Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / edac / amd64_edac.c
blobcf17dbb8014f75bb0f5109c0008dda9f7c2a27cd
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
27 static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
37 static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
49 static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
58 static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
73 *FIXME: Produce a better mapping/linearisation.
76 struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
120 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 u32 min_scrubrate)
123 u32 scrubval;
124 int i;
127 * map the configured rate (new_bw) to a value specific to the AMD64
128 * memory controller and apply to register. Search for the first
129 * bandwidth entry that is greater or equal than the setting requested
130 * and program that. If at last entry, turn off DRAM scrubbing.
132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
134 * skip scrub rates which aren't recommended
135 * (see F10 BKDG, F3x58)
137 if (scrubrates[i].scrubval < min_scrubrate)
138 continue;
140 if (scrubrates[i].bandwidth <= new_bw)
141 break;
144 * if no suitable bandwidth found, turn off DRAM scrubbing
145 * entirely by falling back to the last element in the
146 * scrubrates array.
150 scrubval = scrubrates[i].scrubval;
151 if (scrubval)
152 edac_printk(KERN_DEBUG, EDAC_MC,
153 "Setting scrub rate bandwidth: %u\n",
154 scrubrates[i].bandwidth);
155 else
156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
160 return 0;
163 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 min_scrubrate = 0x0;
168 switch (boot_cpu_data.x86) {
169 case 0xf:
170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 break;
172 case 0x10:
173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 break;
175 case 0x11:
176 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
177 break;
179 default:
180 amd64_printk(KERN_ERR, "Unsupported family!\n");
181 break;
183 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
184 min_scrubrate);
187 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
189 struct amd64_pvt *pvt = mci->pvt_info;
190 u32 scrubval = 0;
191 int status = -1, i;
193 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
195 scrubval = scrubval & 0x001F;
197 edac_printk(KERN_DEBUG, EDAC_MC,
198 "pci-read, sdram scrub control value: %d \n", scrubval);
200 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
201 if (scrubrates[i].scrubval == scrubval) {
202 *bw = scrubrates[i].bandwidth;
203 status = 0;
204 break;
208 return status;
211 /* Map from a CSROW entry to the mask entry that operates on it */
212 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
214 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
215 return csrow;
216 else
217 return csrow >> 1;
220 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
221 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
223 if (dct == 0)
224 return pvt->dcsb0[csrow];
225 else
226 return pvt->dcsb1[csrow];
230 * Return the 'mask' address the i'th CS entry. This function is needed because
231 * there number of DCSM registers on Rev E and prior vs Rev F and later is
232 * different.
234 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
236 if (dct == 0)
237 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
238 else
239 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
244 * In *base and *limit, pass back the full 40-bit base and limit physical
245 * addresses for the node given by node_id. This information is obtained from
246 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
247 * base and limit addresses are of type SysAddr, as defined at the start of
248 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
249 * in the address range they represent.
251 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
252 u64 *base, u64 *limit)
254 *base = pvt->dram_base[node_id];
255 *limit = pvt->dram_limit[node_id];
259 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
260 * with node_id
262 static int amd64_base_limit_match(struct amd64_pvt *pvt,
263 u64 sys_addr, int node_id)
265 u64 base, limit, addr;
267 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
269 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
270 * all ones if the most significant implemented address bit is 1.
271 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
272 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
273 * Application Programming.
275 addr = sys_addr & 0x000000ffffffffffull;
277 return (addr >= base) && (addr <= limit);
281 * Attempt to map a SysAddr to a node. On success, return a pointer to the
282 * mem_ctl_info structure for the node that the SysAddr maps to.
284 * On failure, return NULL.
286 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 u64 sys_addr)
289 struct amd64_pvt *pvt;
290 int node_id;
291 u32 intlv_en, bits;
294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 * 3.4.4.2) registers to map the SysAddr to a node ID.
297 pvt = mci->pvt_info;
300 * The value of this field should be the same for all DRAM Base
301 * registers. Therefore we arbitrarily choose to read it from the
302 * register for node 0.
304 intlv_en = pvt->dram_IntlvEn[0];
306 if (intlv_en == 0) {
307 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
308 if (amd64_base_limit_match(pvt, sys_addr, node_id))
309 goto found;
311 goto err_no_match;
314 if (unlikely((intlv_en != 0x01) &&
315 (intlv_en != 0x03) &&
316 (intlv_en != 0x07))) {
317 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
318 "IntlvEn field of DRAM Base Register for node 0: "
319 "this probably indicates a BIOS bug.\n", intlv_en);
320 return NULL;
323 bits = (((u32) sys_addr) >> 12) & intlv_en;
325 for (node_id = 0; ; ) {
326 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
327 break; /* intlv_sel field matches */
329 if (++node_id >= DRAM_REG_COUNT)
330 goto err_no_match;
333 /* sanity test for sys_addr */
334 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
335 amd64_printk(KERN_WARNING,
336 "%s(): sys_addr 0x%llx falls outside base/limit "
337 "address range for node %d with node interleaving "
338 "enabled.\n",
339 __func__, sys_addr, node_id);
340 return NULL;
343 found:
344 return edac_mc_find(node_id);
346 err_no_match:
347 debugf2("sys_addr 0x%lx doesn't match any node\n",
348 (unsigned long)sys_addr);
350 return NULL;
354 * Extract the DRAM CS base address from selected csrow register.
356 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
358 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
359 pvt->dcs_shift;
363 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
365 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
367 u64 dcsm_bits, other_bits;
368 u64 mask;
370 /* Extract bits from DRAM CS Mask. */
371 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
373 other_bits = pvt->dcsm_mask;
374 other_bits = ~(other_bits << pvt->dcs_shift);
377 * The extracted bits from DCSM belong in the spaces represented by
378 * the cleared bits in other_bits.
380 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
382 return mask;
386 * @input_addr is an InputAddr associated with the node given by mci. Return the
387 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
389 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
391 struct amd64_pvt *pvt;
392 int csrow;
393 u64 base, mask;
395 pvt = mci->pvt_info;
398 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
399 * base/mask register pair, test the condition shown near the start of
400 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
402 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
404 /* This DRAM chip select is disabled on this node */
405 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
406 continue;
408 base = base_from_dct_base(pvt, csrow);
409 mask = ~mask_from_dct_mask(pvt, csrow);
411 if ((input_addr & mask) == (base & mask)) {
412 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
413 (unsigned long)input_addr, csrow,
414 pvt->mc_node_id);
416 return csrow;
420 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
421 (unsigned long)input_addr, pvt->mc_node_id);
423 return -1;
427 * Return the base value defined by the DRAM Base register for the node
428 * represented by mci. This function returns the full 40-bit value despite the
429 * fact that the register only stores bits 39-24 of the value. See section
430 * 3.4.4.1 (BKDG #26094, K8, revA-E)
432 static inline u64 get_dram_base(struct mem_ctl_info *mci)
434 struct amd64_pvt *pvt = mci->pvt_info;
436 return pvt->dram_base[pvt->mc_node_id];
440 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
441 * for the node represented by mci. Info is passed back in *hole_base,
442 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
443 * info is invalid. Info may be invalid for either of the following reasons:
445 * - The revision of the node is not E or greater. In this case, the DRAM Hole
446 * Address Register does not exist.
448 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
449 * indicating that its contents are not valid.
451 * The values passed back in *hole_base, *hole_offset, and *hole_size are
452 * complete 32-bit values despite the fact that the bitfields in the DHAR
453 * only represent bits 31-24 of the base and offset values.
455 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
456 u64 *hole_offset, u64 *hole_size)
458 struct amd64_pvt *pvt = mci->pvt_info;
459 u64 base;
461 /* only revE and later have the DRAM Hole Address Register */
462 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
463 debugf1(" revision %d for node %d does not support DHAR\n",
464 pvt->ext_model, pvt->mc_node_id);
465 return 1;
468 /* only valid for Fam10h */
469 if (boot_cpu_data.x86 == 0x10 &&
470 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
471 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
472 return 1;
475 if ((pvt->dhar & DHAR_VALID) == 0) {
476 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
477 pvt->mc_node_id);
478 return 1;
481 /* This node has Memory Hoisting */
483 /* +------------------+--------------------+--------------------+-----
484 * | memory | DRAM hole | relocated |
485 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
486 * | | | DRAM hole |
487 * | | | [0x100000000, |
488 * | | | (0x100000000+ |
489 * | | | (0xffffffff-x))] |
490 * +------------------+--------------------+--------------------+-----
492 * Above is a diagram of physical memory showing the DRAM hole and the
493 * relocated addresses from the DRAM hole. As shown, the DRAM hole
494 * starts at address x (the base address) and extends through address
495 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
496 * addresses in the hole so that they start at 0x100000000.
499 base = dhar_base(pvt->dhar);
501 *hole_base = base;
502 *hole_size = (0x1ull << 32) - base;
504 if (boot_cpu_data.x86 > 0xf)
505 *hole_offset = f10_dhar_offset(pvt->dhar);
506 else
507 *hole_offset = k8_dhar_offset(pvt->dhar);
509 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
510 pvt->mc_node_id, (unsigned long)*hole_base,
511 (unsigned long)*hole_offset, (unsigned long)*hole_size);
513 return 0;
515 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
518 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
519 * assumed that sys_addr maps to the node given by mci.
521 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
522 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
523 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
524 * then it is also involved in translating a SysAddr to a DramAddr. Sections
525 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
526 * These parts of the documentation are unclear. I interpret them as follows:
528 * When node n receives a SysAddr, it processes the SysAddr as follows:
530 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
531 * Limit registers for node n. If the SysAddr is not within the range
532 * specified by the base and limit values, then node n ignores the Sysaddr
533 * (since it does not map to node n). Otherwise continue to step 2 below.
535 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
536 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
537 * the range of relocated addresses (starting at 0x100000000) from the DRAM
538 * hole. If not, skip to step 3 below. Else get the value of the
539 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
540 * offset defined by this value from the SysAddr.
542 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
543 * Base register for node n. To obtain the DramAddr, subtract the base
544 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
546 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
548 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
549 int ret = 0;
551 dram_base = get_dram_base(mci);
553 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
554 &hole_size);
555 if (!ret) {
556 if ((sys_addr >= (1ull << 32)) &&
557 (sys_addr < ((1ull << 32) + hole_size))) {
558 /* use DHAR to translate SysAddr to DramAddr */
559 dram_addr = sys_addr - hole_offset;
561 debugf2("using DHAR to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n",
563 (unsigned long)sys_addr,
564 (unsigned long)dram_addr);
566 return dram_addr;
571 * Translate the SysAddr to a DramAddr as shown near the start of
572 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
573 * only deals with 40-bit values. Therefore we discard bits 63-40 of
574 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
575 * discard are all 1s. Otherwise the bits we discard are all 0s. See
576 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
577 * Programmer's Manual Volume 1 Application Programming.
579 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
581 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
582 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
583 (unsigned long)dram_addr);
584 return dram_addr;
588 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
589 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
590 * for node interleaving.
592 static int num_node_interleave_bits(unsigned intlv_en)
594 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
595 int n;
597 BUG_ON(intlv_en > 7);
598 n = intlv_shift_table[intlv_en];
599 return n;
602 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
603 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
605 struct amd64_pvt *pvt;
606 int intlv_shift;
607 u64 input_addr;
609 pvt = mci->pvt_info;
612 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
613 * concerning translating a DramAddr to an InputAddr.
615 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
616 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
617 (dram_addr & 0xfff);
619 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
620 intlv_shift, (unsigned long)dram_addr,
621 (unsigned long)input_addr);
623 return input_addr;
627 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
628 * assumed that @sys_addr maps to the node given by mci.
630 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
632 u64 input_addr;
634 input_addr =
635 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
637 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
638 (unsigned long)sys_addr, (unsigned long)input_addr);
640 return input_addr;
645 * @input_addr is an InputAddr associated with the node represented by mci.
646 * Translate @input_addr to a DramAddr and return the result.
648 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
650 struct amd64_pvt *pvt;
651 int node_id, intlv_shift;
652 u64 bits, dram_addr;
653 u32 intlv_sel;
656 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
657 * shows how to translate a DramAddr to an InputAddr. Here we reverse
658 * this procedure. When translating from a DramAddr to an InputAddr, the
659 * bits used for node interleaving are discarded. Here we recover these
660 * bits from the IntlvSel field of the DRAM Limit register (section
661 * 3.4.4.2) for the node that input_addr is associated with.
663 pvt = mci->pvt_info;
664 node_id = pvt->mc_node_id;
665 BUG_ON((node_id < 0) || (node_id > 7));
667 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
669 if (intlv_shift == 0) {
670 debugf1(" InputAddr 0x%lx translates to DramAddr of "
671 "same value\n", (unsigned long)input_addr);
673 return input_addr;
676 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
677 (input_addr & 0xfff);
679 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
680 dram_addr = bits + (intlv_sel << 12);
682 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
683 "(%d node interleave bits)\n", (unsigned long)input_addr,
684 (unsigned long)dram_addr, intlv_shift);
686 return dram_addr;
690 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
691 * @dram_addr to a SysAddr.
693 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
695 struct amd64_pvt *pvt = mci->pvt_info;
696 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
697 int ret = 0;
699 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
700 &hole_size);
701 if (!ret) {
702 if ((dram_addr >= hole_base) &&
703 (dram_addr < (hole_base + hole_size))) {
704 sys_addr = dram_addr + hole_offset;
706 debugf1("using DHAR to translate DramAddr 0x%lx to "
707 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
710 return sys_addr;
714 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
715 sys_addr = dram_addr + base;
718 * The sys_addr we have computed up to this point is a 40-bit value
719 * because the k8 deals with 40-bit values. However, the value we are
720 * supposed to return is a full 64-bit physical address. The AMD
721 * x86-64 architecture specifies that the most significant implemented
722 * address bit through bit 63 of a physical address must be either all
723 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
724 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
725 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
726 * Programming.
728 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
730 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
731 pvt->mc_node_id, (unsigned long)dram_addr,
732 (unsigned long)sys_addr);
734 return sys_addr;
738 * @input_addr is an InputAddr associated with the node given by mci. Translate
739 * @input_addr to a SysAddr.
741 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
742 u64 input_addr)
744 return dram_addr_to_sys_addr(mci,
745 input_addr_to_dram_addr(mci, input_addr));
749 * Find the minimum and maximum InputAddr values that map to the given @csrow.
750 * Pass back these values in *input_addr_min and *input_addr_max.
752 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
753 u64 *input_addr_min, u64 *input_addr_max)
755 struct amd64_pvt *pvt;
756 u64 base, mask;
758 pvt = mci->pvt_info;
759 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
761 base = base_from_dct_base(pvt, csrow);
762 mask = mask_from_dct_mask(pvt, csrow);
764 *input_addr_min = base & ~mask;
765 *input_addr_max = base | mask | pvt->dcs_mask_notused;
768 /* Map the Error address to a PAGE and PAGE OFFSET. */
769 static inline void error_address_to_page_and_offset(u64 error_address,
770 u32 *page, u32 *offset)
772 *page = (u32) (error_address >> PAGE_SHIFT);
773 *offset = ((u32) error_address) & ~PAGE_MASK;
777 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
778 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
779 * of a node that detected an ECC memory error. mci represents the node that
780 * the error address maps to (possibly different from the node that detected
781 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
782 * error.
784 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
786 int csrow;
788 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
790 if (csrow == -1)
791 amd64_mc_printk(mci, KERN_ERR,
792 "Failed to translate InputAddr to csrow for "
793 "address 0x%lx\n", (unsigned long)sys_addr);
794 return csrow;
797 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
799 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
801 if (boot_cpu_data.x86 == 0x11)
802 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
803 else if (boot_cpu_data.x86 == 0x10)
804 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
805 else if (boot_cpu_data.x86 == 0xf)
806 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
807 (pvt->ext_model >= K8_REV_F) ?
808 "Rev F or later" : "Rev E or earlier");
809 else
810 /* we'll hardly ever ever get here */
811 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
815 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
816 * are ECC capable.
818 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
820 int bit;
821 enum dev_type edac_cap = EDAC_FLAG_NONE;
823 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
824 ? 19
825 : 17;
827 if (pvt->dclr0 & BIT(bit))
828 edac_cap = EDAC_FLAG_SECDED;
830 return edac_cap;
834 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
836 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
838 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
840 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
841 (dclr & BIT(16)) ? "un" : "",
842 (dclr & BIT(19)) ? "yes" : "no");
844 debugf1(" PAR/ERR parity: %s\n",
845 (dclr & BIT(8)) ? "enabled" : "disabled");
847 debugf1(" DCT 128bit mode width: %s\n",
848 (dclr & BIT(11)) ? "128b" : "64b");
850 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
851 (dclr & BIT(12)) ? "yes" : "no",
852 (dclr & BIT(13)) ? "yes" : "no",
853 (dclr & BIT(14)) ? "yes" : "no",
854 (dclr & BIT(15)) ? "yes" : "no");
857 /* Display and decode various NB registers for debug purposes. */
858 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
860 int ganged;
862 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
864 debugf1(" NB two channel DRAM capable: %s\n",
865 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
867 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
868 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
869 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
871 amd64_dump_dramcfg_low(pvt->dclr0, 0);
873 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
875 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
876 "offset: 0x%08x\n",
877 pvt->dhar,
878 dhar_base(pvt->dhar),
879 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
880 : f10_dhar_offset(pvt->dhar));
882 debugf1(" DramHoleValid: %s\n",
883 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
885 /* everything below this point is Fam10h and above */
886 if (boot_cpu_data.x86 == 0xf) {
887 amd64_debug_display_dimm_sizes(0, pvt);
888 return;
891 /* Only if NOT ganged does dclr1 have valid info */
892 if (!dct_ganging_enabled(pvt))
893 amd64_dump_dramcfg_low(pvt->dclr1, 1);
896 * Determine if ganged and then dump memory sizes for first controller,
897 * and if NOT ganged dump info for 2nd controller.
899 ganged = dct_ganging_enabled(pvt);
901 amd64_debug_display_dimm_sizes(0, pvt);
903 if (!ganged)
904 amd64_debug_display_dimm_sizes(1, pvt);
907 /* Read in both of DBAM registers */
908 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
910 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
912 if (boot_cpu_data.x86 >= 0x10)
913 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
917 * NOTE: CPU Revision Dependent code: Rev E and Rev F
919 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
920 * set the shift factor for the DCSB and DCSM values.
922 * ->dcs_mask_notused, RevE:
924 * To find the max InputAddr for the csrow, start with the base address and set
925 * all bits that are "don't care" bits in the test at the start of section
926 * 3.5.4 (p. 84).
928 * The "don't care" bits are all set bits in the mask and all bits in the gaps
929 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
930 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
931 * gaps.
933 * ->dcs_mask_notused, RevF and later:
935 * To find the max InputAddr for the csrow, start with the base address and set
936 * all bits that are "don't care" bits in the test at the start of NPT section
937 * 4.5.4 (p. 87).
939 * The "don't care" bits are all set bits in the mask and all bits in the gaps
940 * between bit ranges [36:27] and [21:13].
942 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
943 * which are all bits in the above-mentioned gaps.
945 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
948 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
949 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
950 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
951 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
952 pvt->dcs_shift = REV_E_DCS_SHIFT;
953 pvt->cs_count = 8;
954 pvt->num_dcsm = 8;
955 } else {
956 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
957 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
958 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
959 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
961 if (boot_cpu_data.x86 == 0x11) {
962 pvt->cs_count = 4;
963 pvt->num_dcsm = 2;
964 } else {
965 pvt->cs_count = 8;
966 pvt->num_dcsm = 4;
972 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
974 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
976 int cs, reg;
978 amd64_set_dct_base_and_mask(pvt);
980 for (cs = 0; cs < pvt->cs_count; cs++) {
981 reg = K8_DCSB0 + (cs * 4);
982 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
983 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
984 cs, pvt->dcsb0[cs], reg);
986 /* If DCT are NOT ganged, then read in DCT1's base */
987 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
988 reg = F10_DCSB1 + (cs * 4);
989 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
990 &pvt->dcsb1[cs]))
991 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
992 cs, pvt->dcsb1[cs], reg);
993 } else {
994 pvt->dcsb1[cs] = 0;
998 for (cs = 0; cs < pvt->num_dcsm; cs++) {
999 reg = K8_DCSM0 + (cs * 4);
1000 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
1001 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1002 cs, pvt->dcsm0[cs], reg);
1004 /* If DCT are NOT ganged, then read in DCT1's mask */
1005 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1006 reg = F10_DCSM1 + (cs * 4);
1007 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1008 &pvt->dcsm1[cs]))
1009 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1010 cs, pvt->dcsm1[cs], reg);
1011 } else {
1012 pvt->dcsm1[cs] = 0;
1017 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1019 enum mem_type type;
1021 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1022 if (pvt->dchr0 & DDR3_MODE)
1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1024 else
1025 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1026 } else {
1027 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1030 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
1032 return type;
1036 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1037 * and the later RevF memory controllers (DDR vs DDR2)
1039 * Return:
1040 * number of memory channels in operation
1041 * Pass back:
1042 * contents of the DCL0_LOW register
1044 static int k8_early_channel_count(struct amd64_pvt *pvt)
1046 int flag, err = 0;
1048 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1049 if (err)
1050 return err;
1052 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1053 /* RevF (NPT) and later */
1054 flag = pvt->dclr0 & F10_WIDTH_128;
1055 } else {
1056 /* RevE and earlier */
1057 flag = pvt->dclr0 & REVE_WIDTH_128;
1060 /* not used */
1061 pvt->dclr1 = 0;
1063 return (flag) ? 2 : 1;
1066 /* extract the ERROR ADDRESS for the K8 CPUs */
1067 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1068 struct err_regs *info)
1070 return (((u64) (info->nbeah & 0xff)) << 32) +
1071 (info->nbeal & ~0x03);
1075 * Read the Base and Limit registers for K8 based Memory controllers; extract
1076 * fields from the 'raw' reg into separate data fields
1078 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1080 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1082 u32 low;
1083 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1085 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1087 /* Extract parts into separate data entries */
1088 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1089 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1090 pvt->dram_rw_en[dram] = (low & 0x3);
1092 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1095 * Extract parts into separate data entries. Limit is the HIGHEST memory
1096 * location of the region, so lower 24 bits need to be all ones
1098 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1099 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1100 pvt->dram_DstNode[dram] = (low & 0x7);
1103 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1104 struct err_regs *info,
1105 u64 sys_addr)
1107 struct mem_ctl_info *src_mci;
1108 unsigned short syndrome;
1109 int channel, csrow;
1110 u32 page, offset;
1112 /* Extract the syndrome parts and form a 16-bit syndrome */
1113 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1114 syndrome |= LOW_SYNDROME(info->nbsh);
1116 /* CHIPKILL enabled */
1117 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1118 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1119 if (channel < 0) {
1121 * Syndrome didn't map, so we don't know which of the
1122 * 2 DIMMs is in error. So we need to ID 'both' of them
1123 * as suspect.
1125 amd64_mc_printk(mci, KERN_WARNING,
1126 "unknown syndrome 0x%x - possible error "
1127 "reporting race\n", syndrome);
1128 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1129 return;
1131 } else {
1133 * non-chipkill ecc mode
1135 * The k8 documentation is unclear about how to determine the
1136 * channel number when using non-chipkill memory. This method
1137 * was obtained from email communication with someone at AMD.
1138 * (Wish the email was placed in this comment - norsk)
1140 channel = ((sys_addr & BIT(3)) != 0);
1144 * Find out which node the error address belongs to. This may be
1145 * different from the node that detected the error.
1147 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1148 if (!src_mci) {
1149 amd64_mc_printk(mci, KERN_ERR,
1150 "failed to map error address 0x%lx to a node\n",
1151 (unsigned long)sys_addr);
1152 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1153 return;
1156 /* Now map the sys_addr to a CSROW */
1157 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1158 if (csrow < 0) {
1159 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1160 } else {
1161 error_address_to_page_and_offset(sys_addr, &page, &offset);
1163 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1164 channel, EDAC_MOD_STR);
1168 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1170 int *dbam_map;
1172 if (pvt->ext_model >= K8_REV_F)
1173 dbam_map = ddr2_dbam;
1174 else if (pvt->ext_model >= K8_REV_D)
1175 dbam_map = ddr2_dbam_revD;
1176 else
1177 dbam_map = ddr2_dbam_revCG;
1179 return dbam_map[cs_mode];
1183 * Get the number of DCT channels in use.
1185 * Return:
1186 * number of Memory Channels in operation
1187 * Pass back:
1188 * contents of the DCL0_LOW register
1190 static int f10_early_channel_count(struct amd64_pvt *pvt)
1192 int dbams[] = { DBAM0, DBAM1 };
1193 int i, j, channels = 0;
1194 u32 dbam;
1196 /* If we are in 128 bit mode, then we are using 2 channels */
1197 if (pvt->dclr0 & F10_WIDTH_128) {
1198 channels = 2;
1199 return channels;
1203 * Need to check if in unganged mode: In such, there are 2 channels,
1204 * but they are not in 128 bit mode and thus the above 'dclr0' status
1205 * bit will be OFF.
1207 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1208 * their CSEnable bit on. If so, then SINGLE DIMM case.
1210 debugf0("Data width is not 128 bits - need more decoding\n");
1213 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1214 * is more than just one DIMM present in unganged mode. Need to check
1215 * both controllers since DIMMs can be placed in either one.
1217 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1218 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1219 goto err_reg;
1221 for (j = 0; j < 4; j++) {
1222 if (DBAM_DIMM(j, dbam) > 0) {
1223 channels++;
1224 break;
1229 if (channels > 2)
1230 channels = 2;
1232 debugf0("MCT channel count: %d\n", channels);
1234 return channels;
1236 err_reg:
1237 return -1;
1241 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1243 int *dbam_map;
1245 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1246 dbam_map = ddr3_dbam;
1247 else
1248 dbam_map = ddr2_dbam;
1250 return dbam_map[cs_mode];
1253 /* Enable extended configuration access via 0xCF8 feature */
1254 static void amd64_setup(struct amd64_pvt *pvt)
1256 u32 reg;
1258 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1260 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1261 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1262 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1265 /* Restore the extended configuration access via 0xCF8 feature */
1266 static void amd64_teardown(struct amd64_pvt *pvt)
1268 u32 reg;
1270 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1272 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 if (pvt->flags.cf8_extcfg)
1274 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1275 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1278 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1279 struct err_regs *info)
1281 return (((u64) (info->nbeah & 0xffff)) << 32) +
1282 (info->nbeal & ~0x01);
1286 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1287 * fields from the 'raw' reg into separate data fields.
1289 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1291 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1293 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1295 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1296 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1298 /* read the 'raw' DRAM BASE Address register */
1299 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1301 /* Read from the ECS data register */
1302 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1304 /* Extract parts into separate data entries */
1305 pvt->dram_rw_en[dram] = (low_base & 0x3);
1307 if (pvt->dram_rw_en[dram] == 0)
1308 return;
1310 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1312 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1313 (((u64)low_base & 0xFFFF0000) << 8);
1315 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1316 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1318 /* read the 'raw' LIMIT registers */
1319 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1321 /* Read from the ECS data register for the HIGH portion */
1322 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1324 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1325 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1328 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1329 * memory location of the region, so low 24 bits need to be all ones.
1331 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1332 (((u64) low_limit & 0xFFFF0000) << 8) |
1333 0x00FFFFFF;
1336 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1339 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1340 &pvt->dram_ctl_select_low)) {
1341 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1342 "High range addresses at: 0x%x\n",
1343 pvt->dram_ctl_select_low,
1344 dct_sel_baseaddr(pvt));
1346 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1347 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1348 (dct_dram_enabled(pvt) ? "yes" : "no"));
1350 if (!dct_ganging_enabled(pvt))
1351 debugf0(" Address range split per DCT: %s\n",
1352 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1354 debugf0(" DCT data interleave for ECC: %s, "
1355 "DRAM cleared since last warm reset: %s\n",
1356 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1357 (dct_memory_cleared(pvt) ? "yes" : "no"));
1359 debugf0(" DCT channel interleave: %s, "
1360 "DCT interleave bits selector: 0x%x\n",
1361 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1362 dct_sel_interleave_addr(pvt));
1365 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1366 &pvt->dram_ctl_select_high);
1370 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1371 * Interleaving Modes.
1373 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1374 int hi_range_sel, u32 intlv_en)
1376 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1378 if (dct_ganging_enabled(pvt))
1379 cs = 0;
1380 else if (hi_range_sel)
1381 cs = dct_sel_high;
1382 else if (dct_interleave_enabled(pvt)) {
1384 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1386 if (dct_sel_interleave_addr(pvt) == 0)
1387 cs = sys_addr >> 6 & 1;
1388 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1389 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1391 if (dct_sel_interleave_addr(pvt) & 1)
1392 cs = (sys_addr >> 9 & 1) ^ temp;
1393 else
1394 cs = (sys_addr >> 6 & 1) ^ temp;
1395 } else if (intlv_en & 4)
1396 cs = sys_addr >> 15 & 1;
1397 else if (intlv_en & 2)
1398 cs = sys_addr >> 14 & 1;
1399 else if (intlv_en & 1)
1400 cs = sys_addr >> 13 & 1;
1401 else
1402 cs = sys_addr >> 12 & 1;
1403 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1404 cs = ~dct_sel_high & 1;
1405 else
1406 cs = 0;
1408 return cs;
1411 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1413 if (intlv_en == 1)
1414 return 1;
1415 else if (intlv_en == 3)
1416 return 2;
1417 else if (intlv_en == 7)
1418 return 3;
1420 return 0;
1423 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1424 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1425 u32 dct_sel_base_addr,
1426 u64 dct_sel_base_off,
1427 u32 hole_valid, u32 hole_off,
1428 u64 dram_base)
1430 u64 chan_off;
1432 if (hi_range_sel) {
1433 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1434 hole_valid && (sys_addr >= 0x100000000ULL))
1435 chan_off = hole_off << 16;
1436 else
1437 chan_off = dct_sel_base_off;
1438 } else {
1439 if (hole_valid && (sys_addr >= 0x100000000ULL))
1440 chan_off = hole_off << 16;
1441 else
1442 chan_off = dram_base & 0xFFFFF8000000ULL;
1445 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1446 (chan_off & 0x0000FFFFFF800000ULL);
1449 /* Hack for the time being - Can we get this from BIOS?? */
1450 #define CH0SPARE_RANK 0
1451 #define CH1SPARE_RANK 1
1454 * checks if the csrow passed in is marked as SPARED, if so returns the new
1455 * spare row
1457 static inline int f10_process_possible_spare(int csrow,
1458 u32 cs, struct amd64_pvt *pvt)
1460 u32 swap_done;
1461 u32 bad_dram_cs;
1463 /* Depending on channel, isolate respective SPARING info */
1464 if (cs) {
1465 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1466 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1467 if (swap_done && (csrow == bad_dram_cs))
1468 csrow = CH1SPARE_RANK;
1469 } else {
1470 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1471 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1472 if (swap_done && (csrow == bad_dram_cs))
1473 csrow = CH0SPARE_RANK;
1475 return csrow;
1479 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1480 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1482 * Return:
1483 * -EINVAL: NOT FOUND
1484 * 0..csrow = Chip-Select Row
1486 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1488 struct mem_ctl_info *mci;
1489 struct amd64_pvt *pvt;
1490 u32 cs_base, cs_mask;
1491 int cs_found = -EINVAL;
1492 int csrow;
1494 mci = mci_lookup[nid];
1495 if (!mci)
1496 return cs_found;
1498 pvt = mci->pvt_info;
1500 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1502 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1504 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1505 if (!(cs_base & K8_DCSB_CS_ENABLE))
1506 continue;
1509 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1510 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1511 * of the actual address.
1513 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1516 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1517 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1519 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1521 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1522 csrow, cs_base, cs_mask);
1524 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1526 debugf1(" Final CSMask=0x%x\n", cs_mask);
1527 debugf1(" (InputAddr & ~CSMask)=0x%x "
1528 "(CSBase & ~CSMask)=0x%x\n",
1529 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1531 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1532 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1534 debugf1(" MATCH csrow=%d\n", cs_found);
1535 break;
1538 return cs_found;
1541 /* For a given @dram_range, check if @sys_addr falls within it. */
1542 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1543 u64 sys_addr, int *nid, int *chan_sel)
1545 int node_id, cs_found = -EINVAL, high_range = 0;
1546 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1547 u32 hole_valid, tmp, dct_sel_base, channel;
1548 u64 dram_base, chan_addr, dct_sel_base_off;
1550 dram_base = pvt->dram_base[dram_range];
1551 intlv_en = pvt->dram_IntlvEn[dram_range];
1553 node_id = pvt->dram_DstNode[dram_range];
1554 intlv_sel = pvt->dram_IntlvSel[dram_range];
1556 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1557 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1560 * This assumes that one node's DHAR is the same as all the other
1561 * nodes' DHAR.
1563 hole_off = (pvt->dhar & 0x0000FF80);
1564 hole_valid = (pvt->dhar & 0x1);
1565 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1567 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1568 hole_off, hole_valid, intlv_sel);
1570 if (intlv_en ||
1571 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1572 return -EINVAL;
1574 dct_sel_base = dct_sel_baseaddr(pvt);
1577 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1578 * select between DCT0 and DCT1.
1580 if (dct_high_range_enabled(pvt) &&
1581 !dct_ganging_enabled(pvt) &&
1582 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1583 high_range = 1;
1585 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1587 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1588 dct_sel_base_off, hole_valid,
1589 hole_off, dram_base);
1591 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1593 /* remove Node ID (in case of memory interleaving) */
1594 tmp = chan_addr & 0xFC0;
1596 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1598 /* remove channel interleave and hash */
1599 if (dct_interleave_enabled(pvt) &&
1600 !dct_high_range_enabled(pvt) &&
1601 !dct_ganging_enabled(pvt)) {
1602 if (dct_sel_interleave_addr(pvt) != 1)
1603 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1604 else {
1605 tmp = chan_addr & 0xFC0;
1606 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1607 | tmp;
1611 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1612 chan_addr, (u32)(chan_addr >> 8));
1614 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1616 if (cs_found >= 0) {
1617 *nid = node_id;
1618 *chan_sel = channel;
1620 return cs_found;
1623 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1624 int *node, int *chan_sel)
1626 int dram_range, cs_found = -EINVAL;
1627 u64 dram_base, dram_limit;
1629 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1631 if (!pvt->dram_rw_en[dram_range])
1632 continue;
1634 dram_base = pvt->dram_base[dram_range];
1635 dram_limit = pvt->dram_limit[dram_range];
1637 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1639 cs_found = f10_match_to_this_node(pvt, dram_range,
1640 sys_addr, node,
1641 chan_sel);
1642 if (cs_found >= 0)
1643 break;
1646 return cs_found;
1650 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1651 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1653 * The @sys_addr is usually an error address received from the hardware
1654 * (MCX_ADDR).
1656 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1657 struct err_regs *info,
1658 u64 sys_addr)
1660 struct amd64_pvt *pvt = mci->pvt_info;
1661 u32 page, offset;
1662 unsigned short syndrome;
1663 int nid, csrow, chan = 0;
1665 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1667 if (csrow < 0) {
1668 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1669 return;
1672 error_address_to_page_and_offset(sys_addr, &page, &offset);
1674 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1675 syndrome |= LOW_SYNDROME(info->nbsh);
1678 * We need the syndromes for channel detection only when we're
1679 * ganged. Otherwise @chan should already contain the channel at
1680 * this point.
1682 if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
1683 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1685 if (chan >= 0)
1686 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1687 EDAC_MOD_STR);
1688 else
1690 * Channel unknown, report all channels on this CSROW as failed.
1692 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1693 edac_mc_handle_ce(mci, page, offset, syndrome,
1694 csrow, chan, EDAC_MOD_STR);
1698 * debug routine to display the memory sizes of all logical DIMMs and its
1699 * CSROWs as well
1701 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1703 int dimm, size0, size1, factor = 0;
1704 u32 dbam;
1705 u32 *dcsb;
1707 if (boot_cpu_data.x86 == 0xf) {
1708 if (pvt->dclr0 & F10_WIDTH_128)
1709 factor = 1;
1711 /* K8 families < revF not supported yet */
1712 if (pvt->ext_model < K8_REV_F)
1713 return;
1714 else
1715 WARN_ON(ctrl != 0);
1718 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1719 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1721 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1722 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1724 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1726 /* Dump memory sizes for DIMM and its CSROWs */
1727 for (dimm = 0; dimm < 4; dimm++) {
1729 size0 = 0;
1730 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1731 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1733 size1 = 0;
1734 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1735 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1737 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1738 dimm * 2, size0 << factor,
1739 dimm * 2 + 1, size1 << factor);
1744 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1745 * (as per PCI DEVICE_IDs):
1747 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1748 * DEVICE ID, even though there is differences between the different Revisions
1749 * (CG,D,E,F).
1751 * Family F10h and F11h.
1754 static struct amd64_family_type amd64_family_types[] = {
1755 [K8_CPUS] = {
1756 .ctl_name = "RevF",
1757 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1758 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1759 .ops = {
1760 .early_channel_count = k8_early_channel_count,
1761 .get_error_address = k8_get_error_address,
1762 .read_dram_base_limit = k8_read_dram_base_limit,
1763 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1764 .dbam_to_cs = k8_dbam_to_chip_select,
1767 [F10_CPUS] = {
1768 .ctl_name = "Family 10h",
1769 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1770 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1771 .ops = {
1772 .early_channel_count = f10_early_channel_count,
1773 .get_error_address = f10_get_error_address,
1774 .read_dram_base_limit = f10_read_dram_base_limit,
1775 .read_dram_ctl_register = f10_read_dram_ctl_register,
1776 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1777 .dbam_to_cs = f10_dbam_to_chip_select,
1780 [F11_CPUS] = {
1781 .ctl_name = "Family 11h",
1782 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1783 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1784 .ops = {
1785 .early_channel_count = f10_early_channel_count,
1786 .get_error_address = f10_get_error_address,
1787 .read_dram_base_limit = f10_read_dram_base_limit,
1788 .read_dram_ctl_register = f10_read_dram_ctl_register,
1789 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1790 .dbam_to_cs = f10_dbam_to_chip_select,
1795 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1796 unsigned int device,
1797 struct pci_dev *related)
1799 struct pci_dev *dev = NULL;
1801 dev = pci_get_device(vendor, device, dev);
1802 while (dev) {
1803 if ((dev->bus->number == related->bus->number) &&
1804 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1805 break;
1806 dev = pci_get_device(vendor, device, dev);
1809 return dev;
1813 * These are tables of eigenvectors (one per line) which can be used for the
1814 * construction of the syndrome tables. The modified syndrome search algorithm
1815 * uses those to find the symbol in error and thus the DIMM.
1817 * Algorithm courtesy of Ross LaFetra from AMD.
1819 static u16 x4_vectors[] = {
1820 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1821 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1822 0x0001, 0x0002, 0x0004, 0x0008,
1823 0x1013, 0x3032, 0x4044, 0x8088,
1824 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1825 0x4857, 0xc4fe, 0x13cc, 0x3288,
1826 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1827 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1828 0x15c1, 0x2a42, 0x89ac, 0x4758,
1829 0x2b03, 0x1602, 0x4f0c, 0xca08,
1830 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1831 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1832 0x2b87, 0x164e, 0x642c, 0xdc18,
1833 0x40b9, 0x80de, 0x1094, 0x20e8,
1834 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1835 0x11c1, 0x2242, 0x84ac, 0x4c58,
1836 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1837 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1838 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1839 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1840 0x16b3, 0x3d62, 0x4f34, 0x8518,
1841 0x1e2f, 0x391a, 0x5cac, 0xf858,
1842 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1843 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1844 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1845 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1846 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1847 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1848 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1849 0x185d, 0x2ca6, 0x7914, 0x9e28,
1850 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1851 0x4199, 0x82ee, 0x19f4, 0x2e58,
1852 0x4807, 0xc40e, 0x130c, 0x3208,
1853 0x1905, 0x2e0a, 0x5804, 0xac08,
1854 0x213f, 0x132a, 0xadfc, 0x5ba8,
1855 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1858 static u16 x8_vectors[] = {
1859 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1860 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1861 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1862 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1863 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1864 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1865 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1866 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1867 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1868 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1869 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1870 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1871 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1872 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1873 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1874 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1875 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1876 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1877 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1880 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1881 int v_dim)
1883 unsigned int i, err_sym;
1885 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1886 u16 s = syndrome;
1887 int v_idx = err_sym * v_dim;
1888 int v_end = (err_sym + 1) * v_dim;
1890 /* walk over all 16 bits of the syndrome */
1891 for (i = 1; i < (1U << 16); i <<= 1) {
1893 /* if bit is set in that eigenvector... */
1894 if (v_idx < v_end && vectors[v_idx] & i) {
1895 u16 ev_comp = vectors[v_idx++];
1897 /* ... and bit set in the modified syndrome, */
1898 if (s & i) {
1899 /* remove it. */
1900 s ^= ev_comp;
1902 if (!s)
1903 return err_sym;
1906 } else if (s & i)
1907 /* can't get to zero, move to next symbol */
1908 break;
1912 debugf0("syndrome(%x) not found\n", syndrome);
1913 return -1;
1916 static int map_err_sym_to_channel(int err_sym, int sym_size)
1918 if (sym_size == 4)
1919 switch (err_sym) {
1920 case 0x20:
1921 case 0x21:
1922 return 0;
1923 break;
1924 case 0x22:
1925 case 0x23:
1926 return 1;
1927 break;
1928 default:
1929 return err_sym >> 4;
1930 break;
1932 /* x8 symbols */
1933 else
1934 switch (err_sym) {
1935 /* imaginary bits not in a DIMM */
1936 case 0x10:
1937 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1938 err_sym);
1939 return -1;
1940 break;
1942 case 0x11:
1943 return 0;
1944 break;
1945 case 0x12:
1946 return 1;
1947 break;
1948 default:
1949 return err_sym >> 3;
1950 break;
1952 return -1;
1955 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1957 struct amd64_pvt *pvt = mci->pvt_info;
1958 u32 value = 0;
1959 int err_sym = 0;
1961 amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
1963 /* F3x180[EccSymbolSize]=1, x8 symbols */
1964 if (boot_cpu_data.x86 == 0x10 &&
1965 boot_cpu_data.x86_model > 7 &&
1966 value & BIT(25)) {
1967 err_sym = decode_syndrome(syndrome, x8_vectors,
1968 ARRAY_SIZE(x8_vectors), 8);
1969 return map_err_sym_to_channel(err_sym, 8);
1970 } else {
1971 err_sym = decode_syndrome(syndrome, x4_vectors,
1972 ARRAY_SIZE(x4_vectors), 4);
1973 return map_err_sym_to_channel(err_sym, 4);
1978 * Check for valid error in the NB Status High register. If so, proceed to read
1979 * NB Status Low, NB Address Low and NB Address High registers and store data
1980 * into error structure.
1982 * Returns:
1983 * - 1: if hardware regs contains valid error info
1984 * - 0: if no valid error is indicated
1986 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
1987 struct err_regs *regs)
1989 struct amd64_pvt *pvt;
1990 struct pci_dev *misc_f3_ctl;
1992 pvt = mci->pvt_info;
1993 misc_f3_ctl = pvt->misc_f3_ctl;
1995 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1996 return 0;
1998 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1999 return 0;
2001 /* valid error, read remaining error information registers */
2002 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
2003 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2004 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2005 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2006 return 0;
2008 return 1;
2012 * This function is called to retrieve the error data from hardware and store it
2013 * in the info structure.
2015 * Returns:
2016 * - 1: if a valid error is found
2017 * - 0: if no error is found
2019 static int amd64_get_error_info(struct mem_ctl_info *mci,
2020 struct err_regs *info)
2022 struct amd64_pvt *pvt;
2023 struct err_regs regs;
2025 pvt = mci->pvt_info;
2027 if (!amd64_get_error_info_regs(mci, info))
2028 return 0;
2031 * Here's the problem with the K8's EDAC reporting: There are four
2032 * registers which report pieces of error information. They are shared
2033 * between CEs and UEs. Furthermore, contrary to what is stated in the
2034 * BKDG, the overflow bit is never used! Every error always updates the
2035 * reporting registers.
2037 * Can you see the race condition? All four error reporting registers
2038 * must be read before a new error updates them! There is no way to read
2039 * all four registers atomically. The best than can be done is to detect
2040 * that a race has occured and then report the error without any kind of
2041 * precision.
2043 * What is still positive is that errors are still reported and thus
2044 * problems can still be detected - just not localized because the
2045 * syndrome and address are spread out across registers.
2047 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2048 * UEs and CEs should have separate register sets with proper overflow
2049 * bits that are used! At very least the problem can be fixed by
2050 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2051 * set the overflow bit - unless the current error is CE and the new
2052 * error is UE which would be the only situation for overwriting the
2053 * current values.
2056 regs = *info;
2058 /* Use info from the second read - most current */
2059 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2060 return 0;
2062 /* clear the error bits in hardware */
2063 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2065 /* Check for the possible race condition */
2066 if ((regs.nbsh != info->nbsh) ||
2067 (regs.nbsl != info->nbsl) ||
2068 (regs.nbeah != info->nbeah) ||
2069 (regs.nbeal != info->nbeal)) {
2070 amd64_mc_printk(mci, KERN_WARNING,
2071 "hardware STATUS read access race condition "
2072 "detected!\n");
2073 return 0;
2075 return 1;
2079 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2080 * ADDRESS and process.
2082 static void amd64_handle_ce(struct mem_ctl_info *mci,
2083 struct err_regs *info)
2085 struct amd64_pvt *pvt = mci->pvt_info;
2086 u64 sys_addr;
2088 /* Ensure that the Error Address is VALID */
2089 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2090 amd64_mc_printk(mci, KERN_ERR,
2091 "HW has no ERROR_ADDRESS available\n");
2092 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2093 return;
2096 sys_addr = pvt->ops->get_error_address(mci, info);
2098 amd64_mc_printk(mci, KERN_ERR,
2099 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2101 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2104 /* Handle any Un-correctable Errors (UEs) */
2105 static void amd64_handle_ue(struct mem_ctl_info *mci,
2106 struct err_regs *info)
2108 struct amd64_pvt *pvt = mci->pvt_info;
2109 struct mem_ctl_info *log_mci, *src_mci = NULL;
2110 int csrow;
2111 u64 sys_addr;
2112 u32 page, offset;
2114 log_mci = mci;
2116 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2117 amd64_mc_printk(mci, KERN_CRIT,
2118 "HW has no ERROR_ADDRESS available\n");
2119 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2120 return;
2123 sys_addr = pvt->ops->get_error_address(mci, info);
2126 * Find out which node the error address belongs to. This may be
2127 * different from the node that detected the error.
2129 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2130 if (!src_mci) {
2131 amd64_mc_printk(mci, KERN_CRIT,
2132 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2133 (unsigned long)sys_addr);
2134 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2135 return;
2138 log_mci = src_mci;
2140 csrow = sys_addr_to_csrow(log_mci, sys_addr);
2141 if (csrow < 0) {
2142 amd64_mc_printk(mci, KERN_CRIT,
2143 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2144 (unsigned long)sys_addr);
2145 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2146 } else {
2147 error_address_to_page_and_offset(sys_addr, &page, &offset);
2148 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2152 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2153 struct err_regs *info)
2155 u32 ec = ERROR_CODE(info->nbsl);
2156 u32 xec = EXT_ERROR_CODE(info->nbsl);
2157 int ecc_type = (info->nbsh >> 13) & 0x3;
2159 /* Bail early out if this was an 'observed' error */
2160 if (PP(ec) == K8_NBSL_PP_OBS)
2161 return;
2163 /* Do only ECC errors */
2164 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2165 return;
2167 if (ecc_type == 2)
2168 amd64_handle_ce(mci, info);
2169 else if (ecc_type == 1)
2170 amd64_handle_ue(mci, info);
2173 * If main error is CE then overflow must be CE. If main error is UE
2174 * then overflow is unknown. We'll call the overflow a CE - if
2175 * panic_on_ue is set then we're already panic'ed and won't arrive
2176 * here. Else, then apparently someone doesn't think that UE's are
2177 * catastrophic.
2179 if (info->nbsh & K8_NBSH_OVERFLOW)
2180 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2183 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2185 struct mem_ctl_info *mci = mci_lookup[node_id];
2187 __amd64_decode_bus_error(mci, regs);
2190 * Check the UE bit of the NB status high register, if set generate some
2191 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2192 * If it was a GART error, skip that process.
2194 * FIXME: this should go somewhere else, if at all.
2196 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2197 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2202 * The main polling 'check' function, called FROM the edac core to perform the
2203 * error checking and if an error is encountered, error processing.
2205 static void amd64_check(struct mem_ctl_info *mci)
2207 struct err_regs regs;
2209 if (amd64_get_error_info(mci, &regs)) {
2210 struct amd64_pvt *pvt = mci->pvt_info;
2211 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2216 * Input:
2217 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2218 * 2) AMD Family index value
2220 * Ouput:
2221 * Upon return of 0, the following filled in:
2223 * struct pvt->addr_f1_ctl
2224 * struct pvt->misc_f3_ctl
2226 * Filled in with related device funcitions of 'dram_f2_ctl'
2227 * These devices are "reserved" via the pci_get_device()
2229 * Upon return of 1 (error status):
2231 * Nothing reserved
2233 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2235 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2237 /* Reserve the ADDRESS MAP Device */
2238 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2239 amd64_dev->addr_f1_ctl,
2240 pvt->dram_f2_ctl);
2242 if (!pvt->addr_f1_ctl) {
2243 amd64_printk(KERN_ERR, "error address map device not found: "
2244 "vendor %x device 0x%x (broken BIOS?)\n",
2245 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2246 return 1;
2249 /* Reserve the MISC Device */
2250 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2251 amd64_dev->misc_f3_ctl,
2252 pvt->dram_f2_ctl);
2254 if (!pvt->misc_f3_ctl) {
2255 pci_dev_put(pvt->addr_f1_ctl);
2256 pvt->addr_f1_ctl = NULL;
2258 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2259 "vendor %x device 0x%x (broken BIOS?)\n",
2260 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2261 return 1;
2264 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2265 pci_name(pvt->addr_f1_ctl));
2266 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2267 pci_name(pvt->dram_f2_ctl));
2268 debugf1(" Misc device PCI Bus ID:\t%s\n",
2269 pci_name(pvt->misc_f3_ctl));
2271 return 0;
2274 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2276 pci_dev_put(pvt->addr_f1_ctl);
2277 pci_dev_put(pvt->misc_f3_ctl);
2281 * Retrieve the hardware registers of the memory controller (this includes the
2282 * 'Address Map' and 'Misc' device regs)
2284 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2286 u64 msr_val;
2287 int dram;
2290 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2291 * those are Read-As-Zero
2293 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2294 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2296 /* check first whether TOP_MEM2 is enabled */
2297 rdmsrl(MSR_K8_SYSCFG, msr_val);
2298 if (msr_val & (1U << 21)) {
2299 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2300 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2301 } else
2302 debugf0(" TOP_MEM2 disabled.\n");
2304 amd64_cpu_display_info(pvt);
2306 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2308 if (pvt->ops->read_dram_ctl_register)
2309 pvt->ops->read_dram_ctl_register(pvt);
2311 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2313 * Call CPU specific READ function to get the DRAM Base and
2314 * Limit values from the DCT.
2316 pvt->ops->read_dram_base_limit(pvt, dram);
2319 * Only print out debug info on rows with both R and W Enabled.
2320 * Normal processing, compiler should optimize this whole 'if'
2321 * debug output block away.
2323 if (pvt->dram_rw_en[dram] != 0) {
2324 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2325 "DRAM-LIMIT: 0x%016llx\n",
2326 dram,
2327 pvt->dram_base[dram],
2328 pvt->dram_limit[dram]);
2330 debugf1(" IntlvEn=%s %s %s "
2331 "IntlvSel=%d DstNode=%d\n",
2332 pvt->dram_IntlvEn[dram] ?
2333 "Enabled" : "Disabled",
2334 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2335 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2336 pvt->dram_IntlvSel[dram],
2337 pvt->dram_DstNode[dram]);
2341 amd64_read_dct_base_mask(pvt);
2343 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2344 amd64_read_dbam_reg(pvt);
2346 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2347 F10_ONLINE_SPARE, &pvt->online_spare);
2349 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2350 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2352 if (!dct_ganging_enabled(pvt) && boot_cpu_data.x86 >= 0x10) {
2353 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2354 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2356 amd64_dump_misc_regs(pvt);
2360 * NOTE: CPU Revision Dependent code
2362 * Input:
2363 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2364 * k8 private pointer to -->
2365 * DRAM Bank Address mapping register
2366 * node_id
2367 * DCL register where dual_channel_active is
2369 * The DBAM register consists of 4 sets of 4 bits each definitions:
2371 * Bits: CSROWs
2372 * 0-3 CSROWs 0 and 1
2373 * 4-7 CSROWs 2 and 3
2374 * 8-11 CSROWs 4 and 5
2375 * 12-15 CSROWs 6 and 7
2377 * Values range from: 0 to 15
2378 * The meaning of the values depends on CPU revision and dual-channel state,
2379 * see relevant BKDG more info.
2381 * The memory controller provides for total of only 8 CSROWs in its current
2382 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2383 * single channel or two (2) DIMMs in dual channel mode.
2385 * The following code logic collapses the various tables for CSROW based on CPU
2386 * revision.
2388 * Returns:
2389 * The number of PAGE_SIZE pages on the specified CSROW number it
2390 * encompasses
2393 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2395 u32 cs_mode, nr_pages;
2398 * The math on this doesn't look right on the surface because x/2*4 can
2399 * be simplified to x*2 but this expression makes use of the fact that
2400 * it is integral math where 1/2=0. This intermediate value becomes the
2401 * number of bits to shift the DBAM register to extract the proper CSROW
2402 * field.
2404 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2406 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2409 * If dual channel then double the memory size of single channel.
2410 * Channel count is 1 or 2
2412 nr_pages <<= (pvt->channel_count - 1);
2414 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2415 debugf0(" nr_pages= %u channel-count = %d\n",
2416 nr_pages, pvt->channel_count);
2418 return nr_pages;
2422 * Initialize the array of csrow attribute instances, based on the values
2423 * from pci config hardware registers.
2425 static int amd64_init_csrows(struct mem_ctl_info *mci)
2427 struct csrow_info *csrow;
2428 struct amd64_pvt *pvt;
2429 u64 input_addr_min, input_addr_max, sys_addr;
2430 int i, empty = 1;
2432 pvt = mci->pvt_info;
2434 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2436 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2437 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2438 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2441 for (i = 0; i < pvt->cs_count; i++) {
2442 csrow = &mci->csrows[i];
2444 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2445 debugf1("----CSROW %d EMPTY for node %d\n", i,
2446 pvt->mc_node_id);
2447 continue;
2450 debugf1("----CSROW %d VALID for MC node %d\n",
2451 i, pvt->mc_node_id);
2453 empty = 0;
2454 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2455 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2456 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2457 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2458 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2459 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2460 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2461 /* 8 bytes of resolution */
2463 csrow->mtype = amd64_determine_memory_type(pvt);
2465 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2466 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2467 (unsigned long)input_addr_min,
2468 (unsigned long)input_addr_max);
2469 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2470 (unsigned long)sys_addr, csrow->page_mask);
2471 debugf1(" nr_pages: %u first_page: 0x%lx "
2472 "last_page: 0x%lx\n",
2473 (unsigned)csrow->nr_pages,
2474 csrow->first_page, csrow->last_page);
2477 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2479 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2480 csrow->edac_mode =
2481 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2482 EDAC_S4ECD4ED : EDAC_SECDED;
2483 else
2484 csrow->edac_mode = EDAC_NONE;
2487 return empty;
2490 /* get all cores on this DCT */
2491 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2493 int cpu;
2495 for_each_online_cpu(cpu)
2496 if (amd_get_nb_id(cpu) == nid)
2497 cpumask_set_cpu(cpu, mask);
2500 /* check MCG_CTL on all the cpus on this node */
2501 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2503 cpumask_var_t mask;
2504 int cpu, nbe;
2505 bool ret = false;
2507 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2508 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2509 __func__);
2510 return false;
2513 get_cpus_on_this_dct_cpumask(mask, nid);
2515 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2517 for_each_cpu(cpu, mask) {
2518 struct msr *reg = per_cpu_ptr(msrs, cpu);
2519 nbe = reg->l & K8_MSR_MCGCTL_NBE;
2521 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2522 cpu, reg->q,
2523 (nbe ? "enabled" : "disabled"));
2525 if (!nbe)
2526 goto out;
2528 ret = true;
2530 out:
2531 free_cpumask_var(mask);
2532 return ret;
2535 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2537 cpumask_var_t cmask;
2538 int cpu;
2540 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2541 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2542 __func__);
2543 return false;
2546 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2548 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2550 for_each_cpu(cpu, cmask) {
2552 struct msr *reg = per_cpu_ptr(msrs, cpu);
2554 if (on) {
2555 if (reg->l & K8_MSR_MCGCTL_NBE)
2556 pvt->flags.nb_mce_enable = 1;
2558 reg->l |= K8_MSR_MCGCTL_NBE;
2559 } else {
2561 * Turn off NB MCE reporting only when it was off before
2563 if (!pvt->flags.nb_mce_enable)
2564 reg->l &= ~K8_MSR_MCGCTL_NBE;
2567 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2569 free_cpumask_var(cmask);
2571 return 0;
2574 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2576 struct amd64_pvt *pvt = mci->pvt_info;
2577 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2579 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2581 /* turn on UECCn and CECCEn bits */
2582 pvt->old_nbctl = value & mask;
2583 pvt->nbctl_mcgctl_saved = 1;
2585 value |= mask;
2586 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2588 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2589 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2590 "MCGCTL!\n");
2592 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2594 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2595 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2596 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2598 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2599 amd64_printk(KERN_WARNING,
2600 "This node reports that DRAM ECC is "
2601 "currently Disabled; ENABLING now\n");
2603 pvt->flags.nb_ecc_prev = 0;
2605 /* Attempt to turn on DRAM ECC Enable */
2606 value |= K8_NBCFG_ECC_ENABLE;
2607 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2609 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2611 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2612 amd64_printk(KERN_WARNING,
2613 "Hardware rejects Enabling DRAM ECC checking\n"
2614 "Check memory DIMM configuration\n");
2615 } else {
2616 amd64_printk(KERN_DEBUG,
2617 "Hardware accepted DRAM ECC Enable\n");
2619 } else {
2620 pvt->flags.nb_ecc_prev = 1;
2623 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2624 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2625 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2627 pvt->ctl_error_info.nbcfg = value;
2630 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2632 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2634 if (!pvt->nbctl_mcgctl_saved)
2635 return;
2637 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2638 value &= ~mask;
2639 value |= pvt->old_nbctl;
2641 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2643 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2644 if (!pvt->flags.nb_ecc_prev) {
2645 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2646 value &= ~K8_NBCFG_ECC_ENABLE;
2647 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2650 /* restore the NB Enable MCGCTL bit */
2651 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2652 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
2656 * EDAC requires that the BIOS have ECC enabled before taking over the
2657 * processing of ECC errors. This is because the BIOS can properly initialize
2658 * the memory system completely. A command line option allows to force-enable
2659 * hardware ECC later in amd64_enable_ecc_error_reporting().
2661 static const char *ecc_msg =
2662 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2663 " Either enable ECC checking or force module loading by setting "
2664 "'ecc_enable_override'.\n"
2665 " (Note that use of the override may cause unknown side effects.)\n";
2667 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2669 u32 value;
2670 u8 ecc_enabled = 0;
2671 bool nb_mce_en = false;
2673 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2675 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2676 if (!ecc_enabled)
2677 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
2678 "is currently disabled, set F3x%x[22] (%s).\n",
2679 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2680 else
2681 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2683 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2684 if (!nb_mce_en)
2685 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
2686 "0x%08x[4] on node %d to enable.\n",
2687 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2689 if (!ecc_enabled || !nb_mce_en) {
2690 if (!ecc_enable_override) {
2691 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
2692 return -ENODEV;
2693 } else {
2694 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
2698 return 0;
2701 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2702 ARRAY_SIZE(amd64_inj_attrs) +
2705 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2707 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2709 unsigned int i = 0, j = 0;
2711 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2712 sysfs_attrs[i] = amd64_dbg_attrs[i];
2714 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2715 sysfs_attrs[i] = amd64_inj_attrs[j];
2717 sysfs_attrs[i] = terminator;
2719 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2722 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2724 struct amd64_pvt *pvt = mci->pvt_info;
2726 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2727 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2729 if (pvt->nbcap & K8_NBCAP_SECDED)
2730 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2732 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2733 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2735 mci->edac_cap = amd64_determine_edac_cap(pvt);
2736 mci->mod_name = EDAC_MOD_STR;
2737 mci->mod_ver = EDAC_AMD64_VERSION;
2738 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2739 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2740 mci->ctl_page_to_phys = NULL;
2742 /* IMPORTANT: Set the polling 'check' function in this module */
2743 mci->edac_check = amd64_check;
2745 /* memory scrubber interface */
2746 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2747 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2751 * Init stuff for this DRAM Controller device.
2753 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2754 * Space feature MUST be enabled on ALL Processors prior to actually reading
2755 * from the ECS registers. Since the loading of the module can occur on any
2756 * 'core', and cores don't 'see' all the other processors ECS data when the
2757 * others are NOT enabled. Our solution is to first enable ECS access in this
2758 * routine on all processors, gather some data in a amd64_pvt structure and
2759 * later come back in a finish-setup function to perform that final
2760 * initialization. See also amd64_init_2nd_stage() for that.
2762 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2763 int mc_type_index)
2765 struct amd64_pvt *pvt = NULL;
2766 int err = 0, ret;
2768 ret = -ENOMEM;
2769 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2770 if (!pvt)
2771 goto err_exit;
2773 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2775 pvt->dram_f2_ctl = dram_f2_ctl;
2776 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2777 pvt->mc_type_index = mc_type_index;
2778 pvt->ops = family_ops(mc_type_index);
2781 * We have the dram_f2_ctl device as an argument, now go reserve its
2782 * sibling devices from the PCI system.
2784 ret = -ENODEV;
2785 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2786 if (err)
2787 goto err_free;
2789 ret = -EINVAL;
2790 err = amd64_check_ecc_enabled(pvt);
2791 if (err)
2792 goto err_put;
2795 * Key operation here: setup of HW prior to performing ops on it. Some
2796 * setup is required to access ECS data. After this is performed, the
2797 * 'teardown' function must be called upon error and normal exit paths.
2799 if (boot_cpu_data.x86 >= 0x10)
2800 amd64_setup(pvt);
2803 * Save the pointer to the private data for use in 2nd initialization
2804 * stage
2806 pvt_lookup[pvt->mc_node_id] = pvt;
2808 return 0;
2810 err_put:
2811 amd64_free_mc_sibling_devices(pvt);
2813 err_free:
2814 kfree(pvt);
2816 err_exit:
2817 return ret;
2821 * This is the finishing stage of the init code. Needs to be performed after all
2822 * MCs' hardware have been prepped for accessing extended config space.
2824 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2826 int node_id = pvt->mc_node_id;
2827 struct mem_ctl_info *mci;
2828 int ret = -ENODEV;
2830 amd64_read_mc_registers(pvt);
2833 * We need to determine how many memory channels there are. Then use
2834 * that information for calculating the size of the dynamic instance
2835 * tables in the 'mci' structure
2837 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2838 if (pvt->channel_count < 0)
2839 goto err_exit;
2841 ret = -ENOMEM;
2842 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2843 if (!mci)
2844 goto err_exit;
2846 mci->pvt_info = pvt;
2848 mci->dev = &pvt->dram_f2_ctl->dev;
2849 amd64_setup_mci_misc_attributes(mci);
2851 if (amd64_init_csrows(mci))
2852 mci->edac_cap = EDAC_FLAG_NONE;
2854 amd64_enable_ecc_error_reporting(mci);
2855 amd64_set_mc_sysfs_attributes(mci);
2857 ret = -ENODEV;
2858 if (edac_mc_add_mc(mci)) {
2859 debugf1("failed edac_mc_add_mc()\n");
2860 goto err_add_mc;
2863 mci_lookup[node_id] = mci;
2864 pvt_lookup[node_id] = NULL;
2866 /* register stuff with EDAC MCE */
2867 if (report_gart_errors)
2868 amd_report_gart_errors(true);
2870 amd_register_ecc_decoder(amd64_decode_bus_error);
2872 return 0;
2874 err_add_mc:
2875 edac_mc_free(mci);
2877 err_exit:
2878 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2880 amd64_restore_ecc_error_reporting(pvt);
2882 if (boot_cpu_data.x86 > 0xf)
2883 amd64_teardown(pvt);
2885 amd64_free_mc_sibling_devices(pvt);
2887 kfree(pvt_lookup[pvt->mc_node_id]);
2888 pvt_lookup[node_id] = NULL;
2890 return ret;
2894 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2895 const struct pci_device_id *mc_type)
2897 int ret = 0;
2899 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2900 get_amd_family_name(mc_type->driver_data));
2902 ret = pci_enable_device(pdev);
2903 if (ret < 0)
2904 ret = -EIO;
2905 else
2906 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2908 if (ret < 0)
2909 debugf0("ret=%d\n", ret);
2911 return ret;
2914 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2916 struct mem_ctl_info *mci;
2917 struct amd64_pvt *pvt;
2919 /* Remove from EDAC CORE tracking list */
2920 mci = edac_mc_del_mc(&pdev->dev);
2921 if (!mci)
2922 return;
2924 pvt = mci->pvt_info;
2926 amd64_restore_ecc_error_reporting(pvt);
2928 if (boot_cpu_data.x86 > 0xf)
2929 amd64_teardown(pvt);
2931 amd64_free_mc_sibling_devices(pvt);
2933 /* unregister from EDAC MCE */
2934 amd_report_gart_errors(false);
2935 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2937 /* Free the EDAC CORE resources */
2938 mci->pvt_info = NULL;
2939 mci_lookup[pvt->mc_node_id] = NULL;
2941 kfree(pvt);
2942 edac_mc_free(mci);
2946 * This table is part of the interface for loading drivers for PCI devices. The
2947 * PCI core identifies what devices are on a system during boot, and then
2948 * inquiry this table to see if this driver is for a given device found.
2950 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2952 .vendor = PCI_VENDOR_ID_AMD,
2953 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2954 .subvendor = PCI_ANY_ID,
2955 .subdevice = PCI_ANY_ID,
2956 .class = 0,
2957 .class_mask = 0,
2958 .driver_data = K8_CPUS
2961 .vendor = PCI_VENDOR_ID_AMD,
2962 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2963 .subvendor = PCI_ANY_ID,
2964 .subdevice = PCI_ANY_ID,
2965 .class = 0,
2966 .class_mask = 0,
2967 .driver_data = F10_CPUS
2970 .vendor = PCI_VENDOR_ID_AMD,
2971 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2972 .subvendor = PCI_ANY_ID,
2973 .subdevice = PCI_ANY_ID,
2974 .class = 0,
2975 .class_mask = 0,
2976 .driver_data = F11_CPUS
2978 {0, }
2980 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2982 static struct pci_driver amd64_pci_driver = {
2983 .name = EDAC_MOD_STR,
2984 .probe = amd64_init_one_instance,
2985 .remove = __devexit_p(amd64_remove_one_instance),
2986 .id_table = amd64_pci_table,
2989 static void amd64_setup_pci_device(void)
2991 struct mem_ctl_info *mci;
2992 struct amd64_pvt *pvt;
2994 if (amd64_ctl_pci)
2995 return;
2997 mci = mci_lookup[0];
2998 if (mci) {
3000 pvt = mci->pvt_info;
3001 amd64_ctl_pci =
3002 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3003 EDAC_MOD_STR);
3005 if (!amd64_ctl_pci) {
3006 pr_warning("%s(): Unable to create PCI control\n",
3007 __func__);
3009 pr_warning("%s(): PCI error report via EDAC not set\n",
3010 __func__);
3015 static int __init amd64_edac_init(void)
3017 int nb, err = -ENODEV;
3018 bool load_ok = false;
3020 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3022 opstate_init();
3024 if (cache_k8_northbridges() < 0)
3025 goto err_ret;
3027 msrs = msrs_alloc();
3028 if (!msrs)
3029 goto err_ret;
3031 err = pci_register_driver(&amd64_pci_driver);
3032 if (err)
3033 goto err_pci;
3036 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3037 * amd64_pvt structs. These will be used in the 2nd stage init function
3038 * to finish initialization of the MC instances.
3040 err = -ENODEV;
3041 for (nb = 0; nb < num_k8_northbridges; nb++) {
3042 if (!pvt_lookup[nb])
3043 continue;
3045 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3046 if (err)
3047 goto err_2nd_stage;
3049 load_ok = true;
3052 if (load_ok) {
3053 amd64_setup_pci_device();
3054 return 0;
3057 err_2nd_stage:
3058 pci_unregister_driver(&amd64_pci_driver);
3059 err_pci:
3060 msrs_free(msrs);
3061 msrs = NULL;
3062 err_ret:
3063 return err;
3066 static void __exit amd64_edac_exit(void)
3068 if (amd64_ctl_pci)
3069 edac_pci_release_generic_ctl(amd64_ctl_pci);
3071 pci_unregister_driver(&amd64_pci_driver);
3073 msrs_free(msrs);
3074 msrs = NULL;
3077 module_init(amd64_edac_init);
3078 module_exit(amd64_edac_exit);
3080 MODULE_LICENSE("GPL");
3081 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3082 "Dave Peterson, Thayne Harbaugh");
3083 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3084 EDAC_AMD64_VERSION);
3086 module_param(edac_op_state, int, 0444);
3087 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");