io_uring: initialize fixed_file_data lock
[linux/fpc-iii.git] / security / keys / key.c
blobe959b3c96b4870a808899ac7e3b1a15c0d4cd325
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
20 struct kmem_cache *key_jar;
21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200; /* general key count quota */
30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
38 #ifdef KEY_DEBUGGING
39 void __key_check(const struct key *key)
41 printk("__key_check: key %p {%08x} should be {%08x}\n",
42 key, key->magic, KEY_DEBUG_MAGIC);
43 BUG();
45 #endif
48 * Get the key quota record for a user, allocating a new record if one doesn't
49 * already exist.
51 struct key_user *key_user_lookup(kuid_t uid)
53 struct key_user *candidate = NULL, *user;
54 struct rb_node *parent, **p;
56 try_again:
57 parent = NULL;
58 p = &key_user_tree.rb_node;
59 spin_lock(&key_user_lock);
61 /* search the tree for a user record with a matching UID */
62 while (*p) {
63 parent = *p;
64 user = rb_entry(parent, struct key_user, node);
66 if (uid_lt(uid, user->uid))
67 p = &(*p)->rb_left;
68 else if (uid_gt(uid, user->uid))
69 p = &(*p)->rb_right;
70 else
71 goto found;
74 /* if we get here, we failed to find a match in the tree */
75 if (!candidate) {
76 /* allocate a candidate user record if we don't already have
77 * one */
78 spin_unlock(&key_user_lock);
80 user = NULL;
81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 if (unlikely(!candidate))
83 goto out;
85 /* the allocation may have scheduled, so we need to repeat the
86 * search lest someone else added the record whilst we were
87 * asleep */
88 goto try_again;
91 /* if we get here, then the user record still hadn't appeared on the
92 * second pass - so we use the candidate record */
93 refcount_set(&candidate->usage, 1);
94 atomic_set(&candidate->nkeys, 0);
95 atomic_set(&candidate->nikeys, 0);
96 candidate->uid = uid;
97 candidate->qnkeys = 0;
98 candidate->qnbytes = 0;
99 spin_lock_init(&candidate->lock);
100 mutex_init(&candidate->cons_lock);
102 rb_link_node(&candidate->node, parent, p);
103 rb_insert_color(&candidate->node, &key_user_tree);
104 spin_unlock(&key_user_lock);
105 user = candidate;
106 goto out;
108 /* okay - we found a user record for this UID */
109 found:
110 refcount_inc(&user->usage);
111 spin_unlock(&key_user_lock);
112 kfree(candidate);
113 out:
114 return user;
118 * Dispose of a user structure
120 void key_user_put(struct key_user *user)
122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 rb_erase(&user->node, &key_user_tree);
124 spin_unlock(&key_user_lock);
126 kfree(user);
131 * Allocate a serial number for a key. These are assigned randomly to avoid
132 * security issues through covert channel problems.
134 static inline void key_alloc_serial(struct key *key)
136 struct rb_node *parent, **p;
137 struct key *xkey;
139 /* propose a random serial number and look for a hole for it in the
140 * serial number tree */
141 do {
142 get_random_bytes(&key->serial, sizeof(key->serial));
144 key->serial >>= 1; /* negative numbers are not permitted */
145 } while (key->serial < 3);
147 spin_lock(&key_serial_lock);
149 attempt_insertion:
150 parent = NULL;
151 p = &key_serial_tree.rb_node;
153 while (*p) {
154 parent = *p;
155 xkey = rb_entry(parent, struct key, serial_node);
157 if (key->serial < xkey->serial)
158 p = &(*p)->rb_left;
159 else if (key->serial > xkey->serial)
160 p = &(*p)->rb_right;
161 else
162 goto serial_exists;
165 /* we've found a suitable hole - arrange for this key to occupy it */
166 rb_link_node(&key->serial_node, parent, p);
167 rb_insert_color(&key->serial_node, &key_serial_tree);
169 spin_unlock(&key_serial_lock);
170 return;
172 /* we found a key with the proposed serial number - walk the tree from
173 * that point looking for the next unused serial number */
174 serial_exists:
175 for (;;) {
176 key->serial++;
177 if (key->serial < 3) {
178 key->serial = 3;
179 goto attempt_insertion;
182 parent = rb_next(parent);
183 if (!parent)
184 goto attempt_insertion;
186 xkey = rb_entry(parent, struct key, serial_node);
187 if (key->serial < xkey->serial)
188 goto attempt_insertion;
193 * key_alloc - Allocate a key of the specified type.
194 * @type: The type of key to allocate.
195 * @desc: The key description to allow the key to be searched out.
196 * @uid: The owner of the new key.
197 * @gid: The group ID for the new key's group permissions.
198 * @cred: The credentials specifying UID namespace.
199 * @perm: The permissions mask of the new key.
200 * @flags: Flags specifying quota properties.
201 * @restrict_link: Optional link restriction for new keyrings.
203 * Allocate a key of the specified type with the attributes given. The key is
204 * returned in an uninstantiated state and the caller needs to instantiate the
205 * key before returning.
207 * The restrict_link structure (if not NULL) will be freed when the
208 * keyring is destroyed, so it must be dynamically allocated.
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
218 * Returns a pointer to the new key if successful and an error code otherwise.
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 struct key_restriction *restrict_link)
230 struct key_user *user = NULL;
231 struct key *key;
232 size_t desclen, quotalen;
233 int ret;
235 key = ERR_PTR(-EINVAL);
236 if (!desc || !*desc)
237 goto error;
239 if (type->vet_description) {
240 ret = type->vet_description(desc);
241 if (ret < 0) {
242 key = ERR_PTR(ret);
243 goto error;
247 desclen = strlen(desc);
248 quotalen = desclen + 1 + type->def_datalen;
250 /* get hold of the key tracking for this user */
251 user = key_user_lookup(uid);
252 if (!user)
253 goto no_memory_1;
255 /* check that the user's quota permits allocation of another key and
256 * its description */
257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxkeys : key_quota_maxkeys;
260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxbytes : key_quota_maxbytes;
263 spin_lock(&user->lock);
264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 if (user->qnkeys + 1 > maxkeys ||
266 user->qnbytes + quotalen > maxbytes ||
267 user->qnbytes + quotalen < user->qnbytes)
268 goto no_quota;
271 user->qnkeys++;
272 user->qnbytes += quotalen;
273 spin_unlock(&user->lock);
276 /* allocate and initialise the key and its description */
277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 if (!key)
279 goto no_memory_2;
281 key->index_key.desc_len = desclen;
282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 if (!key->index_key.description)
284 goto no_memory_3;
285 key->index_key.type = type;
286 key_set_index_key(&key->index_key);
288 refcount_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->user = user;
292 key->quotalen = quotalen;
293 key->datalen = type->def_datalen;
294 key->uid = uid;
295 key->gid = gid;
296 key->perm = perm;
297 key->restrict_link = restrict_link;
298 key->last_used_at = ktime_get_real_seconds();
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_BUILT_IN)
303 key->flags |= 1 << KEY_FLAG_BUILTIN;
304 if (flags & KEY_ALLOC_UID_KEYRING)
305 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 #ifdef KEY_DEBUGGING
308 key->magic = KEY_DEBUG_MAGIC;
309 #endif
311 /* let the security module know about the key */
312 ret = security_key_alloc(key, cred, flags);
313 if (ret < 0)
314 goto security_error;
316 /* publish the key by giving it a serial number */
317 refcount_inc(&key->domain_tag->usage);
318 atomic_inc(&user->nkeys);
319 key_alloc_serial(key);
321 error:
322 return key;
324 security_error:
325 kfree(key->description);
326 kmem_cache_free(key_jar, key);
327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 spin_lock(&user->lock);
329 user->qnkeys--;
330 user->qnbytes -= quotalen;
331 spin_unlock(&user->lock);
333 key_user_put(user);
334 key = ERR_PTR(ret);
335 goto error;
337 no_memory_3:
338 kmem_cache_free(key_jar, key);
339 no_memory_2:
340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 spin_lock(&user->lock);
342 user->qnkeys--;
343 user->qnbytes -= quotalen;
344 spin_unlock(&user->lock);
346 key_user_put(user);
347 no_memory_1:
348 key = ERR_PTR(-ENOMEM);
349 goto error;
351 no_quota:
352 spin_unlock(&user->lock);
353 key_user_put(user);
354 key = ERR_PTR(-EDQUOT);
355 goto error;
357 EXPORT_SYMBOL(key_alloc);
360 * key_payload_reserve - Adjust data quota reservation for the key's payload
361 * @key: The key to make the reservation for.
362 * @datalen: The amount of data payload the caller now wants.
364 * Adjust the amount of the owning user's key data quota that a key reserves.
365 * If the amount is increased, then -EDQUOT may be returned if there isn't
366 * enough free quota available.
368 * If successful, 0 is returned.
370 int key_payload_reserve(struct key *key, size_t datalen)
372 int delta = (int)datalen - key->datalen;
373 int ret = 0;
375 key_check(key);
377 /* contemplate the quota adjustment */
378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 key_quota_root_maxbytes : key_quota_maxbytes;
382 spin_lock(&key->user->lock);
384 if (delta > 0 &&
385 (key->user->qnbytes + delta > maxbytes ||
386 key->user->qnbytes + delta < key->user->qnbytes)) {
387 ret = -EDQUOT;
389 else {
390 key->user->qnbytes += delta;
391 key->quotalen += delta;
393 spin_unlock(&key->user->lock);
396 /* change the recorded data length if that didn't generate an error */
397 if (ret == 0)
398 key->datalen = datalen;
400 return ret;
402 EXPORT_SYMBOL(key_payload_reserve);
405 * Change the key state to being instantiated.
407 static void mark_key_instantiated(struct key *key, int reject_error)
409 /* Commit the payload before setting the state; barrier versus
410 * key_read_state().
412 smp_store_release(&key->state,
413 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
417 * Instantiate a key and link it into the target keyring atomically. Must be
418 * called with the target keyring's semaphore writelocked. The target key's
419 * semaphore need not be locked as instantiation is serialised by
420 * key_construction_mutex.
422 static int __key_instantiate_and_link(struct key *key,
423 struct key_preparsed_payload *prep,
424 struct key *keyring,
425 struct key *authkey,
426 struct assoc_array_edit **_edit)
428 int ret, awaken;
430 key_check(key);
431 key_check(keyring);
433 awaken = 0;
434 ret = -EBUSY;
436 mutex_lock(&key_construction_mutex);
438 /* can't instantiate twice */
439 if (key->state == KEY_IS_UNINSTANTIATED) {
440 /* instantiate the key */
441 ret = key->type->instantiate(key, prep);
443 if (ret == 0) {
444 /* mark the key as being instantiated */
445 atomic_inc(&key->user->nikeys);
446 mark_key_instantiated(key, 0);
448 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
449 awaken = 1;
451 /* and link it into the destination keyring */
452 if (keyring) {
453 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
454 set_bit(KEY_FLAG_KEEP, &key->flags);
456 __key_link(key, _edit);
459 /* disable the authorisation key */
460 if (authkey)
461 key_invalidate(authkey);
463 if (prep->expiry != TIME64_MAX) {
464 key->expiry = prep->expiry;
465 key_schedule_gc(prep->expiry + key_gc_delay);
470 mutex_unlock(&key_construction_mutex);
472 /* wake up anyone waiting for a key to be constructed */
473 if (awaken)
474 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
476 return ret;
480 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
481 * @key: The key to instantiate.
482 * @data: The data to use to instantiate the keyring.
483 * @datalen: The length of @data.
484 * @keyring: Keyring to create a link in on success (or NULL).
485 * @authkey: The authorisation token permitting instantiation.
487 * Instantiate a key that's in the uninstantiated state using the provided data
488 * and, if successful, link it in to the destination keyring if one is
489 * supplied.
491 * If successful, 0 is returned, the authorisation token is revoked and anyone
492 * waiting for the key is woken up. If the key was already instantiated,
493 * -EBUSY will be returned.
495 int key_instantiate_and_link(struct key *key,
496 const void *data,
497 size_t datalen,
498 struct key *keyring,
499 struct key *authkey)
501 struct key_preparsed_payload prep;
502 struct assoc_array_edit *edit = NULL;
503 int ret;
505 memset(&prep, 0, sizeof(prep));
506 prep.data = data;
507 prep.datalen = datalen;
508 prep.quotalen = key->type->def_datalen;
509 prep.expiry = TIME64_MAX;
510 if (key->type->preparse) {
511 ret = key->type->preparse(&prep);
512 if (ret < 0)
513 goto error;
516 if (keyring) {
517 ret = __key_link_lock(keyring, &key->index_key);
518 if (ret < 0)
519 goto error;
521 ret = __key_link_begin(keyring, &key->index_key, &edit);
522 if (ret < 0)
523 goto error_link_end;
525 if (keyring->restrict_link && keyring->restrict_link->check) {
526 struct key_restriction *keyres = keyring->restrict_link;
528 ret = keyres->check(keyring, key->type, &prep.payload,
529 keyres->key);
530 if (ret < 0)
531 goto error_link_end;
535 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
537 error_link_end:
538 if (keyring)
539 __key_link_end(keyring, &key->index_key, edit);
541 error:
542 if (key->type->preparse)
543 key->type->free_preparse(&prep);
544 return ret;
547 EXPORT_SYMBOL(key_instantiate_and_link);
550 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
551 * @key: The key to instantiate.
552 * @timeout: The timeout on the negative key.
553 * @error: The error to return when the key is hit.
554 * @keyring: Keyring to create a link in on success (or NULL).
555 * @authkey: The authorisation token permitting instantiation.
557 * Negatively instantiate a key that's in the uninstantiated state and, if
558 * successful, set its timeout and stored error and link it in to the
559 * destination keyring if one is supplied. The key and any links to the key
560 * will be automatically garbage collected after the timeout expires.
562 * Negative keys are used to rate limit repeated request_key() calls by causing
563 * them to return the stored error code (typically ENOKEY) until the negative
564 * key expires.
566 * If successful, 0 is returned, the authorisation token is revoked and anyone
567 * waiting for the key is woken up. If the key was already instantiated,
568 * -EBUSY will be returned.
570 int key_reject_and_link(struct key *key,
571 unsigned timeout,
572 unsigned error,
573 struct key *keyring,
574 struct key *authkey)
576 struct assoc_array_edit *edit = NULL;
577 int ret, awaken, link_ret = 0;
579 key_check(key);
580 key_check(keyring);
582 awaken = 0;
583 ret = -EBUSY;
585 if (keyring) {
586 if (keyring->restrict_link)
587 return -EPERM;
589 link_ret = __key_link_lock(keyring, &key->index_key);
590 if (link_ret == 0) {
591 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
592 if (link_ret < 0)
593 __key_link_end(keyring, &key->index_key, edit);
597 mutex_lock(&key_construction_mutex);
599 /* can't instantiate twice */
600 if (key->state == KEY_IS_UNINSTANTIATED) {
601 /* mark the key as being negatively instantiated */
602 atomic_inc(&key->user->nikeys);
603 mark_key_instantiated(key, -error);
604 key->expiry = ktime_get_real_seconds() + timeout;
605 key_schedule_gc(key->expiry + key_gc_delay);
607 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
608 awaken = 1;
610 ret = 0;
612 /* and link it into the destination keyring */
613 if (keyring && link_ret == 0)
614 __key_link(key, &edit);
616 /* disable the authorisation key */
617 if (authkey)
618 key_invalidate(authkey);
621 mutex_unlock(&key_construction_mutex);
623 if (keyring && link_ret == 0)
624 __key_link_end(keyring, &key->index_key, edit);
626 /* wake up anyone waiting for a key to be constructed */
627 if (awaken)
628 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
630 return ret == 0 ? link_ret : ret;
632 EXPORT_SYMBOL(key_reject_and_link);
635 * key_put - Discard a reference to a key.
636 * @key: The key to discard a reference from.
638 * Discard a reference to a key, and when all the references are gone, we
639 * schedule the cleanup task to come and pull it out of the tree in process
640 * context at some later time.
642 void key_put(struct key *key)
644 if (key) {
645 key_check(key);
647 if (refcount_dec_and_test(&key->usage))
648 schedule_work(&key_gc_work);
651 EXPORT_SYMBOL(key_put);
654 * Find a key by its serial number.
656 struct key *key_lookup(key_serial_t id)
658 struct rb_node *n;
659 struct key *key;
661 spin_lock(&key_serial_lock);
663 /* search the tree for the specified key */
664 n = key_serial_tree.rb_node;
665 while (n) {
666 key = rb_entry(n, struct key, serial_node);
668 if (id < key->serial)
669 n = n->rb_left;
670 else if (id > key->serial)
671 n = n->rb_right;
672 else
673 goto found;
676 not_found:
677 key = ERR_PTR(-ENOKEY);
678 goto error;
680 found:
681 /* A key is allowed to be looked up only if someone still owns a
682 * reference to it - otherwise it's awaiting the gc.
684 if (!refcount_inc_not_zero(&key->usage))
685 goto not_found;
687 error:
688 spin_unlock(&key_serial_lock);
689 return key;
693 * Find and lock the specified key type against removal.
695 * We return with the sem read-locked if successful. If the type wasn't
696 * available -ENOKEY is returned instead.
698 struct key_type *key_type_lookup(const char *type)
700 struct key_type *ktype;
702 down_read(&key_types_sem);
704 /* look up the key type to see if it's one of the registered kernel
705 * types */
706 list_for_each_entry(ktype, &key_types_list, link) {
707 if (strcmp(ktype->name, type) == 0)
708 goto found_kernel_type;
711 up_read(&key_types_sem);
712 ktype = ERR_PTR(-ENOKEY);
714 found_kernel_type:
715 return ktype;
718 void key_set_timeout(struct key *key, unsigned timeout)
720 time64_t expiry = 0;
722 /* make the changes with the locks held to prevent races */
723 down_write(&key->sem);
725 if (timeout > 0)
726 expiry = ktime_get_real_seconds() + timeout;
728 key->expiry = expiry;
729 key_schedule_gc(key->expiry + key_gc_delay);
731 up_write(&key->sem);
733 EXPORT_SYMBOL_GPL(key_set_timeout);
736 * Unlock a key type locked by key_type_lookup().
738 void key_type_put(struct key_type *ktype)
740 up_read(&key_types_sem);
744 * Attempt to update an existing key.
746 * The key is given to us with an incremented refcount that we need to discard
747 * if we get an error.
749 static inline key_ref_t __key_update(key_ref_t key_ref,
750 struct key_preparsed_payload *prep)
752 struct key *key = key_ref_to_ptr(key_ref);
753 int ret;
755 /* need write permission on the key to update it */
756 ret = key_permission(key_ref, KEY_NEED_WRITE);
757 if (ret < 0)
758 goto error;
760 ret = -EEXIST;
761 if (!key->type->update)
762 goto error;
764 down_write(&key->sem);
766 ret = key->type->update(key, prep);
767 if (ret == 0)
768 /* Updating a negative key positively instantiates it */
769 mark_key_instantiated(key, 0);
771 up_write(&key->sem);
773 if (ret < 0)
774 goto error;
775 out:
776 return key_ref;
778 error:
779 key_put(key);
780 key_ref = ERR_PTR(ret);
781 goto out;
785 * key_create_or_update - Update or create and instantiate a key.
786 * @keyring_ref: A pointer to the destination keyring with possession flag.
787 * @type: The type of key.
788 * @description: The searchable description for the key.
789 * @payload: The data to use to instantiate or update the key.
790 * @plen: The length of @payload.
791 * @perm: The permissions mask for a new key.
792 * @flags: The quota flags for a new key.
794 * Search the destination keyring for a key of the same description and if one
795 * is found, update it, otherwise create and instantiate a new one and create a
796 * link to it from that keyring.
798 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
799 * concocted.
801 * Returns a pointer to the new key if successful, -ENODEV if the key type
802 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
803 * caller isn't permitted to modify the keyring or the LSM did not permit
804 * creation of the key.
806 * On success, the possession flag from the keyring ref will be tacked on to
807 * the key ref before it is returned.
809 key_ref_t key_create_or_update(key_ref_t keyring_ref,
810 const char *type,
811 const char *description,
812 const void *payload,
813 size_t plen,
814 key_perm_t perm,
815 unsigned long flags)
817 struct keyring_index_key index_key = {
818 .description = description,
820 struct key_preparsed_payload prep;
821 struct assoc_array_edit *edit = NULL;
822 const struct cred *cred = current_cred();
823 struct key *keyring, *key = NULL;
824 key_ref_t key_ref;
825 int ret;
826 struct key_restriction *restrict_link = NULL;
828 /* look up the key type to see if it's one of the registered kernel
829 * types */
830 index_key.type = key_type_lookup(type);
831 if (IS_ERR(index_key.type)) {
832 key_ref = ERR_PTR(-ENODEV);
833 goto error;
836 key_ref = ERR_PTR(-EINVAL);
837 if (!index_key.type->instantiate ||
838 (!index_key.description && !index_key.type->preparse))
839 goto error_put_type;
841 keyring = key_ref_to_ptr(keyring_ref);
843 key_check(keyring);
845 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
846 restrict_link = keyring->restrict_link;
848 key_ref = ERR_PTR(-ENOTDIR);
849 if (keyring->type != &key_type_keyring)
850 goto error_put_type;
852 memset(&prep, 0, sizeof(prep));
853 prep.data = payload;
854 prep.datalen = plen;
855 prep.quotalen = index_key.type->def_datalen;
856 prep.expiry = TIME64_MAX;
857 if (index_key.type->preparse) {
858 ret = index_key.type->preparse(&prep);
859 if (ret < 0) {
860 key_ref = ERR_PTR(ret);
861 goto error_free_prep;
863 if (!index_key.description)
864 index_key.description = prep.description;
865 key_ref = ERR_PTR(-EINVAL);
866 if (!index_key.description)
867 goto error_free_prep;
869 index_key.desc_len = strlen(index_key.description);
870 key_set_index_key(&index_key);
872 ret = __key_link_lock(keyring, &index_key);
873 if (ret < 0) {
874 key_ref = ERR_PTR(ret);
875 goto error_free_prep;
878 ret = __key_link_begin(keyring, &index_key, &edit);
879 if (ret < 0) {
880 key_ref = ERR_PTR(ret);
881 goto error_link_end;
884 if (restrict_link && restrict_link->check) {
885 ret = restrict_link->check(keyring, index_key.type,
886 &prep.payload, restrict_link->key);
887 if (ret < 0) {
888 key_ref = ERR_PTR(ret);
889 goto error_link_end;
893 /* if we're going to allocate a new key, we're going to have
894 * to modify the keyring */
895 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
896 if (ret < 0) {
897 key_ref = ERR_PTR(ret);
898 goto error_link_end;
901 /* if it's possible to update this type of key, search for an existing
902 * key of the same type and description in the destination keyring and
903 * update that instead if possible
905 if (index_key.type->update) {
906 key_ref = find_key_to_update(keyring_ref, &index_key);
907 if (key_ref)
908 goto found_matching_key;
911 /* if the client doesn't provide, decide on the permissions we want */
912 if (perm == KEY_PERM_UNDEF) {
913 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
914 perm |= KEY_USR_VIEW;
916 if (index_key.type->read)
917 perm |= KEY_POS_READ;
919 if (index_key.type == &key_type_keyring ||
920 index_key.type->update)
921 perm |= KEY_POS_WRITE;
924 /* allocate a new key */
925 key = key_alloc(index_key.type, index_key.description,
926 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
927 if (IS_ERR(key)) {
928 key_ref = ERR_CAST(key);
929 goto error_link_end;
932 /* instantiate it and link it into the target keyring */
933 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
934 if (ret < 0) {
935 key_put(key);
936 key_ref = ERR_PTR(ret);
937 goto error_link_end;
940 ima_post_key_create_or_update(keyring, key, payload, plen,
941 flags, true);
943 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
945 error_link_end:
946 __key_link_end(keyring, &index_key, edit);
947 error_free_prep:
948 if (index_key.type->preparse)
949 index_key.type->free_preparse(&prep);
950 error_put_type:
951 key_type_put(index_key.type);
952 error:
953 return key_ref;
955 found_matching_key:
956 /* we found a matching key, so we're going to try to update it
957 * - we can drop the locks first as we have the key pinned
959 __key_link_end(keyring, &index_key, edit);
961 key = key_ref_to_ptr(key_ref);
962 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
963 ret = wait_for_key_construction(key, true);
964 if (ret < 0) {
965 key_ref_put(key_ref);
966 key_ref = ERR_PTR(ret);
967 goto error_free_prep;
971 key_ref = __key_update(key_ref, &prep);
973 if (!IS_ERR(key_ref))
974 ima_post_key_create_or_update(keyring, key,
975 payload, plen,
976 flags, false);
978 goto error_free_prep;
980 EXPORT_SYMBOL(key_create_or_update);
983 * key_update - Update a key's contents.
984 * @key_ref: The pointer (plus possession flag) to the key.
985 * @payload: The data to be used to update the key.
986 * @plen: The length of @payload.
988 * Attempt to update the contents of a key with the given payload data. The
989 * caller must be granted Write permission on the key. Negative keys can be
990 * instantiated by this method.
992 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
993 * type does not support updating. The key type may return other errors.
995 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
997 struct key_preparsed_payload prep;
998 struct key *key = key_ref_to_ptr(key_ref);
999 int ret;
1001 key_check(key);
1003 /* the key must be writable */
1004 ret = key_permission(key_ref, KEY_NEED_WRITE);
1005 if (ret < 0)
1006 return ret;
1008 /* attempt to update it if supported */
1009 if (!key->type->update)
1010 return -EOPNOTSUPP;
1012 memset(&prep, 0, sizeof(prep));
1013 prep.data = payload;
1014 prep.datalen = plen;
1015 prep.quotalen = key->type->def_datalen;
1016 prep.expiry = TIME64_MAX;
1017 if (key->type->preparse) {
1018 ret = key->type->preparse(&prep);
1019 if (ret < 0)
1020 goto error;
1023 down_write(&key->sem);
1025 ret = key->type->update(key, &prep);
1026 if (ret == 0)
1027 /* Updating a negative key positively instantiates it */
1028 mark_key_instantiated(key, 0);
1030 up_write(&key->sem);
1032 error:
1033 if (key->type->preparse)
1034 key->type->free_preparse(&prep);
1035 return ret;
1037 EXPORT_SYMBOL(key_update);
1040 * key_revoke - Revoke a key.
1041 * @key: The key to be revoked.
1043 * Mark a key as being revoked and ask the type to free up its resources. The
1044 * revocation timeout is set and the key and all its links will be
1045 * automatically garbage collected after key_gc_delay amount of time if they
1046 * are not manually dealt with first.
1048 void key_revoke(struct key *key)
1050 time64_t time;
1052 key_check(key);
1054 /* make sure no one's trying to change or use the key when we mark it
1055 * - we tell lockdep that we might nest because we might be revoking an
1056 * authorisation key whilst holding the sem on a key we've just
1057 * instantiated
1059 down_write_nested(&key->sem, 1);
1060 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1061 key->type->revoke)
1062 key->type->revoke(key);
1064 /* set the death time to no more than the expiry time */
1065 time = ktime_get_real_seconds();
1066 if (key->revoked_at == 0 || key->revoked_at > time) {
1067 key->revoked_at = time;
1068 key_schedule_gc(key->revoked_at + key_gc_delay);
1071 up_write(&key->sem);
1073 EXPORT_SYMBOL(key_revoke);
1076 * key_invalidate - Invalidate a key.
1077 * @key: The key to be invalidated.
1079 * Mark a key as being invalidated and have it cleaned up immediately. The key
1080 * is ignored by all searches and other operations from this point.
1082 void key_invalidate(struct key *key)
1084 kenter("%d", key_serial(key));
1086 key_check(key);
1088 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1089 down_write_nested(&key->sem, 1);
1090 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1091 key_schedule_gc_links();
1092 up_write(&key->sem);
1095 EXPORT_SYMBOL(key_invalidate);
1098 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1099 * @key: The key to be instantiated
1100 * @prep: The preparsed data to load.
1102 * Instantiate a key from preparsed data. We assume we can just copy the data
1103 * in directly and clear the old pointers.
1105 * This can be pointed to directly by the key type instantiate op pointer.
1107 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1109 int ret;
1111 pr_devel("==>%s()\n", __func__);
1113 ret = key_payload_reserve(key, prep->quotalen);
1114 if (ret == 0) {
1115 rcu_assign_keypointer(key, prep->payload.data[0]);
1116 key->payload.data[1] = prep->payload.data[1];
1117 key->payload.data[2] = prep->payload.data[2];
1118 key->payload.data[3] = prep->payload.data[3];
1119 prep->payload.data[0] = NULL;
1120 prep->payload.data[1] = NULL;
1121 prep->payload.data[2] = NULL;
1122 prep->payload.data[3] = NULL;
1124 pr_devel("<==%s() = %d\n", __func__, ret);
1125 return ret;
1127 EXPORT_SYMBOL(generic_key_instantiate);
1130 * register_key_type - Register a type of key.
1131 * @ktype: The new key type.
1133 * Register a new key type.
1135 * Returns 0 on success or -EEXIST if a type of this name already exists.
1137 int register_key_type(struct key_type *ktype)
1139 struct key_type *p;
1140 int ret;
1142 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1144 ret = -EEXIST;
1145 down_write(&key_types_sem);
1147 /* disallow key types with the same name */
1148 list_for_each_entry(p, &key_types_list, link) {
1149 if (strcmp(p->name, ktype->name) == 0)
1150 goto out;
1153 /* store the type */
1154 list_add(&ktype->link, &key_types_list);
1156 pr_notice("Key type %s registered\n", ktype->name);
1157 ret = 0;
1159 out:
1160 up_write(&key_types_sem);
1161 return ret;
1163 EXPORT_SYMBOL(register_key_type);
1166 * unregister_key_type - Unregister a type of key.
1167 * @ktype: The key type.
1169 * Unregister a key type and mark all the extant keys of this type as dead.
1170 * Those keys of this type are then destroyed to get rid of their payloads and
1171 * they and their links will be garbage collected as soon as possible.
1173 void unregister_key_type(struct key_type *ktype)
1175 down_write(&key_types_sem);
1176 list_del_init(&ktype->link);
1177 downgrade_write(&key_types_sem);
1178 key_gc_keytype(ktype);
1179 pr_notice("Key type %s unregistered\n", ktype->name);
1180 up_read(&key_types_sem);
1182 EXPORT_SYMBOL(unregister_key_type);
1185 * Initialise the key management state.
1187 void __init key_init(void)
1189 /* allocate a slab in which we can store keys */
1190 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1191 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1193 /* add the special key types */
1194 list_add_tail(&key_type_keyring.link, &key_types_list);
1195 list_add_tail(&key_type_dead.link, &key_types_list);
1196 list_add_tail(&key_type_user.link, &key_types_list);
1197 list_add_tail(&key_type_logon.link, &key_types_list);
1199 /* record the root user tracking */
1200 rb_link_node(&root_key_user.node,
1201 NULL,
1202 &key_user_tree.rb_node);
1204 rb_insert_color(&root_key_user.node,
1205 &key_user_tree);