 struct mmc_blk_data *md = mq->data;
1819 struct mmc_card *card = md->queue.card;
1820 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1821 int ret = 1, disable_multi = 0, retry = 0, type;
1822 enum mmc_blk_status status;
1823 struct mmc_queue_req *mq_rq;
1824 struct request *req = rqc;
1825 struct mmc_async_req *areq;
1826 const u8 packed_nr = 2;
1827 u8 reqs = 0;
1829 if (!rqc && !mq->mqrq_prev->req)
1830 return 0;
1832 if (rqc)
1833 reqs = mmc_blk_prep_packed_list(mq, rqc);
1835 do {
1836 if (rqc) {
1838 * When 4KB native sector is enabled, only 8 blocks
1839 * multiple read or write is allowed
1841 if ((brq->data.blocks & 0x07) &&
1842 (card->ext_csd.data_sector_size == 4096)) {
1843 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1844 req->rq_disk->disk_name);
1845 mq_rq = mq->mqrq_cur;
1846 goto cmd_abort;
1849 if (reqs >= packed_nr)
1850 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1851 card, mq);
1852 else
1853 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1854 areq = &mq->mqrq_cur->mmc_active;
1855 } else
1856 areq = NULL;
1857 areq = mmc_start_req(card->host, areq, (int *) &status);
1858 if (!areq) {
1859 if (status == MMC_BLK_NEW_REQUEST)
1860 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1861 return 0;
1864 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1865 brq = &mq_rq->brq;
1866 req = mq_rq->req;
1867 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1868 mmc_queue_bounce_post(mq_rq);
1870 switch (status) {
1871 case MMC_BLK_SUCCESS:
1872 case MMC_BLK_PARTIAL:
1874 * A block was successfully transferred.
1876 mmc_blk_reset_success(md, type);
1878 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1879 ret = mmc_blk_end_packed_req(mq_rq);
1880 break;
1881 } else {
1882 ret = blk_end_request(req, 0,
1883 brq->data.bytes_xfered);
1887 * If the blk_end_request function returns non-zero even
1888 * though all data has been transferred and no errors
1889 * were returned by the host controller, it's a bug.
1891 if (status == MMC_BLK_SUCCESS && ret) {
1892 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1893 __func__, blk_rq_bytes(req),
1894 brq->data.bytes_xfered);
1895 rqc = NULL;
1896 goto cmd_abort;
1898 break;
1899 case MMC_BLK_CMD_ERR:
1900 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1901 if (!mmc_blk_reset(md, card->host, type))
1902 break;
1903 goto cmd_abort;
1904 case MMC_BLK_RETRY:
1905 if (retry++ < 5)
1906 break;
1907 /* Fall through */
1908 case MMC_BLK_ABORT:
1909 if (!mmc_blk_reset(md, card->host, type))
1910 break;
1911 goto cmd_abort;
1912 case MMC_BLK_DATA_ERR: {
1913 int err;
1915 err = mmc_blk_reset(md, card->host, type);
1916 if (!err)
1917 break;
1918 if (err == -ENODEV ||
1919 mmc_packed_cmd(mq_rq->cmd_type))
1920 goto cmd_abort;
1921 /* Fall through */
1923 case MMC_BLK_ECC_ERR:
1924 if (brq->data.blocks > 1) {
1925 /* Redo read one sector at a time */
1926 pr_warning("%s: retrying using single block read\n",
1927 req->rq_disk->disk_name);
1928 disable_multi = 1;
1929 break;
1932 * After an error, we redo I/O one sector at a
1933 * time, so we only reach here after trying to
1934 * read a single sector.
1936 ret = blk_end_request(req, -EIO,
1937 brq->data.blksz);
1938 if (!ret)
1939 goto start_new_req;
1940 break;
1941 case MMC_BLK_NOMEDIUM:
1942 goto cmd_abort;
1943 default:
1944 pr_err("%s: Unhandled return value (%d)",
1945 req->rq_disk->disk_name, status);
1946 goto cmd_abort;
1949 if (ret) {
1950 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1951 if (!mq_rq->packed->retries)
1952 goto cmd_abort;
1953 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
1954 mmc_start_req(card->host,
1955 &mq_rq->mmc_active, NULL);
1956 } else {
1959 * In case of a incomplete request
1960 * prepare it again and resend.
1962 mmc_blk_rw_rq_prep(mq_rq, card,
1963 disable_multi, mq);
1964 mmc_start_req(card->host,
1965 &mq_rq->mmc_active, NULL);
1968 } while (ret);
1970 return 1;
1972 cmd_abort:
1973 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1974 mmc_blk_abort_packed_req(mq_rq);
1975 } else {
1976 if (mmc_card_removed(card))
1977 req->cmd_flags |= REQ_QUIET;
1978 while (ret)
1979 ret = blk_end_request(req, -EIO,
1980 blk_rq_cur_bytes(req));
1983 start_new_req:
1984 if (rqc) {
1985 if (mmc_card_removed(card)) {
1986 rqc->cmd_flags |= REQ_QUIET;
1987 blk_end_request_all(rqc, -EIO);
1988 } else {
1990 * If current request is packed, it needs to put back.
1992 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
1993 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
1995 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1996 mmc_start_req(card->host,
1997 &mq->mqrq_cur->mmc_active, NULL);
2001 return 0;
2004 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2006 int ret;
2007 struct mmc_blk_data *md = mq->data;
2008 struct mmc_card *card = md->queue.card;
2009 struct mmc_host *host = card->host;
2010 unsigned long flags;
2011 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2013 if (req && !mq->mqrq_prev->req)
2014 /* claim host only for the first request */
2015 mmc_get_card(card);
2017 ret = mmc_blk_part_switch(card, md);
2018 if (ret) {
2019 if (req) {
2020 blk_end_request_all(req, -EIO);
2022 ret = 0;
2023 goto out;
2026 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2027 if (cmd_flags & REQ_DISCARD) {
2028 /* complete ongoing async transfer before issuing discard */
2029 if (card->host->areq)
2030 mmc_blk_issue_rw_rq(mq, NULL);
2031 if (req->cmd_flags & REQ_SECURE &&
2032 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2033 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2034 else
2035 ret = mmc_blk_issue_discard_rq(mq, req);
2036 } else if (cmd_flags & REQ_FLUSH) {
2037 /* complete ongoing async transfer before issuing flush */
2038 if (card->host->areq)
2039 mmc_blk_issue_rw_rq(mq, NULL);
2040 ret = mmc_blk_issue_flush(mq, req);
2041 } else {
2042 if (!req && host->areq) {
2043 spin_lock_irqsave(&host->context_info.lock, flags);
2044 host->context_info.is_waiting_last_req = true;
2045 spin_unlock_irqrestore(&host->context_info.lock, flags);
2047 ret = mmc_blk_issue_rw_rq(mq, req);
2050 out:
2051 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2052 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2054 * Release host when there are no more requests
2055 * and after special request(discard, flush) is done.
2056 * In case sepecial request, there is no reentry to
2057 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2059 mmc_put_card(card);
2060 return ret;
2063 static inline int mmc_blk_readonly(struct mmc_card *card)
2065 return mmc_card_readonly(card) ||
2066 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2069 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2070 struct device *parent,
2071 sector_t size,
2072 bool default_ro,
2073 const char *subname,
2074 int area_type)
2076 struct mmc_blk_data *md;
2077 int devidx, ret;
2079 devidx = find_first_zero_bit(dev_use, max_devices);
2080 if (devidx >= max_devices)
2081 return ERR_PTR(-ENOSPC);
2082 __set_bit(devidx, dev_use);
2084 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2085 if (!md) {
2086 ret = -ENOMEM;
2087 goto out;
2091 * !subname implies we are creating main mmc_blk_data that will be
2092 * associated with mmc_card with mmc_set_drvdata. Due to device
2093 * partitions, devidx will not coincide with a per-physical card
2094 * index anymore so we keep track of a name index.
2096 if (!subname) {
2097 md->name_idx = find_first_zero_bit(name_use, max_devices);
2098 __set_bit(md->name_idx, name_use);
2099 } else
2100 md->name_idx = ((struct mmc_blk_data *)
2101 dev_to_disk(parent)->private_data)->name_idx;
2103 md->area_type = area_type;
2106 * Set the read-only status based on the supported commands
2107 * and the write protect switch.
2109 md->read_only = mmc_blk_readonly(card);
2111 md->disk = alloc_disk(perdev_minors);
2112 if (md->disk == NULL) {
2113 ret = -ENOMEM;
2114 goto err_kfree;
2117 spin_lock_init(&md->lock);
2118 INIT_LIST_HEAD(&md->part);
2119 md->usage = 1;
2121 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2122 if (ret)
2123 goto err_putdisk;
2125 md->queue.issue_fn = mmc_blk_issue_rq;
2126 md->queue.data = md;
2128 md->disk->major = MMC_BLOCK_MAJOR;
2129 md->disk->first_minor = devidx * perdev_minors;
2130 md->disk->fops = &mmc_bdops;
2131 md->disk->private_data = md;
2132 md->disk->queue = md->queue.queue;
2133 md->disk->driverfs_dev = parent;
2134 set_disk_ro(md->disk, md->read_only || default_ro);
2135 if (area_type & MMC_BLK_DATA_AREA_RPMB)
2136 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2139 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2141 * - be set for removable media with permanent block devices
2142 * - be unset for removable block devices with permanent media
2144 * Since MMC block devices clearly fall under the second
2145 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2146 * should use the block device creation/destruction hotplug
2147 * messages to tell when the card is present.
2150 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2151 "mmcblk%d%s", md->name_idx, subname ? subname : "");
2153 if (mmc_card_mmc(card))
2154 blk_queue_logical_block_size(md->queue.queue,
2155 card->ext_csd.data_sector_size);
2156 else
2157 blk_queue_logical_block_size(md->queue.queue, 512);
2159 set_capacity(md->disk, size);
2161 if (mmc_host_cmd23(card->host)) {
2162 if (mmc_card_mmc(card) ||
2163 (mmc_card_sd(card) &&
2164 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2165 md->flags |= MMC_BLK_CMD23;
2168 if (mmc_card_mmc(card) &&
2169 md->flags & MMC_BLK_CMD23 &&
2170 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2171 card->ext_csd.rel_sectors)) {
2172 md->flags |= MMC_BLK_REL_WR;
2173 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2176 if (mmc_card_mmc(card) &&
2177 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2178 (md->flags & MMC_BLK_CMD23) &&
2179 card->ext_csd.packed_event_en) {
2180 if (!mmc_packed_init(&md->queue, card))
2181 md->flags |= MMC_BLK_PACKED_CMD;
2184 return md;
2186 err_putdisk:
2187 put_disk(md->disk);
2188 err_kfree:
2189 kfree(md);
2190 out:
2191 return ERR_PTR(ret);
2194 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2196 sector_t size;
2197 struct mmc_blk_data *md;
2199 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2201 * The EXT_CSD sector count is in number or 512 byte
2202 * sectors.
2204 size = card->ext_csd.sectors;
2205 } else {
2207 * The CSD capacity field is in units of read_blkbits.
2208 * set_capacity takes units of 512 bytes.
2210 size = card->csd.capacity << (card->csd.read_blkbits - 9);
2213 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2214 MMC_BLK_DATA_AREA_MAIN);
2215 return md;
2218 static int mmc_blk_alloc_part(struct mmc_card *card,
2219 struct mmc_blk_data *md,
2220 unsigned int part_type,
2221 sector_t size,
2222 bool default_ro,
2223 const char *subname,
2224 int area_type)
2226 char cap_str[10];
2227 struct mmc_blk_data *part_md;
2229 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2230 subname, area_type);
2231 if (IS_ERR(part_md))
2232 return PTR_ERR(part_md);
2233 part_md->part_type = part_type;
2234 list_add(&part_md->part, &md->part);
2236 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
2237 cap_str, sizeof(cap_str));
2238 pr_info("%s: %s %s partition %u %s\n",
2239 part_md->disk->disk_name, mmc_card_id(card),
2240 mmc_card_name(card), part_md->part_type, cap_str);
2241 return 0;
2244 /* MMC Physical partitions consist of two boot partitions and
2245 * up to four general purpose partitions.
2246 * For each partition enabled in EXT_CSD a block device will be allocatedi
2247 * to provide access to the partition.
2250 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2252 int idx, ret = 0;
2254 if (!mmc_card_mmc(card))
2255 return 0;
2257 for (idx = 0; idx < card->nr_parts; idx++) {
2258 if (card->part[idx].size) {
2259 ret = mmc_blk_alloc_part(card, md,
2260 card->part[idx].part_cfg,
2261 card->part[idx].size >> 9,
2262 card->part[idx].force_ro,
2263 card->part[idx].name,
2264 card->part[idx].area_type);
2265 if (ret)
2266 return ret;
2270 return ret;
2273 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2275 struct mmc_card *card;
2277 if (md) {
2279 * Flush remaining requests and free queues. It
2280 * is freeing the queue that stops new requests
2281 * from being accepted.
2283 card = md->queue.card;
2284 mmc_cleanup_queue(&md->queue);
2285 if (md->flags & MMC_BLK_PACKED_CMD)
2286 mmc_packed_clean(&md->queue);
2287 if (md->disk->flags & GENHD_FL_UP) {
2288 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2289 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2290 card->ext_csd.boot_ro_lockable)
2291 device_remove_file(disk_to_dev(md->disk),
2292 &md->power_ro_lock);
2294 del_gendisk(md->disk);
2296 mmc_blk_put(md);
2300 static void mmc_blk_remove_parts(struct mmc_card *card,
2301 struct mmc_blk_data *md)
2303 struct list_head *pos, *q;
2304 struct mmc_blk_data *part_md;
2306 __clear_bit(md->name_idx, name_use);
2307 list_for_each_safe(pos, q, &md->part) {
2308 part_md = list_entry(pos, struct mmc_blk_data, part);
2309 list_del(pos);
2310 mmc_blk_remove_req(part_md);
2314 static int mmc_add_disk(struct mmc_blk_data *md)
2316 int ret;
2317 struct mmc_card *card = md->queue.card;
2319 add_disk(md->disk);
2320 md->force_ro.show = force_ro_show;
2321 md->force_ro.store = force_ro_store;
2322 sysfs_attr_init(&md->force_ro.attr);
2323 md->force_ro.attr.name = "force_ro";
2324 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2325 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2326 if (ret)
2327 goto force_ro_fail;
2329 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2330 card->ext_csd.boot_ro_lockable) {
2331 umode_t mode;
2333 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2334 mode = S_IRUGO;
2335 else
2336 mode = S_IRUGO | S_IWUSR;
2338 md->power_ro_lock.show = power_ro_lock_show;
2339 md->power_ro_lock.store = power_ro_lock_store;
2340 sysfs_attr_init(&md->power_ro_lock.attr);
2341 md->power_ro_lock.attr.mode = mode;
2342 md->power_ro_lock.attr.name =
2343 "ro_lock_until_next_power_on";
2344 ret = device_create_file(disk_to_dev(md->disk),
2345 &md->power_ro_lock);
2346 if (ret)
2347 goto power_ro_lock_fail;
2349 return ret;
2351 power_ro_lock_fail:
2352 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2353 force_ro_fail:
2354 del_gendisk(md->disk);
2356 return ret;
2359 #define CID_MANFID_SANDISK 0x2
2360 #define CID_MANFID_TOSHIBA 0x11
2361 #define CID_MANFID_MICRON 0x13
2362 #define CID_MANFID_SAMSUNG 0x15
2364 static const struct mmc_fixup blk_fixups[] =
2366 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2367 MMC_QUIRK_INAND_CMD38),
2368 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2369 MMC_QUIRK_INAND_CMD38),
2370 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2371 MMC_QUIRK_INAND_CMD38),
2372 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2373 MMC_QUIRK_INAND_CMD38),
2374 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2375 MMC_QUIRK_INAND_CMD38),
2378 * Some MMC cards experience performance degradation with CMD23
2379 * instead of CMD12-bounded multiblock transfers. For now we'll
2380 * black list what's bad...
2381 * - Certain Toshiba cards.
2383 * N.B. This doesn't affect SD cards.
2385 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2386 MMC_QUIRK_BLK_NO_CMD23),
2387 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2388 MMC_QUIRK_BLK_NO_CMD23),
2389 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2390 MMC_QUIRK_BLK_NO_CMD23),
2393 * Some Micron MMC cards needs longer data read timeout than
2394 * indicated in CSD.
2396 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2397 MMC_QUIRK_LONG_READ_TIME),
2400 * On these Samsung MoviNAND parts, performing secure erase or
2401 * secure trim can result in unrecoverable corruption due to a
2402 * firmware bug.
2404 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2405 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2406 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2407 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2408 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2409 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2410 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2411 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2412 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2413 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2414 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2415 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2416 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2417 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2418 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2419 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2421 END_FIXUP
2424 static int mmc_blk_probe(struct mmc_card *card)
2426 struct mmc_blk_data *md, *part_md;
2427 char cap_str[10];
2430 * Check that the card supports the command class(es) we need.
2432 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2433 return -ENODEV;
2435 md = mmc_blk_alloc(card);
2436 if (IS_ERR(md))
2437 return PTR_ERR(md);
2439 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
2440 cap_str, sizeof(cap_str));
2441 pr_info("%s: %s %s %s %s\n",
2442 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2443 cap_str, md->read_only ? "(ro)" : "");
2445 if (mmc_blk_alloc_parts(card, md))
2446 goto out;
2448 mmc_set_drvdata(card, md);
2449 mmc_fixup_device(card, blk_fixups);
2451 if (mmc_add_disk(md))
2452 goto out;
2454 list_for_each_entry(part_md, &md->part, part) {
2455 if (mmc_add_disk(part_md))
2456 goto out;
2459 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2460 pm_runtime_use_autosuspend(&card->dev);
2463 * Don't enable runtime PM for SD-combo cards here. Leave that
2464 * decision to be taken during the SDIO init sequence instead.
2466 if (card->type != MMC_TYPE_SD_COMBO) {
2467 pm_runtime_set_active(&card->dev);
2468 pm_runtime_enable(&card->dev);
2471 return 0;
2473 out:
2474 mmc_blk_remove_parts(card, md);
2475 mmc_blk_remove_req(md);
2476 return 0;
2479 static void mmc_blk_remove(struct mmc_card *card)
2481 struct mmc_blk_data *md = mmc_get_drvdata(card);
2483 mmc_blk_remove_parts(card, md);
2484 pm_runtime_get_sync(&card->dev);
2485 mmc_claim_host(card->host);
2486 mmc_blk_part_switch(card, md);
2487 mmc_release_host(card->host);
2488 if (card->type != MMC_TYPE_SD_COMBO)
2489 pm_runtime_disable(&card->dev);
2490 pm_runtime_put_noidle(&card->dev);
2491 mmc_blk_remove_req(md);
2492 mmc_set_drvdata(card, NULL);
2495 static int _mmc_blk_suspend(struct mmc_card *card)
2497 struct mmc_blk_data *part_md;
2498 struct mmc_blk_data *md = mmc_get_drvdata(card);
2500 if (md) {
2501 mmc_queue_suspend(&md->queue);
2502 list_for_each_entry(part_md, &md->part, part) {
2503 mmc_queue_suspend(&part_md->queue);
2506 return 0;
2509 static void mmc_blk_shutdown(struct mmc_card *card)
2511 _mmc_blk_suspend(card);
2514 #ifdef CONFIG_PM
2515 static int mmc_blk_suspend(struct mmc_card *card)
2517 return _mmc_blk_suspend(card);
2520 static int mmc_blk_resume(struct mmc_card *card)
2522 struct mmc_blk_data *part_md;
2523 struct mmc_blk_data *md = mmc_get_drvdata(card);
2525 if (md) {
2527 * Resume involves the card going into idle state,
2528 * so current partition is always the main one.
2530 md->part_curr = md->part_type;
2531 mmc_queue_resume(&md->queue);
2532 list_for_each_entry(part_md, &md->part, part) {
2533 mmc_queue_resume(&part_md->queue);
2536 return 0;
2538 #else
2539 #define mmc_blk_suspend NULL
2540 #define mmc_blk_resume NULL
2541 #endif
2543 static struct mmc_driver mmc_driver = {
2544 .drv = {
2545 .name = "mmcblk",
2547 .probe = mmc_blk_probe,
2548 .remove = mmc_blk_remove,
2549 .suspend = mmc_blk_suspend,
2550 .resume = mmc_blk_resume,
2551 .shutdown = mmc_blk_shutdown,
2554 static int __init mmc_blk_init(void)
2556 int res;
2558 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2559 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2561 max_devices = 256 / perdev_minors;
2563 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2564 if (res)
2565 goto out;
2567 res = mmc_register_driver(&mmc_driver);
2568 if (res)
2569 goto out2;
2571 return 0;
2572 out2:
2573 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2574 out:
2575 return res;
2578 static void __exit mmc_blk_exit(void)
2580 mmc_unregister_driver(&mmc_driver);
2581 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2584 module_init(mmc_blk_init);
2585 module_exit(mmc_blk_exit);
2587 MODULE_LICENSE("GPL");
2588 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");