4 * Internal slab definitions
8 * State of the slab allocator.
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
16 DOWN
, /* No slab functionality yet */
17 PARTIAL
, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE
, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_NODE
, /* SLAB: kmalloc size for node struct available */
20 UP
, /* Slab caches usable but not all extras yet */
21 FULL
/* Everything is working */
24 extern enum slab_state slab_state
;
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex
;
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches
;
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache
*kmem_cache
;
35 unsigned long calculate_alignment(unsigned long flags
,
36 unsigned long align
, unsigned long size
);
39 /* Kmalloc array related functions */
40 void create_kmalloc_caches(unsigned long);
42 /* Find the kmalloc slab corresponding for a certain size */
43 struct kmem_cache
*kmalloc_slab(size_t, gfp_t
);
47 /* Functions provided by the slab allocators */
48 extern int __kmem_cache_create(struct kmem_cache
*, unsigned long flags
);
50 extern struct kmem_cache
*create_kmalloc_cache(const char *name
, size_t size
,
52 extern void create_boot_cache(struct kmem_cache
*, const char *name
,
53 size_t size
, unsigned long flags
);
58 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
59 unsigned long flags
, void (*ctor
)(void *));
61 static inline struct kmem_cache
*
62 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
63 unsigned long flags
, void (*ctor
)(void *))
68 /* Legal flag mask for kmem_cache_create(), for various configurations */
69 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
72 #if defined(CONFIG_DEBUG_SLAB)
73 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74 #elif defined(CONFIG_SLUB_DEBUG)
75 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76 SLAB_TRACE | SLAB_DEBUG_FREE)
78 #define SLAB_DEBUG_FLAGS (0)
81 #if defined(CONFIG_SLAB)
82 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84 #elif defined(CONFIG_SLUB)
85 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86 SLAB_TEMPORARY | SLAB_NOTRACK)
88 #define SLAB_CACHE_FLAGS (0)
91 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
93 int __kmem_cache_shutdown(struct kmem_cache
*);
99 unsigned long active_objs
;
100 unsigned long num_objs
;
101 unsigned long active_slabs
;
102 unsigned long num_slabs
;
103 unsigned long shared_avail
;
105 unsigned int batchcount
;
107 unsigned int objects_per_slab
;
108 unsigned int cache_order
;
111 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
);
112 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
);
113 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
114 size_t count
, loff_t
*ppos
);
116 #ifdef CONFIG_MEMCG_KMEM
117 static inline bool is_root_cache(struct kmem_cache
*s
)
119 return !s
->memcg_params
|| s
->memcg_params
->is_root_cache
;
122 static inline void memcg_bind_pages(struct kmem_cache
*s
, int order
)
124 if (!is_root_cache(s
))
125 atomic_add(1 << order
, &s
->memcg_params
->nr_pages
);
128 static inline void memcg_release_pages(struct kmem_cache
*s
, int order
)
130 if (is_root_cache(s
))
133 if (atomic_sub_and_test((1 << order
), &s
->memcg_params
->nr_pages
))
134 mem_cgroup_destroy_cache(s
);
137 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
138 struct kmem_cache
*p
)
141 (s
->memcg_params
&& (p
== s
->memcg_params
->root_cache
));
145 * We use suffixes to the name in memcg because we can't have caches
146 * created in the system with the same name. But when we print them
147 * locally, better refer to them with the base name
149 static inline const char *cache_name(struct kmem_cache
*s
)
151 if (!is_root_cache(s
))
152 return s
->memcg_params
->root_cache
->name
;
157 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
158 * That said the caller must assure the memcg's cache won't go away. Since once
159 * created a memcg's cache is destroyed only along with the root cache, it is
160 * true if we are going to allocate from the cache or hold a reference to the
161 * root cache by other means. Otherwise, we should hold either the slab_mutex
162 * or the memcg's slab_caches_mutex while calling this function and accessing
163 * the returned value.
165 static inline struct kmem_cache
*
166 cache_from_memcg_idx(struct kmem_cache
*s
, int idx
)
168 struct kmem_cache
*cachep
;
169 struct memcg_cache_params
*params
;
171 if (!s
->memcg_params
)
175 params
= rcu_dereference(s
->memcg_params
);
176 cachep
= params
->memcg_caches
[idx
];
180 * Make sure we will access the up-to-date value. The code updating
181 * memcg_caches issues a write barrier to match this (see
182 * memcg_register_cache()).
184 smp_read_barrier_depends();
188 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
190 if (is_root_cache(s
))
192 return s
->memcg_params
->root_cache
;
195 static inline bool is_root_cache(struct kmem_cache
*s
)
200 static inline void memcg_bind_pages(struct kmem_cache
*s
, int order
)
204 static inline void memcg_release_pages(struct kmem_cache
*s
, int order
)
208 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
209 struct kmem_cache
*p
)
214 static inline const char *cache_name(struct kmem_cache
*s
)
219 static inline struct kmem_cache
*
220 cache_from_memcg_idx(struct kmem_cache
*s
, int idx
)
225 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
231 static inline struct kmem_cache
*cache_from_obj(struct kmem_cache
*s
, void *x
)
233 struct kmem_cache
*cachep
;
237 * When kmemcg is not being used, both assignments should return the
238 * same value. but we don't want to pay the assignment price in that
239 * case. If it is not compiled in, the compiler should be smart enough
240 * to not do even the assignment. In that case, slab_equal_or_root
241 * will also be a constant.
243 if (!memcg_kmem_enabled() && !unlikely(s
->flags
& SLAB_DEBUG_FREE
))
246 page
= virt_to_head_page(x
);
247 cachep
= page
->slab_cache
;
248 if (slab_equal_or_root(cachep
, s
))
251 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
252 __FUNCTION__
, cachep
->name
, s
->name
);
260 * The slab lists for all objects.
262 struct kmem_cache_node
{
263 spinlock_t list_lock
;
266 struct list_head slabs_partial
; /* partial list first, better asm code */
267 struct list_head slabs_full
;
268 struct list_head slabs_free
;
269 unsigned long free_objects
;
270 unsigned int free_limit
;
271 unsigned int colour_next
; /* Per-node cache coloring */
272 struct array_cache
*shared
; /* shared per node */
273 struct array_cache
**alien
; /* on other nodes */
274 unsigned long next_reap
; /* updated without locking */
275 int free_touched
; /* updated without locking */
279 unsigned long nr_partial
;
280 struct list_head partial
;
281 #ifdef CONFIG_SLUB_DEBUG
282 atomic_long_t nr_slabs
;
283 atomic_long_t total_objects
;
284 struct list_head full
;
290 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
);
291 void slab_stop(struct seq_file
*m
, void *p
);