Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / acpi / processor_idle.c
blob5939e7f7d8e9004ea794408c61b6665d52f92851
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/acpi.h>
39 #include <linux/dmi.h>
40 #include <linux/moduleparam.h>
41 #include <linux/sched.h> /* need_resched() */
42 #include <linux/pm_qos_params.h>
43 #include <linux/clockchips.h>
44 #include <linux/cpuidle.h>
45 #include <linux/irqflags.h>
48 * Include the apic definitions for x86 to have the APIC timer related defines
49 * available also for UP (on SMP it gets magically included via linux/smp.h).
50 * asm/acpi.h is not an option, as it would require more include magic. Also
51 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
53 #ifdef CONFIG_X86
54 #include <asm/apic.h>
55 #endif
57 #include <asm/io.h>
58 #include <asm/uaccess.h>
60 #include <acpi/acpi_bus.h>
61 #include <acpi/processor.h>
62 #include <asm/processor.h>
64 #define PREFIX "ACPI: "
66 #define ACPI_PROCESSOR_CLASS "processor"
67 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
68 ACPI_MODULE_NAME("processor_idle");
69 #define ACPI_PROCESSOR_FILE_POWER "power"
70 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
71 #define C2_OVERHEAD 1 /* 1us */
72 #define C3_OVERHEAD 1 /* 1us */
73 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
75 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
76 module_param(max_cstate, uint, 0000);
77 static unsigned int nocst __read_mostly;
78 module_param(nocst, uint, 0000);
80 static unsigned int latency_factor __read_mostly = 2;
81 module_param(latency_factor, uint, 0644);
83 static s64 us_to_pm_timer_ticks(s64 t)
85 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
88 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
89 * For now disable this. Probably a bug somewhere else.
91 * To skip this limit, boot/load with a large max_cstate limit.
93 static int set_max_cstate(const struct dmi_system_id *id)
95 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
96 return 0;
98 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
99 " Override with \"processor.max_cstate=%d\"\n", id->ident,
100 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
102 max_cstate = (long)id->driver_data;
104 return 0;
107 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
108 callers to only run once -AK */
109 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
110 { set_max_cstate, "Clevo 5600D", {
111 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
112 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
113 (void *)2},
114 { set_max_cstate, "Pavilion zv5000", {
115 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
116 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
117 (void *)1},
118 { set_max_cstate, "Asus L8400B", {
119 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
120 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
121 (void *)1},
127 * Callers should disable interrupts before the call and enable
128 * interrupts after return.
130 static void acpi_safe_halt(void)
132 current_thread_info()->status &= ~TS_POLLING;
134 * TS_POLLING-cleared state must be visible before we
135 * test NEED_RESCHED:
137 smp_mb();
138 if (!need_resched()) {
139 safe_halt();
140 local_irq_disable();
142 current_thread_info()->status |= TS_POLLING;
145 #ifdef ARCH_APICTIMER_STOPS_ON_C3
148 * Some BIOS implementations switch to C3 in the published C2 state.
149 * This seems to be a common problem on AMD boxen, but other vendors
150 * are affected too. We pick the most conservative approach: we assume
151 * that the local APIC stops in both C2 and C3.
153 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
154 struct acpi_processor_cx *cx)
156 struct acpi_processor_power *pwr = &pr->power;
157 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
159 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
160 return;
162 if (boot_cpu_has(X86_FEATURE_AMDC1E))
163 type = ACPI_STATE_C1;
166 * Check, if one of the previous states already marked the lapic
167 * unstable
169 if (pwr->timer_broadcast_on_state < state)
170 return;
172 if (cx->type >= type)
173 pr->power.timer_broadcast_on_state = state;
176 static void __lapic_timer_propagate_broadcast(void *arg)
178 struct acpi_processor *pr = (struct acpi_processor *) arg;
179 unsigned long reason;
181 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
182 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
184 clockevents_notify(reason, &pr->id);
187 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
189 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
190 (void *)pr, 1);
193 /* Power(C) State timer broadcast control */
194 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
195 struct acpi_processor_cx *cx,
196 int broadcast)
198 int state = cx - pr->power.states;
200 if (state >= pr->power.timer_broadcast_on_state) {
201 unsigned long reason;
203 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
204 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
205 clockevents_notify(reason, &pr->id);
209 #else
211 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
212 struct acpi_processor_cx *cstate) { }
213 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
214 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
215 struct acpi_processor_cx *cx,
216 int broadcast)
220 #endif
223 * Suspend / resume control
225 static int acpi_idle_suspend;
226 static u32 saved_bm_rld;
228 static void acpi_idle_bm_rld_save(void)
230 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
232 static void acpi_idle_bm_rld_restore(void)
234 u32 resumed_bm_rld;
236 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
238 if (resumed_bm_rld != saved_bm_rld)
239 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
242 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
244 if (acpi_idle_suspend == 1)
245 return 0;
247 acpi_idle_bm_rld_save();
248 acpi_idle_suspend = 1;
249 return 0;
252 int acpi_processor_resume(struct acpi_device * device)
254 if (acpi_idle_suspend == 0)
255 return 0;
257 acpi_idle_bm_rld_restore();
258 acpi_idle_suspend = 0;
259 return 0;
262 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
263 static void tsc_check_state(int state)
265 switch (boot_cpu_data.x86_vendor) {
266 case X86_VENDOR_AMD:
267 case X86_VENDOR_INTEL:
269 * AMD Fam10h TSC will tick in all
270 * C/P/S0/S1 states when this bit is set.
272 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
273 return;
275 /*FALL THROUGH*/
276 default:
277 /* TSC could halt in idle, so notify users */
278 if (state > ACPI_STATE_C1)
279 mark_tsc_unstable("TSC halts in idle");
282 #else
283 static void tsc_check_state(int state) { return; }
284 #endif
286 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
289 if (!pr)
290 return -EINVAL;
292 if (!pr->pblk)
293 return -ENODEV;
295 /* if info is obtained from pblk/fadt, type equals state */
296 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
297 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
299 #ifndef CONFIG_HOTPLUG_CPU
301 * Check for P_LVL2_UP flag before entering C2 and above on
302 * an SMP system.
304 if ((num_online_cpus() > 1) &&
305 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
306 return -ENODEV;
307 #endif
309 /* determine C2 and C3 address from pblk */
310 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
311 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
313 /* determine latencies from FADT */
314 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
315 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
318 * FADT specified C2 latency must be less than or equal to
319 * 100 microseconds.
321 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
322 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
323 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
324 /* invalidate C2 */
325 pr->power.states[ACPI_STATE_C2].address = 0;
329 * FADT supplied C3 latency must be less than or equal to
330 * 1000 microseconds.
332 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
333 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
334 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
335 /* invalidate C3 */
336 pr->power.states[ACPI_STATE_C3].address = 0;
339 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
340 "lvl2[0x%08x] lvl3[0x%08x]\n",
341 pr->power.states[ACPI_STATE_C2].address,
342 pr->power.states[ACPI_STATE_C3].address));
344 return 0;
347 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
349 if (!pr->power.states[ACPI_STATE_C1].valid) {
350 /* set the first C-State to C1 */
351 /* all processors need to support C1 */
352 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
353 pr->power.states[ACPI_STATE_C1].valid = 1;
354 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
356 /* the C0 state only exists as a filler in our array */
357 pr->power.states[ACPI_STATE_C0].valid = 1;
358 return 0;
361 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
363 acpi_status status = 0;
364 u64 count;
365 int current_count;
366 int i;
367 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
368 union acpi_object *cst;
371 if (nocst)
372 return -ENODEV;
374 current_count = 0;
376 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
377 if (ACPI_FAILURE(status)) {
378 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
379 return -ENODEV;
382 cst = buffer.pointer;
384 /* There must be at least 2 elements */
385 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
386 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
387 status = -EFAULT;
388 goto end;
391 count = cst->package.elements[0].integer.value;
393 /* Validate number of power states. */
394 if (count < 1 || count != cst->package.count - 1) {
395 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
396 status = -EFAULT;
397 goto end;
400 /* Tell driver that at least _CST is supported. */
401 pr->flags.has_cst = 1;
403 for (i = 1; i <= count; i++) {
404 union acpi_object *element;
405 union acpi_object *obj;
406 struct acpi_power_register *reg;
407 struct acpi_processor_cx cx;
409 memset(&cx, 0, sizeof(cx));
411 element = &(cst->package.elements[i]);
412 if (element->type != ACPI_TYPE_PACKAGE)
413 continue;
415 if (element->package.count != 4)
416 continue;
418 obj = &(element->package.elements[0]);
420 if (obj->type != ACPI_TYPE_BUFFER)
421 continue;
423 reg = (struct acpi_power_register *)obj->buffer.pointer;
425 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
426 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
427 continue;
429 /* There should be an easy way to extract an integer... */
430 obj = &(element->package.elements[1]);
431 if (obj->type != ACPI_TYPE_INTEGER)
432 continue;
434 cx.type = obj->integer.value;
436 * Some buggy BIOSes won't list C1 in _CST -
437 * Let acpi_processor_get_power_info_default() handle them later
439 if (i == 1 && cx.type != ACPI_STATE_C1)
440 current_count++;
442 cx.address = reg->address;
443 cx.index = current_count + 1;
445 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
446 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
447 if (acpi_processor_ffh_cstate_probe
448 (pr->id, &cx, reg) == 0) {
449 cx.entry_method = ACPI_CSTATE_FFH;
450 } else if (cx.type == ACPI_STATE_C1) {
452 * C1 is a special case where FIXED_HARDWARE
453 * can be handled in non-MWAIT way as well.
454 * In that case, save this _CST entry info.
455 * Otherwise, ignore this info and continue.
457 cx.entry_method = ACPI_CSTATE_HALT;
458 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
459 } else {
460 continue;
462 if (cx.type == ACPI_STATE_C1 &&
463 (idle_halt || idle_nomwait)) {
465 * In most cases the C1 space_id obtained from
466 * _CST object is FIXED_HARDWARE access mode.
467 * But when the option of idle=halt is added,
468 * the entry_method type should be changed from
469 * CSTATE_FFH to CSTATE_HALT.
470 * When the option of idle=nomwait is added,
471 * the C1 entry_method type should be
472 * CSTATE_HALT.
474 cx.entry_method = ACPI_CSTATE_HALT;
475 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
477 } else {
478 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
479 cx.address);
482 if (cx.type == ACPI_STATE_C1) {
483 cx.valid = 1;
486 obj = &(element->package.elements[2]);
487 if (obj->type != ACPI_TYPE_INTEGER)
488 continue;
490 cx.latency = obj->integer.value;
492 obj = &(element->package.elements[3]);
493 if (obj->type != ACPI_TYPE_INTEGER)
494 continue;
496 cx.power = obj->integer.value;
498 current_count++;
499 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
502 * We support total ACPI_PROCESSOR_MAX_POWER - 1
503 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
505 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
506 printk(KERN_WARNING
507 "Limiting number of power states to max (%d)\n",
508 ACPI_PROCESSOR_MAX_POWER);
509 printk(KERN_WARNING
510 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
511 break;
515 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
516 current_count));
518 /* Validate number of power states discovered */
519 if (current_count < 2)
520 status = -EFAULT;
522 end:
523 kfree(buffer.pointer);
525 return status;
528 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
529 struct acpi_processor_cx *cx)
531 static int bm_check_flag = -1;
532 static int bm_control_flag = -1;
535 if (!cx->address)
536 return;
539 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
540 * DMA transfers are used by any ISA device to avoid livelock.
541 * Note that we could disable Type-F DMA (as recommended by
542 * the erratum), but this is known to disrupt certain ISA
543 * devices thus we take the conservative approach.
545 else if (errata.piix4.fdma) {
546 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
547 "C3 not supported on PIIX4 with Type-F DMA\n"));
548 return;
551 /* All the logic here assumes flags.bm_check is same across all CPUs */
552 if (bm_check_flag == -1) {
553 /* Determine whether bm_check is needed based on CPU */
554 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
555 bm_check_flag = pr->flags.bm_check;
556 bm_control_flag = pr->flags.bm_control;
557 } else {
558 pr->flags.bm_check = bm_check_flag;
559 pr->flags.bm_control = bm_control_flag;
562 if (pr->flags.bm_check) {
563 if (!pr->flags.bm_control) {
564 if (pr->flags.has_cst != 1) {
565 /* bus mastering control is necessary */
566 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
567 "C3 support requires BM control\n"));
568 return;
569 } else {
570 /* Here we enter C3 without bus mastering */
571 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
572 "C3 support without BM control\n"));
575 } else {
577 * WBINVD should be set in fadt, for C3 state to be
578 * supported on when bm_check is not required.
580 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
581 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
582 "Cache invalidation should work properly"
583 " for C3 to be enabled on SMP systems\n"));
584 return;
589 * Otherwise we've met all of our C3 requirements.
590 * Normalize the C3 latency to expidite policy. Enable
591 * checking of bus mastering status (bm_check) so we can
592 * use this in our C3 policy
594 cx->valid = 1;
596 cx->latency_ticks = cx->latency;
598 * On older chipsets, BM_RLD needs to be set
599 * in order for Bus Master activity to wake the
600 * system from C3. Newer chipsets handle DMA
601 * during C3 automatically and BM_RLD is a NOP.
602 * In either case, the proper way to
603 * handle BM_RLD is to set it and leave it set.
605 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
607 return;
610 static int acpi_processor_power_verify(struct acpi_processor *pr)
612 unsigned int i;
613 unsigned int working = 0;
615 pr->power.timer_broadcast_on_state = INT_MAX;
617 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
618 struct acpi_processor_cx *cx = &pr->power.states[i];
620 switch (cx->type) {
621 case ACPI_STATE_C1:
622 cx->valid = 1;
623 break;
625 case ACPI_STATE_C2:
626 if (!cx->address)
627 break;
628 cx->valid = 1;
629 cx->latency_ticks = cx->latency; /* Normalize latency */
630 break;
632 case ACPI_STATE_C3:
633 acpi_processor_power_verify_c3(pr, cx);
634 break;
636 if (!cx->valid)
637 continue;
639 lapic_timer_check_state(i, pr, cx);
640 tsc_check_state(cx->type);
641 working++;
644 lapic_timer_propagate_broadcast(pr);
646 return (working);
649 static int acpi_processor_get_power_info(struct acpi_processor *pr)
651 unsigned int i;
652 int result;
655 /* NOTE: the idle thread may not be running while calling
656 * this function */
658 /* Zero initialize all the C-states info. */
659 memset(pr->power.states, 0, sizeof(pr->power.states));
661 result = acpi_processor_get_power_info_cst(pr);
662 if (result == -ENODEV)
663 result = acpi_processor_get_power_info_fadt(pr);
665 if (result)
666 return result;
668 acpi_processor_get_power_info_default(pr);
670 pr->power.count = acpi_processor_power_verify(pr);
673 * if one state of type C2 or C3 is available, mark this
674 * CPU as being "idle manageable"
676 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
677 if (pr->power.states[i].valid) {
678 pr->power.count = i;
679 if (pr->power.states[i].type >= ACPI_STATE_C2)
680 pr->flags.power = 1;
684 return 0;
687 #ifdef CONFIG_ACPI_PROCFS
688 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
690 struct acpi_processor *pr = seq->private;
691 unsigned int i;
694 if (!pr)
695 goto end;
697 seq_printf(seq, "active state: C%zd\n"
698 "max_cstate: C%d\n"
699 "maximum allowed latency: %d usec\n",
700 pr->power.state ? pr->power.state - pr->power.states : 0,
701 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
703 seq_puts(seq, "states:\n");
705 for (i = 1; i <= pr->power.count; i++) {
706 seq_printf(seq, " %cC%d: ",
707 (&pr->power.states[i] ==
708 pr->power.state ? '*' : ' '), i);
710 if (!pr->power.states[i].valid) {
711 seq_puts(seq, "<not supported>\n");
712 continue;
715 switch (pr->power.states[i].type) {
716 case ACPI_STATE_C1:
717 seq_printf(seq, "type[C1] ");
718 break;
719 case ACPI_STATE_C2:
720 seq_printf(seq, "type[C2] ");
721 break;
722 case ACPI_STATE_C3:
723 seq_printf(seq, "type[C3] ");
724 break;
725 default:
726 seq_printf(seq, "type[--] ");
727 break;
730 if (pr->power.states[i].promotion.state)
731 seq_printf(seq, "promotion[C%zd] ",
732 (pr->power.states[i].promotion.state -
733 pr->power.states));
734 else
735 seq_puts(seq, "promotion[--] ");
737 if (pr->power.states[i].demotion.state)
738 seq_printf(seq, "demotion[C%zd] ",
739 (pr->power.states[i].demotion.state -
740 pr->power.states));
741 else
742 seq_puts(seq, "demotion[--] ");
744 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
745 pr->power.states[i].latency,
746 pr->power.states[i].usage,
747 (unsigned long long)pr->power.states[i].time);
750 end:
751 return 0;
754 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
756 return single_open(file, acpi_processor_power_seq_show,
757 PDE(inode)->data);
760 static const struct file_operations acpi_processor_power_fops = {
761 .owner = THIS_MODULE,
762 .open = acpi_processor_power_open_fs,
763 .read = seq_read,
764 .llseek = seq_lseek,
765 .release = single_release,
767 #endif
770 * acpi_idle_bm_check - checks if bus master activity was detected
772 static int acpi_idle_bm_check(void)
774 u32 bm_status = 0;
776 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
777 if (bm_status)
778 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
780 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
781 * the true state of bus mastering activity; forcing us to
782 * manually check the BMIDEA bit of each IDE channel.
784 else if (errata.piix4.bmisx) {
785 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
786 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
787 bm_status = 1;
789 return bm_status;
793 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
794 * @cx: cstate data
796 * Caller disables interrupt before call and enables interrupt after return.
798 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
800 /* Don't trace irqs off for idle */
801 stop_critical_timings();
802 if (cx->entry_method == ACPI_CSTATE_FFH) {
803 /* Call into architectural FFH based C-state */
804 acpi_processor_ffh_cstate_enter(cx);
805 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
806 acpi_safe_halt();
807 } else {
808 int unused;
809 /* IO port based C-state */
810 inb(cx->address);
811 /* Dummy wait op - must do something useless after P_LVL2 read
812 because chipsets cannot guarantee that STPCLK# signal
813 gets asserted in time to freeze execution properly. */
814 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
816 start_critical_timings();
820 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
821 * @dev: the target CPU
822 * @state: the state data
824 * This is equivalent to the HALT instruction.
826 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
827 struct cpuidle_state *state)
829 ktime_t kt1, kt2;
830 s64 idle_time;
831 struct acpi_processor *pr;
832 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
834 pr = __get_cpu_var(processors);
836 if (unlikely(!pr))
837 return 0;
839 local_irq_disable();
841 /* Do not access any ACPI IO ports in suspend path */
842 if (acpi_idle_suspend) {
843 local_irq_enable();
844 cpu_relax();
845 return 0;
848 lapic_timer_state_broadcast(pr, cx, 1);
849 kt1 = ktime_get_real();
850 acpi_idle_do_entry(cx);
851 kt2 = ktime_get_real();
852 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
854 local_irq_enable();
855 cx->usage++;
856 lapic_timer_state_broadcast(pr, cx, 0);
858 return idle_time;
862 * acpi_idle_enter_simple - enters an ACPI state without BM handling
863 * @dev: the target CPU
864 * @state: the state data
866 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
867 struct cpuidle_state *state)
869 struct acpi_processor *pr;
870 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
871 ktime_t kt1, kt2;
872 s64 idle_time;
873 s64 sleep_ticks = 0;
875 pr = __get_cpu_var(processors);
877 if (unlikely(!pr))
878 return 0;
880 if (acpi_idle_suspend)
881 return(acpi_idle_enter_c1(dev, state));
883 local_irq_disable();
884 if (cx->entry_method != ACPI_CSTATE_FFH) {
885 current_thread_info()->status &= ~TS_POLLING;
887 * TS_POLLING-cleared state must be visible before we test
888 * NEED_RESCHED:
890 smp_mb();
893 if (unlikely(need_resched())) {
894 current_thread_info()->status |= TS_POLLING;
895 local_irq_enable();
896 return 0;
900 * Must be done before busmaster disable as we might need to
901 * access HPET !
903 lapic_timer_state_broadcast(pr, cx, 1);
905 if (cx->type == ACPI_STATE_C3)
906 ACPI_FLUSH_CPU_CACHE();
908 kt1 = ktime_get_real();
909 /* Tell the scheduler that we are going deep-idle: */
910 sched_clock_idle_sleep_event();
911 acpi_idle_do_entry(cx);
912 kt2 = ktime_get_real();
913 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
915 sleep_ticks = us_to_pm_timer_ticks(idle_time);
917 /* Tell the scheduler how much we idled: */
918 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
920 local_irq_enable();
921 current_thread_info()->status |= TS_POLLING;
923 cx->usage++;
925 lapic_timer_state_broadcast(pr, cx, 0);
926 cx->time += sleep_ticks;
927 return idle_time;
930 static int c3_cpu_count;
931 static DEFINE_SPINLOCK(c3_lock);
934 * acpi_idle_enter_bm - enters C3 with proper BM handling
935 * @dev: the target CPU
936 * @state: the state data
938 * If BM is detected, the deepest non-C3 idle state is entered instead.
940 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
941 struct cpuidle_state *state)
943 struct acpi_processor *pr;
944 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
945 ktime_t kt1, kt2;
946 s64 idle_time;
947 s64 sleep_ticks = 0;
950 pr = __get_cpu_var(processors);
952 if (unlikely(!pr))
953 return 0;
955 if (acpi_idle_suspend)
956 return(acpi_idle_enter_c1(dev, state));
958 if (acpi_idle_bm_check()) {
959 if (dev->safe_state) {
960 dev->last_state = dev->safe_state;
961 return dev->safe_state->enter(dev, dev->safe_state);
962 } else {
963 local_irq_disable();
964 acpi_safe_halt();
965 local_irq_enable();
966 return 0;
970 local_irq_disable();
971 if (cx->entry_method != ACPI_CSTATE_FFH) {
972 current_thread_info()->status &= ~TS_POLLING;
974 * TS_POLLING-cleared state must be visible before we test
975 * NEED_RESCHED:
977 smp_mb();
980 if (unlikely(need_resched())) {
981 current_thread_info()->status |= TS_POLLING;
982 local_irq_enable();
983 return 0;
986 acpi_unlazy_tlb(smp_processor_id());
988 /* Tell the scheduler that we are going deep-idle: */
989 sched_clock_idle_sleep_event();
991 * Must be done before busmaster disable as we might need to
992 * access HPET !
994 lapic_timer_state_broadcast(pr, cx, 1);
996 kt1 = ktime_get_real();
998 * disable bus master
999 * bm_check implies we need ARB_DIS
1000 * !bm_check implies we need cache flush
1001 * bm_control implies whether we can do ARB_DIS
1003 * That leaves a case where bm_check is set and bm_control is
1004 * not set. In that case we cannot do much, we enter C3
1005 * without doing anything.
1007 if (pr->flags.bm_check && pr->flags.bm_control) {
1008 spin_lock(&c3_lock);
1009 c3_cpu_count++;
1010 /* Disable bus master arbitration when all CPUs are in C3 */
1011 if (c3_cpu_count == num_online_cpus())
1012 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1013 spin_unlock(&c3_lock);
1014 } else if (!pr->flags.bm_check) {
1015 ACPI_FLUSH_CPU_CACHE();
1018 acpi_idle_do_entry(cx);
1020 /* Re-enable bus master arbitration */
1021 if (pr->flags.bm_check && pr->flags.bm_control) {
1022 spin_lock(&c3_lock);
1023 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1024 c3_cpu_count--;
1025 spin_unlock(&c3_lock);
1027 kt2 = ktime_get_real();
1028 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1030 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1031 /* Tell the scheduler how much we idled: */
1032 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1034 local_irq_enable();
1035 current_thread_info()->status |= TS_POLLING;
1037 cx->usage++;
1039 lapic_timer_state_broadcast(pr, cx, 0);
1040 cx->time += sleep_ticks;
1041 return idle_time;
1044 struct cpuidle_driver acpi_idle_driver = {
1045 .name = "acpi_idle",
1046 .owner = THIS_MODULE,
1050 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1051 * @pr: the ACPI processor
1053 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1055 int i, count = CPUIDLE_DRIVER_STATE_START;
1056 struct acpi_processor_cx *cx;
1057 struct cpuidle_state *state;
1058 struct cpuidle_device *dev = &pr->power.dev;
1060 if (!pr->flags.power_setup_done)
1061 return -EINVAL;
1063 if (pr->flags.power == 0) {
1064 return -EINVAL;
1067 dev->cpu = pr->id;
1068 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1069 dev->states[i].name[0] = '\0';
1070 dev->states[i].desc[0] = '\0';
1073 if (max_cstate == 0)
1074 max_cstate = 1;
1076 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1077 cx = &pr->power.states[i];
1078 state = &dev->states[count];
1080 if (!cx->valid)
1081 continue;
1083 #ifdef CONFIG_HOTPLUG_CPU
1084 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1085 !pr->flags.has_cst &&
1086 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1087 continue;
1088 #endif
1089 cpuidle_set_statedata(state, cx);
1091 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1092 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1093 state->exit_latency = cx->latency;
1094 state->target_residency = cx->latency * latency_factor;
1095 state->power_usage = cx->power;
1097 state->flags = 0;
1098 switch (cx->type) {
1099 case ACPI_STATE_C1:
1100 state->flags |= CPUIDLE_FLAG_SHALLOW;
1101 if (cx->entry_method == ACPI_CSTATE_FFH)
1102 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1104 state->enter = acpi_idle_enter_c1;
1105 dev->safe_state = state;
1106 break;
1108 case ACPI_STATE_C2:
1109 state->flags |= CPUIDLE_FLAG_BALANCED;
1110 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1111 state->enter = acpi_idle_enter_simple;
1112 dev->safe_state = state;
1113 break;
1115 case ACPI_STATE_C3:
1116 state->flags |= CPUIDLE_FLAG_DEEP;
1117 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1118 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1119 state->enter = pr->flags.bm_check ?
1120 acpi_idle_enter_bm :
1121 acpi_idle_enter_simple;
1122 break;
1125 count++;
1126 if (count == CPUIDLE_STATE_MAX)
1127 break;
1130 dev->state_count = count;
1132 if (!count)
1133 return -EINVAL;
1135 return 0;
1138 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1140 int ret = 0;
1142 if (boot_option_idle_override)
1143 return 0;
1145 if (!pr)
1146 return -EINVAL;
1148 if (nocst) {
1149 return -ENODEV;
1152 if (!pr->flags.power_setup_done)
1153 return -ENODEV;
1155 cpuidle_pause_and_lock();
1156 cpuidle_disable_device(&pr->power.dev);
1157 acpi_processor_get_power_info(pr);
1158 if (pr->flags.power) {
1159 acpi_processor_setup_cpuidle(pr);
1160 ret = cpuidle_enable_device(&pr->power.dev);
1162 cpuidle_resume_and_unlock();
1164 return ret;
1167 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1168 struct acpi_device *device)
1170 acpi_status status = 0;
1171 static int first_run;
1172 #ifdef CONFIG_ACPI_PROCFS
1173 struct proc_dir_entry *entry = NULL;
1174 #endif
1176 if (boot_option_idle_override)
1177 return 0;
1179 if (!first_run) {
1180 if (idle_halt) {
1182 * When the boot option of "idle=halt" is added, halt
1183 * is used for CPU IDLE.
1184 * In such case C2/C3 is meaningless. So the max_cstate
1185 * is set to one.
1187 max_cstate = 1;
1189 dmi_check_system(processor_power_dmi_table);
1190 max_cstate = acpi_processor_cstate_check(max_cstate);
1191 if (max_cstate < ACPI_C_STATES_MAX)
1192 printk(KERN_NOTICE
1193 "ACPI: processor limited to max C-state %d\n",
1194 max_cstate);
1195 first_run++;
1198 if (!pr)
1199 return -EINVAL;
1201 if (acpi_gbl_FADT.cst_control && !nocst) {
1202 status =
1203 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1204 if (ACPI_FAILURE(status)) {
1205 ACPI_EXCEPTION((AE_INFO, status,
1206 "Notifying BIOS of _CST ability failed"));
1210 acpi_processor_get_power_info(pr);
1211 pr->flags.power_setup_done = 1;
1214 * Install the idle handler if processor power management is supported.
1215 * Note that we use previously set idle handler will be used on
1216 * platforms that only support C1.
1218 if (pr->flags.power) {
1219 acpi_processor_setup_cpuidle(pr);
1220 if (cpuidle_register_device(&pr->power.dev))
1221 return -EIO;
1223 #ifdef CONFIG_ACPI_PROCFS
1224 /* 'power' [R] */
1225 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1226 S_IRUGO, acpi_device_dir(device),
1227 &acpi_processor_power_fops,
1228 acpi_driver_data(device));
1229 if (!entry)
1230 return -EIO;
1231 #endif
1232 return 0;
1235 int acpi_processor_power_exit(struct acpi_processor *pr,
1236 struct acpi_device *device)
1238 if (boot_option_idle_override)
1239 return 0;
1241 cpuidle_unregister_device(&pr->power.dev);
1242 pr->flags.power_setup_done = 0;
1244 #ifdef CONFIG_ACPI_PROCFS
1245 if (acpi_device_dir(device))
1246 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1247 acpi_device_dir(device));
1248 #endif
1250 return 0;