2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
45 #include <asm/uaccess.h>
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
53 #define MODULE_PARAM_PREFIX "mmcblk."
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
66 (req->cmd_flags & REQ_META)) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
71 static DEFINE_MUTEX(block_mutex
);
74 * The defaults come from config options but can be overriden by module
77 static int perdev_minors
= CONFIG_MMC_BLOCK_MINORS
;
80 * We've only got one major, so number of mmcblk devices is
81 * limited to 256 / number of minors per device.
83 static int max_devices
;
85 /* 256 minors, so at most 256 separate devices */
86 static DECLARE_BITMAP(dev_use
, 256);
87 static DECLARE_BITMAP(name_use
, 256);
90 * There is one mmc_blk_data per slot.
95 struct mmc_queue queue
;
96 struct list_head part
;
99 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
100 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
101 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
104 unsigned int read_only
;
105 unsigned int part_type
;
106 unsigned int name_idx
;
107 unsigned int reset_done
;
108 #define MMC_BLK_READ BIT(0)
109 #define MMC_BLK_WRITE BIT(1)
110 #define MMC_BLK_DISCARD BIT(2)
111 #define MMC_BLK_SECDISCARD BIT(3)
114 * Only set in main mmc_blk_data associated
115 * with mmc_card with mmc_set_drvdata, and keeps
116 * track of the current selected device partition.
118 unsigned int part_curr
;
119 struct device_attribute force_ro
;
120 struct device_attribute power_ro_lock
;
124 static DEFINE_MUTEX(open_lock
);
127 MMC_PACKED_NR_IDX
= -1,
129 MMC_PACKED_NR_SINGLE
,
132 module_param(perdev_minors
, int, 0444);
133 MODULE_PARM_DESC(perdev_minors
, "Minors numbers to allocate per device");
135 static inline int mmc_blk_part_switch(struct mmc_card
*card
,
136 struct mmc_blk_data
*md
);
137 static int get_card_status(struct mmc_card
*card
, u32
*status
, int retries
);
139 static inline void mmc_blk_clear_packed(struct mmc_queue_req
*mqrq
)
141 struct mmc_packed
*packed
= mqrq
->packed
;
145 mqrq
->cmd_type
= MMC_PACKED_NONE
;
146 packed
->nr_entries
= MMC_PACKED_NR_ZERO
;
147 packed
->idx_failure
= MMC_PACKED_NR_IDX
;
152 static struct mmc_blk_data
*mmc_blk_get(struct gendisk
*disk
)
154 struct mmc_blk_data
*md
;
156 mutex_lock(&open_lock
);
157 md
= disk
->private_data
;
158 if (md
&& md
->usage
== 0)
162 mutex_unlock(&open_lock
);
167 static inline int mmc_get_devidx(struct gendisk
*disk
)
169 int devmaj
= MAJOR(disk_devt(disk
));
170 int devidx
= MINOR(disk_devt(disk
)) / perdev_minors
;
173 devidx
= disk
->first_minor
/ perdev_minors
;
177 static void mmc_blk_put(struct mmc_blk_data
*md
)
179 mutex_lock(&open_lock
);
181 if (md
->usage
== 0) {
182 int devidx
= mmc_get_devidx(md
->disk
);
183 blk_cleanup_queue(md
->queue
.queue
);
185 __clear_bit(devidx
, dev_use
);
190 mutex_unlock(&open_lock
);
193 static ssize_t
power_ro_lock_show(struct device
*dev
,
194 struct device_attribute
*attr
, char *buf
)
197 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
198 struct mmc_card
*card
= md
->queue
.card
;
201 if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PERM_WP_EN
)
203 else if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PWR_WP_EN
)
206 ret
= snprintf(buf
, PAGE_SIZE
, "%d\n", locked
);
211 static ssize_t
power_ro_lock_store(struct device
*dev
,
212 struct device_attribute
*attr
, const char *buf
, size_t count
)
215 struct mmc_blk_data
*md
, *part_md
;
216 struct mmc_card
*card
;
219 if (kstrtoul(buf
, 0, &set
))
225 md
= mmc_blk_get(dev_to_disk(dev
));
226 card
= md
->queue
.card
;
230 ret
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_BOOT_WP
,
231 card
->ext_csd
.boot_ro_lock
|
232 EXT_CSD_BOOT_WP_B_PWR_WP_EN
,
233 card
->ext_csd
.part_time
);
235 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md
->disk
->disk_name
, ret
);
237 card
->ext_csd
.boot_ro_lock
|= EXT_CSD_BOOT_WP_B_PWR_WP_EN
;
242 pr_info("%s: Locking boot partition ro until next power on\n",
243 md
->disk
->disk_name
);
244 set_disk_ro(md
->disk
, 1);
246 list_for_each_entry(part_md
, &md
->part
, part
)
247 if (part_md
->area_type
== MMC_BLK_DATA_AREA_BOOT
) {
248 pr_info("%s: Locking boot partition ro until next power on\n", part_md
->disk
->disk_name
);
249 set_disk_ro(part_md
->disk
, 1);
257 static ssize_t
force_ro_show(struct device
*dev
, struct device_attribute
*attr
,
261 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
263 ret
= snprintf(buf
, PAGE_SIZE
, "%d",
264 get_disk_ro(dev_to_disk(dev
)) ^
270 static ssize_t
force_ro_store(struct device
*dev
, struct device_attribute
*attr
,
271 const char *buf
, size_t count
)
275 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
276 unsigned long set
= simple_strtoul(buf
, &end
, 0);
282 set_disk_ro(dev_to_disk(dev
), set
|| md
->read_only
);
289 static int mmc_blk_open(struct block_device
*bdev
, fmode_t mode
)
291 struct mmc_blk_data
*md
= mmc_blk_get(bdev
->bd_disk
);
294 mutex_lock(&block_mutex
);
297 check_disk_change(bdev
);
300 if ((mode
& FMODE_WRITE
) && md
->read_only
) {
305 mutex_unlock(&block_mutex
);
310 static void mmc_blk_release(struct gendisk
*disk
, fmode_t mode
)
312 struct mmc_blk_data
*md
= disk
->private_data
;
314 mutex_lock(&block_mutex
);
316 mutex_unlock(&block_mutex
);
320 mmc_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
322 geo
->cylinders
= get_capacity(bdev
->bd_disk
) / (4 * 16);
328 struct mmc_blk_ioc_data
{
329 struct mmc_ioc_cmd ic
;
334 static struct mmc_blk_ioc_data
*mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user
*user
)
337 struct mmc_blk_ioc_data
*idata
;
340 idata
= kzalloc(sizeof(*idata
), GFP_KERNEL
);
346 if (copy_from_user(&idata
->ic
, user
, sizeof(idata
->ic
))) {
351 idata
->buf_bytes
= (u64
) idata
->ic
.blksz
* idata
->ic
.blocks
;
352 if (idata
->buf_bytes
> MMC_IOC_MAX_BYTES
) {
357 if (!idata
->buf_bytes
)
360 idata
->buf
= kzalloc(idata
->buf_bytes
, GFP_KERNEL
);
366 if (copy_from_user(idata
->buf
, (void __user
*)(unsigned long)
367 idata
->ic
.data_ptr
, idata
->buf_bytes
)) {
382 static int ioctl_rpmb_card_status_poll(struct mmc_card
*card
, u32
*status
,
388 if (!status
|| !retries_max
)
392 err
= get_card_status(card
, status
, 5);
396 if (!R1_STATUS(*status
) &&
397 (R1_CURRENT_STATE(*status
) != R1_STATE_PRG
))
398 break; /* RPMB programming operation complete */
401 * Rechedule to give the MMC device a chance to continue
402 * processing the previous command without being polled too
405 usleep_range(1000, 5000);
406 } while (++retry_count
< retries_max
);
408 if (retry_count
== retries_max
)
414 static int ioctl_do_sanitize(struct mmc_card
*card
)
418 if (!mmc_can_sanitize(card
)) {
419 pr_warn("%s: %s - SANITIZE is not supported\n",
420 mmc_hostname(card
->host
), __func__
);
425 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
426 mmc_hostname(card
->host
), __func__
);
428 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
429 EXT_CSD_SANITIZE_START
, 1,
430 MMC_SANITIZE_REQ_TIMEOUT
);
433 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
434 mmc_hostname(card
->host
), __func__
, err
);
436 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card
->host
),
442 static int mmc_blk_ioctl_cmd(struct block_device
*bdev
,
443 struct mmc_ioc_cmd __user
*ic_ptr
)
445 struct mmc_blk_ioc_data
*idata
;
446 struct mmc_blk_data
*md
;
447 struct mmc_card
*card
;
448 struct mmc_command cmd
= {0};
449 struct mmc_data data
= {0};
450 struct mmc_request mrq
= {NULL
};
451 struct scatterlist sg
;
457 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
458 * whole block device, not on a partition. This prevents overspray
459 * between sibling partitions.
461 if ((!capable(CAP_SYS_RAWIO
)) || (bdev
!= bdev
->bd_contains
))
464 idata
= mmc_blk_ioctl_copy_from_user(ic_ptr
);
466 return PTR_ERR(idata
);
468 md
= mmc_blk_get(bdev
->bd_disk
);
474 if (md
->area_type
& MMC_BLK_DATA_AREA_RPMB
)
477 card
= md
->queue
.card
;
483 cmd
.opcode
= idata
->ic
.opcode
;
484 cmd
.arg
= idata
->ic
.arg
;
485 cmd
.flags
= idata
->ic
.flags
;
487 if (idata
->buf_bytes
) {
490 data
.blksz
= idata
->ic
.blksz
;
491 data
.blocks
= idata
->ic
.blocks
;
493 sg_init_one(data
.sg
, idata
->buf
, idata
->buf_bytes
);
495 if (idata
->ic
.write_flag
)
496 data
.flags
= MMC_DATA_WRITE
;
498 data
.flags
= MMC_DATA_READ
;
500 /* data.flags must already be set before doing this. */
501 mmc_set_data_timeout(&data
, card
);
503 /* Allow overriding the timeout_ns for empirical tuning. */
504 if (idata
->ic
.data_timeout_ns
)
505 data
.timeout_ns
= idata
->ic
.data_timeout_ns
;
507 if ((cmd
.flags
& MMC_RSP_R1B
) == MMC_RSP_R1B
) {
509 * Pretend this is a data transfer and rely on the
510 * host driver to compute timeout. When all host
511 * drivers support cmd.cmd_timeout for R1B, this
515 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
517 data
.timeout_ns
= idata
->ic
.cmd_timeout_ms
* 1000000;
527 err
= mmc_blk_part_switch(card
, md
);
531 if (idata
->ic
.is_acmd
) {
532 err
= mmc_app_cmd(card
->host
, card
);
538 err
= mmc_set_blockcount(card
, data
.blocks
,
539 idata
->ic
.write_flag
& (1 << 31));
544 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd
.arg
) == EXT_CSD_SANITIZE_START
) &&
545 (cmd
.opcode
== MMC_SWITCH
)) {
546 err
= ioctl_do_sanitize(card
);
549 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
555 mmc_wait_for_req(card
->host
, &mrq
);
558 dev_err(mmc_dev(card
->host
), "%s: cmd error %d\n",
559 __func__
, cmd
.error
);
564 dev_err(mmc_dev(card
->host
), "%s: data error %d\n",
565 __func__
, data
.error
);
571 * According to the SD specs, some commands require a delay after
572 * issuing the command.
574 if (idata
->ic
.postsleep_min_us
)
575 usleep_range(idata
->ic
.postsleep_min_us
, idata
->ic
.postsleep_max_us
);
577 if (copy_to_user(&(ic_ptr
->response
), cmd
.resp
, sizeof(cmd
.resp
))) {
582 if (!idata
->ic
.write_flag
) {
583 if (copy_to_user((void __user
*)(unsigned long) idata
->ic
.data_ptr
,
584 idata
->buf
, idata
->buf_bytes
)) {
592 * Ensure RPMB command has completed by polling CMD13
595 err
= ioctl_rpmb_card_status_poll(card
, &status
, 5);
597 dev_err(mmc_dev(card
->host
),
598 "%s: Card Status=0x%08X, error %d\n",
599 __func__
, status
, err
);
613 static int mmc_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
614 unsigned int cmd
, unsigned long arg
)
617 if (cmd
== MMC_IOC_CMD
)
618 ret
= mmc_blk_ioctl_cmd(bdev
, (struct mmc_ioc_cmd __user
*)arg
);
623 static int mmc_blk_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
624 unsigned int cmd
, unsigned long arg
)
626 return mmc_blk_ioctl(bdev
, mode
, cmd
, (unsigned long) compat_ptr(arg
));
630 static const struct block_device_operations mmc_bdops
= {
631 .open
= mmc_blk_open
,
632 .release
= mmc_blk_release
,
633 .getgeo
= mmc_blk_getgeo
,
634 .owner
= THIS_MODULE
,
635 .ioctl
= mmc_blk_ioctl
,
637 .compat_ioctl
= mmc_blk_compat_ioctl
,
641 static inline int mmc_blk_part_switch(struct mmc_card
*card
,
642 struct mmc_blk_data
*md
)
645 struct mmc_blk_data
*main_md
= mmc_get_drvdata(card
);
647 if (main_md
->part_curr
== md
->part_type
)
650 if (mmc_card_mmc(card
)) {
651 u8 part_config
= card
->ext_csd
.part_config
;
653 part_config
&= ~EXT_CSD_PART_CONFIG_ACC_MASK
;
654 part_config
|= md
->part_type
;
656 ret
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
657 EXT_CSD_PART_CONFIG
, part_config
,
658 card
->ext_csd
.part_time
);
662 card
->ext_csd
.part_config
= part_config
;
665 main_md
->part_curr
= md
->part_type
;
669 static u32
mmc_sd_num_wr_blocks(struct mmc_card
*card
)
675 struct mmc_request mrq
= {NULL
};
676 struct mmc_command cmd
= {0};
677 struct mmc_data data
= {0};
679 struct scatterlist sg
;
681 cmd
.opcode
= MMC_APP_CMD
;
682 cmd
.arg
= card
->rca
<< 16;
683 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
685 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
688 if (!mmc_host_is_spi(card
->host
) && !(cmd
.resp
[0] & R1_APP_CMD
))
691 memset(&cmd
, 0, sizeof(struct mmc_command
));
693 cmd
.opcode
= SD_APP_SEND_NUM_WR_BLKS
;
695 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
699 data
.flags
= MMC_DATA_READ
;
702 mmc_set_data_timeout(&data
, card
);
707 blocks
= kmalloc(4, GFP_KERNEL
);
711 sg_init_one(&sg
, blocks
, 4);
713 mmc_wait_for_req(card
->host
, &mrq
);
715 result
= ntohl(*blocks
);
718 if (cmd
.error
|| data
.error
)
724 static int get_card_status(struct mmc_card
*card
, u32
*status
, int retries
)
726 struct mmc_command cmd
= {0};
729 cmd
.opcode
= MMC_SEND_STATUS
;
730 if (!mmc_host_is_spi(card
->host
))
731 cmd
.arg
= card
->rca
<< 16;
732 cmd
.flags
= MMC_RSP_SPI_R2
| MMC_RSP_R1
| MMC_CMD_AC
;
733 err
= mmc_wait_for_cmd(card
->host
, &cmd
, retries
);
735 *status
= cmd
.resp
[0];
739 static int card_busy_detect(struct mmc_card
*card
, unsigned int timeout_ms
,
740 bool hw_busy_detect
, struct request
*req
, int *gen_err
)
742 unsigned long timeout
= jiffies
+ msecs_to_jiffies(timeout_ms
);
747 err
= get_card_status(card
, &status
, 5);
749 pr_err("%s: error %d requesting status\n",
750 req
->rq_disk
->disk_name
, err
);
754 if (status
& R1_ERROR
) {
755 pr_err("%s: %s: error sending status cmd, status %#x\n",
756 req
->rq_disk
->disk_name
, __func__
, status
);
760 /* We may rely on the host hw to handle busy detection.*/
761 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) &&
766 * Timeout if the device never becomes ready for data and never
767 * leaves the program state.
769 if (time_after(jiffies
, timeout
)) {
770 pr_err("%s: Card stuck in programming state! %s %s\n",
771 mmc_hostname(card
->host
),
772 req
->rq_disk
->disk_name
, __func__
);
777 * Some cards mishandle the status bits,
778 * so make sure to check both the busy
779 * indication and the card state.
781 } while (!(status
& R1_READY_FOR_DATA
) ||
782 (R1_CURRENT_STATE(status
) == R1_STATE_PRG
));
787 static int send_stop(struct mmc_card
*card
, unsigned int timeout_ms
,
788 struct request
*req
, int *gen_err
, u32
*stop_status
)
790 struct mmc_host
*host
= card
->host
;
791 struct mmc_command cmd
= {0};
793 bool use_r1b_resp
= rq_data_dir(req
) == WRITE
;
796 * Normally we use R1B responses for WRITE, but in cases where the host
797 * has specified a max_busy_timeout we need to validate it. A failure
798 * means we need to prevent the host from doing hw busy detection, which
799 * is done by converting to a R1 response instead.
801 if (host
->max_busy_timeout
&& (timeout_ms
> host
->max_busy_timeout
))
802 use_r1b_resp
= false;
804 cmd
.opcode
= MMC_STOP_TRANSMISSION
;
806 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
807 cmd
.busy_timeout
= timeout_ms
;
809 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
812 err
= mmc_wait_for_cmd(host
, &cmd
, 5);
816 *stop_status
= cmd
.resp
[0];
818 /* No need to check card status in case of READ. */
819 if (rq_data_dir(req
) == READ
)
822 if (!mmc_host_is_spi(host
) &&
823 (*stop_status
& R1_ERROR
)) {
824 pr_err("%s: %s: general error sending stop command, resp %#x\n",
825 req
->rq_disk
->disk_name
, __func__
, *stop_status
);
829 return card_busy_detect(card
, timeout_ms
, use_r1b_resp
, req
, gen_err
);
832 #define ERR_NOMEDIUM 3
835 #define ERR_CONTINUE 0
837 static int mmc_blk_cmd_error(struct request
*req
, const char *name
, int error
,
838 bool status_valid
, u32 status
)
842 /* response crc error, retry the r/w cmd */
843 pr_err("%s: %s sending %s command, card status %#x\n",
844 req
->rq_disk
->disk_name
, "response CRC error",
849 pr_err("%s: %s sending %s command, card status %#x\n",
850 req
->rq_disk
->disk_name
, "timed out", name
, status
);
852 /* If the status cmd initially failed, retry the r/w cmd */
857 * If it was a r/w cmd crc error, or illegal command
858 * (eg, issued in wrong state) then retry - we should
859 * have corrected the state problem above.
861 if (status
& (R1_COM_CRC_ERROR
| R1_ILLEGAL_COMMAND
))
864 /* Otherwise abort the command */
868 /* We don't understand the error code the driver gave us */
869 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
870 req
->rq_disk
->disk_name
, error
, status
);
876 * Initial r/w and stop cmd error recovery.
877 * We don't know whether the card received the r/w cmd or not, so try to
878 * restore things back to a sane state. Essentially, we do this as follows:
879 * - Obtain card status. If the first attempt to obtain card status fails,
880 * the status word will reflect the failed status cmd, not the failed
881 * r/w cmd. If we fail to obtain card status, it suggests we can no
882 * longer communicate with the card.
883 * - Check the card state. If the card received the cmd but there was a
884 * transient problem with the response, it might still be in a data transfer
885 * mode. Try to send it a stop command. If this fails, we can't recover.
886 * - If the r/w cmd failed due to a response CRC error, it was probably
887 * transient, so retry the cmd.
888 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
889 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
890 * illegal cmd, retry.
891 * Otherwise we don't understand what happened, so abort.
893 static int mmc_blk_cmd_recovery(struct mmc_card
*card
, struct request
*req
,
894 struct mmc_blk_request
*brq
, int *ecc_err
, int *gen_err
)
896 bool prev_cmd_status_valid
= true;
897 u32 status
, stop_status
= 0;
900 if (mmc_card_removed(card
))
904 * Try to get card status which indicates both the card state
905 * and why there was no response. If the first attempt fails,
906 * we can't be sure the returned status is for the r/w command.
908 for (retry
= 2; retry
>= 0; retry
--) {
909 err
= get_card_status(card
, &status
, 0);
913 prev_cmd_status_valid
= false;
914 pr_err("%s: error %d sending status command, %sing\n",
915 req
->rq_disk
->disk_name
, err
, retry
? "retry" : "abort");
918 /* We couldn't get a response from the card. Give up. */
920 /* Check if the card is removed */
921 if (mmc_detect_card_removed(card
->host
))
926 /* Flag ECC errors */
927 if ((status
& R1_CARD_ECC_FAILED
) ||
928 (brq
->stop
.resp
[0] & R1_CARD_ECC_FAILED
) ||
929 (brq
->cmd
.resp
[0] & R1_CARD_ECC_FAILED
))
932 /* Flag General errors */
933 if (!mmc_host_is_spi(card
->host
) && rq_data_dir(req
) != READ
)
934 if ((status
& R1_ERROR
) ||
935 (brq
->stop
.resp
[0] & R1_ERROR
)) {
936 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
937 req
->rq_disk
->disk_name
, __func__
,
938 brq
->stop
.resp
[0], status
);
943 * Check the current card state. If it is in some data transfer
944 * mode, tell it to stop (and hopefully transition back to TRAN.)
946 if (R1_CURRENT_STATE(status
) == R1_STATE_DATA
||
947 R1_CURRENT_STATE(status
) == R1_STATE_RCV
) {
948 err
= send_stop(card
,
949 DIV_ROUND_UP(brq
->data
.timeout_ns
, 1000000),
950 req
, gen_err
, &stop_status
);
952 pr_err("%s: error %d sending stop command\n",
953 req
->rq_disk
->disk_name
, err
);
955 * If the stop cmd also timed out, the card is probably
956 * not present, so abort. Other errors are bad news too.
961 if (stop_status
& R1_CARD_ECC_FAILED
)
965 /* Check for set block count errors */
967 return mmc_blk_cmd_error(req
, "SET_BLOCK_COUNT", brq
->sbc
.error
,
968 prev_cmd_status_valid
, status
);
970 /* Check for r/w command errors */
972 return mmc_blk_cmd_error(req
, "r/w cmd", brq
->cmd
.error
,
973 prev_cmd_status_valid
, status
);
976 if (!brq
->stop
.error
)
979 /* Now for stop errors. These aren't fatal to the transfer. */
980 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
981 req
->rq_disk
->disk_name
, brq
->stop
.error
,
982 brq
->cmd
.resp
[0], status
);
985 * Subsitute in our own stop status as this will give the error
986 * state which happened during the execution of the r/w command.
989 brq
->stop
.resp
[0] = stop_status
;
995 static int mmc_blk_reset(struct mmc_blk_data
*md
, struct mmc_host
*host
,
1000 if (md
->reset_done
& type
)
1003 md
->reset_done
|= type
;
1004 err
= mmc_hw_reset(host
);
1005 /* Ensure we switch back to the correct partition */
1006 if (err
!= -EOPNOTSUPP
) {
1007 struct mmc_blk_data
*main_md
= mmc_get_drvdata(host
->card
);
1010 main_md
->part_curr
= main_md
->part_type
;
1011 part_err
= mmc_blk_part_switch(host
->card
, md
);
1014 * We have failed to get back into the correct
1015 * partition, so we need to abort the whole request.
1023 static inline void mmc_blk_reset_success(struct mmc_blk_data
*md
, int type
)
1025 md
->reset_done
&= ~type
;
1028 static int mmc_blk_issue_discard_rq(struct mmc_queue
*mq
, struct request
*req
)
1030 struct mmc_blk_data
*md
= mq
->data
;
1031 struct mmc_card
*card
= md
->queue
.card
;
1032 unsigned int from
, nr
, arg
;
1033 int err
= 0, type
= MMC_BLK_DISCARD
;
1035 if (!mmc_can_erase(card
)) {
1040 from
= blk_rq_pos(req
);
1041 nr
= blk_rq_sectors(req
);
1043 if (mmc_can_discard(card
))
1044 arg
= MMC_DISCARD_ARG
;
1045 else if (mmc_can_trim(card
))
1048 arg
= MMC_ERASE_ARG
;
1050 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
1051 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1052 INAND_CMD38_ARG_EXT_CSD
,
1053 arg
== MMC_TRIM_ARG
?
1054 INAND_CMD38_ARG_TRIM
:
1055 INAND_CMD38_ARG_ERASE
,
1060 err
= mmc_erase(card
, from
, nr
, arg
);
1062 if (err
== -EIO
&& !mmc_blk_reset(md
, card
->host
, type
))
1065 mmc_blk_reset_success(md
, type
);
1066 blk_end_request(req
, err
, blk_rq_bytes(req
));
1071 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue
*mq
,
1072 struct request
*req
)
1074 struct mmc_blk_data
*md
= mq
->data
;
1075 struct mmc_card
*card
= md
->queue
.card
;
1076 unsigned int from
, nr
, arg
;
1077 int err
= 0, type
= MMC_BLK_SECDISCARD
;
1079 if (!(mmc_can_secure_erase_trim(card
))) {
1084 from
= blk_rq_pos(req
);
1085 nr
= blk_rq_sectors(req
);
1087 if (mmc_can_trim(card
) && !mmc_erase_group_aligned(card
, from
, nr
))
1088 arg
= MMC_SECURE_TRIM1_ARG
;
1090 arg
= MMC_SECURE_ERASE_ARG
;
1093 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
1094 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1095 INAND_CMD38_ARG_EXT_CSD
,
1096 arg
== MMC_SECURE_TRIM1_ARG
?
1097 INAND_CMD38_ARG_SECTRIM1
:
1098 INAND_CMD38_ARG_SECERASE
,
1104 err
= mmc_erase(card
, from
, nr
, arg
);
1110 if (arg
== MMC_SECURE_TRIM1_ARG
) {
1111 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
1112 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1113 INAND_CMD38_ARG_EXT_CSD
,
1114 INAND_CMD38_ARG_SECTRIM2
,
1120 err
= mmc_erase(card
, from
, nr
, MMC_SECURE_TRIM2_ARG
);
1128 if (err
&& !mmc_blk_reset(md
, card
->host
, type
))
1131 mmc_blk_reset_success(md
, type
);
1133 blk_end_request(req
, err
, blk_rq_bytes(req
));
1138 static int mmc_blk_issue_flush(struct mmc_queue
*mq
, struct request
*req
)
1140 struct mmc_blk_data
*md
= mq
->data
;
1141 struct mmc_card
*card
= md
->queue
.card
;
1144 ret
= mmc_flush_cache(card
);
1148 blk_end_request_all(req
, ret
);
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1160 static inline void mmc_apply_rel_rw(struct mmc_blk_request
*brq
,
1161 struct mmc_card
*card
,
1162 struct request
*req
)
1164 if (!(card
->ext_csd
.rel_param
& EXT_CSD_WR_REL_PARAM_EN
)) {
1165 /* Legacy mode imposes restrictions on transfers. */
1166 if (!IS_ALIGNED(brq
->cmd
.arg
, card
->ext_csd
.rel_sectors
))
1167 brq
->data
.blocks
= 1;
1169 if (brq
->data
.blocks
> card
->ext_csd
.rel_sectors
)
1170 brq
->data
.blocks
= card
->ext_csd
.rel_sectors
;
1171 else if (brq
->data
.blocks
< card
->ext_csd
.rel_sectors
)
1172 brq
->data
.blocks
= 1;
1176 #define CMD_ERRORS \
1177 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1178 R1_ADDRESS_ERROR | /* Misaligned address */ \
1179 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1180 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1181 R1_CC_ERROR | /* Card controller error */ \
1182 R1_ERROR) /* General/unknown error */
1184 static int mmc_blk_err_check(struct mmc_card
*card
,
1185 struct mmc_async_req
*areq
)
1187 struct mmc_queue_req
*mq_mrq
= container_of(areq
, struct mmc_queue_req
,
1189 struct mmc_blk_request
*brq
= &mq_mrq
->brq
;
1190 struct request
*req
= mq_mrq
->req
;
1191 int ecc_err
= 0, gen_err
= 0;
1194 * sbc.error indicates a problem with the set block count
1195 * command. No data will have been transferred.
1197 * cmd.error indicates a problem with the r/w command. No
1198 * data will have been transferred.
1200 * stop.error indicates a problem with the stop command. Data
1201 * may have been transferred, or may still be transferring.
1203 if (brq
->sbc
.error
|| brq
->cmd
.error
|| brq
->stop
.error
||
1205 switch (mmc_blk_cmd_recovery(card
, req
, brq
, &ecc_err
, &gen_err
)) {
1207 return MMC_BLK_RETRY
;
1209 return MMC_BLK_ABORT
;
1211 return MMC_BLK_NOMEDIUM
;
1218 * Check for errors relating to the execution of the
1219 * initial command - such as address errors. No data
1220 * has been transferred.
1222 if (brq
->cmd
.resp
[0] & CMD_ERRORS
) {
1223 pr_err("%s: r/w command failed, status = %#x\n",
1224 req
->rq_disk
->disk_name
, brq
->cmd
.resp
[0]);
1225 return MMC_BLK_ABORT
;
1229 * Everything else is either success, or a data error of some
1230 * kind. If it was a write, we may have transitioned to
1231 * program mode, which we have to wait for it to complete.
1233 if (!mmc_host_is_spi(card
->host
) && rq_data_dir(req
) != READ
) {
1236 /* Check stop command response */
1237 if (brq
->stop
.resp
[0] & R1_ERROR
) {
1238 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1239 req
->rq_disk
->disk_name
, __func__
,
1244 err
= card_busy_detect(card
, MMC_BLK_TIMEOUT_MS
, false, req
,
1247 return MMC_BLK_CMD_ERR
;
1250 /* if general error occurs, retry the write operation. */
1252 pr_warn("%s: retrying write for general error\n",
1253 req
->rq_disk
->disk_name
);
1254 return MMC_BLK_RETRY
;
1257 if (brq
->data
.error
) {
1258 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1259 req
->rq_disk
->disk_name
, brq
->data
.error
,
1260 (unsigned)blk_rq_pos(req
),
1261 (unsigned)blk_rq_sectors(req
),
1262 brq
->cmd
.resp
[0], brq
->stop
.resp
[0]);
1264 if (rq_data_dir(req
) == READ
) {
1266 return MMC_BLK_ECC_ERR
;
1267 return MMC_BLK_DATA_ERR
;
1269 return MMC_BLK_CMD_ERR
;
1273 if (!brq
->data
.bytes_xfered
)
1274 return MMC_BLK_RETRY
;
1276 if (mmc_packed_cmd(mq_mrq
->cmd_type
)) {
1277 if (unlikely(brq
->data
.blocks
<< 9 != brq
->data
.bytes_xfered
))
1278 return MMC_BLK_PARTIAL
;
1280 return MMC_BLK_SUCCESS
;
1283 if (blk_rq_bytes(req
) != brq
->data
.bytes_xfered
)
1284 return MMC_BLK_PARTIAL
;
1286 return MMC_BLK_SUCCESS
;
1289 static int mmc_blk_packed_err_check(struct mmc_card
*card
,
1290 struct mmc_async_req
*areq
)
1292 struct mmc_queue_req
*mq_rq
= container_of(areq
, struct mmc_queue_req
,
1294 struct request
*req
= mq_rq
->req
;
1295 struct mmc_packed
*packed
= mq_rq
->packed
;
1296 int err
, check
, status
;
1302 check
= mmc_blk_err_check(card
, areq
);
1303 err
= get_card_status(card
, &status
, 0);
1305 pr_err("%s: error %d sending status command\n",
1306 req
->rq_disk
->disk_name
, err
);
1307 return MMC_BLK_ABORT
;
1310 if (status
& R1_EXCEPTION_EVENT
) {
1311 ext_csd
= kzalloc(512, GFP_KERNEL
);
1313 pr_err("%s: unable to allocate buffer for ext_csd\n",
1314 req
->rq_disk
->disk_name
);
1318 err
= mmc_send_ext_csd(card
, ext_csd
);
1320 pr_err("%s: error %d sending ext_csd\n",
1321 req
->rq_disk
->disk_name
, err
);
1322 check
= MMC_BLK_ABORT
;
1326 if ((ext_csd
[EXT_CSD_EXP_EVENTS_STATUS
] &
1327 EXT_CSD_PACKED_FAILURE
) &&
1328 (ext_csd
[EXT_CSD_PACKED_CMD_STATUS
] &
1329 EXT_CSD_PACKED_GENERIC_ERROR
)) {
1330 if (ext_csd
[EXT_CSD_PACKED_CMD_STATUS
] &
1331 EXT_CSD_PACKED_INDEXED_ERROR
) {
1332 packed
->idx_failure
=
1333 ext_csd
[EXT_CSD_PACKED_FAILURE_INDEX
] - 1;
1334 check
= MMC_BLK_PARTIAL
;
1336 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1337 "failure index: %d\n",
1338 req
->rq_disk
->disk_name
, packed
->nr_entries
,
1339 packed
->blocks
, packed
->idx_failure
);
1348 static void mmc_blk_rw_rq_prep(struct mmc_queue_req
*mqrq
,
1349 struct mmc_card
*card
,
1351 struct mmc_queue
*mq
)
1353 u32 readcmd
, writecmd
;
1354 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1355 struct request
*req
= mqrq
->req
;
1356 struct mmc_blk_data
*md
= mq
->data
;
1360 * Reliable writes are used to implement Forced Unit Access and
1361 * REQ_META accesses, and are supported only on MMCs.
1363 * XXX: this really needs a good explanation of why REQ_META
1364 * is treated special.
1366 bool do_rel_wr
= ((req
->cmd_flags
& REQ_FUA
) ||
1367 (req
->cmd_flags
& REQ_META
)) &&
1368 (rq_data_dir(req
) == WRITE
) &&
1369 (md
->flags
& MMC_BLK_REL_WR
);
1371 memset(brq
, 0, sizeof(struct mmc_blk_request
));
1372 brq
->mrq
.cmd
= &brq
->cmd
;
1373 brq
->mrq
.data
= &brq
->data
;
1375 brq
->cmd
.arg
= blk_rq_pos(req
);
1376 if (!mmc_card_blockaddr(card
))
1378 brq
->cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
1379 brq
->data
.blksz
= 512;
1380 brq
->stop
.opcode
= MMC_STOP_TRANSMISSION
;
1382 brq
->data
.blocks
= blk_rq_sectors(req
);
1385 * The block layer doesn't support all sector count
1386 * restrictions, so we need to be prepared for too big
1389 if (brq
->data
.blocks
> card
->host
->max_blk_count
)
1390 brq
->data
.blocks
= card
->host
->max_blk_count
;
1392 if (brq
->data
.blocks
> 1) {
1394 * After a read error, we redo the request one sector
1395 * at a time in order to accurately determine which
1396 * sectors can be read successfully.
1399 brq
->data
.blocks
= 1;
1401 /* Some controllers can't do multiblock reads due to hw bugs */
1402 if (card
->host
->caps2
& MMC_CAP2_NO_MULTI_READ
&&
1403 rq_data_dir(req
) == READ
)
1404 brq
->data
.blocks
= 1;
1407 if (brq
->data
.blocks
> 1 || do_rel_wr
) {
1408 /* SPI multiblock writes terminate using a special
1409 * token, not a STOP_TRANSMISSION request.
1411 if (!mmc_host_is_spi(card
->host
) ||
1412 rq_data_dir(req
) == READ
)
1413 brq
->mrq
.stop
= &brq
->stop
;
1414 readcmd
= MMC_READ_MULTIPLE_BLOCK
;
1415 writecmd
= MMC_WRITE_MULTIPLE_BLOCK
;
1417 brq
->mrq
.stop
= NULL
;
1418 readcmd
= MMC_READ_SINGLE_BLOCK
;
1419 writecmd
= MMC_WRITE_BLOCK
;
1421 if (rq_data_dir(req
) == READ
) {
1422 brq
->cmd
.opcode
= readcmd
;
1423 brq
->data
.flags
|= MMC_DATA_READ
;
1425 brq
->stop
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
|
1428 brq
->cmd
.opcode
= writecmd
;
1429 brq
->data
.flags
|= MMC_DATA_WRITE
;
1431 brq
->stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
|
1436 mmc_apply_rel_rw(brq
, card
, req
);
1439 * Data tag is used only during writing meta data to speed
1440 * up write and any subsequent read of this meta data
1442 do_data_tag
= (card
->ext_csd
.data_tag_unit_size
) &&
1443 (req
->cmd_flags
& REQ_META
) &&
1444 (rq_data_dir(req
) == WRITE
) &&
1445 ((brq
->data
.blocks
* brq
->data
.blksz
) >=
1446 card
->ext_csd
.data_tag_unit_size
);
1449 * Pre-defined multi-block transfers are preferable to
1450 * open ended-ones (and necessary for reliable writes).
1451 * However, it is not sufficient to just send CMD23,
1452 * and avoid the final CMD12, as on an error condition
1453 * CMD12 (stop) needs to be sent anyway. This, coupled
1454 * with Auto-CMD23 enhancements provided by some
1455 * hosts, means that the complexity of dealing
1456 * with this is best left to the host. If CMD23 is
1457 * supported by card and host, we'll fill sbc in and let
1458 * the host deal with handling it correctly. This means
1459 * that for hosts that don't expose MMC_CAP_CMD23, no
1460 * change of behavior will be observed.
1462 * N.B: Some MMC cards experience perf degradation.
1463 * We'll avoid using CMD23-bounded multiblock writes for
1464 * these, while retaining features like reliable writes.
1466 if ((md
->flags
& MMC_BLK_CMD23
) && mmc_op_multi(brq
->cmd
.opcode
) &&
1467 (do_rel_wr
|| !(card
->quirks
& MMC_QUIRK_BLK_NO_CMD23
) ||
1469 brq
->sbc
.opcode
= MMC_SET_BLOCK_COUNT
;
1470 brq
->sbc
.arg
= brq
->data
.blocks
|
1471 (do_rel_wr
? (1 << 31) : 0) |
1472 (do_data_tag
? (1 << 29) : 0);
1473 brq
->sbc
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1474 brq
->mrq
.sbc
= &brq
->sbc
;
1477 mmc_set_data_timeout(&brq
->data
, card
);
1479 brq
->data
.sg
= mqrq
->sg
;
1480 brq
->data
.sg_len
= mmc_queue_map_sg(mq
, mqrq
);
1483 * Adjust the sg list so it is the same size as the
1486 if (brq
->data
.blocks
!= blk_rq_sectors(req
)) {
1487 int i
, data_size
= brq
->data
.blocks
<< 9;
1488 struct scatterlist
*sg
;
1490 for_each_sg(brq
->data
.sg
, sg
, brq
->data
.sg_len
, i
) {
1491 data_size
-= sg
->length
;
1492 if (data_size
<= 0) {
1493 sg
->length
+= data_size
;
1498 brq
->data
.sg_len
= i
;
1501 mqrq
->mmc_active
.mrq
= &brq
->mrq
;
1502 mqrq
->mmc_active
.err_check
= mmc_blk_err_check
;
1504 mmc_queue_bounce_pre(mqrq
);
1507 static inline u8
mmc_calc_packed_hdr_segs(struct request_queue
*q
,
1508 struct mmc_card
*card
)
1510 unsigned int hdr_sz
= mmc_large_sector(card
) ? 4096 : 512;
1511 unsigned int max_seg_sz
= queue_max_segment_size(q
);
1512 unsigned int len
, nr_segs
= 0;
1515 len
= min(hdr_sz
, max_seg_sz
);
1523 static u8
mmc_blk_prep_packed_list(struct mmc_queue
*mq
, struct request
*req
)
1525 struct request_queue
*q
= mq
->queue
;
1526 struct mmc_card
*card
= mq
->card
;
1527 struct request
*cur
= req
, *next
= NULL
;
1528 struct mmc_blk_data
*md
= mq
->data
;
1529 struct mmc_queue_req
*mqrq
= mq
->mqrq_cur
;
1530 bool en_rel_wr
= card
->ext_csd
.rel_param
& EXT_CSD_WR_REL_PARAM_EN
;
1531 unsigned int req_sectors
= 0, phys_segments
= 0;
1532 unsigned int max_blk_count
, max_phys_segs
;
1533 bool put_back
= true;
1534 u8 max_packed_rw
= 0;
1537 if (!(md
->flags
& MMC_BLK_PACKED_CMD
))
1540 if ((rq_data_dir(cur
) == WRITE
) &&
1541 mmc_host_packed_wr(card
->host
))
1542 max_packed_rw
= card
->ext_csd
.max_packed_writes
;
1544 if (max_packed_rw
== 0)
1547 if (mmc_req_rel_wr(cur
) &&
1548 (md
->flags
& MMC_BLK_REL_WR
) && !en_rel_wr
)
1551 if (mmc_large_sector(card
) &&
1552 !IS_ALIGNED(blk_rq_sectors(cur
), 8))
1555 mmc_blk_clear_packed(mqrq
);
1557 max_blk_count
= min(card
->host
->max_blk_count
,
1558 card
->host
->max_req_size
>> 9);
1559 if (unlikely(max_blk_count
> 0xffff))
1560 max_blk_count
= 0xffff;
1562 max_phys_segs
= queue_max_segments(q
);
1563 req_sectors
+= blk_rq_sectors(cur
);
1564 phys_segments
+= cur
->nr_phys_segments
;
1566 if (rq_data_dir(cur
) == WRITE
) {
1567 req_sectors
+= mmc_large_sector(card
) ? 8 : 1;
1568 phys_segments
+= mmc_calc_packed_hdr_segs(q
, card
);
1572 if (reqs
>= max_packed_rw
- 1) {
1577 spin_lock_irq(q
->queue_lock
);
1578 next
= blk_fetch_request(q
);
1579 spin_unlock_irq(q
->queue_lock
);
1585 if (mmc_large_sector(card
) &&
1586 !IS_ALIGNED(blk_rq_sectors(next
), 8))
1589 if (next
->cmd_flags
& REQ_DISCARD
||
1590 next
->cmd_flags
& REQ_FLUSH
)
1593 if (rq_data_dir(cur
) != rq_data_dir(next
))
1596 if (mmc_req_rel_wr(next
) &&
1597 (md
->flags
& MMC_BLK_REL_WR
) && !en_rel_wr
)
1600 req_sectors
+= blk_rq_sectors(next
);
1601 if (req_sectors
> max_blk_count
)
1604 phys_segments
+= next
->nr_phys_segments
;
1605 if (phys_segments
> max_phys_segs
)
1608 list_add_tail(&next
->queuelist
, &mqrq
->packed
->list
);
1614 spin_lock_irq(q
->queue_lock
);
1615 blk_requeue_request(q
, next
);
1616 spin_unlock_irq(q
->queue_lock
);
1620 list_add(&req
->queuelist
, &mqrq
->packed
->list
);
1621 mqrq
->packed
->nr_entries
= ++reqs
;
1622 mqrq
->packed
->retries
= reqs
;
1627 mqrq
->cmd_type
= MMC_PACKED_NONE
;
1631 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req
*mqrq
,
1632 struct mmc_card
*card
,
1633 struct mmc_queue
*mq
)
1635 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1636 struct request
*req
= mqrq
->req
;
1637 struct request
*prq
;
1638 struct mmc_blk_data
*md
= mq
->data
;
1639 struct mmc_packed
*packed
= mqrq
->packed
;
1640 bool do_rel_wr
, do_data_tag
;
1641 u32
*packed_cmd_hdr
;
1647 mqrq
->cmd_type
= MMC_PACKED_WRITE
;
1649 packed
->idx_failure
= MMC_PACKED_NR_IDX
;
1651 packed_cmd_hdr
= packed
->cmd_hdr
;
1652 memset(packed_cmd_hdr
, 0, sizeof(packed
->cmd_hdr
));
1653 packed_cmd_hdr
[0] = (packed
->nr_entries
<< 16) |
1654 (PACKED_CMD_WR
<< 8) | PACKED_CMD_VER
;
1655 hdr_blocks
= mmc_large_sector(card
) ? 8 : 1;
1658 * Argument for each entry of packed group
1660 list_for_each_entry(prq
, &packed
->list
, queuelist
) {
1661 do_rel_wr
= mmc_req_rel_wr(prq
) && (md
->flags
& MMC_BLK_REL_WR
);
1662 do_data_tag
= (card
->ext_csd
.data_tag_unit_size
) &&
1663 (prq
->cmd_flags
& REQ_META
) &&
1664 (rq_data_dir(prq
) == WRITE
) &&
1665 ((brq
->data
.blocks
* brq
->data
.blksz
) >=
1666 card
->ext_csd
.data_tag_unit_size
);
1667 /* Argument of CMD23 */
1668 packed_cmd_hdr
[(i
* 2)] =
1669 (do_rel_wr
? MMC_CMD23_ARG_REL_WR
: 0) |
1670 (do_data_tag
? MMC_CMD23_ARG_TAG_REQ
: 0) |
1671 blk_rq_sectors(prq
);
1672 /* Argument of CMD18 or CMD25 */
1673 packed_cmd_hdr
[((i
* 2)) + 1] =
1674 mmc_card_blockaddr(card
) ?
1675 blk_rq_pos(prq
) : blk_rq_pos(prq
) << 9;
1676 packed
->blocks
+= blk_rq_sectors(prq
);
1680 memset(brq
, 0, sizeof(struct mmc_blk_request
));
1681 brq
->mrq
.cmd
= &brq
->cmd
;
1682 brq
->mrq
.data
= &brq
->data
;
1683 brq
->mrq
.sbc
= &brq
->sbc
;
1684 brq
->mrq
.stop
= &brq
->stop
;
1686 brq
->sbc
.opcode
= MMC_SET_BLOCK_COUNT
;
1687 brq
->sbc
.arg
= MMC_CMD23_ARG_PACKED
| (packed
->blocks
+ hdr_blocks
);
1688 brq
->sbc
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1690 brq
->cmd
.opcode
= MMC_WRITE_MULTIPLE_BLOCK
;
1691 brq
->cmd
.arg
= blk_rq_pos(req
);
1692 if (!mmc_card_blockaddr(card
))
1694 brq
->cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
1696 brq
->data
.blksz
= 512;
1697 brq
->data
.blocks
= packed
->blocks
+ hdr_blocks
;
1698 brq
->data
.flags
|= MMC_DATA_WRITE
;
1700 brq
->stop
.opcode
= MMC_STOP_TRANSMISSION
;
1702 brq
->stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1704 mmc_set_data_timeout(&brq
->data
, card
);
1706 brq
->data
.sg
= mqrq
->sg
;
1707 brq
->data
.sg_len
= mmc_queue_map_sg(mq
, mqrq
);
1709 mqrq
->mmc_active
.mrq
= &brq
->mrq
;
1710 mqrq
->mmc_active
.err_check
= mmc_blk_packed_err_check
;
1712 mmc_queue_bounce_pre(mqrq
);
1715 static int mmc_blk_cmd_err(struct mmc_blk_data
*md
, struct mmc_card
*card
,
1716 struct mmc_blk_request
*brq
, struct request
*req
,
1719 struct mmc_queue_req
*mq_rq
;
1720 mq_rq
= container_of(brq
, struct mmc_queue_req
, brq
);
1723 * If this is an SD card and we're writing, we can first
1724 * mark the known good sectors as ok.
1726 * If the card is not SD, we can still ok written sectors
1727 * as reported by the controller (which might be less than
1728 * the real number of written sectors, but never more).
1730 if (mmc_card_sd(card
)) {
1733 blocks
= mmc_sd_num_wr_blocks(card
);
1734 if (blocks
!= (u32
)-1) {
1735 ret
= blk_end_request(req
, 0, blocks
<< 9);
1738 if (!mmc_packed_cmd(mq_rq
->cmd_type
))
1739 ret
= blk_end_request(req
, 0, brq
->data
.bytes_xfered
);
1744 static int mmc_blk_end_packed_req(struct mmc_queue_req
*mq_rq
)
1746 struct request
*prq
;
1747 struct mmc_packed
*packed
= mq_rq
->packed
;
1748 int idx
= packed
->idx_failure
, i
= 0;
1753 while (!list_empty(&packed
->list
)) {
1754 prq
= list_entry_rq(packed
->list
.next
);
1756 /* retry from error index */
1757 packed
->nr_entries
-= idx
;
1761 if (packed
->nr_entries
== MMC_PACKED_NR_SINGLE
) {
1762 list_del_init(&prq
->queuelist
);
1763 mmc_blk_clear_packed(mq_rq
);
1767 list_del_init(&prq
->queuelist
);
1768 blk_end_request(prq
, 0, blk_rq_bytes(prq
));
1772 mmc_blk_clear_packed(mq_rq
);
1776 static void mmc_blk_abort_packed_req(struct mmc_queue_req
*mq_rq
)
1778 struct request
*prq
;
1779 struct mmc_packed
*packed
= mq_rq
->packed
;
1783 while (!list_empty(&packed
->list
)) {
1784 prq
= list_entry_rq(packed
->list
.next
);
1785 list_del_init(&prq
->queuelist
);
1786 blk_end_request(prq
, -EIO
, blk_rq_bytes(prq
));
1789 mmc_blk_clear_packed(mq_rq
);
1792 static void mmc_blk_revert_packed_req(struct mmc_queue
*mq
,
1793 struct mmc_queue_req
*mq_rq
)
1795 struct request
*prq
;
1796 struct request_queue
*q
= mq
->queue
;
1797 struct mmc_packed
*packed
= mq_rq
->packed
;
1801 while (!list_empty(&packed
->list
)) {
1802 prq
= list_entry_rq(packed
->list
.prev
);
1803 if (prq
->queuelist
.prev
!= &packed
->list
) {
1804 list_del_init(&prq
->queuelist
);
1805 spin_lock_irq(q
->queue_lock
);
1806 blk_requeue_request(mq
->queue
, prq
);
1807 spin_unlock_irq(q
->queue_lock
);
1809 list_del_init(&prq
->queuelist
);
1813 mmc_blk_clear_packed(mq_rq
);
1816 static int mmc_blk_issue_rw_rq(struct mmc_queue
*mq
, struct request
*rqc
)
1818 struct mmc_blk_data
*md
= mq
->data
;
1819 struct mmc_card
*card
= md
->queue
.card
;
1820 struct mmc_blk_request
*brq
= &mq
->mqrq_cur
->brq
;
1821 int ret
= 1, disable_multi
= 0, retry
= 0, type
;
1822 enum mmc_blk_status status
;
1823 struct mmc_queue_req
*mq_rq
;
1824 struct request
*req
= rqc
;
1825 struct mmc_async_req
*areq
;
1826 const u8 packed_nr
= 2;
1829 if (!rqc
&& !mq
->mqrq_prev
->req
)
1833 reqs
= mmc_blk_prep_packed_list(mq
, rqc
);
1838 * When 4KB native sector is enabled, only 8 blocks
1839 * multiple read or write is allowed
1841 if ((brq
->data
.blocks
& 0x07) &&
1842 (card
->ext_csd
.data_sector_size
== 4096)) {
1843 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1844 req
->rq_disk
->disk_name
);
1845 mq_rq
= mq
->mqrq_cur
;
1849 if (reqs
>= packed_nr
)
1850 mmc_blk_packed_hdr_wrq_prep(mq
->mqrq_cur
,
1853 mmc_blk_rw_rq_prep(mq
->mqrq_cur
, card
, 0, mq
);
1854 areq
= &mq
->mqrq_cur
->mmc_active
;
1857 areq
= mmc_start_req(card
->host
, areq
, (int *) &status
);
1859 if (status
== MMC_BLK_NEW_REQUEST
)
1860 mq
->flags
|= MMC_QUEUE_NEW_REQUEST
;
1864 mq_rq
= container_of(areq
, struct mmc_queue_req
, mmc_active
);
1867 type
= rq_data_dir(req
) == READ
? MMC_BLK_READ
: MMC_BLK_WRITE
;
1868 mmc_queue_bounce_post(mq_rq
);
1871 case MMC_BLK_SUCCESS
:
1872 case MMC_BLK_PARTIAL
:
1874 * A block was successfully transferred.
1876 mmc_blk_reset_success(md
, type
);
1878 if (mmc_packed_cmd(mq_rq
->cmd_type
)) {
1879 ret
= mmc_blk_end_packed_req(mq_rq
);
1882 ret
= blk_end_request(req
, 0,
1883 brq
->data
.bytes_xfered
);
1887 * If the blk_end_request function returns non-zero even
1888 * though all data has been transferred and no errors
1889 * were returned by the host controller, it's a bug.
1891 if (status
== MMC_BLK_SUCCESS
&& ret
) {
1892 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1893 __func__
, blk_rq_bytes(req
),
1894 brq
->data
.bytes_xfered
);
1899 case MMC_BLK_CMD_ERR
:
1900 ret
= mmc_blk_cmd_err(md
, card
, brq
, req
, ret
);
1901 if (!mmc_blk_reset(md
, card
->host
, type
))
1909 if (!mmc_blk_reset(md
, card
->host
, type
))
1912 case MMC_BLK_DATA_ERR
: {
1915 err
= mmc_blk_reset(md
, card
->host
, type
);
1918 if (err
== -ENODEV
||
1919 mmc_packed_cmd(mq_rq
->cmd_type
))
1923 case MMC_BLK_ECC_ERR
:
1924 if (brq
->data
.blocks
> 1) {
1925 /* Redo read one sector at a time */
1926 pr_warning("%s: retrying using single block read\n",
1927 req
->rq_disk
->disk_name
);
1932 * After an error, we redo I/O one sector at a
1933 * time, so we only reach here after trying to
1934 * read a single sector.
1936 ret
= blk_end_request(req
, -EIO
,
1941 case MMC_BLK_NOMEDIUM
:
1944 pr_err("%s: Unhandled return value (%d)",
1945 req
->rq_disk
->disk_name
, status
);
1950 if (mmc_packed_cmd(mq_rq
->cmd_type
)) {
1951 if (!mq_rq
->packed
->retries
)
1953 mmc_blk_packed_hdr_wrq_prep(mq_rq
, card
, mq
);
1954 mmc_start_req(card
->host
,
1955 &mq_rq
->mmc_active
, NULL
);
1959 * In case of a incomplete request
1960 * prepare it again and resend.
1962 mmc_blk_rw_rq_prep(mq_rq
, card
,
1964 mmc_start_req(card
->host
,
1965 &mq_rq
->mmc_active
, NULL
);
1973 if (mmc_packed_cmd(mq_rq
->cmd_type
)) {
1974 mmc_blk_abort_packed_req(mq_rq
);
1976 if (mmc_card_removed(card
))
1977 req
->cmd_flags
|= REQ_QUIET
;
1979 ret
= blk_end_request(req
, -EIO
,
1980 blk_rq_cur_bytes(req
));
1985 if (mmc_card_removed(card
)) {
1986 rqc
->cmd_flags
|= REQ_QUIET
;
1987 blk_end_request_all(rqc
, -EIO
);
1990 * If current request is packed, it needs to put back.
1992 if (mmc_packed_cmd(mq
->mqrq_cur
->cmd_type
))
1993 mmc_blk_revert_packed_req(mq
, mq
->mqrq_cur
);
1995 mmc_blk_rw_rq_prep(mq
->mqrq_cur
, card
, 0, mq
);
1996 mmc_start_req(card
->host
,
1997 &mq
->mqrq_cur
->mmc_active
, NULL
);
2004 static int mmc_blk_issue_rq(struct mmc_queue
*mq
, struct request
*req
)
2007 struct mmc_blk_data
*md
= mq
->data
;
2008 struct mmc_card
*card
= md
->queue
.card
;
2009 struct mmc_host
*host
= card
->host
;
2010 unsigned long flags
;
2011 unsigned int cmd_flags
= req
? req
->cmd_flags
: 0;
2013 if (req
&& !mq
->mqrq_prev
->req
)
2014 /* claim host only for the first request */
2017 ret
= mmc_blk_part_switch(card
, md
);
2020 blk_end_request_all(req
, -EIO
);
2026 mq
->flags
&= ~MMC_QUEUE_NEW_REQUEST
;
2027 if (cmd_flags
& REQ_DISCARD
) {
2028 /* complete ongoing async transfer before issuing discard */
2029 if (card
->host
->areq
)
2030 mmc_blk_issue_rw_rq(mq
, NULL
);
2031 if (req
->cmd_flags
& REQ_SECURE
&&
2032 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2033 ret
= mmc_blk_issue_secdiscard_rq(mq
, req
);
2035 ret
= mmc_blk_issue_discard_rq(mq
, req
);
2036 } else if (cmd_flags
& REQ_FLUSH
) {
2037 /* complete ongoing async transfer before issuing flush */
2038 if (card
->host
->areq
)
2039 mmc_blk_issue_rw_rq(mq
, NULL
);
2040 ret
= mmc_blk_issue_flush(mq
, req
);
2042 if (!req
&& host
->areq
) {
2043 spin_lock_irqsave(&host
->context_info
.lock
, flags
);
2044 host
->context_info
.is_waiting_last_req
= true;
2045 spin_unlock_irqrestore(&host
->context_info
.lock
, flags
);
2047 ret
= mmc_blk_issue_rw_rq(mq
, req
);
2051 if ((!req
&& !(mq
->flags
& MMC_QUEUE_NEW_REQUEST
)) ||
2052 (cmd_flags
& MMC_REQ_SPECIAL_MASK
))
2054 * Release host when there are no more requests
2055 * and after special request(discard, flush) is done.
2056 * In case sepecial request, there is no reentry to
2057 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2063 static inline int mmc_blk_readonly(struct mmc_card
*card
)
2065 return mmc_card_readonly(card
) ||
2066 !(card
->csd
.cmdclass
& CCC_BLOCK_WRITE
);
2069 static struct mmc_blk_data
*mmc_blk_alloc_req(struct mmc_card
*card
,
2070 struct device
*parent
,
2073 const char *subname
,
2076 struct mmc_blk_data
*md
;
2079 devidx
= find_first_zero_bit(dev_use
, max_devices
);
2080 if (devidx
>= max_devices
)
2081 return ERR_PTR(-ENOSPC
);
2082 __set_bit(devidx
, dev_use
);
2084 md
= kzalloc(sizeof(struct mmc_blk_data
), GFP_KERNEL
);
2091 * !subname implies we are creating main mmc_blk_data that will be
2092 * associated with mmc_card with mmc_set_drvdata. Due to device
2093 * partitions, devidx will not coincide with a per-physical card
2094 * index anymore so we keep track of a name index.
2097 md
->name_idx
= find_first_zero_bit(name_use
, max_devices
);
2098 __set_bit(md
->name_idx
, name_use
);
2100 md
->name_idx
= ((struct mmc_blk_data
*)
2101 dev_to_disk(parent
)->private_data
)->name_idx
;
2103 md
->area_type
= area_type
;
2106 * Set the read-only status based on the supported commands
2107 * and the write protect switch.
2109 md
->read_only
= mmc_blk_readonly(card
);
2111 md
->disk
= alloc_disk(perdev_minors
);
2112 if (md
->disk
== NULL
) {
2117 spin_lock_init(&md
->lock
);
2118 INIT_LIST_HEAD(&md
->part
);
2121 ret
= mmc_init_queue(&md
->queue
, card
, &md
->lock
, subname
);
2125 md
->queue
.issue_fn
= mmc_blk_issue_rq
;
2126 md
->queue
.data
= md
;
2128 md
->disk
->major
= MMC_BLOCK_MAJOR
;
2129 md
->disk
->first_minor
= devidx
* perdev_minors
;
2130 md
->disk
->fops
= &mmc_bdops
;
2131 md
->disk
->private_data
= md
;
2132 md
->disk
->queue
= md
->queue
.queue
;
2133 md
->disk
->driverfs_dev
= parent
;
2134 set_disk_ro(md
->disk
, md
->read_only
|| default_ro
);
2135 if (area_type
& MMC_BLK_DATA_AREA_RPMB
)
2136 md
->disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
2139 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2141 * - be set for removable media with permanent block devices
2142 * - be unset for removable block devices with permanent media
2144 * Since MMC block devices clearly fall under the second
2145 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2146 * should use the block device creation/destruction hotplug
2147 * messages to tell when the card is present.
2150 snprintf(md
->disk
->disk_name
, sizeof(md
->disk
->disk_name
),
2151 "mmcblk%d%s", md
->name_idx
, subname
? subname
: "");
2153 if (mmc_card_mmc(card
))
2154 blk_queue_logical_block_size(md
->queue
.queue
,
2155 card
->ext_csd
.data_sector_size
);
2157 blk_queue_logical_block_size(md
->queue
.queue
, 512);
2159 set_capacity(md
->disk
, size
);
2161 if (mmc_host_cmd23(card
->host
)) {
2162 if (mmc_card_mmc(card
) ||
2163 (mmc_card_sd(card
) &&
2164 card
->scr
.cmds
& SD_SCR_CMD23_SUPPORT
))
2165 md
->flags
|= MMC_BLK_CMD23
;
2168 if (mmc_card_mmc(card
) &&
2169 md
->flags
& MMC_BLK_CMD23
&&
2170 ((card
->ext_csd
.rel_param
& EXT_CSD_WR_REL_PARAM_EN
) ||
2171 card
->ext_csd
.rel_sectors
)) {
2172 md
->flags
|= MMC_BLK_REL_WR
;
2173 blk_queue_flush(md
->queue
.queue
, REQ_FLUSH
| REQ_FUA
);
2176 if (mmc_card_mmc(card
) &&
2177 (area_type
== MMC_BLK_DATA_AREA_MAIN
) &&
2178 (md
->flags
& MMC_BLK_CMD23
) &&
2179 card
->ext_csd
.packed_event_en
) {
2180 if (!mmc_packed_init(&md
->queue
, card
))
2181 md
->flags
|= MMC_BLK_PACKED_CMD
;
2191 return ERR_PTR(ret
);
2194 static struct mmc_blk_data
*mmc_blk_alloc(struct mmc_card
*card
)
2197 struct mmc_blk_data
*md
;
2199 if (!mmc_card_sd(card
) && mmc_card_blockaddr(card
)) {
2201 * The EXT_CSD sector count is in number or 512 byte
2204 size
= card
->ext_csd
.sectors
;
2207 * The CSD capacity field is in units of read_blkbits.
2208 * set_capacity takes units of 512 bytes.
2210 size
= card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9);
2213 md
= mmc_blk_alloc_req(card
, &card
->dev
, size
, false, NULL
,
2214 MMC_BLK_DATA_AREA_MAIN
);
2218 static int mmc_blk_alloc_part(struct mmc_card
*card
,
2219 struct mmc_blk_data
*md
,
2220 unsigned int part_type
,
2223 const char *subname
,
2227 struct mmc_blk_data
*part_md
;
2229 part_md
= mmc_blk_alloc_req(card
, disk_to_dev(md
->disk
), size
, default_ro
,
2230 subname
, area_type
);
2231 if (IS_ERR(part_md
))
2232 return PTR_ERR(part_md
);
2233 part_md
->part_type
= part_type
;
2234 list_add(&part_md
->part
, &md
->part
);
2236 string_get_size((u64
)get_capacity(part_md
->disk
) << 9, STRING_UNITS_2
,
2237 cap_str
, sizeof(cap_str
));
2238 pr_info("%s: %s %s partition %u %s\n",
2239 part_md
->disk
->disk_name
, mmc_card_id(card
),
2240 mmc_card_name(card
), part_md
->part_type
, cap_str
);
2244 /* MMC Physical partitions consist of two boot partitions and
2245 * up to four general purpose partitions.
2246 * For each partition enabled in EXT_CSD a block device will be allocatedi
2247 * to provide access to the partition.
2250 static int mmc_blk_alloc_parts(struct mmc_card
*card
, struct mmc_blk_data
*md
)
2254 if (!mmc_card_mmc(card
))
2257 for (idx
= 0; idx
< card
->nr_parts
; idx
++) {
2258 if (card
->part
[idx
].size
) {
2259 ret
= mmc_blk_alloc_part(card
, md
,
2260 card
->part
[idx
].part_cfg
,
2261 card
->part
[idx
].size
>> 9,
2262 card
->part
[idx
].force_ro
,
2263 card
->part
[idx
].name
,
2264 card
->part
[idx
].area_type
);
2273 static void mmc_blk_remove_req(struct mmc_blk_data
*md
)
2275 struct mmc_card
*card
;
2279 * Flush remaining requests and free queues. It
2280 * is freeing the queue that stops new requests
2281 * from being accepted.
2283 card
= md
->queue
.card
;
2284 mmc_cleanup_queue(&md
->queue
);
2285 if (md
->flags
& MMC_BLK_PACKED_CMD
)
2286 mmc_packed_clean(&md
->queue
);
2287 if (md
->disk
->flags
& GENHD_FL_UP
) {
2288 device_remove_file(disk_to_dev(md
->disk
), &md
->force_ro
);
2289 if ((md
->area_type
& MMC_BLK_DATA_AREA_BOOT
) &&
2290 card
->ext_csd
.boot_ro_lockable
)
2291 device_remove_file(disk_to_dev(md
->disk
),
2292 &md
->power_ro_lock
);
2294 del_gendisk(md
->disk
);
2300 static void mmc_blk_remove_parts(struct mmc_card
*card
,
2301 struct mmc_blk_data
*md
)
2303 struct list_head
*pos
, *q
;
2304 struct mmc_blk_data
*part_md
;
2306 __clear_bit(md
->name_idx
, name_use
);
2307 list_for_each_safe(pos
, q
, &md
->part
) {
2308 part_md
= list_entry(pos
, struct mmc_blk_data
, part
);
2310 mmc_blk_remove_req(part_md
);
2314 static int mmc_add_disk(struct mmc_blk_data
*md
)
2317 struct mmc_card
*card
= md
->queue
.card
;
2320 md
->force_ro
.show
= force_ro_show
;
2321 md
->force_ro
.store
= force_ro_store
;
2322 sysfs_attr_init(&md
->force_ro
.attr
);
2323 md
->force_ro
.attr
.name
= "force_ro";
2324 md
->force_ro
.attr
.mode
= S_IRUGO
| S_IWUSR
;
2325 ret
= device_create_file(disk_to_dev(md
->disk
), &md
->force_ro
);
2329 if ((md
->area_type
& MMC_BLK_DATA_AREA_BOOT
) &&
2330 card
->ext_csd
.boot_ro_lockable
) {
2333 if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PWR_WP_DIS
)
2336 mode
= S_IRUGO
| S_IWUSR
;
2338 md
->power_ro_lock
.show
= power_ro_lock_show
;
2339 md
->power_ro_lock
.store
= power_ro_lock_store
;
2340 sysfs_attr_init(&md
->power_ro_lock
.attr
);
2341 md
->power_ro_lock
.attr
.mode
= mode
;
2342 md
->power_ro_lock
.attr
.name
=
2343 "ro_lock_until_next_power_on";
2344 ret
= device_create_file(disk_to_dev(md
->disk
),
2345 &md
->power_ro_lock
);
2347 goto power_ro_lock_fail
;
2352 device_remove_file(disk_to_dev(md
->disk
), &md
->force_ro
);
2354 del_gendisk(md
->disk
);
2359 #define CID_MANFID_SANDISK 0x2
2360 #define CID_MANFID_TOSHIBA 0x11
2361 #define CID_MANFID_MICRON 0x13
2362 #define CID_MANFID_SAMSUNG 0x15
2364 static const struct mmc_fixup blk_fixups
[] =
2366 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
2367 MMC_QUIRK_INAND_CMD38
),
2368 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
2369 MMC_QUIRK_INAND_CMD38
),
2370 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
2371 MMC_QUIRK_INAND_CMD38
),
2372 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
2373 MMC_QUIRK_INAND_CMD38
),
2374 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
2375 MMC_QUIRK_INAND_CMD38
),
2378 * Some MMC cards experience performance degradation with CMD23
2379 * instead of CMD12-bounded multiblock transfers. For now we'll
2380 * black list what's bad...
2381 * - Certain Toshiba cards.
2383 * N.B. This doesn't affect SD cards.
2385 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA
, CID_OEMID_ANY
, add_quirk_mmc
,
2386 MMC_QUIRK_BLK_NO_CMD23
),
2387 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA
, CID_OEMID_ANY
, add_quirk_mmc
,
2388 MMC_QUIRK_BLK_NO_CMD23
),
2389 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA
, CID_OEMID_ANY
, add_quirk_mmc
,
2390 MMC_QUIRK_BLK_NO_CMD23
),
2393 * Some Micron MMC cards needs longer data read timeout than
2396 MMC_FIXUP(CID_NAME_ANY
, CID_MANFID_MICRON
, 0x200, add_quirk_mmc
,
2397 MMC_QUIRK_LONG_READ_TIME
),
2400 * On these Samsung MoviNAND parts, performing secure erase or
2401 * secure trim can result in unrecoverable corruption due to a
2404 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2405 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2406 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2407 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2408 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2409 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2410 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2411 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2412 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2413 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2414 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2415 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2416 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2417 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2418 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
2419 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
2424 static int mmc_blk_probe(struct mmc_card
*card
)
2426 struct mmc_blk_data
*md
, *part_md
;
2430 * Check that the card supports the command class(es) we need.
2432 if (!(card
->csd
.cmdclass
& CCC_BLOCK_READ
))
2435 md
= mmc_blk_alloc(card
);
2439 string_get_size((u64
)get_capacity(md
->disk
) << 9, STRING_UNITS_2
,
2440 cap_str
, sizeof(cap_str
));
2441 pr_info("%s: %s %s %s %s\n",
2442 md
->disk
->disk_name
, mmc_card_id(card
), mmc_card_name(card
),
2443 cap_str
, md
->read_only
? "(ro)" : "");
2445 if (mmc_blk_alloc_parts(card
, md
))
2448 mmc_set_drvdata(card
, md
);
2449 mmc_fixup_device(card
, blk_fixups
);
2451 if (mmc_add_disk(md
))
2454 list_for_each_entry(part_md
, &md
->part
, part
) {
2455 if (mmc_add_disk(part_md
))
2459 pm_runtime_set_autosuspend_delay(&card
->dev
, 3000);
2460 pm_runtime_use_autosuspend(&card
->dev
);
2463 * Don't enable runtime PM for SD-combo cards here. Leave that
2464 * decision to be taken during the SDIO init sequence instead.
2466 if (card
->type
!= MMC_TYPE_SD_COMBO
) {
2467 pm_runtime_set_active(&card
->dev
);
2468 pm_runtime_enable(&card
->dev
);
2474 mmc_blk_remove_parts(card
, md
);
2475 mmc_blk_remove_req(md
);
2479 static void mmc_blk_remove(struct mmc_card
*card
)
2481 struct mmc_blk_data
*md
= mmc_get_drvdata(card
);
2483 mmc_blk_remove_parts(card
, md
);
2484 pm_runtime_get_sync(&card
->dev
);
2485 mmc_claim_host(card
->host
);
2486 mmc_blk_part_switch(card
, md
);
2487 mmc_release_host(card
->host
);
2488 if (card
->type
!= MMC_TYPE_SD_COMBO
)
2489 pm_runtime_disable(&card
->dev
);
2490 pm_runtime_put_noidle(&card
->dev
);
2491 mmc_blk_remove_req(md
);
2492 mmc_set_drvdata(card
, NULL
);
2495 static int _mmc_blk_suspend(struct mmc_card
*card
)
2497 struct mmc_blk_data
*part_md
;
2498 struct mmc_blk_data
*md
= mmc_get_drvdata(card
);
2501 mmc_queue_suspend(&md
->queue
);
2502 list_for_each_entry(part_md
, &md
->part
, part
) {
2503 mmc_queue_suspend(&part_md
->queue
);
2509 static void mmc_blk_shutdown(struct mmc_card
*card
)
2511 _mmc_blk_suspend(card
);
2515 static int mmc_blk_suspend(struct mmc_card
*card
)
2517 return _mmc_blk_suspend(card
);
2520 static int mmc_blk_resume(struct mmc_card
*card
)
2522 struct mmc_blk_data
*part_md
;
2523 struct mmc_blk_data
*md
= mmc_get_drvdata(card
);
2527 * Resume involves the card going into idle state,
2528 * so current partition is always the main one.
2530 md
->part_curr
= md
->part_type
;
2531 mmc_queue_resume(&md
->queue
);
2532 list_for_each_entry(part_md
, &md
->part
, part
) {
2533 mmc_queue_resume(&part_md
->queue
);
2539 #define mmc_blk_suspend NULL
2540 #define mmc_blk_resume NULL
2543 static struct mmc_driver mmc_driver
= {
2547 .probe
= mmc_blk_probe
,
2548 .remove
= mmc_blk_remove
,
2549 .suspend
= mmc_blk_suspend
,
2550 .resume
= mmc_blk_resume
,
2551 .shutdown
= mmc_blk_shutdown
,
2554 static int __init
mmc_blk_init(void)
2558 if (perdev_minors
!= CONFIG_MMC_BLOCK_MINORS
)
2559 pr_info("mmcblk: using %d minors per device\n", perdev_minors
);
2561 max_devices
= 256 / perdev_minors
;
2563 res
= register_blkdev(MMC_BLOCK_MAJOR
, "mmc");
2567 res
= mmc_register_driver(&mmc_driver
);
2573 unregister_blkdev(MMC_BLOCK_MAJOR
, "mmc");
2578 static void __exit
mmc_blk_exit(void)
2580 mmc_unregister_driver(&mmc_driver
);
2581 unregister_blkdev(MMC_BLOCK_MAJOR
, "mmc");
2584 module_init(mmc_blk_init
);
2585 module_exit(mmc_blk_exit
);
2587 MODULE_LICENSE("GPL");
2588 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");