mm: Initialize error in shmem_file_aio_read()
[linux/fpc-iii.git] / mm / nommu.c
blob85f8d6698d4872c62ce3d3a03504c314b029215e
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/compiler.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/audit.h>
34 #include <linux/sched/sysctl.h>
36 #include <asm/uaccess.h>
37 #include <asm/tlb.h>
38 #include <asm/tlbflush.h>
39 #include <asm/mmu_context.h>
40 #include "internal.h"
42 #if 0
43 #define kenter(FMT, ...) \
44 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
45 #define kleave(FMT, ...) \
46 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
47 #define kdebug(FMT, ...) \
48 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
49 #else
50 #define kenter(FMT, ...) \
51 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
52 #define kleave(FMT, ...) \
53 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
54 #define kdebug(FMT, ...) \
55 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
56 #endif
58 void *high_memory;
59 struct page *mem_map;
60 unsigned long max_mapnr;
61 unsigned long highest_memmap_pfn;
62 struct percpu_counter vm_committed_as;
63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
64 int sysctl_overcommit_ratio = 50; /* default is 50% */
65 unsigned long sysctl_overcommit_kbytes __read_mostly;
66 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
67 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
68 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
69 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
70 int heap_stack_gap = 0;
72 atomic_long_t mmap_pages_allocated;
75 * The global memory commitment made in the system can be a metric
76 * that can be used to drive ballooning decisions when Linux is hosted
77 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
78 * balancing memory across competing virtual machines that are hosted.
79 * Several metrics drive this policy engine including the guest reported
80 * memory commitment.
82 unsigned long vm_memory_committed(void)
84 return percpu_counter_read_positive(&vm_committed_as);
87 EXPORT_SYMBOL_GPL(vm_memory_committed);
89 EXPORT_SYMBOL(mem_map);
91 /* list of mapped, potentially shareable regions */
92 static struct kmem_cache *vm_region_jar;
93 struct rb_root nommu_region_tree = RB_ROOT;
94 DECLARE_RWSEM(nommu_region_sem);
96 const struct vm_operations_struct generic_file_vm_ops = {
100 * Return the total memory allocated for this pointer, not
101 * just what the caller asked for.
103 * Doesn't have to be accurate, i.e. may have races.
105 unsigned int kobjsize(const void *objp)
107 struct page *page;
110 * If the object we have should not have ksize performed on it,
111 * return size of 0
113 if (!objp || !virt_addr_valid(objp))
114 return 0;
116 page = virt_to_head_page(objp);
119 * If the allocator sets PageSlab, we know the pointer came from
120 * kmalloc().
122 if (PageSlab(page))
123 return ksize(objp);
126 * If it's not a compound page, see if we have a matching VMA
127 * region. This test is intentionally done in reverse order,
128 * so if there's no VMA, we still fall through and hand back
129 * PAGE_SIZE for 0-order pages.
131 if (!PageCompound(page)) {
132 struct vm_area_struct *vma;
134 vma = find_vma(current->mm, (unsigned long)objp);
135 if (vma)
136 return vma->vm_end - vma->vm_start;
140 * The ksize() function is only guaranteed to work for pointers
141 * returned by kmalloc(). So handle arbitrary pointers here.
143 return PAGE_SIZE << compound_order(page);
146 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
147 unsigned long start, unsigned long nr_pages,
148 unsigned int foll_flags, struct page **pages,
149 struct vm_area_struct **vmas, int *nonblocking)
151 struct vm_area_struct *vma;
152 unsigned long vm_flags;
153 int i;
155 /* calculate required read or write permissions.
156 * If FOLL_FORCE is set, we only require the "MAY" flags.
158 vm_flags = (foll_flags & FOLL_WRITE) ?
159 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
160 vm_flags &= (foll_flags & FOLL_FORCE) ?
161 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
163 for (i = 0; i < nr_pages; i++) {
164 vma = find_vma(mm, start);
165 if (!vma)
166 goto finish_or_fault;
168 /* protect what we can, including chardevs */
169 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
170 !(vm_flags & vma->vm_flags))
171 goto finish_or_fault;
173 if (pages) {
174 pages[i] = virt_to_page(start);
175 if (pages[i])
176 page_cache_get(pages[i]);
178 if (vmas)
179 vmas[i] = vma;
180 start = (start + PAGE_SIZE) & PAGE_MASK;
183 return i;
185 finish_or_fault:
186 return i ? : -EFAULT;
190 * get a list of pages in an address range belonging to the specified process
191 * and indicate the VMA that covers each page
192 * - this is potentially dodgy as we may end incrementing the page count of a
193 * slab page or a secondary page from a compound page
194 * - don't permit access to VMAs that don't support it, such as I/O mappings
196 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
197 unsigned long start, unsigned long nr_pages,
198 int write, int force, struct page **pages,
199 struct vm_area_struct **vmas)
201 int flags = 0;
203 if (write)
204 flags |= FOLL_WRITE;
205 if (force)
206 flags |= FOLL_FORCE;
208 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
209 NULL);
211 EXPORT_SYMBOL(get_user_pages);
214 * follow_pfn - look up PFN at a user virtual address
215 * @vma: memory mapping
216 * @address: user virtual address
217 * @pfn: location to store found PFN
219 * Only IO mappings and raw PFN mappings are allowed.
221 * Returns zero and the pfn at @pfn on success, -ve otherwise.
223 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
224 unsigned long *pfn)
226 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
227 return -EINVAL;
229 *pfn = address >> PAGE_SHIFT;
230 return 0;
232 EXPORT_SYMBOL(follow_pfn);
234 LIST_HEAD(vmap_area_list);
236 void vfree(const void *addr)
238 kfree(addr);
240 EXPORT_SYMBOL(vfree);
242 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
245 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
246 * returns only a logical address.
248 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
250 EXPORT_SYMBOL(__vmalloc);
252 void *vmalloc_user(unsigned long size)
254 void *ret;
256 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
257 PAGE_KERNEL);
258 if (ret) {
259 struct vm_area_struct *vma;
261 down_write(&current->mm->mmap_sem);
262 vma = find_vma(current->mm, (unsigned long)ret);
263 if (vma)
264 vma->vm_flags |= VM_USERMAP;
265 up_write(&current->mm->mmap_sem);
268 return ret;
270 EXPORT_SYMBOL(vmalloc_user);
272 struct page *vmalloc_to_page(const void *addr)
274 return virt_to_page(addr);
276 EXPORT_SYMBOL(vmalloc_to_page);
278 unsigned long vmalloc_to_pfn(const void *addr)
280 return page_to_pfn(virt_to_page(addr));
282 EXPORT_SYMBOL(vmalloc_to_pfn);
284 long vread(char *buf, char *addr, unsigned long count)
286 /* Don't allow overflow */
287 if ((unsigned long) buf + count < count)
288 count = -(unsigned long) buf;
290 memcpy(buf, addr, count);
291 return count;
294 long vwrite(char *buf, char *addr, unsigned long count)
296 /* Don't allow overflow */
297 if ((unsigned long) addr + count < count)
298 count = -(unsigned long) addr;
300 memcpy(addr, buf, count);
301 return count;
305 * vmalloc - allocate virtually continguos memory
307 * @size: allocation size
309 * Allocate enough pages to cover @size from the page level
310 * allocator and map them into continguos kernel virtual space.
312 * For tight control over page level allocator and protection flags
313 * use __vmalloc() instead.
315 void *vmalloc(unsigned long size)
317 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
319 EXPORT_SYMBOL(vmalloc);
322 * vzalloc - allocate virtually continguos memory with zero fill
324 * @size: allocation size
326 * Allocate enough pages to cover @size from the page level
327 * allocator and map them into continguos kernel virtual space.
328 * The memory allocated is set to zero.
330 * For tight control over page level allocator and protection flags
331 * use __vmalloc() instead.
333 void *vzalloc(unsigned long size)
335 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
336 PAGE_KERNEL);
338 EXPORT_SYMBOL(vzalloc);
341 * vmalloc_node - allocate memory on a specific node
342 * @size: allocation size
343 * @node: numa node
345 * Allocate enough pages to cover @size from the page level
346 * allocator and map them into contiguous kernel virtual space.
348 * For tight control over page level allocator and protection flags
349 * use __vmalloc() instead.
351 void *vmalloc_node(unsigned long size, int node)
353 return vmalloc(size);
355 EXPORT_SYMBOL(vmalloc_node);
358 * vzalloc_node - allocate memory on a specific node with zero fill
359 * @size: allocation size
360 * @node: numa node
362 * Allocate enough pages to cover @size from the page level
363 * allocator and map them into contiguous kernel virtual space.
364 * The memory allocated is set to zero.
366 * For tight control over page level allocator and protection flags
367 * use __vmalloc() instead.
369 void *vzalloc_node(unsigned long size, int node)
371 return vzalloc(size);
373 EXPORT_SYMBOL(vzalloc_node);
375 #ifndef PAGE_KERNEL_EXEC
376 # define PAGE_KERNEL_EXEC PAGE_KERNEL
377 #endif
380 * vmalloc_exec - allocate virtually contiguous, executable memory
381 * @size: allocation size
383 * Kernel-internal function to allocate enough pages to cover @size
384 * the page level allocator and map them into contiguous and
385 * executable kernel virtual space.
387 * For tight control over page level allocator and protection flags
388 * use __vmalloc() instead.
391 void *vmalloc_exec(unsigned long size)
393 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
397 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
398 * @size: allocation size
400 * Allocate enough 32bit PA addressable pages to cover @size from the
401 * page level allocator and map them into continguos kernel virtual space.
403 void *vmalloc_32(unsigned long size)
405 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
407 EXPORT_SYMBOL(vmalloc_32);
410 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
411 * @size: allocation size
413 * The resulting memory area is 32bit addressable and zeroed so it can be
414 * mapped to userspace without leaking data.
416 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
417 * remap_vmalloc_range() are permissible.
419 void *vmalloc_32_user(unsigned long size)
422 * We'll have to sort out the ZONE_DMA bits for 64-bit,
423 * but for now this can simply use vmalloc_user() directly.
425 return vmalloc_user(size);
427 EXPORT_SYMBOL(vmalloc_32_user);
429 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
431 BUG();
432 return NULL;
434 EXPORT_SYMBOL(vmap);
436 void vunmap(const void *addr)
438 BUG();
440 EXPORT_SYMBOL(vunmap);
442 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
444 BUG();
445 return NULL;
447 EXPORT_SYMBOL(vm_map_ram);
449 void vm_unmap_ram(const void *mem, unsigned int count)
451 BUG();
453 EXPORT_SYMBOL(vm_unmap_ram);
455 void vm_unmap_aliases(void)
458 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
461 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
462 * have one.
464 void __weak vmalloc_sync_all(void)
469 * alloc_vm_area - allocate a range of kernel address space
470 * @size: size of the area
472 * Returns: NULL on failure, vm_struct on success
474 * This function reserves a range of kernel address space, and
475 * allocates pagetables to map that range. No actual mappings
476 * are created. If the kernel address space is not shared
477 * between processes, it syncs the pagetable across all
478 * processes.
480 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
482 BUG();
483 return NULL;
485 EXPORT_SYMBOL_GPL(alloc_vm_area);
487 void free_vm_area(struct vm_struct *area)
489 BUG();
491 EXPORT_SYMBOL_GPL(free_vm_area);
493 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
494 struct page *page)
496 return -EINVAL;
498 EXPORT_SYMBOL(vm_insert_page);
501 * sys_brk() for the most part doesn't need the global kernel
502 * lock, except when an application is doing something nasty
503 * like trying to un-brk an area that has already been mapped
504 * to a regular file. in this case, the unmapping will need
505 * to invoke file system routines that need the global lock.
507 SYSCALL_DEFINE1(brk, unsigned long, brk)
509 struct mm_struct *mm = current->mm;
511 if (brk < mm->start_brk || brk > mm->context.end_brk)
512 return mm->brk;
514 if (mm->brk == brk)
515 return mm->brk;
518 * Always allow shrinking brk
520 if (brk <= mm->brk) {
521 mm->brk = brk;
522 return brk;
526 * Ok, looks good - let it rip.
528 flush_icache_range(mm->brk, brk);
529 return mm->brk = brk;
533 * initialise the VMA and region record slabs
535 void __init mmap_init(void)
537 int ret;
539 ret = percpu_counter_init(&vm_committed_as, 0);
540 VM_BUG_ON(ret);
541 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
545 * validate the region tree
546 * - the caller must hold the region lock
548 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
549 static noinline void validate_nommu_regions(void)
551 struct vm_region *region, *last;
552 struct rb_node *p, *lastp;
554 lastp = rb_first(&nommu_region_tree);
555 if (!lastp)
556 return;
558 last = rb_entry(lastp, struct vm_region, vm_rb);
559 BUG_ON(unlikely(last->vm_end <= last->vm_start));
560 BUG_ON(unlikely(last->vm_top < last->vm_end));
562 while ((p = rb_next(lastp))) {
563 region = rb_entry(p, struct vm_region, vm_rb);
564 last = rb_entry(lastp, struct vm_region, vm_rb);
566 BUG_ON(unlikely(region->vm_end <= region->vm_start));
567 BUG_ON(unlikely(region->vm_top < region->vm_end));
568 BUG_ON(unlikely(region->vm_start < last->vm_top));
570 lastp = p;
573 #else
574 static void validate_nommu_regions(void)
577 #endif
580 * add a region into the global tree
582 static void add_nommu_region(struct vm_region *region)
584 struct vm_region *pregion;
585 struct rb_node **p, *parent;
587 validate_nommu_regions();
589 parent = NULL;
590 p = &nommu_region_tree.rb_node;
591 while (*p) {
592 parent = *p;
593 pregion = rb_entry(parent, struct vm_region, vm_rb);
594 if (region->vm_start < pregion->vm_start)
595 p = &(*p)->rb_left;
596 else if (region->vm_start > pregion->vm_start)
597 p = &(*p)->rb_right;
598 else if (pregion == region)
599 return;
600 else
601 BUG();
604 rb_link_node(&region->vm_rb, parent, p);
605 rb_insert_color(&region->vm_rb, &nommu_region_tree);
607 validate_nommu_regions();
611 * delete a region from the global tree
613 static void delete_nommu_region(struct vm_region *region)
615 BUG_ON(!nommu_region_tree.rb_node);
617 validate_nommu_regions();
618 rb_erase(&region->vm_rb, &nommu_region_tree);
619 validate_nommu_regions();
623 * free a contiguous series of pages
625 static void free_page_series(unsigned long from, unsigned long to)
627 for (; from < to; from += PAGE_SIZE) {
628 struct page *page = virt_to_page(from);
630 kdebug("- free %lx", from);
631 atomic_long_dec(&mmap_pages_allocated);
632 if (page_count(page) != 1)
633 kdebug("free page %p: refcount not one: %d",
634 page, page_count(page));
635 put_page(page);
640 * release a reference to a region
641 * - the caller must hold the region semaphore for writing, which this releases
642 * - the region may not have been added to the tree yet, in which case vm_top
643 * will equal vm_start
645 static void __put_nommu_region(struct vm_region *region)
646 __releases(nommu_region_sem)
648 kenter("%p{%d}", region, region->vm_usage);
650 BUG_ON(!nommu_region_tree.rb_node);
652 if (--region->vm_usage == 0) {
653 if (region->vm_top > region->vm_start)
654 delete_nommu_region(region);
655 up_write(&nommu_region_sem);
657 if (region->vm_file)
658 fput(region->vm_file);
660 /* IO memory and memory shared directly out of the pagecache
661 * from ramfs/tmpfs mustn't be released here */
662 if (region->vm_flags & VM_MAPPED_COPY) {
663 kdebug("free series");
664 free_page_series(region->vm_start, region->vm_top);
666 kmem_cache_free(vm_region_jar, region);
667 } else {
668 up_write(&nommu_region_sem);
673 * release a reference to a region
675 static void put_nommu_region(struct vm_region *region)
677 down_write(&nommu_region_sem);
678 __put_nommu_region(region);
682 * update protection on a vma
684 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
686 #ifdef CONFIG_MPU
687 struct mm_struct *mm = vma->vm_mm;
688 long start = vma->vm_start & PAGE_MASK;
689 while (start < vma->vm_end) {
690 protect_page(mm, start, flags);
691 start += PAGE_SIZE;
693 update_protections(mm);
694 #endif
698 * add a VMA into a process's mm_struct in the appropriate place in the list
699 * and tree and add to the address space's page tree also if not an anonymous
700 * page
701 * - should be called with mm->mmap_sem held writelocked
703 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
705 struct vm_area_struct *pvma, *prev;
706 struct address_space *mapping;
707 struct rb_node **p, *parent, *rb_prev;
709 kenter(",%p", vma);
711 BUG_ON(!vma->vm_region);
713 mm->map_count++;
714 vma->vm_mm = mm;
716 protect_vma(vma, vma->vm_flags);
718 /* add the VMA to the mapping */
719 if (vma->vm_file) {
720 mapping = vma->vm_file->f_mapping;
722 mutex_lock(&mapping->i_mmap_mutex);
723 flush_dcache_mmap_lock(mapping);
724 vma_interval_tree_insert(vma, &mapping->i_mmap);
725 flush_dcache_mmap_unlock(mapping);
726 mutex_unlock(&mapping->i_mmap_mutex);
729 /* add the VMA to the tree */
730 parent = rb_prev = NULL;
731 p = &mm->mm_rb.rb_node;
732 while (*p) {
733 parent = *p;
734 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
736 /* sort by: start addr, end addr, VMA struct addr in that order
737 * (the latter is necessary as we may get identical VMAs) */
738 if (vma->vm_start < pvma->vm_start)
739 p = &(*p)->rb_left;
740 else if (vma->vm_start > pvma->vm_start) {
741 rb_prev = parent;
742 p = &(*p)->rb_right;
743 } else if (vma->vm_end < pvma->vm_end)
744 p = &(*p)->rb_left;
745 else if (vma->vm_end > pvma->vm_end) {
746 rb_prev = parent;
747 p = &(*p)->rb_right;
748 } else if (vma < pvma)
749 p = &(*p)->rb_left;
750 else if (vma > pvma) {
751 rb_prev = parent;
752 p = &(*p)->rb_right;
753 } else
754 BUG();
757 rb_link_node(&vma->vm_rb, parent, p);
758 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
760 /* add VMA to the VMA list also */
761 prev = NULL;
762 if (rb_prev)
763 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
765 __vma_link_list(mm, vma, prev, parent);
769 * delete a VMA from its owning mm_struct and address space
771 static void delete_vma_from_mm(struct vm_area_struct *vma)
773 int i;
774 struct address_space *mapping;
775 struct mm_struct *mm = vma->vm_mm;
776 struct task_struct *curr = current;
778 kenter("%p", vma);
780 protect_vma(vma, 0);
782 mm->map_count--;
783 for (i = 0; i < VMACACHE_SIZE; i++) {
784 /* if the vma is cached, invalidate the entire cache */
785 if (curr->vmacache[i] == vma) {
786 vmacache_invalidate(curr->mm);
787 break;
791 /* remove the VMA from the mapping */
792 if (vma->vm_file) {
793 mapping = vma->vm_file->f_mapping;
795 mutex_lock(&mapping->i_mmap_mutex);
796 flush_dcache_mmap_lock(mapping);
797 vma_interval_tree_remove(vma, &mapping->i_mmap);
798 flush_dcache_mmap_unlock(mapping);
799 mutex_unlock(&mapping->i_mmap_mutex);
802 /* remove from the MM's tree and list */
803 rb_erase(&vma->vm_rb, &mm->mm_rb);
805 if (vma->vm_prev)
806 vma->vm_prev->vm_next = vma->vm_next;
807 else
808 mm->mmap = vma->vm_next;
810 if (vma->vm_next)
811 vma->vm_next->vm_prev = vma->vm_prev;
815 * destroy a VMA record
817 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
819 kenter("%p", vma);
820 if (vma->vm_ops && vma->vm_ops->close)
821 vma->vm_ops->close(vma);
822 if (vma->vm_file)
823 fput(vma->vm_file);
824 put_nommu_region(vma->vm_region);
825 kmem_cache_free(vm_area_cachep, vma);
829 * look up the first VMA in which addr resides, NULL if none
830 * - should be called with mm->mmap_sem at least held readlocked
832 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
834 struct vm_area_struct *vma;
836 /* check the cache first */
837 vma = vmacache_find(mm, addr);
838 if (likely(vma))
839 return vma;
841 /* trawl the list (there may be multiple mappings in which addr
842 * resides) */
843 for (vma = mm->mmap; vma; vma = vma->vm_next) {
844 if (vma->vm_start > addr)
845 return NULL;
846 if (vma->vm_end > addr) {
847 vmacache_update(addr, vma);
848 return vma;
852 return NULL;
854 EXPORT_SYMBOL(find_vma);
857 * find a VMA
858 * - we don't extend stack VMAs under NOMMU conditions
860 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
862 return find_vma(mm, addr);
866 * expand a stack to a given address
867 * - not supported under NOMMU conditions
869 int expand_stack(struct vm_area_struct *vma, unsigned long address)
871 return -ENOMEM;
875 * look up the first VMA exactly that exactly matches addr
876 * - should be called with mm->mmap_sem at least held readlocked
878 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
879 unsigned long addr,
880 unsigned long len)
882 struct vm_area_struct *vma;
883 unsigned long end = addr + len;
885 /* check the cache first */
886 vma = vmacache_find_exact(mm, addr, end);
887 if (vma)
888 return vma;
890 /* trawl the list (there may be multiple mappings in which addr
891 * resides) */
892 for (vma = mm->mmap; vma; vma = vma->vm_next) {
893 if (vma->vm_start < addr)
894 continue;
895 if (vma->vm_start > addr)
896 return NULL;
897 if (vma->vm_end == end) {
898 vmacache_update(addr, vma);
899 return vma;
903 return NULL;
907 * determine whether a mapping should be permitted and, if so, what sort of
908 * mapping we're capable of supporting
910 static int validate_mmap_request(struct file *file,
911 unsigned long addr,
912 unsigned long len,
913 unsigned long prot,
914 unsigned long flags,
915 unsigned long pgoff,
916 unsigned long *_capabilities)
918 unsigned long capabilities, rlen;
919 int ret;
921 /* do the simple checks first */
922 if (flags & MAP_FIXED) {
923 printk(KERN_DEBUG
924 "%d: Can't do fixed-address/overlay mmap of RAM\n",
925 current->pid);
926 return -EINVAL;
929 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
930 (flags & MAP_TYPE) != MAP_SHARED)
931 return -EINVAL;
933 if (!len)
934 return -EINVAL;
936 /* Careful about overflows.. */
937 rlen = PAGE_ALIGN(len);
938 if (!rlen || rlen > TASK_SIZE)
939 return -ENOMEM;
941 /* offset overflow? */
942 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
943 return -EOVERFLOW;
945 if (file) {
946 /* validate file mapping requests */
947 struct address_space *mapping;
949 /* files must support mmap */
950 if (!file->f_op->mmap)
951 return -ENODEV;
953 /* work out if what we've got could possibly be shared
954 * - we support chardevs that provide their own "memory"
955 * - we support files/blockdevs that are memory backed
957 mapping = file->f_mapping;
958 if (!mapping)
959 mapping = file_inode(file)->i_mapping;
961 capabilities = 0;
962 if (mapping && mapping->backing_dev_info)
963 capabilities = mapping->backing_dev_info->capabilities;
965 if (!capabilities) {
966 /* no explicit capabilities set, so assume some
967 * defaults */
968 switch (file_inode(file)->i_mode & S_IFMT) {
969 case S_IFREG:
970 case S_IFBLK:
971 capabilities = BDI_CAP_MAP_COPY;
972 break;
974 case S_IFCHR:
975 capabilities =
976 BDI_CAP_MAP_DIRECT |
977 BDI_CAP_READ_MAP |
978 BDI_CAP_WRITE_MAP;
979 break;
981 default:
982 return -EINVAL;
986 /* eliminate any capabilities that we can't support on this
987 * device */
988 if (!file->f_op->get_unmapped_area)
989 capabilities &= ~BDI_CAP_MAP_DIRECT;
990 if (!file->f_op->read)
991 capabilities &= ~BDI_CAP_MAP_COPY;
993 /* The file shall have been opened with read permission. */
994 if (!(file->f_mode & FMODE_READ))
995 return -EACCES;
997 if (flags & MAP_SHARED) {
998 /* do checks for writing, appending and locking */
999 if ((prot & PROT_WRITE) &&
1000 !(file->f_mode & FMODE_WRITE))
1001 return -EACCES;
1003 if (IS_APPEND(file_inode(file)) &&
1004 (file->f_mode & FMODE_WRITE))
1005 return -EACCES;
1007 if (locks_verify_locked(file))
1008 return -EAGAIN;
1010 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1011 return -ENODEV;
1013 /* we mustn't privatise shared mappings */
1014 capabilities &= ~BDI_CAP_MAP_COPY;
1015 } else {
1016 /* we're going to read the file into private memory we
1017 * allocate */
1018 if (!(capabilities & BDI_CAP_MAP_COPY))
1019 return -ENODEV;
1021 /* we don't permit a private writable mapping to be
1022 * shared with the backing device */
1023 if (prot & PROT_WRITE)
1024 capabilities &= ~BDI_CAP_MAP_DIRECT;
1027 if (capabilities & BDI_CAP_MAP_DIRECT) {
1028 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1029 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1030 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1032 capabilities &= ~BDI_CAP_MAP_DIRECT;
1033 if (flags & MAP_SHARED) {
1034 printk(KERN_WARNING
1035 "MAP_SHARED not completely supported on !MMU\n");
1036 return -EINVAL;
1041 /* handle executable mappings and implied executable
1042 * mappings */
1043 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1044 if (prot & PROT_EXEC)
1045 return -EPERM;
1046 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1047 /* handle implication of PROT_EXEC by PROT_READ */
1048 if (current->personality & READ_IMPLIES_EXEC) {
1049 if (capabilities & BDI_CAP_EXEC_MAP)
1050 prot |= PROT_EXEC;
1052 } else if ((prot & PROT_READ) &&
1053 (prot & PROT_EXEC) &&
1054 !(capabilities & BDI_CAP_EXEC_MAP)
1056 /* backing file is not executable, try to copy */
1057 capabilities &= ~BDI_CAP_MAP_DIRECT;
1059 } else {
1060 /* anonymous mappings are always memory backed and can be
1061 * privately mapped
1063 capabilities = BDI_CAP_MAP_COPY;
1065 /* handle PROT_EXEC implication by PROT_READ */
1066 if ((prot & PROT_READ) &&
1067 (current->personality & READ_IMPLIES_EXEC))
1068 prot |= PROT_EXEC;
1071 /* allow the security API to have its say */
1072 ret = security_mmap_addr(addr);
1073 if (ret < 0)
1074 return ret;
1076 /* looks okay */
1077 *_capabilities = capabilities;
1078 return 0;
1082 * we've determined that we can make the mapping, now translate what we
1083 * now know into VMA flags
1085 static unsigned long determine_vm_flags(struct file *file,
1086 unsigned long prot,
1087 unsigned long flags,
1088 unsigned long capabilities)
1090 unsigned long vm_flags;
1092 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1093 /* vm_flags |= mm->def_flags; */
1095 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1096 /* attempt to share read-only copies of mapped file chunks */
1097 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1098 if (file && !(prot & PROT_WRITE))
1099 vm_flags |= VM_MAYSHARE;
1100 } else {
1101 /* overlay a shareable mapping on the backing device or inode
1102 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1103 * romfs/cramfs */
1104 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1105 if (flags & MAP_SHARED)
1106 vm_flags |= VM_SHARED;
1109 /* refuse to let anyone share private mappings with this process if
1110 * it's being traced - otherwise breakpoints set in it may interfere
1111 * with another untraced process
1113 if ((flags & MAP_PRIVATE) && current->ptrace)
1114 vm_flags &= ~VM_MAYSHARE;
1116 return vm_flags;
1120 * set up a shared mapping on a file (the driver or filesystem provides and
1121 * pins the storage)
1123 static int do_mmap_shared_file(struct vm_area_struct *vma)
1125 int ret;
1127 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1128 if (ret == 0) {
1129 vma->vm_region->vm_top = vma->vm_region->vm_end;
1130 return 0;
1132 if (ret != -ENOSYS)
1133 return ret;
1135 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1136 * opposed to tried but failed) so we can only give a suitable error as
1137 * it's not possible to make a private copy if MAP_SHARED was given */
1138 return -ENODEV;
1142 * set up a private mapping or an anonymous shared mapping
1144 static int do_mmap_private(struct vm_area_struct *vma,
1145 struct vm_region *region,
1146 unsigned long len,
1147 unsigned long capabilities)
1149 struct page *pages;
1150 unsigned long total, point, n;
1151 void *base;
1152 int ret, order;
1154 /* invoke the file's mapping function so that it can keep track of
1155 * shared mappings on devices or memory
1156 * - VM_MAYSHARE will be set if it may attempt to share
1158 if (capabilities & BDI_CAP_MAP_DIRECT) {
1159 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1160 if (ret == 0) {
1161 /* shouldn't return success if we're not sharing */
1162 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1163 vma->vm_region->vm_top = vma->vm_region->vm_end;
1164 return 0;
1166 if (ret != -ENOSYS)
1167 return ret;
1169 /* getting an ENOSYS error indicates that direct mmap isn't
1170 * possible (as opposed to tried but failed) so we'll try to
1171 * make a private copy of the data and map that instead */
1175 /* allocate some memory to hold the mapping
1176 * - note that this may not return a page-aligned address if the object
1177 * we're allocating is smaller than a page
1179 order = get_order(len);
1180 kdebug("alloc order %d for %lx", order, len);
1182 pages = alloc_pages(GFP_KERNEL, order);
1183 if (!pages)
1184 goto enomem;
1186 total = 1 << order;
1187 atomic_long_add(total, &mmap_pages_allocated);
1189 point = len >> PAGE_SHIFT;
1191 /* we allocated a power-of-2 sized page set, so we may want to trim off
1192 * the excess */
1193 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1194 while (total > point) {
1195 order = ilog2(total - point);
1196 n = 1 << order;
1197 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1198 atomic_long_sub(n, &mmap_pages_allocated);
1199 total -= n;
1200 set_page_refcounted(pages + total);
1201 __free_pages(pages + total, order);
1205 for (point = 1; point < total; point++)
1206 set_page_refcounted(&pages[point]);
1208 base = page_address(pages);
1209 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1210 region->vm_start = (unsigned long) base;
1211 region->vm_end = region->vm_start + len;
1212 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1214 vma->vm_start = region->vm_start;
1215 vma->vm_end = region->vm_start + len;
1217 if (vma->vm_file) {
1218 /* read the contents of a file into the copy */
1219 mm_segment_t old_fs;
1220 loff_t fpos;
1222 fpos = vma->vm_pgoff;
1223 fpos <<= PAGE_SHIFT;
1225 old_fs = get_fs();
1226 set_fs(KERNEL_DS);
1227 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1228 set_fs(old_fs);
1230 if (ret < 0)
1231 goto error_free;
1233 /* clear the last little bit */
1234 if (ret < len)
1235 memset(base + ret, 0, len - ret);
1239 return 0;
1241 error_free:
1242 free_page_series(region->vm_start, region->vm_top);
1243 region->vm_start = vma->vm_start = 0;
1244 region->vm_end = vma->vm_end = 0;
1245 region->vm_top = 0;
1246 return ret;
1248 enomem:
1249 printk("Allocation of length %lu from process %d (%s) failed\n",
1250 len, current->pid, current->comm);
1251 show_free_areas(0);
1252 return -ENOMEM;
1256 * handle mapping creation for uClinux
1258 unsigned long do_mmap_pgoff(struct file *file,
1259 unsigned long addr,
1260 unsigned long len,
1261 unsigned long prot,
1262 unsigned long flags,
1263 unsigned long pgoff,
1264 unsigned long *populate)
1266 struct vm_area_struct *vma;
1267 struct vm_region *region;
1268 struct rb_node *rb;
1269 unsigned long capabilities, vm_flags, result;
1270 int ret;
1272 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1274 *populate = 0;
1276 /* decide whether we should attempt the mapping, and if so what sort of
1277 * mapping */
1278 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1279 &capabilities);
1280 if (ret < 0) {
1281 kleave(" = %d [val]", ret);
1282 return ret;
1285 /* we ignore the address hint */
1286 addr = 0;
1287 len = PAGE_ALIGN(len);
1289 /* we've determined that we can make the mapping, now translate what we
1290 * now know into VMA flags */
1291 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1293 /* we're going to need to record the mapping */
1294 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1295 if (!region)
1296 goto error_getting_region;
1298 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1299 if (!vma)
1300 goto error_getting_vma;
1302 region->vm_usage = 1;
1303 region->vm_flags = vm_flags;
1304 region->vm_pgoff = pgoff;
1306 INIT_LIST_HEAD(&vma->anon_vma_chain);
1307 vma->vm_flags = vm_flags;
1308 vma->vm_pgoff = pgoff;
1310 if (file) {
1311 region->vm_file = get_file(file);
1312 vma->vm_file = get_file(file);
1315 down_write(&nommu_region_sem);
1317 /* if we want to share, we need to check for regions created by other
1318 * mmap() calls that overlap with our proposed mapping
1319 * - we can only share with a superset match on most regular files
1320 * - shared mappings on character devices and memory backed files are
1321 * permitted to overlap inexactly as far as we are concerned for in
1322 * these cases, sharing is handled in the driver or filesystem rather
1323 * than here
1325 if (vm_flags & VM_MAYSHARE) {
1326 struct vm_region *pregion;
1327 unsigned long pglen, rpglen, pgend, rpgend, start;
1329 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330 pgend = pgoff + pglen;
1332 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1333 pregion = rb_entry(rb, struct vm_region, vm_rb);
1335 if (!(pregion->vm_flags & VM_MAYSHARE))
1336 continue;
1338 /* search for overlapping mappings on the same file */
1339 if (file_inode(pregion->vm_file) !=
1340 file_inode(file))
1341 continue;
1343 if (pregion->vm_pgoff >= pgend)
1344 continue;
1346 rpglen = pregion->vm_end - pregion->vm_start;
1347 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1348 rpgend = pregion->vm_pgoff + rpglen;
1349 if (pgoff >= rpgend)
1350 continue;
1352 /* handle inexactly overlapping matches between
1353 * mappings */
1354 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1355 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1356 /* new mapping is not a subset of the region */
1357 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1358 goto sharing_violation;
1359 continue;
1362 /* we've found a region we can share */
1363 pregion->vm_usage++;
1364 vma->vm_region = pregion;
1365 start = pregion->vm_start;
1366 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1367 vma->vm_start = start;
1368 vma->vm_end = start + len;
1370 if (pregion->vm_flags & VM_MAPPED_COPY) {
1371 kdebug("share copy");
1372 vma->vm_flags |= VM_MAPPED_COPY;
1373 } else {
1374 kdebug("share mmap");
1375 ret = do_mmap_shared_file(vma);
1376 if (ret < 0) {
1377 vma->vm_region = NULL;
1378 vma->vm_start = 0;
1379 vma->vm_end = 0;
1380 pregion->vm_usage--;
1381 pregion = NULL;
1382 goto error_just_free;
1385 fput(region->vm_file);
1386 kmem_cache_free(vm_region_jar, region);
1387 region = pregion;
1388 result = start;
1389 goto share;
1392 /* obtain the address at which to make a shared mapping
1393 * - this is the hook for quasi-memory character devices to
1394 * tell us the location of a shared mapping
1396 if (capabilities & BDI_CAP_MAP_DIRECT) {
1397 addr = file->f_op->get_unmapped_area(file, addr, len,
1398 pgoff, flags);
1399 if (IS_ERR_VALUE(addr)) {
1400 ret = addr;
1401 if (ret != -ENOSYS)
1402 goto error_just_free;
1404 /* the driver refused to tell us where to site
1405 * the mapping so we'll have to attempt to copy
1406 * it */
1407 ret = -ENODEV;
1408 if (!(capabilities & BDI_CAP_MAP_COPY))
1409 goto error_just_free;
1411 capabilities &= ~BDI_CAP_MAP_DIRECT;
1412 } else {
1413 vma->vm_start = region->vm_start = addr;
1414 vma->vm_end = region->vm_end = addr + len;
1419 vma->vm_region = region;
1421 /* set up the mapping
1422 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1424 if (file && vma->vm_flags & VM_SHARED)
1425 ret = do_mmap_shared_file(vma);
1426 else
1427 ret = do_mmap_private(vma, region, len, capabilities);
1428 if (ret < 0)
1429 goto error_just_free;
1430 add_nommu_region(region);
1432 /* clear anonymous mappings that don't ask for uninitialized data */
1433 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1434 memset((void *)region->vm_start, 0,
1435 region->vm_end - region->vm_start);
1437 /* okay... we have a mapping; now we have to register it */
1438 result = vma->vm_start;
1440 current->mm->total_vm += len >> PAGE_SHIFT;
1442 share:
1443 add_vma_to_mm(current->mm, vma);
1445 /* we flush the region from the icache only when the first executable
1446 * mapping of it is made */
1447 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1448 flush_icache_range(region->vm_start, region->vm_end);
1449 region->vm_icache_flushed = true;
1452 up_write(&nommu_region_sem);
1454 kleave(" = %lx", result);
1455 return result;
1457 error_just_free:
1458 up_write(&nommu_region_sem);
1459 error:
1460 if (region->vm_file)
1461 fput(region->vm_file);
1462 kmem_cache_free(vm_region_jar, region);
1463 if (vma->vm_file)
1464 fput(vma->vm_file);
1465 kmem_cache_free(vm_area_cachep, vma);
1466 kleave(" = %d", ret);
1467 return ret;
1469 sharing_violation:
1470 up_write(&nommu_region_sem);
1471 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1472 ret = -EINVAL;
1473 goto error;
1475 error_getting_vma:
1476 kmem_cache_free(vm_region_jar, region);
1477 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1478 " from process %d failed\n",
1479 len, current->pid);
1480 show_free_areas(0);
1481 return -ENOMEM;
1483 error_getting_region:
1484 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1485 " from process %d failed\n",
1486 len, current->pid);
1487 show_free_areas(0);
1488 return -ENOMEM;
1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492 unsigned long, prot, unsigned long, flags,
1493 unsigned long, fd, unsigned long, pgoff)
1495 struct file *file = NULL;
1496 unsigned long retval = -EBADF;
1498 audit_mmap_fd(fd, flags);
1499 if (!(flags & MAP_ANONYMOUS)) {
1500 file = fget(fd);
1501 if (!file)
1502 goto out;
1505 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1507 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1509 if (file)
1510 fput(file);
1511 out:
1512 return retval;
1515 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1516 struct mmap_arg_struct {
1517 unsigned long addr;
1518 unsigned long len;
1519 unsigned long prot;
1520 unsigned long flags;
1521 unsigned long fd;
1522 unsigned long offset;
1525 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1527 struct mmap_arg_struct a;
1529 if (copy_from_user(&a, arg, sizeof(a)))
1530 return -EFAULT;
1531 if (a.offset & ~PAGE_MASK)
1532 return -EINVAL;
1534 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1535 a.offset >> PAGE_SHIFT);
1537 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1540 * split a vma into two pieces at address 'addr', a new vma is allocated either
1541 * for the first part or the tail.
1543 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1544 unsigned long addr, int new_below)
1546 struct vm_area_struct *new;
1547 struct vm_region *region;
1548 unsigned long npages;
1550 kenter("");
1552 /* we're only permitted to split anonymous regions (these should have
1553 * only a single usage on the region) */
1554 if (vma->vm_file)
1555 return -ENOMEM;
1557 if (mm->map_count >= sysctl_max_map_count)
1558 return -ENOMEM;
1560 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1561 if (!region)
1562 return -ENOMEM;
1564 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1565 if (!new) {
1566 kmem_cache_free(vm_region_jar, region);
1567 return -ENOMEM;
1570 /* most fields are the same, copy all, and then fixup */
1571 *new = *vma;
1572 *region = *vma->vm_region;
1573 new->vm_region = region;
1575 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1577 if (new_below) {
1578 region->vm_top = region->vm_end = new->vm_end = addr;
1579 } else {
1580 region->vm_start = new->vm_start = addr;
1581 region->vm_pgoff = new->vm_pgoff += npages;
1584 if (new->vm_ops && new->vm_ops->open)
1585 new->vm_ops->open(new);
1587 delete_vma_from_mm(vma);
1588 down_write(&nommu_region_sem);
1589 delete_nommu_region(vma->vm_region);
1590 if (new_below) {
1591 vma->vm_region->vm_start = vma->vm_start = addr;
1592 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1593 } else {
1594 vma->vm_region->vm_end = vma->vm_end = addr;
1595 vma->vm_region->vm_top = addr;
1597 add_nommu_region(vma->vm_region);
1598 add_nommu_region(new->vm_region);
1599 up_write(&nommu_region_sem);
1600 add_vma_to_mm(mm, vma);
1601 add_vma_to_mm(mm, new);
1602 return 0;
1606 * shrink a VMA by removing the specified chunk from either the beginning or
1607 * the end
1609 static int shrink_vma(struct mm_struct *mm,
1610 struct vm_area_struct *vma,
1611 unsigned long from, unsigned long to)
1613 struct vm_region *region;
1615 kenter("");
1617 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1618 * and list */
1619 delete_vma_from_mm(vma);
1620 if (from > vma->vm_start)
1621 vma->vm_end = from;
1622 else
1623 vma->vm_start = to;
1624 add_vma_to_mm(mm, vma);
1626 /* cut the backing region down to size */
1627 region = vma->vm_region;
1628 BUG_ON(region->vm_usage != 1);
1630 down_write(&nommu_region_sem);
1631 delete_nommu_region(region);
1632 if (from > region->vm_start) {
1633 to = region->vm_top;
1634 region->vm_top = region->vm_end = from;
1635 } else {
1636 region->vm_start = to;
1638 add_nommu_region(region);
1639 up_write(&nommu_region_sem);
1641 free_page_series(from, to);
1642 return 0;
1646 * release a mapping
1647 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1648 * VMA, though it need not cover the whole VMA
1650 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1652 struct vm_area_struct *vma;
1653 unsigned long end;
1654 int ret;
1656 kenter(",%lx,%zx", start, len);
1658 len = PAGE_ALIGN(len);
1659 if (len == 0)
1660 return -EINVAL;
1662 end = start + len;
1664 /* find the first potentially overlapping VMA */
1665 vma = find_vma(mm, start);
1666 if (!vma) {
1667 static int limit;
1668 if (limit < 5) {
1669 printk(KERN_WARNING
1670 "munmap of memory not mmapped by process %d"
1671 " (%s): 0x%lx-0x%lx\n",
1672 current->pid, current->comm,
1673 start, start + len - 1);
1674 limit++;
1676 return -EINVAL;
1679 /* we're allowed to split an anonymous VMA but not a file-backed one */
1680 if (vma->vm_file) {
1681 do {
1682 if (start > vma->vm_start) {
1683 kleave(" = -EINVAL [miss]");
1684 return -EINVAL;
1686 if (end == vma->vm_end)
1687 goto erase_whole_vma;
1688 vma = vma->vm_next;
1689 } while (vma);
1690 kleave(" = -EINVAL [split file]");
1691 return -EINVAL;
1692 } else {
1693 /* the chunk must be a subset of the VMA found */
1694 if (start == vma->vm_start && end == vma->vm_end)
1695 goto erase_whole_vma;
1696 if (start < vma->vm_start || end > vma->vm_end) {
1697 kleave(" = -EINVAL [superset]");
1698 return -EINVAL;
1700 if (start & ~PAGE_MASK) {
1701 kleave(" = -EINVAL [unaligned start]");
1702 return -EINVAL;
1704 if (end != vma->vm_end && end & ~PAGE_MASK) {
1705 kleave(" = -EINVAL [unaligned split]");
1706 return -EINVAL;
1708 if (start != vma->vm_start && end != vma->vm_end) {
1709 ret = split_vma(mm, vma, start, 1);
1710 if (ret < 0) {
1711 kleave(" = %d [split]", ret);
1712 return ret;
1715 return shrink_vma(mm, vma, start, end);
1718 erase_whole_vma:
1719 delete_vma_from_mm(vma);
1720 delete_vma(mm, vma);
1721 kleave(" = 0");
1722 return 0;
1724 EXPORT_SYMBOL(do_munmap);
1726 int vm_munmap(unsigned long addr, size_t len)
1728 struct mm_struct *mm = current->mm;
1729 int ret;
1731 down_write(&mm->mmap_sem);
1732 ret = do_munmap(mm, addr, len);
1733 up_write(&mm->mmap_sem);
1734 return ret;
1736 EXPORT_SYMBOL(vm_munmap);
1738 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1740 return vm_munmap(addr, len);
1744 * release all the mappings made in a process's VM space
1746 void exit_mmap(struct mm_struct *mm)
1748 struct vm_area_struct *vma;
1750 if (!mm)
1751 return;
1753 kenter("");
1755 mm->total_vm = 0;
1757 while ((vma = mm->mmap)) {
1758 mm->mmap = vma->vm_next;
1759 delete_vma_from_mm(vma);
1760 delete_vma(mm, vma);
1761 cond_resched();
1764 kleave("");
1767 unsigned long vm_brk(unsigned long addr, unsigned long len)
1769 return -ENOMEM;
1773 * expand (or shrink) an existing mapping, potentially moving it at the same
1774 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1776 * under NOMMU conditions, we only permit changing a mapping's size, and only
1777 * as long as it stays within the region allocated by do_mmap_private() and the
1778 * block is not shareable
1780 * MREMAP_FIXED is not supported under NOMMU conditions
1782 static unsigned long do_mremap(unsigned long addr,
1783 unsigned long old_len, unsigned long new_len,
1784 unsigned long flags, unsigned long new_addr)
1786 struct vm_area_struct *vma;
1788 /* insanity checks first */
1789 old_len = PAGE_ALIGN(old_len);
1790 new_len = PAGE_ALIGN(new_len);
1791 if (old_len == 0 || new_len == 0)
1792 return (unsigned long) -EINVAL;
1794 if (addr & ~PAGE_MASK)
1795 return -EINVAL;
1797 if (flags & MREMAP_FIXED && new_addr != addr)
1798 return (unsigned long) -EINVAL;
1800 vma = find_vma_exact(current->mm, addr, old_len);
1801 if (!vma)
1802 return (unsigned long) -EINVAL;
1804 if (vma->vm_end != vma->vm_start + old_len)
1805 return (unsigned long) -EFAULT;
1807 if (vma->vm_flags & VM_MAYSHARE)
1808 return (unsigned long) -EPERM;
1810 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1811 return (unsigned long) -ENOMEM;
1813 /* all checks complete - do it */
1814 vma->vm_end = vma->vm_start + new_len;
1815 return vma->vm_start;
1818 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1819 unsigned long, new_len, unsigned long, flags,
1820 unsigned long, new_addr)
1822 unsigned long ret;
1824 down_write(&current->mm->mmap_sem);
1825 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1826 up_write(&current->mm->mmap_sem);
1827 return ret;
1830 struct page *follow_page_mask(struct vm_area_struct *vma,
1831 unsigned long address, unsigned int flags,
1832 unsigned int *page_mask)
1834 *page_mask = 0;
1835 return NULL;
1838 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1839 unsigned long pfn, unsigned long size, pgprot_t prot)
1841 if (addr != (pfn << PAGE_SHIFT))
1842 return -EINVAL;
1844 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1845 return 0;
1847 EXPORT_SYMBOL(remap_pfn_range);
1849 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1851 unsigned long pfn = start >> PAGE_SHIFT;
1852 unsigned long vm_len = vma->vm_end - vma->vm_start;
1854 pfn += vma->vm_pgoff;
1855 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1857 EXPORT_SYMBOL(vm_iomap_memory);
1859 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1860 unsigned long pgoff)
1862 unsigned int size = vma->vm_end - vma->vm_start;
1864 if (!(vma->vm_flags & VM_USERMAP))
1865 return -EINVAL;
1867 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1868 vma->vm_end = vma->vm_start + size;
1870 return 0;
1872 EXPORT_SYMBOL(remap_vmalloc_range);
1874 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1875 unsigned long len, unsigned long pgoff, unsigned long flags)
1877 return -ENOMEM;
1880 void unmap_mapping_range(struct address_space *mapping,
1881 loff_t const holebegin, loff_t const holelen,
1882 int even_cows)
1885 EXPORT_SYMBOL(unmap_mapping_range);
1888 * Check that a process has enough memory to allocate a new virtual
1889 * mapping. 0 means there is enough memory for the allocation to
1890 * succeed and -ENOMEM implies there is not.
1892 * We currently support three overcommit policies, which are set via the
1893 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1895 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1896 * Additional code 2002 Jul 20 by Robert Love.
1898 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1900 * Note this is a helper function intended to be used by LSMs which
1901 * wish to use this logic.
1903 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1905 unsigned long free, allowed, reserve;
1907 vm_acct_memory(pages);
1910 * Sometimes we want to use more memory than we have
1912 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1913 return 0;
1915 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1916 free = global_page_state(NR_FREE_PAGES);
1917 free += global_page_state(NR_FILE_PAGES);
1920 * shmem pages shouldn't be counted as free in this
1921 * case, they can't be purged, only swapped out, and
1922 * that won't affect the overall amount of available
1923 * memory in the system.
1925 free -= global_page_state(NR_SHMEM);
1927 free += get_nr_swap_pages();
1930 * Any slabs which are created with the
1931 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1932 * which are reclaimable, under pressure. The dentry
1933 * cache and most inode caches should fall into this
1935 free += global_page_state(NR_SLAB_RECLAIMABLE);
1938 * Leave reserved pages. The pages are not for anonymous pages.
1940 if (free <= totalreserve_pages)
1941 goto error;
1942 else
1943 free -= totalreserve_pages;
1946 * Reserve some for root
1948 if (!cap_sys_admin)
1949 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1951 if (free > pages)
1952 return 0;
1954 goto error;
1957 allowed = vm_commit_limit();
1959 * Reserve some 3% for root
1961 if (!cap_sys_admin)
1962 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1965 * Don't let a single process grow so big a user can't recover
1967 if (mm) {
1968 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1969 allowed -= min(mm->total_vm / 32, reserve);
1972 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1973 return 0;
1975 error:
1976 vm_unacct_memory(pages);
1978 return -ENOMEM;
1981 int in_gate_area_no_mm(unsigned long addr)
1983 return 0;
1986 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1988 BUG();
1989 return 0;
1991 EXPORT_SYMBOL(filemap_fault);
1993 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1995 BUG();
1997 EXPORT_SYMBOL(filemap_map_pages);
1999 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
2000 unsigned long size, pgoff_t pgoff)
2002 BUG();
2003 return 0;
2005 EXPORT_SYMBOL(generic_file_remap_pages);
2007 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2008 unsigned long addr, void *buf, int len, int write)
2010 struct vm_area_struct *vma;
2012 down_read(&mm->mmap_sem);
2014 /* the access must start within one of the target process's mappings */
2015 vma = find_vma(mm, addr);
2016 if (vma) {
2017 /* don't overrun this mapping */
2018 if (addr + len >= vma->vm_end)
2019 len = vma->vm_end - addr;
2021 /* only read or write mappings where it is permitted */
2022 if (write && vma->vm_flags & VM_MAYWRITE)
2023 copy_to_user_page(vma, NULL, addr,
2024 (void *) addr, buf, len);
2025 else if (!write && vma->vm_flags & VM_MAYREAD)
2026 copy_from_user_page(vma, NULL, addr,
2027 buf, (void *) addr, len);
2028 else
2029 len = 0;
2030 } else {
2031 len = 0;
2034 up_read(&mm->mmap_sem);
2036 return len;
2040 * @access_remote_vm - access another process' address space
2041 * @mm: the mm_struct of the target address space
2042 * @addr: start address to access
2043 * @buf: source or destination buffer
2044 * @len: number of bytes to transfer
2045 * @write: whether the access is a write
2047 * The caller must hold a reference on @mm.
2049 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2050 void *buf, int len, int write)
2052 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2056 * Access another process' address space.
2057 * - source/target buffer must be kernel space
2059 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2061 struct mm_struct *mm;
2063 if (addr + len < addr)
2064 return 0;
2066 mm = get_task_mm(tsk);
2067 if (!mm)
2068 return 0;
2070 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2072 mmput(mm);
2073 return len;
2077 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2078 * @inode: The inode to check
2079 * @size: The current filesize of the inode
2080 * @newsize: The proposed filesize of the inode
2082 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2083 * make sure that that any outstanding VMAs aren't broken and then shrink the
2084 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2085 * automatically grant mappings that are too large.
2087 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2088 size_t newsize)
2090 struct vm_area_struct *vma;
2091 struct vm_region *region;
2092 pgoff_t low, high;
2093 size_t r_size, r_top;
2095 low = newsize >> PAGE_SHIFT;
2096 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2098 down_write(&nommu_region_sem);
2099 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2101 /* search for VMAs that fall within the dead zone */
2102 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2103 /* found one - only interested if it's shared out of the page
2104 * cache */
2105 if (vma->vm_flags & VM_SHARED) {
2106 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2107 up_write(&nommu_region_sem);
2108 return -ETXTBSY; /* not quite true, but near enough */
2112 /* reduce any regions that overlap the dead zone - if in existence,
2113 * these will be pointed to by VMAs that don't overlap the dead zone
2115 * we don't check for any regions that start beyond the EOF as there
2116 * shouldn't be any
2118 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2119 0, ULONG_MAX) {
2120 if (!(vma->vm_flags & VM_SHARED))
2121 continue;
2123 region = vma->vm_region;
2124 r_size = region->vm_top - region->vm_start;
2125 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2127 if (r_top > newsize) {
2128 region->vm_top -= r_top - newsize;
2129 if (region->vm_end > region->vm_top)
2130 region->vm_end = region->vm_top;
2134 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2135 up_write(&nommu_region_sem);
2136 return 0;
2140 * Initialise sysctl_user_reserve_kbytes.
2142 * This is intended to prevent a user from starting a single memory hogging
2143 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2144 * mode.
2146 * The default value is min(3% of free memory, 128MB)
2147 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2149 static int __meminit init_user_reserve(void)
2151 unsigned long free_kbytes;
2153 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2155 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2156 return 0;
2158 module_init(init_user_reserve)
2161 * Initialise sysctl_admin_reserve_kbytes.
2163 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2164 * to log in and kill a memory hogging process.
2166 * Systems with more than 256MB will reserve 8MB, enough to recover
2167 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2168 * only reserve 3% of free pages by default.
2170 static int __meminit init_admin_reserve(void)
2172 unsigned long free_kbytes;
2174 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2176 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2177 return 0;
2179 module_init(init_admin_reserve)