2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
33 #include "intel_drv.h"
36 #include "drm_dp_helper.h"
38 #include "drm_crtc_helper.h"
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
43 static void intel_update_watermarks(struct drm_device
*dev
);
44 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
);
67 #define INTEL_P2_NUM 2
68 typedef struct intel_limit intel_limit_t
;
70 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
72 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
73 int, int, intel_clock_t
*);
76 #define I8XX_DOT_MIN 25000
77 #define I8XX_DOT_MAX 350000
78 #define I8XX_VCO_MIN 930000
79 #define I8XX_VCO_MAX 1400000
83 #define I8XX_M_MAX 140
84 #define I8XX_M1_MIN 18
85 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MAX 16
89 #define I8XX_P_MAX 128
91 #define I8XX_P1_MAX 33
92 #define I8XX_P1_LVDS_MIN 1
93 #define I8XX_P1_LVDS_MAX 6
94 #define I8XX_P2_SLOW 4
95 #define I8XX_P2_FAST 2
96 #define I8XX_P2_LVDS_SLOW 14
97 #define I8XX_P2_LVDS_FAST 7
98 #define I8XX_P2_SLOW_LIMIT 165000
100 #define I9XX_DOT_MIN 20000
101 #define I9XX_DOT_MAX 400000
102 #define I9XX_VCO_MIN 1400000
103 #define I9XX_VCO_MAX 2800000
104 #define PINEVIEW_VCO_MIN 1700000
105 #define PINEVIEW_VCO_MAX 3500000
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN 3
110 #define PINEVIEW_N_MAX 6
111 #define I9XX_M_MIN 70
112 #define I9XX_M_MAX 120
113 #define PINEVIEW_M_MIN 2
114 #define PINEVIEW_M_MAX 256
115 #define I9XX_M1_MIN 10
116 #define I9XX_M1_MAX 22
117 #define I9XX_M2_MIN 5
118 #define I9XX_M2_MAX 9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN 0
121 #define PINEVIEW_M1_MAX 0
122 #define PINEVIEW_M2_MIN 0
123 #define PINEVIEW_M2_MAX 254
124 #define I9XX_P_SDVO_DAC_MIN 5
125 #define I9XX_P_SDVO_DAC_MAX 80
126 #define I9XX_P_LVDS_MIN 7
127 #define I9XX_P_LVDS_MAX 98
128 #define PINEVIEW_P_LVDS_MIN 7
129 #define PINEVIEW_P_LVDS_MAX 112
130 #define I9XX_P1_MIN 1
131 #define I9XX_P1_MAX 8
132 #define I9XX_P2_SDVO_DAC_SLOW 10
133 #define I9XX_P2_SDVO_DAC_FAST 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
135 #define I9XX_P2_LVDS_SLOW 14
136 #define I9XX_P2_LVDS_FAST 7
137 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN 25000
141 #define G4X_DOT_SDVO_MAX 270000
142 #define G4X_VCO_MIN 1750000
143 #define G4X_VCO_MAX 3500000
144 #define G4X_N_SDVO_MIN 1
145 #define G4X_N_SDVO_MAX 4
146 #define G4X_M_SDVO_MIN 104
147 #define G4X_M_SDVO_MAX 138
148 #define G4X_M1_SDVO_MIN 17
149 #define G4X_M1_SDVO_MAX 23
150 #define G4X_M2_SDVO_MIN 5
151 #define G4X_M2_SDVO_MAX 11
152 #define G4X_P_SDVO_MIN 10
153 #define G4X_P_SDVO_MAX 30
154 #define G4X_P1_SDVO_MIN 1
155 #define G4X_P1_SDVO_MAX 3
156 #define G4X_P2_SDVO_SLOW 10
157 #define G4X_P2_SDVO_FAST 10
158 #define G4X_P2_SDVO_LIMIT 270000
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN 22000
162 #define G4X_DOT_HDMI_DAC_MAX 400000
163 #define G4X_N_HDMI_DAC_MIN 1
164 #define G4X_N_HDMI_DAC_MAX 4
165 #define G4X_M_HDMI_DAC_MIN 104
166 #define G4X_M_HDMI_DAC_MAX 138
167 #define G4X_M1_HDMI_DAC_MIN 16
168 #define G4X_M1_HDMI_DAC_MAX 23
169 #define G4X_M2_HDMI_DAC_MIN 5
170 #define G4X_M2_HDMI_DAC_MAX 11
171 #define G4X_P_HDMI_DAC_MIN 5
172 #define G4X_P_HDMI_DAC_MAX 80
173 #define G4X_P1_HDMI_DAC_MIN 1
174 #define G4X_P1_HDMI_DAC_MAX 8
175 #define G4X_P2_HDMI_DAC_SLOW 10
176 #define G4X_P2_HDMI_DAC_FAST 5
177 #define G4X_P2_HDMI_DAC_LIMIT 165000
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN 161670
219 #define G4X_DOT_DISPLAY_PORT_MAX 227000
220 #define G4X_N_DISPLAY_PORT_MIN 1
221 #define G4X_N_DISPLAY_PORT_MAX 2
222 #define G4X_M_DISPLAY_PORT_MIN 97
223 #define G4X_M_DISPLAY_PORT_MAX 108
224 #define G4X_M1_DISPLAY_PORT_MIN 0x10
225 #define G4X_M1_DISPLAY_PORT_MAX 0x12
226 #define G4X_M2_DISPLAY_PORT_MIN 0x05
227 #define G4X_M2_DISPLAY_PORT_MAX 0x06
228 #define G4X_P_DISPLAY_PORT_MIN 10
229 #define G4X_P_DISPLAY_PORT_MAX 20
230 #define G4X_P1_DISPLAY_PORT_MIN 1
231 #define G4X_P1_DISPLAY_PORT_MAX 2
232 #define G4X_P2_DISPLAY_PORT_SLOW 10
233 #define G4X_P2_DISPLAY_PORT_FAST 10
234 #define G4X_P2_DISPLAY_PORT_LIMIT 0
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238 N/M1/M2, so here the range value for them is (actual_value-2).
240 #define IRONLAKE_DOT_MIN 25000
241 #define IRONLAKE_DOT_MAX 350000
242 #define IRONLAKE_VCO_MIN 1760000
243 #define IRONLAKE_VCO_MAX 3510000
244 #define IRONLAKE_M1_MIN 12
245 #define IRONLAKE_M1_MAX 22
246 #define IRONLAKE_M2_MIN 5
247 #define IRONLAKE_M2_MAX 9
248 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
250 /* We have parameter ranges for different type of outputs. */
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN 1
254 #define IRONLAKE_DAC_N_MAX 5
255 #define IRONLAKE_DAC_M_MIN 79
256 #define IRONLAKE_DAC_M_MAX 127
257 #define IRONLAKE_DAC_P_MIN 5
258 #define IRONLAKE_DAC_P_MAX 80
259 #define IRONLAKE_DAC_P1_MIN 1
260 #define IRONLAKE_DAC_P1_MAX 8
261 #define IRONLAKE_DAC_P2_SLOW 10
262 #define IRONLAKE_DAC_P2_FAST 5
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN 1
266 #define IRONLAKE_LVDS_S_N_MAX 3
267 #define IRONLAKE_LVDS_S_M_MIN 79
268 #define IRONLAKE_LVDS_S_M_MAX 118
269 #define IRONLAKE_LVDS_S_P_MIN 28
270 #define IRONLAKE_LVDS_S_P_MAX 112
271 #define IRONLAKE_LVDS_S_P1_MIN 2
272 #define IRONLAKE_LVDS_S_P1_MAX 8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN 1
278 #define IRONLAKE_LVDS_D_N_MAX 3
279 #define IRONLAKE_LVDS_D_M_MIN 79
280 #define IRONLAKE_LVDS_D_M_MAX 127
281 #define IRONLAKE_LVDS_D_P_MIN 14
282 #define IRONLAKE_LVDS_D_P_MAX 56
283 #define IRONLAKE_LVDS_D_P1_MIN 2
284 #define IRONLAKE_LVDS_D_P1_MAX 8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
313 #define IRONLAKE_DP_N_MIN 1
314 #define IRONLAKE_DP_N_MAX 2
315 #define IRONLAKE_DP_M_MIN 81
316 #define IRONLAKE_DP_M_MAX 90
317 #define IRONLAKE_DP_P_MIN 10
318 #define IRONLAKE_DP_P_MAX 20
319 #define IRONLAKE_DP_P2_FAST 10
320 #define IRONLAKE_DP_P2_SLOW 10
321 #define IRONLAKE_DP_P2_LIMIT 0
322 #define IRONLAKE_DP_P1_MIN 1
323 #define IRONLAKE_DP_P1_MAX 2
326 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
327 int target
, int refclk
, intel_clock_t
*best_clock
);
329 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
330 int target
, int refclk
, intel_clock_t
*best_clock
);
333 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
334 int target
, int refclk
, intel_clock_t
*best_clock
);
336 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
337 int target
, int refclk
, intel_clock_t
*best_clock
);
339 static const intel_limit_t intel_limits_i8xx_dvo
= {
340 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
341 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
342 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
343 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
344 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
345 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
346 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
347 .p1
= { .min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
348 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
349 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
350 .find_pll
= intel_find_best_PLL
,
353 static const intel_limit_t intel_limits_i8xx_lvds
= {
354 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
355 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
356 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
357 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
358 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
359 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
360 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
361 .p1
= { .min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
362 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
363 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
364 .find_pll
= intel_find_best_PLL
,
367 static const intel_limit_t intel_limits_i9xx_sdvo
= {
368 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
369 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
370 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
371 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
372 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
373 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
374 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
375 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
376 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
377 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
378 .find_pll
= intel_find_best_PLL
,
381 static const intel_limit_t intel_limits_i9xx_lvds
= {
382 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
383 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
384 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
385 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
386 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
387 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
388 .p
= { .min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
389 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
390 /* The single-channel range is 25-112Mhz, and dual-channel
391 * is 80-224Mhz. Prefer single channel as much as possible.
393 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
394 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
395 .find_pll
= intel_find_best_PLL
,
398 /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo
= {
400 .dot
= { .min
= G4X_DOT_SDVO_MIN
, .max
= G4X_DOT_SDVO_MAX
},
401 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
402 .n
= { .min
= G4X_N_SDVO_MIN
, .max
= G4X_N_SDVO_MAX
},
403 .m
= { .min
= G4X_M_SDVO_MIN
, .max
= G4X_M_SDVO_MAX
},
404 .m1
= { .min
= G4X_M1_SDVO_MIN
, .max
= G4X_M1_SDVO_MAX
},
405 .m2
= { .min
= G4X_M2_SDVO_MIN
, .max
= G4X_M2_SDVO_MAX
},
406 .p
= { .min
= G4X_P_SDVO_MIN
, .max
= G4X_P_SDVO_MAX
},
407 .p1
= { .min
= G4X_P1_SDVO_MIN
, .max
= G4X_P1_SDVO_MAX
},
408 .p2
= { .dot_limit
= G4X_P2_SDVO_LIMIT
,
409 .p2_slow
= G4X_P2_SDVO_SLOW
,
410 .p2_fast
= G4X_P2_SDVO_FAST
412 .find_pll
= intel_g4x_find_best_PLL
,
415 static const intel_limit_t intel_limits_g4x_hdmi
= {
416 .dot
= { .min
= G4X_DOT_HDMI_DAC_MIN
, .max
= G4X_DOT_HDMI_DAC_MAX
},
417 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
418 .n
= { .min
= G4X_N_HDMI_DAC_MIN
, .max
= G4X_N_HDMI_DAC_MAX
},
419 .m
= { .min
= G4X_M_HDMI_DAC_MIN
, .max
= G4X_M_HDMI_DAC_MAX
},
420 .m1
= { .min
= G4X_M1_HDMI_DAC_MIN
, .max
= G4X_M1_HDMI_DAC_MAX
},
421 .m2
= { .min
= G4X_M2_HDMI_DAC_MIN
, .max
= G4X_M2_HDMI_DAC_MAX
},
422 .p
= { .min
= G4X_P_HDMI_DAC_MIN
, .max
= G4X_P_HDMI_DAC_MAX
},
423 .p1
= { .min
= G4X_P1_HDMI_DAC_MIN
, .max
= G4X_P1_HDMI_DAC_MAX
},
424 .p2
= { .dot_limit
= G4X_P2_HDMI_DAC_LIMIT
,
425 .p2_slow
= G4X_P2_HDMI_DAC_SLOW
,
426 .p2_fast
= G4X_P2_HDMI_DAC_FAST
428 .find_pll
= intel_g4x_find_best_PLL
,
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
432 .dot
= { .min
= G4X_DOT_SINGLE_CHANNEL_LVDS_MIN
,
433 .max
= G4X_DOT_SINGLE_CHANNEL_LVDS_MAX
},
434 .vco
= { .min
= G4X_VCO_MIN
,
435 .max
= G4X_VCO_MAX
},
436 .n
= { .min
= G4X_N_SINGLE_CHANNEL_LVDS_MIN
,
437 .max
= G4X_N_SINGLE_CHANNEL_LVDS_MAX
},
438 .m
= { .min
= G4X_M_SINGLE_CHANNEL_LVDS_MIN
,
439 .max
= G4X_M_SINGLE_CHANNEL_LVDS_MAX
},
440 .m1
= { .min
= G4X_M1_SINGLE_CHANNEL_LVDS_MIN
,
441 .max
= G4X_M1_SINGLE_CHANNEL_LVDS_MAX
},
442 .m2
= { .min
= G4X_M2_SINGLE_CHANNEL_LVDS_MIN
,
443 .max
= G4X_M2_SINGLE_CHANNEL_LVDS_MAX
},
444 .p
= { .min
= G4X_P_SINGLE_CHANNEL_LVDS_MIN
,
445 .max
= G4X_P_SINGLE_CHANNEL_LVDS_MAX
},
446 .p1
= { .min
= G4X_P1_SINGLE_CHANNEL_LVDS_MIN
,
447 .max
= G4X_P1_SINGLE_CHANNEL_LVDS_MAX
},
448 .p2
= { .dot_limit
= G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT
,
449 .p2_slow
= G4X_P2_SINGLE_CHANNEL_LVDS_SLOW
,
450 .p2_fast
= G4X_P2_SINGLE_CHANNEL_LVDS_FAST
452 .find_pll
= intel_g4x_find_best_PLL
,
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
456 .dot
= { .min
= G4X_DOT_DUAL_CHANNEL_LVDS_MIN
,
457 .max
= G4X_DOT_DUAL_CHANNEL_LVDS_MAX
},
458 .vco
= { .min
= G4X_VCO_MIN
,
459 .max
= G4X_VCO_MAX
},
460 .n
= { .min
= G4X_N_DUAL_CHANNEL_LVDS_MIN
,
461 .max
= G4X_N_DUAL_CHANNEL_LVDS_MAX
},
462 .m
= { .min
= G4X_M_DUAL_CHANNEL_LVDS_MIN
,
463 .max
= G4X_M_DUAL_CHANNEL_LVDS_MAX
},
464 .m1
= { .min
= G4X_M1_DUAL_CHANNEL_LVDS_MIN
,
465 .max
= G4X_M1_DUAL_CHANNEL_LVDS_MAX
},
466 .m2
= { .min
= G4X_M2_DUAL_CHANNEL_LVDS_MIN
,
467 .max
= G4X_M2_DUAL_CHANNEL_LVDS_MAX
},
468 .p
= { .min
= G4X_P_DUAL_CHANNEL_LVDS_MIN
,
469 .max
= G4X_P_DUAL_CHANNEL_LVDS_MAX
},
470 .p1
= { .min
= G4X_P1_DUAL_CHANNEL_LVDS_MIN
,
471 .max
= G4X_P1_DUAL_CHANNEL_LVDS_MAX
},
472 .p2
= { .dot_limit
= G4X_P2_DUAL_CHANNEL_LVDS_LIMIT
,
473 .p2_slow
= G4X_P2_DUAL_CHANNEL_LVDS_SLOW
,
474 .p2_fast
= G4X_P2_DUAL_CHANNEL_LVDS_FAST
476 .find_pll
= intel_g4x_find_best_PLL
,
479 static const intel_limit_t intel_limits_g4x_display_port
= {
480 .dot
= { .min
= G4X_DOT_DISPLAY_PORT_MIN
,
481 .max
= G4X_DOT_DISPLAY_PORT_MAX
},
482 .vco
= { .min
= G4X_VCO_MIN
,
484 .n
= { .min
= G4X_N_DISPLAY_PORT_MIN
,
485 .max
= G4X_N_DISPLAY_PORT_MAX
},
486 .m
= { .min
= G4X_M_DISPLAY_PORT_MIN
,
487 .max
= G4X_M_DISPLAY_PORT_MAX
},
488 .m1
= { .min
= G4X_M1_DISPLAY_PORT_MIN
,
489 .max
= G4X_M1_DISPLAY_PORT_MAX
},
490 .m2
= { .min
= G4X_M2_DISPLAY_PORT_MIN
,
491 .max
= G4X_M2_DISPLAY_PORT_MAX
},
492 .p
= { .min
= G4X_P_DISPLAY_PORT_MIN
,
493 .max
= G4X_P_DISPLAY_PORT_MAX
},
494 .p1
= { .min
= G4X_P1_DISPLAY_PORT_MIN
,
495 .max
= G4X_P1_DISPLAY_PORT_MAX
},
496 .p2
= { .dot_limit
= G4X_P2_DISPLAY_PORT_LIMIT
,
497 .p2_slow
= G4X_P2_DISPLAY_PORT_SLOW
,
498 .p2_fast
= G4X_P2_DISPLAY_PORT_FAST
},
499 .find_pll
= intel_find_pll_g4x_dp
,
502 static const intel_limit_t intel_limits_pineview_sdvo
= {
503 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
504 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
505 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
506 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
507 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
508 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
509 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
510 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
511 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
512 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
513 .find_pll
= intel_find_best_PLL
,
516 static const intel_limit_t intel_limits_pineview_lvds
= {
517 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
518 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
519 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
520 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
521 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
522 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
523 .p
= { .min
= PINEVIEW_P_LVDS_MIN
, .max
= PINEVIEW_P_LVDS_MAX
},
524 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
525 /* Pineview only supports single-channel mode. */
526 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
527 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_SLOW
},
528 .find_pll
= intel_find_best_PLL
,
531 static const intel_limit_t intel_limits_ironlake_dac
= {
532 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
533 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
534 .n
= { .min
= IRONLAKE_DAC_N_MIN
, .max
= IRONLAKE_DAC_N_MAX
},
535 .m
= { .min
= IRONLAKE_DAC_M_MIN
, .max
= IRONLAKE_DAC_M_MAX
},
536 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
537 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
538 .p
= { .min
= IRONLAKE_DAC_P_MIN
, .max
= IRONLAKE_DAC_P_MAX
},
539 .p1
= { .min
= IRONLAKE_DAC_P1_MIN
, .max
= IRONLAKE_DAC_P1_MAX
},
540 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
541 .p2_slow
= IRONLAKE_DAC_P2_SLOW
,
542 .p2_fast
= IRONLAKE_DAC_P2_FAST
},
543 .find_pll
= intel_g4x_find_best_PLL
,
546 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
547 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
548 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
549 .n
= { .min
= IRONLAKE_LVDS_S_N_MIN
, .max
= IRONLAKE_LVDS_S_N_MAX
},
550 .m
= { .min
= IRONLAKE_LVDS_S_M_MIN
, .max
= IRONLAKE_LVDS_S_M_MAX
},
551 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
552 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
553 .p
= { .min
= IRONLAKE_LVDS_S_P_MIN
, .max
= IRONLAKE_LVDS_S_P_MAX
},
554 .p1
= { .min
= IRONLAKE_LVDS_S_P1_MIN
, .max
= IRONLAKE_LVDS_S_P1_MAX
},
555 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
556 .p2_slow
= IRONLAKE_LVDS_S_P2_SLOW
,
557 .p2_fast
= IRONLAKE_LVDS_S_P2_FAST
},
558 .find_pll
= intel_g4x_find_best_PLL
,
561 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
562 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
563 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
564 .n
= { .min
= IRONLAKE_LVDS_D_N_MIN
, .max
= IRONLAKE_LVDS_D_N_MAX
},
565 .m
= { .min
= IRONLAKE_LVDS_D_M_MIN
, .max
= IRONLAKE_LVDS_D_M_MAX
},
566 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
567 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
568 .p
= { .min
= IRONLAKE_LVDS_D_P_MIN
, .max
= IRONLAKE_LVDS_D_P_MAX
},
569 .p1
= { .min
= IRONLAKE_LVDS_D_P1_MIN
, .max
= IRONLAKE_LVDS_D_P1_MAX
},
570 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
571 .p2_slow
= IRONLAKE_LVDS_D_P2_SLOW
,
572 .p2_fast
= IRONLAKE_LVDS_D_P2_FAST
},
573 .find_pll
= intel_g4x_find_best_PLL
,
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
577 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
578 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
579 .n
= { .min
= IRONLAKE_LVDS_S_SSC_N_MIN
, .max
= IRONLAKE_LVDS_S_SSC_N_MAX
},
580 .m
= { .min
= IRONLAKE_LVDS_S_SSC_M_MIN
, .max
= IRONLAKE_LVDS_S_SSC_M_MAX
},
581 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
582 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
583 .p
= { .min
= IRONLAKE_LVDS_S_SSC_P_MIN
, .max
= IRONLAKE_LVDS_S_SSC_P_MAX
},
584 .p1
= { .min
= IRONLAKE_LVDS_S_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_S_SSC_P1_MAX
},
585 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
586 .p2_slow
= IRONLAKE_LVDS_S_SSC_P2_SLOW
,
587 .p2_fast
= IRONLAKE_LVDS_S_SSC_P2_FAST
},
588 .find_pll
= intel_g4x_find_best_PLL
,
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
592 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
593 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
594 .n
= { .min
= IRONLAKE_LVDS_D_SSC_N_MIN
, .max
= IRONLAKE_LVDS_D_SSC_N_MAX
},
595 .m
= { .min
= IRONLAKE_LVDS_D_SSC_M_MIN
, .max
= IRONLAKE_LVDS_D_SSC_M_MAX
},
596 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
597 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
598 .p
= { .min
= IRONLAKE_LVDS_D_SSC_P_MIN
, .max
= IRONLAKE_LVDS_D_SSC_P_MAX
},
599 .p1
= { .min
= IRONLAKE_LVDS_D_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_D_SSC_P1_MAX
},
600 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
601 .p2_slow
= IRONLAKE_LVDS_D_SSC_P2_SLOW
,
602 .p2_fast
= IRONLAKE_LVDS_D_SSC_P2_FAST
},
603 .find_pll
= intel_g4x_find_best_PLL
,
606 static const intel_limit_t intel_limits_ironlake_display_port
= {
607 .dot
= { .min
= IRONLAKE_DOT_MIN
,
608 .max
= IRONLAKE_DOT_MAX
},
609 .vco
= { .min
= IRONLAKE_VCO_MIN
,
610 .max
= IRONLAKE_VCO_MAX
},
611 .n
= { .min
= IRONLAKE_DP_N_MIN
,
612 .max
= IRONLAKE_DP_N_MAX
},
613 .m
= { .min
= IRONLAKE_DP_M_MIN
,
614 .max
= IRONLAKE_DP_M_MAX
},
615 .m1
= { .min
= IRONLAKE_M1_MIN
,
616 .max
= IRONLAKE_M1_MAX
},
617 .m2
= { .min
= IRONLAKE_M2_MIN
,
618 .max
= IRONLAKE_M2_MAX
},
619 .p
= { .min
= IRONLAKE_DP_P_MIN
,
620 .max
= IRONLAKE_DP_P_MAX
},
621 .p1
= { .min
= IRONLAKE_DP_P1_MIN
,
622 .max
= IRONLAKE_DP_P1_MAX
},
623 .p2
= { .dot_limit
= IRONLAKE_DP_P2_LIMIT
,
624 .p2_slow
= IRONLAKE_DP_P2_SLOW
,
625 .p2_fast
= IRONLAKE_DP_P2_FAST
},
626 .find_pll
= intel_find_pll_ironlake_dp
,
629 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
)
631 struct drm_device
*dev
= crtc
->dev
;
632 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
633 const intel_limit_t
*limit
;
636 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
637 if (dev_priv
->lvds_use_ssc
&& dev_priv
->lvds_ssc_freq
== 100)
640 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
641 LVDS_CLKB_POWER_UP
) {
642 /* LVDS dual channel */
644 limit
= &intel_limits_ironlake_dual_lvds_100m
;
646 limit
= &intel_limits_ironlake_dual_lvds
;
649 limit
= &intel_limits_ironlake_single_lvds_100m
;
651 limit
= &intel_limits_ironlake_single_lvds
;
653 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
655 limit
= &intel_limits_ironlake_display_port
;
657 limit
= &intel_limits_ironlake_dac
;
662 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
664 struct drm_device
*dev
= crtc
->dev
;
665 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
666 const intel_limit_t
*limit
;
668 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
669 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
671 /* LVDS with dual channel */
672 limit
= &intel_limits_g4x_dual_channel_lvds
;
674 /* LVDS with dual channel */
675 limit
= &intel_limits_g4x_single_channel_lvds
;
676 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
677 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
678 limit
= &intel_limits_g4x_hdmi
;
679 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
680 limit
= &intel_limits_g4x_sdvo
;
681 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
682 limit
= &intel_limits_g4x_display_port
;
683 } else /* The option is for other outputs */
684 limit
= &intel_limits_i9xx_sdvo
;
689 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
)
691 struct drm_device
*dev
= crtc
->dev
;
692 const intel_limit_t
*limit
;
694 if (HAS_PCH_SPLIT(dev
))
695 limit
= intel_ironlake_limit(crtc
);
696 else if (IS_G4X(dev
)) {
697 limit
= intel_g4x_limit(crtc
);
698 } else if (IS_I9XX(dev
) && !IS_PINEVIEW(dev
)) {
699 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
700 limit
= &intel_limits_i9xx_lvds
;
702 limit
= &intel_limits_i9xx_sdvo
;
703 } else if (IS_PINEVIEW(dev
)) {
704 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
705 limit
= &intel_limits_pineview_lvds
;
707 limit
= &intel_limits_pineview_sdvo
;
709 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
710 limit
= &intel_limits_i8xx_lvds
;
712 limit
= &intel_limits_i8xx_dvo
;
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
720 clock
->m
= clock
->m2
+ 2;
721 clock
->p
= clock
->p1
* clock
->p2
;
722 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
723 clock
->dot
= clock
->vco
/ clock
->p
;
726 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
728 if (IS_PINEVIEW(dev
)) {
729 pineview_clock(refclk
, clock
);
732 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
733 clock
->p
= clock
->p1
* clock
->p2
;
734 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
735 clock
->dot
= clock
->vco
/ clock
->p
;
739 * Returns whether any output on the specified pipe is of the specified type
741 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
)
743 struct drm_device
*dev
= crtc
->dev
;
744 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
745 struct drm_connector
*l_entry
;
747 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
748 if (l_entry
->encoder
&&
749 l_entry
->encoder
->crtc
== crtc
) {
750 struct intel_encoder
*intel_encoder
= to_intel_encoder(l_entry
);
751 if (intel_encoder
->type
== type
)
758 static struct drm_connector
*
759 intel_pipe_get_connector (struct drm_crtc
*crtc
)
761 struct drm_device
*dev
= crtc
->dev
;
762 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
763 struct drm_connector
*l_entry
, *ret
= NULL
;
765 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
766 if (l_entry
->encoder
&&
767 l_entry
->encoder
->crtc
== crtc
) {
775 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
777 * Returns whether the given set of divisors are valid for a given refclk with
778 * the given connectors.
781 static bool intel_PLL_is_valid(struct drm_crtc
*crtc
, intel_clock_t
*clock
)
783 const intel_limit_t
*limit
= intel_limit (crtc
);
784 struct drm_device
*dev
= crtc
->dev
;
786 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
787 INTELPllInvalid ("p1 out of range\n");
788 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
789 INTELPllInvalid ("p out of range\n");
790 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
791 INTELPllInvalid ("m2 out of range\n");
792 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
793 INTELPllInvalid ("m1 out of range\n");
794 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
795 INTELPllInvalid ("m1 <= m2\n");
796 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
797 INTELPllInvalid ("m out of range\n");
798 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
799 INTELPllInvalid ("n out of range\n");
800 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
801 INTELPllInvalid ("vco out of range\n");
802 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
803 * connector, etc., rather than just a single range.
805 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
806 INTELPllInvalid ("dot out of range\n");
812 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
813 int target
, int refclk
, intel_clock_t
*best_clock
)
816 struct drm_device
*dev
= crtc
->dev
;
817 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
821 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
822 (I915_READ(LVDS
)) != 0) {
824 * For LVDS, if the panel is on, just rely on its current
825 * settings for dual-channel. We haven't figured out how to
826 * reliably set up different single/dual channel state, if we
829 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
831 clock
.p2
= limit
->p2
.p2_fast
;
833 clock
.p2
= limit
->p2
.p2_slow
;
835 if (target
< limit
->p2
.dot_limit
)
836 clock
.p2
= limit
->p2
.p2_slow
;
838 clock
.p2
= limit
->p2
.p2_fast
;
841 memset (best_clock
, 0, sizeof (*best_clock
));
843 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
845 for (clock
.m2
= limit
->m2
.min
;
846 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
847 /* m1 is always 0 in Pineview */
848 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
850 for (clock
.n
= limit
->n
.min
;
851 clock
.n
<= limit
->n
.max
; clock
.n
++) {
852 for (clock
.p1
= limit
->p1
.min
;
853 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
856 intel_clock(dev
, refclk
, &clock
);
858 if (!intel_PLL_is_valid(crtc
, &clock
))
861 this_err
= abs(clock
.dot
- target
);
862 if (this_err
< err
) {
871 return (err
!= target
);
875 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
876 int target
, int refclk
, intel_clock_t
*best_clock
)
878 struct drm_device
*dev
= crtc
->dev
;
879 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
883 /* approximately equals target * 0.00488 */
884 int err_most
= (target
>> 8) + (target
>> 10);
887 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
890 if (HAS_PCH_SPLIT(dev
))
894 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
896 clock
.p2
= limit
->p2
.p2_fast
;
898 clock
.p2
= limit
->p2
.p2_slow
;
900 if (target
< limit
->p2
.dot_limit
)
901 clock
.p2
= limit
->p2
.p2_slow
;
903 clock
.p2
= limit
->p2
.p2_fast
;
906 memset(best_clock
, 0, sizeof(*best_clock
));
907 max_n
= limit
->n
.max
;
908 /* based on hardware requriment prefer smaller n to precision */
909 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
910 /* based on hardware requirment prefere larger m1,m2 */
911 for (clock
.m1
= limit
->m1
.max
;
912 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
913 for (clock
.m2
= limit
->m2
.max
;
914 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
915 for (clock
.p1
= limit
->p1
.max
;
916 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
919 intel_clock(dev
, refclk
, &clock
);
920 if (!intel_PLL_is_valid(crtc
, &clock
))
922 this_err
= abs(clock
.dot
- target
) ;
923 if (this_err
< err_most
) {
937 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
938 int target
, int refclk
, intel_clock_t
*best_clock
)
940 struct drm_device
*dev
= crtc
->dev
;
943 /* return directly when it is eDP */
947 if (target
< 200000) {
960 intel_clock(dev
, refclk
, &clock
);
961 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
965 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
967 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
968 int target
, int refclk
, intel_clock_t
*best_clock
)
971 if (target
< 200000) {
984 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
985 clock
.p
= (clock
.p1
* clock
.p2
);
986 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
988 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
993 intel_wait_for_vblank(struct drm_device
*dev
)
995 /* Wait for 20ms, i.e. one cycle at 50hz. */
999 /* Parameters have changed, update FBC info */
1000 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1002 struct drm_device
*dev
= crtc
->dev
;
1003 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1004 struct drm_framebuffer
*fb
= crtc
->fb
;
1005 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1006 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1007 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1009 u32 fbc_ctl
, fbc_ctl2
;
1011 dev_priv
->cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1013 if (fb
->pitch
< dev_priv
->cfb_pitch
)
1014 dev_priv
->cfb_pitch
= fb
->pitch
;
1016 /* FBC_CTL wants 64B units */
1017 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1018 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1019 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1020 plane
= dev_priv
->cfb_plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1022 /* Clear old tags */
1023 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1024 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1027 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| plane
;
1028 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1029 fbc_ctl2
|= FBC_CTL_CPU_FENCE
;
1030 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1031 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1034 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1036 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
1037 fbc_ctl
|= (dev_priv
->cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1038 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1039 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1040 fbc_ctl
|= dev_priv
->cfb_fence
;
1041 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1043 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1044 dev_priv
->cfb_pitch
, crtc
->y
, dev_priv
->cfb_plane
);
1047 void i8xx_disable_fbc(struct drm_device
*dev
)
1049 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1052 if (!I915_HAS_FBC(dev
))
1055 /* Disable compression */
1056 fbc_ctl
= I915_READ(FBC_CONTROL
);
1057 fbc_ctl
&= ~FBC_CTL_EN
;
1058 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1060 /* Wait for compressing bit to clear */
1061 while (I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
)
1064 intel_wait_for_vblank(dev
);
1066 DRM_DEBUG_KMS("disabled FBC\n");
1069 static bool i8xx_fbc_enabled(struct drm_crtc
*crtc
)
1071 struct drm_device
*dev
= crtc
->dev
;
1072 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1074 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1077 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1079 struct drm_device
*dev
= crtc
->dev
;
1080 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1081 struct drm_framebuffer
*fb
= crtc
->fb
;
1082 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1083 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1084 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1085 int plane
= (intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
:
1087 unsigned long stall_watermark
= 200;
1090 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1091 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1092 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1094 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1095 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1096 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
;
1097 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1099 I915_WRITE(DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1102 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1103 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1104 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1105 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1106 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1109 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1111 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1114 void g4x_disable_fbc(struct drm_device
*dev
)
1116 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1119 /* Disable compression */
1120 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1121 dpfc_ctl
&= ~DPFC_CTL_EN
;
1122 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1123 intel_wait_for_vblank(dev
);
1125 DRM_DEBUG_KMS("disabled FBC\n");
1128 static bool g4x_fbc_enabled(struct drm_crtc
*crtc
)
1130 struct drm_device
*dev
= crtc
->dev
;
1131 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1133 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1137 * intel_update_fbc - enable/disable FBC as needed
1138 * @crtc: CRTC to point the compressor at
1139 * @mode: mode in use
1141 * Set up the framebuffer compression hardware at mode set time. We
1142 * enable it if possible:
1143 * - plane A only (on pre-965)
1144 * - no pixel mulitply/line duplication
1145 * - no alpha buffer discard
1147 * - framebuffer <= 2048 in width, 1536 in height
1149 * We can't assume that any compression will take place (worst case),
1150 * so the compressed buffer has to be the same size as the uncompressed
1151 * one. It also must reside (along with the line length buffer) in
1154 * We need to enable/disable FBC on a global basis.
1156 static void intel_update_fbc(struct drm_crtc
*crtc
,
1157 struct drm_display_mode
*mode
)
1159 struct drm_device
*dev
= crtc
->dev
;
1160 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1161 struct drm_framebuffer
*fb
= crtc
->fb
;
1162 struct intel_framebuffer
*intel_fb
;
1163 struct drm_i915_gem_object
*obj_priv
;
1164 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1165 int plane
= intel_crtc
->plane
;
1167 if (!i915_powersave
)
1170 if (!dev_priv
->display
.fbc_enabled
||
1171 !dev_priv
->display
.enable_fbc
||
1172 !dev_priv
->display
.disable_fbc
)
1178 intel_fb
= to_intel_framebuffer(fb
);
1179 obj_priv
= to_intel_bo(intel_fb
->obj
);
1182 * If FBC is already on, we just have to verify that we can
1183 * keep it that way...
1184 * Need to disable if:
1185 * - changing FBC params (stride, fence, mode)
1186 * - new fb is too large to fit in compressed buffer
1187 * - going to an unsupported config (interlace, pixel multiply, etc.)
1189 if (intel_fb
->obj
->size
> dev_priv
->cfb_size
) {
1190 DRM_DEBUG_KMS("framebuffer too large, disabling "
1192 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1195 if ((mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ||
1196 (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1197 DRM_DEBUG_KMS("mode incompatible with compression, "
1199 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1202 if ((mode
->hdisplay
> 2048) ||
1203 (mode
->vdisplay
> 1536)) {
1204 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1205 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1208 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && plane
!= 0) {
1209 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1210 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1213 if (obj_priv
->tiling_mode
!= I915_TILING_X
) {
1214 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1215 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1219 if (dev_priv
->display
.fbc_enabled(crtc
)) {
1220 /* We can re-enable it in this case, but need to update pitch */
1221 if (fb
->pitch
> dev_priv
->cfb_pitch
)
1222 dev_priv
->display
.disable_fbc(dev
);
1223 if (obj_priv
->fence_reg
!= dev_priv
->cfb_fence
)
1224 dev_priv
->display
.disable_fbc(dev
);
1225 if (plane
!= dev_priv
->cfb_plane
)
1226 dev_priv
->display
.disable_fbc(dev
);
1229 if (!dev_priv
->display
.fbc_enabled(crtc
)) {
1230 /* Now try to turn it back on if possible */
1231 dev_priv
->display
.enable_fbc(crtc
, 500);
1237 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1238 /* Multiple disables should be harmless */
1239 if (dev_priv
->display
.fbc_enabled(crtc
))
1240 dev_priv
->display
.disable_fbc(dev
);
1244 intel_pin_and_fence_fb_obj(struct drm_device
*dev
, struct drm_gem_object
*obj
)
1246 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(obj
);
1250 switch (obj_priv
->tiling_mode
) {
1251 case I915_TILING_NONE
:
1252 alignment
= 64 * 1024;
1255 /* pin() will align the object as required by fence */
1259 /* FIXME: Is this true? */
1260 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1266 ret
= i915_gem_object_pin(obj
, alignment
);
1270 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1271 * fence, whereas 965+ only requires a fence if using
1272 * framebuffer compression. For simplicity, we always install
1273 * a fence as the cost is not that onerous.
1275 if (obj_priv
->fence_reg
== I915_FENCE_REG_NONE
&&
1276 obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1277 ret
= i915_gem_object_get_fence_reg(obj
);
1279 i915_gem_object_unpin(obj
);
1288 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
1289 struct drm_framebuffer
*old_fb
)
1291 struct drm_device
*dev
= crtc
->dev
;
1292 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1293 struct drm_i915_master_private
*master_priv
;
1294 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1295 struct intel_framebuffer
*intel_fb
;
1296 struct drm_i915_gem_object
*obj_priv
;
1297 struct drm_gem_object
*obj
;
1298 int pipe
= intel_crtc
->pipe
;
1299 int plane
= intel_crtc
->plane
;
1300 unsigned long Start
, Offset
;
1301 int dspbase
= (plane
== 0 ? DSPAADDR
: DSPBADDR
);
1302 int dspsurf
= (plane
== 0 ? DSPASURF
: DSPBSURF
);
1303 int dspstride
= (plane
== 0) ? DSPASTRIDE
: DSPBSTRIDE
;
1304 int dsptileoff
= (plane
== 0 ? DSPATILEOFF
: DSPBTILEOFF
);
1305 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1311 DRM_DEBUG_KMS("No FB bound\n");
1320 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1324 intel_fb
= to_intel_framebuffer(crtc
->fb
);
1325 obj
= intel_fb
->obj
;
1326 obj_priv
= to_intel_bo(obj
);
1328 mutex_lock(&dev
->struct_mutex
);
1329 ret
= intel_pin_and_fence_fb_obj(dev
, obj
);
1331 mutex_unlock(&dev
->struct_mutex
);
1335 ret
= i915_gem_object_set_to_display_plane(obj
);
1337 i915_gem_object_unpin(obj
);
1338 mutex_unlock(&dev
->struct_mutex
);
1342 dspcntr
= I915_READ(dspcntr_reg
);
1343 /* Mask out pixel format bits in case we change it */
1344 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1345 switch (crtc
->fb
->bits_per_pixel
) {
1347 dspcntr
|= DISPPLANE_8BPP
;
1350 if (crtc
->fb
->depth
== 15)
1351 dspcntr
|= DISPPLANE_15_16BPP
;
1353 dspcntr
|= DISPPLANE_16BPP
;
1357 if (crtc
->fb
->depth
== 30)
1358 dspcntr
|= DISPPLANE_32BPP_30BIT_NO_ALPHA
;
1360 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1363 DRM_ERROR("Unknown color depth\n");
1364 i915_gem_object_unpin(obj
);
1365 mutex_unlock(&dev
->struct_mutex
);
1368 if (IS_I965G(dev
)) {
1369 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1370 dspcntr
|= DISPPLANE_TILED
;
1372 dspcntr
&= ~DISPPLANE_TILED
;
1375 if (HAS_PCH_SPLIT(dev
))
1377 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
1379 I915_WRITE(dspcntr_reg
, dspcntr
);
1381 Start
= obj_priv
->gtt_offset
;
1382 Offset
= y
* crtc
->fb
->pitch
+ x
* (crtc
->fb
->bits_per_pixel
/ 8);
1384 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start
, Offset
, x
, y
);
1385 I915_WRITE(dspstride
, crtc
->fb
->pitch
);
1386 if (IS_I965G(dev
)) {
1387 I915_WRITE(dspbase
, Offset
);
1389 I915_WRITE(dspsurf
, Start
);
1391 I915_WRITE(dsptileoff
, (y
<< 16) | x
);
1393 I915_WRITE(dspbase
, Start
+ Offset
);
1397 if ((IS_I965G(dev
) || plane
== 0))
1398 intel_update_fbc(crtc
, &crtc
->mode
);
1400 intel_wait_for_vblank(dev
);
1403 intel_fb
= to_intel_framebuffer(old_fb
);
1404 obj_priv
= to_intel_bo(intel_fb
->obj
);
1405 i915_gem_object_unpin(intel_fb
->obj
);
1407 intel_increase_pllclock(crtc
, true);
1409 mutex_unlock(&dev
->struct_mutex
);
1411 if (!dev
->primary
->master
)
1414 master_priv
= dev
->primary
->master
->driver_priv
;
1415 if (!master_priv
->sarea_priv
)
1419 master_priv
->sarea_priv
->pipeB_x
= x
;
1420 master_priv
->sarea_priv
->pipeB_y
= y
;
1422 master_priv
->sarea_priv
->pipeA_x
= x
;
1423 master_priv
->sarea_priv
->pipeA_y
= y
;
1429 /* Disable the VGA plane that we never use */
1430 static void i915_disable_vga (struct drm_device
*dev
)
1432 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1436 if (HAS_PCH_SPLIT(dev
))
1437 vga_reg
= CPU_VGACNTRL
;
1441 if (I915_READ(vga_reg
) & VGA_DISP_DISABLE
)
1444 I915_WRITE8(VGA_SR_INDEX
, 1);
1445 sr1
= I915_READ8(VGA_SR_DATA
);
1446 I915_WRITE8(VGA_SR_DATA
, sr1
| (1 << 5));
1449 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
1452 static void ironlake_disable_pll_edp (struct drm_crtc
*crtc
)
1454 struct drm_device
*dev
= crtc
->dev
;
1455 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1458 DRM_DEBUG_KMS("\n");
1459 dpa_ctl
= I915_READ(DP_A
);
1460 dpa_ctl
&= ~DP_PLL_ENABLE
;
1461 I915_WRITE(DP_A
, dpa_ctl
);
1464 static void ironlake_enable_pll_edp (struct drm_crtc
*crtc
)
1466 struct drm_device
*dev
= crtc
->dev
;
1467 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1470 dpa_ctl
= I915_READ(DP_A
);
1471 dpa_ctl
|= DP_PLL_ENABLE
;
1472 I915_WRITE(DP_A
, dpa_ctl
);
1477 static void ironlake_set_pll_edp (struct drm_crtc
*crtc
, int clock
)
1479 struct drm_device
*dev
= crtc
->dev
;
1480 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1483 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
1484 dpa_ctl
= I915_READ(DP_A
);
1485 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
1487 if (clock
< 200000) {
1489 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
1490 /* workaround for 160Mhz:
1491 1) program 0x4600c bits 15:0 = 0x8124
1492 2) program 0x46010 bit 0 = 1
1493 3) program 0x46034 bit 24 = 1
1494 4) program 0x64000 bit 14 = 1
1496 temp
= I915_READ(0x4600c);
1498 I915_WRITE(0x4600c, temp
| 0x8124);
1500 temp
= I915_READ(0x46010);
1501 I915_WRITE(0x46010, temp
| 1);
1503 temp
= I915_READ(0x46034);
1504 I915_WRITE(0x46034, temp
| (1 << 24));
1506 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
1508 I915_WRITE(DP_A
, dpa_ctl
);
1513 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1515 struct drm_device
*dev
= crtc
->dev
;
1516 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1517 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1518 int pipe
= intel_crtc
->pipe
;
1519 int plane
= intel_crtc
->plane
;
1520 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
1521 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1522 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1523 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1524 int fdi_tx_reg
= (pipe
== 0) ? FDI_TXA_CTL
: FDI_TXB_CTL
;
1525 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
1526 int fdi_rx_iir_reg
= (pipe
== 0) ? FDI_RXA_IIR
: FDI_RXB_IIR
;
1527 int fdi_rx_imr_reg
= (pipe
== 0) ? FDI_RXA_IMR
: FDI_RXB_IMR
;
1528 int transconf_reg
= (pipe
== 0) ? TRANSACONF
: TRANSBCONF
;
1529 int pf_ctl_reg
= (pipe
== 0) ? PFA_CTL_1
: PFB_CTL_1
;
1530 int pf_win_size
= (pipe
== 0) ? PFA_WIN_SZ
: PFB_WIN_SZ
;
1531 int pf_win_pos
= (pipe
== 0) ? PFA_WIN_POS
: PFB_WIN_POS
;
1532 int cpu_htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
1533 int cpu_hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
1534 int cpu_hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
1535 int cpu_vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
1536 int cpu_vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
1537 int cpu_vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
1538 int trans_htot_reg
= (pipe
== 0) ? TRANS_HTOTAL_A
: TRANS_HTOTAL_B
;
1539 int trans_hblank_reg
= (pipe
== 0) ? TRANS_HBLANK_A
: TRANS_HBLANK_B
;
1540 int trans_hsync_reg
= (pipe
== 0) ? TRANS_HSYNC_A
: TRANS_HSYNC_B
;
1541 int trans_vtot_reg
= (pipe
== 0) ? TRANS_VTOTAL_A
: TRANS_VTOTAL_B
;
1542 int trans_vblank_reg
= (pipe
== 0) ? TRANS_VBLANK_A
: TRANS_VBLANK_B
;
1543 int trans_vsync_reg
= (pipe
== 0) ? TRANS_VSYNC_A
: TRANS_VSYNC_B
;
1545 int tries
= 5, j
, n
;
1548 temp
= I915_READ(pipeconf_reg
);
1549 pipe_bpc
= temp
& PIPE_BPC_MASK
;
1551 /* XXX: When our outputs are all unaware of DPMS modes other than off
1552 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1555 case DRM_MODE_DPMS_ON
:
1556 case DRM_MODE_DPMS_STANDBY
:
1557 case DRM_MODE_DPMS_SUSPEND
:
1558 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe
);
1560 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1561 temp
= I915_READ(PCH_LVDS
);
1562 if ((temp
& LVDS_PORT_EN
) == 0) {
1563 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
1564 POSTING_READ(PCH_LVDS
);
1569 /* enable eDP PLL */
1570 ironlake_enable_pll_edp(crtc
);
1572 /* enable PCH DPLL */
1573 temp
= I915_READ(pch_dpll_reg
);
1574 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1575 I915_WRITE(pch_dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1576 I915_READ(pch_dpll_reg
);
1579 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1580 temp
= I915_READ(fdi_rx_reg
);
1582 * make the BPC in FDI Rx be consistent with that in
1585 temp
&= ~(0x7 << 16);
1586 temp
|= (pipe_bpc
<< 11);
1587 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
|
1589 FDI_DP_PORT_WIDTH_X4
); /* default 4 lanes */
1590 I915_READ(fdi_rx_reg
);
1593 /* Enable CPU FDI TX PLL, always on for Ironlake */
1594 temp
= I915_READ(fdi_tx_reg
);
1595 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
1596 I915_WRITE(fdi_tx_reg
, temp
| FDI_TX_PLL_ENABLE
);
1597 I915_READ(fdi_tx_reg
);
1602 /* Enable panel fitting for LVDS */
1603 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1604 temp
= I915_READ(pf_ctl_reg
);
1605 I915_WRITE(pf_ctl_reg
, temp
| PF_ENABLE
| PF_FILTER_MED_3x3
);
1607 /* currently full aspect */
1608 I915_WRITE(pf_win_pos
, 0);
1610 I915_WRITE(pf_win_size
,
1611 (dev_priv
->panel_fixed_mode
->hdisplay
<< 16) |
1612 (dev_priv
->panel_fixed_mode
->vdisplay
));
1615 /* Enable CPU pipe */
1616 temp
= I915_READ(pipeconf_reg
);
1617 if ((temp
& PIPEACONF_ENABLE
) == 0) {
1618 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1619 I915_READ(pipeconf_reg
);
1623 /* configure and enable CPU plane */
1624 temp
= I915_READ(dspcntr_reg
);
1625 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1626 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1627 /* Flush the plane changes */
1628 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1632 /* enable CPU FDI TX and PCH FDI RX */
1633 temp
= I915_READ(fdi_tx_reg
);
1634 temp
|= FDI_TX_ENABLE
;
1635 temp
|= FDI_DP_PORT_WIDTH_X4
; /* default */
1636 temp
&= ~FDI_LINK_TRAIN_NONE
;
1637 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1638 I915_WRITE(fdi_tx_reg
, temp
);
1639 I915_READ(fdi_tx_reg
);
1641 temp
= I915_READ(fdi_rx_reg
);
1642 temp
&= ~FDI_LINK_TRAIN_NONE
;
1643 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1644 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_ENABLE
);
1645 I915_READ(fdi_rx_reg
);
1650 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1652 temp
= I915_READ(fdi_rx_imr_reg
);
1653 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1654 temp
&= ~FDI_RX_BIT_LOCK
;
1655 I915_WRITE(fdi_rx_imr_reg
, temp
);
1656 I915_READ(fdi_rx_imr_reg
);
1659 temp
= I915_READ(fdi_rx_iir_reg
);
1660 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1662 if ((temp
& FDI_RX_BIT_LOCK
) == 0) {
1663 for (j
= 0; j
< tries
; j
++) {
1664 temp
= I915_READ(fdi_rx_iir_reg
);
1665 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1667 if (temp
& FDI_RX_BIT_LOCK
)
1672 I915_WRITE(fdi_rx_iir_reg
,
1673 temp
| FDI_RX_BIT_LOCK
);
1675 DRM_DEBUG_KMS("train 1 fail\n");
1677 I915_WRITE(fdi_rx_iir_reg
,
1678 temp
| FDI_RX_BIT_LOCK
);
1679 DRM_DEBUG_KMS("train 1 ok 2!\n");
1681 temp
= I915_READ(fdi_tx_reg
);
1682 temp
&= ~FDI_LINK_TRAIN_NONE
;
1683 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1684 I915_WRITE(fdi_tx_reg
, temp
);
1686 temp
= I915_READ(fdi_rx_reg
);
1687 temp
&= ~FDI_LINK_TRAIN_NONE
;
1688 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1689 I915_WRITE(fdi_rx_reg
, temp
);
1693 temp
= I915_READ(fdi_rx_iir_reg
);
1694 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1696 if ((temp
& FDI_RX_SYMBOL_LOCK
) == 0) {
1697 for (j
= 0; j
< tries
; j
++) {
1698 temp
= I915_READ(fdi_rx_iir_reg
);
1699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1701 if (temp
& FDI_RX_SYMBOL_LOCK
)
1706 I915_WRITE(fdi_rx_iir_reg
,
1707 temp
| FDI_RX_SYMBOL_LOCK
);
1708 DRM_DEBUG_KMS("train 2 ok 1!\n");
1710 DRM_DEBUG_KMS("train 2 fail\n");
1712 I915_WRITE(fdi_rx_iir_reg
,
1713 temp
| FDI_RX_SYMBOL_LOCK
);
1714 DRM_DEBUG_KMS("train 2 ok 2!\n");
1716 DRM_DEBUG_KMS("train done\n");
1718 /* set transcoder timing */
1719 I915_WRITE(trans_htot_reg
, I915_READ(cpu_htot_reg
));
1720 I915_WRITE(trans_hblank_reg
, I915_READ(cpu_hblank_reg
));
1721 I915_WRITE(trans_hsync_reg
, I915_READ(cpu_hsync_reg
));
1723 I915_WRITE(trans_vtot_reg
, I915_READ(cpu_vtot_reg
));
1724 I915_WRITE(trans_vblank_reg
, I915_READ(cpu_vblank_reg
));
1725 I915_WRITE(trans_vsync_reg
, I915_READ(cpu_vsync_reg
));
1727 /* enable PCH transcoder */
1728 temp
= I915_READ(transconf_reg
);
1730 * make the BPC in transcoder be consistent with
1731 * that in pipeconf reg.
1733 temp
&= ~PIPE_BPC_MASK
;
1735 I915_WRITE(transconf_reg
, temp
| TRANS_ENABLE
);
1736 I915_READ(transconf_reg
);
1738 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) == 0)
1743 temp
= I915_READ(fdi_tx_reg
);
1744 temp
&= ~FDI_LINK_TRAIN_NONE
;
1745 I915_WRITE(fdi_tx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1746 FDI_TX_ENHANCE_FRAME_ENABLE
);
1747 I915_READ(fdi_tx_reg
);
1749 temp
= I915_READ(fdi_rx_reg
);
1750 temp
&= ~FDI_LINK_TRAIN_NONE
;
1751 I915_WRITE(fdi_rx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1752 FDI_RX_ENHANCE_FRAME_ENABLE
);
1753 I915_READ(fdi_rx_reg
);
1755 /* wait one idle pattern time */
1760 intel_crtc_load_lut(crtc
);
1763 case DRM_MODE_DPMS_OFF
:
1764 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe
);
1766 drm_vblank_off(dev
, pipe
);
1767 /* Disable display plane */
1768 temp
= I915_READ(dspcntr_reg
);
1769 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
1770 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
1771 /* Flush the plane changes */
1772 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1773 I915_READ(dspbase_reg
);
1776 i915_disable_vga(dev
);
1778 /* disable cpu pipe, disable after all planes disabled */
1779 temp
= I915_READ(pipeconf_reg
);
1780 if ((temp
& PIPEACONF_ENABLE
) != 0) {
1781 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
1782 I915_READ(pipeconf_reg
);
1784 /* wait for cpu pipe off, pipe state */
1785 while ((I915_READ(pipeconf_reg
) & I965_PIPECONF_ACTIVE
) != 0) {
1791 DRM_DEBUG_KMS("pipe %d off delay\n",
1797 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe
);
1802 temp
= I915_READ(pf_ctl_reg
);
1803 if ((temp
& PF_ENABLE
) != 0) {
1804 I915_WRITE(pf_ctl_reg
, temp
& ~PF_ENABLE
);
1805 I915_READ(pf_ctl_reg
);
1807 I915_WRITE(pf_win_size
, 0);
1809 /* disable CPU FDI tx and PCH FDI rx */
1810 temp
= I915_READ(fdi_tx_reg
);
1811 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_ENABLE
);
1812 I915_READ(fdi_tx_reg
);
1814 temp
= I915_READ(fdi_rx_reg
);
1815 /* BPC in FDI rx is consistent with that in pipeconf */
1816 temp
&= ~(0x07 << 16);
1817 temp
|= (pipe_bpc
<< 11);
1818 I915_WRITE(fdi_rx_reg
, temp
& ~FDI_RX_ENABLE
);
1819 I915_READ(fdi_rx_reg
);
1823 /* still set train pattern 1 */
1824 temp
= I915_READ(fdi_tx_reg
);
1825 temp
&= ~FDI_LINK_TRAIN_NONE
;
1826 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1827 I915_WRITE(fdi_tx_reg
, temp
);
1829 temp
= I915_READ(fdi_rx_reg
);
1830 temp
&= ~FDI_LINK_TRAIN_NONE
;
1831 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1832 I915_WRITE(fdi_rx_reg
, temp
);
1836 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1837 temp
= I915_READ(PCH_LVDS
);
1838 I915_WRITE(PCH_LVDS
, temp
& ~LVDS_PORT_EN
);
1839 I915_READ(PCH_LVDS
);
1843 /* disable PCH transcoder */
1844 temp
= I915_READ(transconf_reg
);
1845 if ((temp
& TRANS_ENABLE
) != 0) {
1846 I915_WRITE(transconf_reg
, temp
& ~TRANS_ENABLE
);
1847 I915_READ(transconf_reg
);
1849 /* wait for PCH transcoder off, transcoder state */
1850 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) != 0) {
1856 DRM_DEBUG_KMS("transcoder %d off "
1862 temp
= I915_READ(transconf_reg
);
1863 /* BPC in transcoder is consistent with that in pipeconf */
1864 temp
&= ~PIPE_BPC_MASK
;
1866 I915_WRITE(transconf_reg
, temp
);
1867 I915_READ(transconf_reg
);
1870 /* disable PCH DPLL */
1871 temp
= I915_READ(pch_dpll_reg
);
1872 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
1873 I915_WRITE(pch_dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
1874 I915_READ(pch_dpll_reg
);
1878 ironlake_disable_pll_edp(crtc
);
1881 temp
= I915_READ(fdi_rx_reg
);
1882 temp
&= ~FDI_SEL_PCDCLK
;
1883 I915_WRITE(fdi_rx_reg
, temp
);
1884 I915_READ(fdi_rx_reg
);
1886 temp
= I915_READ(fdi_rx_reg
);
1887 temp
&= ~FDI_RX_PLL_ENABLE
;
1888 I915_WRITE(fdi_rx_reg
, temp
);
1889 I915_READ(fdi_rx_reg
);
1891 /* Disable CPU FDI TX PLL */
1892 temp
= I915_READ(fdi_tx_reg
);
1893 if ((temp
& FDI_TX_PLL_ENABLE
) != 0) {
1894 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_PLL_ENABLE
);
1895 I915_READ(fdi_tx_reg
);
1899 /* Wait for the clocks to turn off. */
1905 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
1907 struct intel_overlay
*overlay
;
1910 if (!enable
&& intel_crtc
->overlay
) {
1911 overlay
= intel_crtc
->overlay
;
1912 mutex_lock(&overlay
->dev
->struct_mutex
);
1914 ret
= intel_overlay_switch_off(overlay
);
1918 ret
= intel_overlay_recover_from_interrupt(overlay
, 0);
1920 /* overlay doesn't react anymore. Usually
1921 * results in a black screen and an unkillable
1924 overlay
->hw_wedged
= HW_WEDGED
;
1928 mutex_unlock(&overlay
->dev
->struct_mutex
);
1930 /* Let userspace switch the overlay on again. In most cases userspace
1931 * has to recompute where to put it anyway. */
1936 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1938 struct drm_device
*dev
= crtc
->dev
;
1939 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1940 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1941 int pipe
= intel_crtc
->pipe
;
1942 int plane
= intel_crtc
->plane
;
1943 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
1944 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1945 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1946 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1949 /* XXX: When our outputs are all unaware of DPMS modes other than off
1950 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1953 case DRM_MODE_DPMS_ON
:
1954 case DRM_MODE_DPMS_STANDBY
:
1955 case DRM_MODE_DPMS_SUSPEND
:
1956 intel_update_watermarks(dev
);
1958 /* Enable the DPLL */
1959 temp
= I915_READ(dpll_reg
);
1960 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1961 I915_WRITE(dpll_reg
, temp
);
1962 I915_READ(dpll_reg
);
1963 /* Wait for the clocks to stabilize. */
1965 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1966 I915_READ(dpll_reg
);
1967 /* Wait for the clocks to stabilize. */
1969 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1970 I915_READ(dpll_reg
);
1971 /* Wait for the clocks to stabilize. */
1975 /* Enable the pipe */
1976 temp
= I915_READ(pipeconf_reg
);
1977 if ((temp
& PIPEACONF_ENABLE
) == 0)
1978 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1980 /* Enable the plane */
1981 temp
= I915_READ(dspcntr_reg
);
1982 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1983 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1984 /* Flush the plane changes */
1985 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1988 intel_crtc_load_lut(crtc
);
1990 if ((IS_I965G(dev
) || plane
== 0))
1991 intel_update_fbc(crtc
, &crtc
->mode
);
1993 /* Give the overlay scaler a chance to enable if it's on this pipe */
1994 intel_crtc_dpms_overlay(intel_crtc
, true);
1996 case DRM_MODE_DPMS_OFF
:
1997 intel_update_watermarks(dev
);
1999 /* Give the overlay scaler a chance to disable if it's on this pipe */
2000 intel_crtc_dpms_overlay(intel_crtc
, false);
2001 drm_vblank_off(dev
, pipe
);
2003 if (dev_priv
->cfb_plane
== plane
&&
2004 dev_priv
->display
.disable_fbc
)
2005 dev_priv
->display
.disable_fbc(dev
);
2007 /* Disable the VGA plane that we never use */
2008 i915_disable_vga(dev
);
2010 /* Disable display plane */
2011 temp
= I915_READ(dspcntr_reg
);
2012 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
2013 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
2014 /* Flush the plane changes */
2015 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
2016 I915_READ(dspbase_reg
);
2019 if (!IS_I9XX(dev
)) {
2020 /* Wait for vblank for the disable to take effect */
2021 intel_wait_for_vblank(dev
);
2024 /* Next, disable display pipes */
2025 temp
= I915_READ(pipeconf_reg
);
2026 if ((temp
& PIPEACONF_ENABLE
) != 0) {
2027 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
2028 I915_READ(pipeconf_reg
);
2031 /* Wait for vblank for the disable to take effect. */
2032 intel_wait_for_vblank(dev
);
2034 temp
= I915_READ(dpll_reg
);
2035 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
2036 I915_WRITE(dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
2037 I915_READ(dpll_reg
);
2040 /* Wait for the clocks to turn off. */
2047 * Sets the power management mode of the pipe and plane.
2049 * This code should probably grow support for turning the cursor off and back
2050 * on appropriately at the same time as we're turning the pipe off/on.
2052 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2054 struct drm_device
*dev
= crtc
->dev
;
2055 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2056 struct drm_i915_master_private
*master_priv
;
2057 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2058 int pipe
= intel_crtc
->pipe
;
2061 dev_priv
->display
.dpms(crtc
, mode
);
2063 intel_crtc
->dpms_mode
= mode
;
2065 if (!dev
->primary
->master
)
2068 master_priv
= dev
->primary
->master
->driver_priv
;
2069 if (!master_priv
->sarea_priv
)
2072 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
2076 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2077 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2080 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2081 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2084 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
2089 static void intel_crtc_prepare (struct drm_crtc
*crtc
)
2091 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2092 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
2095 static void intel_crtc_commit (struct drm_crtc
*crtc
)
2097 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2098 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
2101 void intel_encoder_prepare (struct drm_encoder
*encoder
)
2103 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2104 /* lvds has its own version of prepare see intel_lvds_prepare */
2105 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
2108 void intel_encoder_commit (struct drm_encoder
*encoder
)
2110 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2111 /* lvds has its own version of commit see intel_lvds_commit */
2112 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
2115 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
2116 struct drm_display_mode
*mode
,
2117 struct drm_display_mode
*adjusted_mode
)
2119 struct drm_device
*dev
= crtc
->dev
;
2120 if (HAS_PCH_SPLIT(dev
)) {
2121 /* FDI link clock is fixed at 2.7G */
2122 if (mode
->clock
* 3 > 27000 * 4)
2123 return MODE_CLOCK_HIGH
;
2128 static int i945_get_display_clock_speed(struct drm_device
*dev
)
2133 static int i915_get_display_clock_speed(struct drm_device
*dev
)
2138 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
2143 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
2147 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
2149 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
2152 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
2153 case GC_DISPLAY_CLOCK_333_MHZ
:
2156 case GC_DISPLAY_CLOCK_190_200_MHZ
:
2162 static int i865_get_display_clock_speed(struct drm_device
*dev
)
2167 static int i855_get_display_clock_speed(struct drm_device
*dev
)
2170 /* Assume that the hardware is in the high speed state. This
2171 * should be the default.
2173 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
2174 case GC_CLOCK_133_200
:
2175 case GC_CLOCK_100_200
:
2177 case GC_CLOCK_166_250
:
2179 case GC_CLOCK_100_133
:
2183 /* Shouldn't happen */
2187 static int i830_get_display_clock_speed(struct drm_device
*dev
)
2193 * Return the pipe currently connected to the panel fitter,
2194 * or -1 if the panel fitter is not present or not in use
2196 int intel_panel_fitter_pipe (struct drm_device
*dev
)
2198 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2201 /* i830 doesn't have a panel fitter */
2205 pfit_control
= I915_READ(PFIT_CONTROL
);
2207 /* See if the panel fitter is in use */
2208 if ((pfit_control
& PFIT_ENABLE
) == 0)
2211 /* 965 can place panel fitter on either pipe */
2213 return (pfit_control
>> 29) & 0x3;
2215 /* older chips can only use pipe 1 */
2228 fdi_reduce_ratio(u32
*num
, u32
*den
)
2230 while (*num
> 0xffffff || *den
> 0xffffff) {
2236 #define DATA_N 0x800000
2237 #define LINK_N 0x80000
2240 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
2241 int link_clock
, struct fdi_m_n
*m_n
)
2245 m_n
->tu
= 64; /* default size */
2247 temp
= (u64
) DATA_N
* pixel_clock
;
2248 temp
= div_u64(temp
, link_clock
);
2249 m_n
->gmch_m
= div_u64(temp
* bits_per_pixel
, nlanes
);
2250 m_n
->gmch_m
>>= 3; /* convert to bytes_per_pixel */
2251 m_n
->gmch_n
= DATA_N
;
2252 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
2254 temp
= (u64
) LINK_N
* pixel_clock
;
2255 m_n
->link_m
= div_u64(temp
, link_clock
);
2256 m_n
->link_n
= LINK_N
;
2257 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
2261 struct intel_watermark_params
{
2262 unsigned long fifo_size
;
2263 unsigned long max_wm
;
2264 unsigned long default_wm
;
2265 unsigned long guard_size
;
2266 unsigned long cacheline_size
;
2269 /* Pineview has different values for various configs */
2270 static struct intel_watermark_params pineview_display_wm
= {
2271 PINEVIEW_DISPLAY_FIFO
,
2275 PINEVIEW_FIFO_LINE_SIZE
2277 static struct intel_watermark_params pineview_display_hplloff_wm
= {
2278 PINEVIEW_DISPLAY_FIFO
,
2280 PINEVIEW_DFT_HPLLOFF_WM
,
2282 PINEVIEW_FIFO_LINE_SIZE
2284 static struct intel_watermark_params pineview_cursor_wm
= {
2285 PINEVIEW_CURSOR_FIFO
,
2286 PINEVIEW_CURSOR_MAX_WM
,
2287 PINEVIEW_CURSOR_DFT_WM
,
2288 PINEVIEW_CURSOR_GUARD_WM
,
2289 PINEVIEW_FIFO_LINE_SIZE
,
2291 static struct intel_watermark_params pineview_cursor_hplloff_wm
= {
2292 PINEVIEW_CURSOR_FIFO
,
2293 PINEVIEW_CURSOR_MAX_WM
,
2294 PINEVIEW_CURSOR_DFT_WM
,
2295 PINEVIEW_CURSOR_GUARD_WM
,
2296 PINEVIEW_FIFO_LINE_SIZE
2298 static struct intel_watermark_params g4x_wm_info
= {
2305 static struct intel_watermark_params i945_wm_info
= {
2312 static struct intel_watermark_params i915_wm_info
= {
2319 static struct intel_watermark_params i855_wm_info
= {
2326 static struct intel_watermark_params i830_wm_info
= {
2335 * intel_calculate_wm - calculate watermark level
2336 * @clock_in_khz: pixel clock
2337 * @wm: chip FIFO params
2338 * @pixel_size: display pixel size
2339 * @latency_ns: memory latency for the platform
2341 * Calculate the watermark level (the level at which the display plane will
2342 * start fetching from memory again). Each chip has a different display
2343 * FIFO size and allocation, so the caller needs to figure that out and pass
2344 * in the correct intel_watermark_params structure.
2346 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2347 * on the pixel size. When it reaches the watermark level, it'll start
2348 * fetching FIFO line sized based chunks from memory until the FIFO fills
2349 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2350 * will occur, and a display engine hang could result.
2352 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
2353 struct intel_watermark_params
*wm
,
2355 unsigned long latency_ns
)
2357 long entries_required
, wm_size
;
2360 * Note: we need to make sure we don't overflow for various clock &
2362 * clocks go from a few thousand to several hundred thousand.
2363 * latency is usually a few thousand
2365 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
2367 entries_required
/= wm
->cacheline_size
;
2369 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required
);
2371 wm_size
= wm
->fifo_size
- (entries_required
+ wm
->guard_size
);
2373 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size
);
2375 /* Don't promote wm_size to unsigned... */
2376 if (wm_size
> (long)wm
->max_wm
)
2377 wm_size
= wm
->max_wm
;
2379 wm_size
= wm
->default_wm
;
2383 struct cxsr_latency
{
2385 unsigned long fsb_freq
;
2386 unsigned long mem_freq
;
2387 unsigned long display_sr
;
2388 unsigned long display_hpll_disable
;
2389 unsigned long cursor_sr
;
2390 unsigned long cursor_hpll_disable
;
2393 static struct cxsr_latency cxsr_latency_table
[] = {
2394 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2395 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2396 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2398 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2399 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2400 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2402 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2403 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2404 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2406 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2407 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2408 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2410 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2411 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2412 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2414 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2415 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2416 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2419 static struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
, int fsb
,
2423 struct cxsr_latency
*latency
;
2425 if (fsb
== 0 || mem
== 0)
2428 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
2429 latency
= &cxsr_latency_table
[i
];
2430 if (is_desktop
== latency
->is_desktop
&&
2431 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
2435 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2440 static void pineview_disable_cxsr(struct drm_device
*dev
)
2442 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2445 /* deactivate cxsr */
2446 reg
= I915_READ(DSPFW3
);
2447 reg
&= ~(PINEVIEW_SELF_REFRESH_EN
);
2448 I915_WRITE(DSPFW3
, reg
);
2449 DRM_INFO("Big FIFO is disabled\n");
2452 static void pineview_enable_cxsr(struct drm_device
*dev
, unsigned long clock
,
2455 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2458 struct cxsr_latency
*latency
;
2460 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->fsb_freq
,
2461 dev_priv
->mem_freq
);
2463 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2464 pineview_disable_cxsr(dev
);
2469 wm
= intel_calculate_wm(clock
, &pineview_display_wm
, pixel_size
,
2470 latency
->display_sr
);
2471 reg
= I915_READ(DSPFW1
);
2474 I915_WRITE(DSPFW1
, reg
);
2475 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
2478 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
, pixel_size
,
2479 latency
->cursor_sr
);
2480 reg
= I915_READ(DSPFW3
);
2481 reg
&= ~(0x3f << 24);
2482 reg
|= (wm
& 0x3f) << 24;
2483 I915_WRITE(DSPFW3
, reg
);
2485 /* Display HPLL off SR */
2486 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
2487 latency
->display_hpll_disable
, I915_FIFO_LINE_SIZE
);
2488 reg
= I915_READ(DSPFW3
);
2491 I915_WRITE(DSPFW3
, reg
);
2493 /* cursor HPLL off SR */
2494 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
, pixel_size
,
2495 latency
->cursor_hpll_disable
);
2496 reg
= I915_READ(DSPFW3
);
2497 reg
&= ~(0x3f << 16);
2498 reg
|= (wm
& 0x3f) << 16;
2499 I915_WRITE(DSPFW3
, reg
);
2500 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
2503 reg
= I915_READ(DSPFW3
);
2504 reg
|= PINEVIEW_SELF_REFRESH_EN
;
2505 I915_WRITE(DSPFW3
, reg
);
2507 DRM_INFO("Big FIFO is enabled\n");
2513 * Latency for FIFO fetches is dependent on several factors:
2514 * - memory configuration (speed, channels)
2516 * - current MCH state
2517 * It can be fairly high in some situations, so here we assume a fairly
2518 * pessimal value. It's a tradeoff between extra memory fetches (if we
2519 * set this value too high, the FIFO will fetch frequently to stay full)
2520 * and power consumption (set it too low to save power and we might see
2521 * FIFO underruns and display "flicker").
2523 * A value of 5us seems to be a good balance; safe for very low end
2524 * platforms but not overly aggressive on lower latency configs.
2526 static const int latency_ns
= 5000;
2528 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
2530 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2531 uint32_t dsparb
= I915_READ(DSPARB
);
2535 size
= dsparb
& 0x7f;
2537 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) -
2540 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2541 plane
? "B" : "A", size
);
2546 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
2548 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2549 uint32_t dsparb
= I915_READ(DSPARB
);
2553 size
= dsparb
& 0x1ff;
2555 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) -
2557 size
>>= 1; /* Convert to cachelines */
2559 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2560 plane
? "B" : "A", size
);
2565 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
2567 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2568 uint32_t dsparb
= I915_READ(DSPARB
);
2571 size
= dsparb
& 0x7f;
2572 size
>>= 2; /* Convert to cachelines */
2574 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2581 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
2583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2584 uint32_t dsparb
= I915_READ(DSPARB
);
2587 size
= dsparb
& 0x7f;
2588 size
>>= 1; /* Convert to cachelines */
2590 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2591 plane
? "B" : "A", size
);
2596 static void g4x_update_wm(struct drm_device
*dev
, int planea_clock
,
2597 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2599 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2600 int total_size
, cacheline_size
;
2601 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
, cursor_sr
;
2602 struct intel_watermark_params planea_params
, planeb_params
;
2603 unsigned long line_time_us
;
2604 int sr_clock
, sr_entries
= 0, entries_required
;
2606 /* Create copies of the base settings for each pipe */
2607 planea_params
= planeb_params
= g4x_wm_info
;
2609 /* Grab a couple of global values before we overwrite them */
2610 total_size
= planea_params
.fifo_size
;
2611 cacheline_size
= planea_params
.cacheline_size
;
2614 * Note: we need to make sure we don't overflow for various clock &
2616 * clocks go from a few thousand to several hundred thousand.
2617 * latency is usually a few thousand
2619 entries_required
= ((planea_clock
/ 1000) * pixel_size
* latency_ns
) /
2621 entries_required
/= G4X_FIFO_LINE_SIZE
;
2622 planea_wm
= entries_required
+ planea_params
.guard_size
;
2624 entries_required
= ((planeb_clock
/ 1000) * pixel_size
* latency_ns
) /
2626 entries_required
/= G4X_FIFO_LINE_SIZE
;
2627 planeb_wm
= entries_required
+ planeb_params
.guard_size
;
2629 cursora_wm
= cursorb_wm
= 16;
2632 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2634 /* Calc sr entries for one plane configs */
2635 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
2636 /* self-refresh has much higher latency */
2637 static const int sr_latency_ns
= 12000;
2639 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2640 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2642 /* Use ns/us then divide to preserve precision */
2643 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2644 pixel_size
* sr_hdisplay
) / 1000;
2645 sr_entries
= roundup(sr_entries
/ cacheline_size
, 1);
2646 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
2647 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
2649 /* Turn off self refresh if both pipes are enabled */
2650 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
2654 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2655 planea_wm
, planeb_wm
, sr_entries
);
2660 I915_WRITE(DSPFW1
, (sr_entries
<< DSPFW_SR_SHIFT
) |
2661 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
2662 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) | planea_wm
);
2663 I915_WRITE(DSPFW2
, (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
2664 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
2665 /* HPLL off in SR has some issues on G4x... disable it */
2666 I915_WRITE(DSPFW3
, (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
2667 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
2670 static void i965_update_wm(struct drm_device
*dev
, int planea_clock
,
2671 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2673 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2674 unsigned long line_time_us
;
2675 int sr_clock
, sr_entries
, srwm
= 1;
2677 /* Calc sr entries for one plane configs */
2678 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
2679 /* self-refresh has much higher latency */
2680 static const int sr_latency_ns
= 12000;
2682 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2683 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2685 /* Use ns/us then divide to preserve precision */
2686 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2687 pixel_size
* sr_hdisplay
) / 1000;
2688 sr_entries
= roundup(sr_entries
/ I915_FIFO_LINE_SIZE
, 1);
2689 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
2690 srwm
= I945_FIFO_SIZE
- sr_entries
;
2694 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
2696 /* Turn off self refresh if both pipes are enabled */
2697 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
2701 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2704 /* 965 has limitations... */
2705 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) | (8 << 16) | (8 << 8) |
2707 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
2710 static void i9xx_update_wm(struct drm_device
*dev
, int planea_clock
,
2711 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2713 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2716 int total_size
, cacheline_size
, cwm
, srwm
= 1;
2717 int planea_wm
, planeb_wm
;
2718 struct intel_watermark_params planea_params
, planeb_params
;
2719 unsigned long line_time_us
;
2720 int sr_clock
, sr_entries
= 0;
2722 /* Create copies of the base settings for each pipe */
2723 if (IS_I965GM(dev
) || IS_I945GM(dev
))
2724 planea_params
= planeb_params
= i945_wm_info
;
2725 else if (IS_I9XX(dev
))
2726 planea_params
= planeb_params
= i915_wm_info
;
2728 planea_params
= planeb_params
= i855_wm_info
;
2730 /* Grab a couple of global values before we overwrite them */
2731 total_size
= planea_params
.fifo_size
;
2732 cacheline_size
= planea_params
.cacheline_size
;
2734 /* Update per-plane FIFO sizes */
2735 planea_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2736 planeb_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
2738 planea_wm
= intel_calculate_wm(planea_clock
, &planea_params
,
2739 pixel_size
, latency_ns
);
2740 planeb_wm
= intel_calculate_wm(planeb_clock
, &planeb_params
,
2741 pixel_size
, latency_ns
);
2742 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2745 * Overlay gets an aggressive default since video jitter is bad.
2749 /* Calc sr entries for one plane configs */
2750 if (HAS_FW_BLC(dev
) && sr_hdisplay
&&
2751 (!planea_clock
|| !planeb_clock
)) {
2752 /* self-refresh has much higher latency */
2753 static const int sr_latency_ns
= 6000;
2755 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2756 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2758 /* Use ns/us then divide to preserve precision */
2759 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2760 pixel_size
* sr_hdisplay
) / 1000;
2761 sr_entries
= roundup(sr_entries
/ cacheline_size
, 1);
2762 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries
);
2763 srwm
= total_size
- sr_entries
;
2767 if (IS_I945G(dev
) || IS_I945GM(dev
))
2768 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
2769 else if (IS_I915GM(dev
)) {
2770 /* 915M has a smaller SRWM field */
2771 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
2772 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
2775 /* Turn off self refresh if both pipes are enabled */
2776 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
2777 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
2779 } else if (IS_I915GM(dev
)) {
2780 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
2784 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2785 planea_wm
, planeb_wm
, cwm
, srwm
);
2787 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
2788 fwater_hi
= (cwm
& 0x1f);
2790 /* Set request length to 8 cachelines per fetch */
2791 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
2792 fwater_hi
= fwater_hi
| (1 << 8);
2794 I915_WRITE(FW_BLC
, fwater_lo
);
2795 I915_WRITE(FW_BLC2
, fwater_hi
);
2798 static void i830_update_wm(struct drm_device
*dev
, int planea_clock
, int unused
,
2799 int unused2
, int pixel_size
)
2801 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2802 uint32_t fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
2805 i830_wm_info
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2807 planea_wm
= intel_calculate_wm(planea_clock
, &i830_wm_info
,
2808 pixel_size
, latency_ns
);
2809 fwater_lo
|= (3<<8) | planea_wm
;
2811 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
2813 I915_WRITE(FW_BLC
, fwater_lo
);
2817 * intel_update_watermarks - update FIFO watermark values based on current modes
2819 * Calculate watermark values for the various WM regs based on current mode
2820 * and plane configuration.
2822 * There are several cases to deal with here:
2823 * - normal (i.e. non-self-refresh)
2824 * - self-refresh (SR) mode
2825 * - lines are large relative to FIFO size (buffer can hold up to 2)
2826 * - lines are small relative to FIFO size (buffer can hold more than 2
2827 * lines), so need to account for TLB latency
2829 * The normal calculation is:
2830 * watermark = dotclock * bytes per pixel * latency
2831 * where latency is platform & configuration dependent (we assume pessimal
2834 * The SR calculation is:
2835 * watermark = (trunc(latency/line time)+1) * surface width *
2838 * line time = htotal / dotclock
2839 * and latency is assumed to be high, as above.
2841 * The final value programmed to the register should always be rounded up,
2842 * and include an extra 2 entries to account for clock crossings.
2844 * We don't use the sprite, so we can ignore that. And on Crestline we have
2845 * to set the non-SR watermarks to 8.
2847 static void intel_update_watermarks(struct drm_device
*dev
)
2849 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2850 struct drm_crtc
*crtc
;
2851 struct intel_crtc
*intel_crtc
;
2852 int sr_hdisplay
= 0;
2853 unsigned long planea_clock
= 0, planeb_clock
= 0, sr_clock
= 0;
2854 int enabled
= 0, pixel_size
= 0;
2856 if (!dev_priv
->display
.update_wm
)
2859 /* Get the clock config from both planes */
2860 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
2861 intel_crtc
= to_intel_crtc(crtc
);
2862 if (crtc
->enabled
) {
2864 if (intel_crtc
->plane
== 0) {
2865 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2866 intel_crtc
->pipe
, crtc
->mode
.clock
);
2867 planea_clock
= crtc
->mode
.clock
;
2869 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2870 intel_crtc
->pipe
, crtc
->mode
.clock
);
2871 planeb_clock
= crtc
->mode
.clock
;
2873 sr_hdisplay
= crtc
->mode
.hdisplay
;
2874 sr_clock
= crtc
->mode
.clock
;
2876 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
2878 pixel_size
= 4; /* by default */
2885 /* Single plane configs can enable self refresh */
2886 if (enabled
== 1 && IS_PINEVIEW(dev
))
2887 pineview_enable_cxsr(dev
, sr_clock
, pixel_size
);
2888 else if (IS_PINEVIEW(dev
))
2889 pineview_disable_cxsr(dev
);
2891 dev_priv
->display
.update_wm(dev
, planea_clock
, planeb_clock
,
2892 sr_hdisplay
, pixel_size
);
2895 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
2896 struct drm_display_mode
*mode
,
2897 struct drm_display_mode
*adjusted_mode
,
2899 struct drm_framebuffer
*old_fb
)
2901 struct drm_device
*dev
= crtc
->dev
;
2902 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2903 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2904 int pipe
= intel_crtc
->pipe
;
2905 int plane
= intel_crtc
->plane
;
2906 int fp_reg
= (pipe
== 0) ? FPA0
: FPB0
;
2907 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
2908 int dpll_md_reg
= (intel_crtc
->pipe
== 0) ? DPLL_A_MD
: DPLL_B_MD
;
2909 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
2910 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
2911 int htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
2912 int hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
2913 int hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
2914 int vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
2915 int vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
2916 int vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
2917 int dspsize_reg
= (plane
== 0) ? DSPASIZE
: DSPBSIZE
;
2918 int dsppos_reg
= (plane
== 0) ? DSPAPOS
: DSPBPOS
;
2919 int pipesrc_reg
= (pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
2920 int refclk
, num_connectors
= 0;
2921 intel_clock_t clock
, reduced_clock
;
2922 u32 dpll
= 0, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
2923 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
2924 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
2925 bool is_edp
= false;
2926 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2927 struct drm_connector
*connector
;
2928 const intel_limit_t
*limit
;
2930 struct fdi_m_n m_n
= {0};
2931 int data_m1_reg
= (pipe
== 0) ? PIPEA_DATA_M1
: PIPEB_DATA_M1
;
2932 int data_n1_reg
= (pipe
== 0) ? PIPEA_DATA_N1
: PIPEB_DATA_N1
;
2933 int link_m1_reg
= (pipe
== 0) ? PIPEA_LINK_M1
: PIPEB_LINK_M1
;
2934 int link_n1_reg
= (pipe
== 0) ? PIPEA_LINK_N1
: PIPEB_LINK_N1
;
2935 int pch_fp_reg
= (pipe
== 0) ? PCH_FPA0
: PCH_FPB0
;
2936 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
2937 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
2938 int lvds_reg
= LVDS
;
2940 int sdvo_pixel_multiply
;
2943 drm_vblank_pre_modeset(dev
, pipe
);
2945 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
2946 struct intel_encoder
*intel_encoder
= to_intel_encoder(connector
);
2948 if (!connector
->encoder
|| connector
->encoder
->crtc
!= crtc
)
2951 switch (intel_encoder
->type
) {
2952 case INTEL_OUTPUT_LVDS
:
2955 case INTEL_OUTPUT_SDVO
:
2956 case INTEL_OUTPUT_HDMI
:
2958 if (intel_encoder
->needs_tv_clock
)
2961 case INTEL_OUTPUT_DVO
:
2964 case INTEL_OUTPUT_TVOUT
:
2967 case INTEL_OUTPUT_ANALOG
:
2970 case INTEL_OUTPUT_DISPLAYPORT
:
2973 case INTEL_OUTPUT_EDP
:
2981 if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_connectors
< 2) {
2982 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
2983 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2985 } else if (IS_I9XX(dev
)) {
2987 if (HAS_PCH_SPLIT(dev
))
2988 refclk
= 120000; /* 120Mhz refclk */
2995 * Returns a set of divisors for the desired target clock with the given
2996 * refclk, or FALSE. The returned values represent the clock equation:
2997 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2999 limit
= intel_limit(crtc
);
3000 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
3002 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3003 drm_vblank_post_modeset(dev
, pipe
);
3007 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
3008 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
3009 dev_priv
->lvds_downclock
,
3012 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
3014 * If the different P is found, it means that we can't
3015 * switch the display clock by using the FP0/FP1.
3016 * In such case we will disable the LVDS downclock
3019 DRM_DEBUG_KMS("Different P is found for "
3020 "LVDS clock/downclock\n");
3021 has_reduced_clock
= 0;
3024 /* SDVO TV has fixed PLL values depend on its clock range,
3025 this mirrors vbios setting. */
3026 if (is_sdvo
&& is_tv
) {
3027 if (adjusted_mode
->clock
>= 100000
3028 && adjusted_mode
->clock
< 140500) {
3034 } else if (adjusted_mode
->clock
>= 140500
3035 && adjusted_mode
->clock
<= 200000) {
3045 if (HAS_PCH_SPLIT(dev
)) {
3046 int lane
, link_bw
, bpp
;
3047 /* eDP doesn't require FDI link, so just set DP M/N
3048 according to current link config */
3050 struct drm_connector
*edp
;
3051 target_clock
= mode
->clock
;
3052 edp
= intel_pipe_get_connector(crtc
);
3053 intel_edp_link_config(to_intel_encoder(edp
),
3056 /* DP over FDI requires target mode clock
3057 instead of link clock */
3059 target_clock
= mode
->clock
;
3061 target_clock
= adjusted_mode
->clock
;
3066 /* determine panel color depth */
3067 temp
= I915_READ(pipeconf_reg
);
3068 temp
&= ~PIPE_BPC_MASK
;
3070 int lvds_reg
= I915_READ(PCH_LVDS
);
3071 /* the BPC will be 6 if it is 18-bit LVDS panel */
3072 if ((lvds_reg
& LVDS_A3_POWER_MASK
) == LVDS_A3_POWER_UP
)
3076 } else if (is_edp
) {
3077 switch (dev_priv
->edp_bpp
/3) {
3093 I915_WRITE(pipeconf_reg
, temp
);
3094 I915_READ(pipeconf_reg
);
3096 switch (temp
& PIPE_BPC_MASK
) {
3110 DRM_ERROR("unknown pipe bpc value\n");
3114 ironlake_compute_m_n(bpp
, lane
, target_clock
, link_bw
, &m_n
);
3117 /* Ironlake: try to setup display ref clock before DPLL
3118 * enabling. This is only under driver's control after
3119 * PCH B stepping, previous chipset stepping should be
3120 * ignoring this setting.
3122 if (HAS_PCH_SPLIT(dev
)) {
3123 temp
= I915_READ(PCH_DREF_CONTROL
);
3124 /* Always enable nonspread source */
3125 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
3126 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
3127 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3128 POSTING_READ(PCH_DREF_CONTROL
);
3130 temp
&= ~DREF_SSC_SOURCE_MASK
;
3131 temp
|= DREF_SSC_SOURCE_ENABLE
;
3132 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3133 POSTING_READ(PCH_DREF_CONTROL
);
3138 if (dev_priv
->lvds_use_ssc
) {
3139 temp
|= DREF_SSC1_ENABLE
;
3140 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3141 POSTING_READ(PCH_DREF_CONTROL
);
3145 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
3146 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
3147 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3148 POSTING_READ(PCH_DREF_CONTROL
);
3150 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
3151 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3152 POSTING_READ(PCH_DREF_CONTROL
);
3157 if (IS_PINEVIEW(dev
)) {
3158 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
3159 if (has_reduced_clock
)
3160 fp2
= (1 << reduced_clock
.n
) << 16 |
3161 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
3163 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
3164 if (has_reduced_clock
)
3165 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
3169 if (!HAS_PCH_SPLIT(dev
))
3170 dpll
= DPLL_VGA_MODE_DIS
;
3174 dpll
|= DPLLB_MODE_LVDS
;
3176 dpll
|= DPLLB_MODE_DAC_SERIAL
;
3178 dpll
|= DPLL_DVO_HIGH_SPEED
;
3179 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
3180 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
3181 dpll
|= (sdvo_pixel_multiply
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
3182 else if (HAS_PCH_SPLIT(dev
))
3183 dpll
|= (sdvo_pixel_multiply
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
3186 dpll
|= DPLL_DVO_HIGH_SPEED
;
3188 /* compute bitmask from p1 value */
3189 if (IS_PINEVIEW(dev
))
3190 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
3192 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3194 if (HAS_PCH_SPLIT(dev
))
3195 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3196 if (IS_G4X(dev
) && has_reduced_clock
)
3197 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3201 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
3204 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
3207 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
3210 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
3213 if (IS_I965G(dev
) && !HAS_PCH_SPLIT(dev
))
3214 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
3217 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3220 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
3222 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3224 dpll
|= PLL_P2_DIVIDE_BY_4
;
3228 if (is_sdvo
&& is_tv
)
3229 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
3231 /* XXX: just matching BIOS for now */
3232 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3234 else if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_connectors
< 2)
3235 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
3237 dpll
|= PLL_REF_INPUT_DREFCLK
;
3239 /* setup pipeconf */
3240 pipeconf
= I915_READ(pipeconf_reg
);
3242 /* Set up the display plane register */
3243 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
3245 /* Ironlake's plane is forced to pipe, bit 24 is to
3246 enable color space conversion */
3247 if (!HAS_PCH_SPLIT(dev
)) {
3249 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
3251 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
3254 if (pipe
== 0 && !IS_I965G(dev
)) {
3255 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3258 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3262 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
3263 pipeconf
|= PIPEACONF_DOUBLE_WIDE
;
3265 pipeconf
&= ~PIPEACONF_DOUBLE_WIDE
;
3268 dspcntr
|= DISPLAY_PLANE_ENABLE
;
3269 pipeconf
|= PIPEACONF_ENABLE
;
3270 dpll
|= DPLL_VCO_ENABLE
;
3273 /* Disable the panel fitter if it was on our pipe */
3274 if (!HAS_PCH_SPLIT(dev
) && intel_panel_fitter_pipe(dev
) == pipe
)
3275 I915_WRITE(PFIT_CONTROL
, 0);
3277 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
3278 drm_mode_debug_printmodeline(mode
);
3280 /* assign to Ironlake registers */
3281 if (HAS_PCH_SPLIT(dev
)) {
3282 fp_reg
= pch_fp_reg
;
3283 dpll_reg
= pch_dpll_reg
;
3287 ironlake_disable_pll_edp(crtc
);
3288 } else if ((dpll
& DPLL_VCO_ENABLE
)) {
3289 I915_WRITE(fp_reg
, fp
);
3290 I915_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
3291 I915_READ(dpll_reg
);
3295 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3296 * This is an exception to the general rule that mode_set doesn't turn
3302 if (HAS_PCH_SPLIT(dev
))
3303 lvds_reg
= PCH_LVDS
;
3305 lvds
= I915_READ(lvds_reg
);
3306 lvds
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
| LVDS_PIPEB_SELECT
;
3307 /* set the corresponsding LVDS_BORDER bit */
3308 lvds
|= dev_priv
->lvds_border_bits
;
3309 /* Set the B0-B3 data pairs corresponding to whether we're going to
3310 * set the DPLLs for dual-channel mode or not.
3313 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
3315 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
3317 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3318 * appropriately here, but we need to look more thoroughly into how
3319 * panels behave in the two modes.
3321 /* set the dithering flag */
3322 if (IS_I965G(dev
)) {
3323 if (dev_priv
->lvds_dither
) {
3324 if (HAS_PCH_SPLIT(dev
))
3325 pipeconf
|= PIPE_ENABLE_DITHER
;
3327 lvds
|= LVDS_ENABLE_DITHER
;
3329 if (HAS_PCH_SPLIT(dev
))
3330 pipeconf
&= ~PIPE_ENABLE_DITHER
;
3332 lvds
&= ~LVDS_ENABLE_DITHER
;
3335 I915_WRITE(lvds_reg
, lvds
);
3336 I915_READ(lvds_reg
);
3339 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
3342 I915_WRITE(fp_reg
, fp
);
3343 I915_WRITE(dpll_reg
, dpll
);
3344 I915_READ(dpll_reg
);
3345 /* Wait for the clocks to stabilize. */
3348 if (IS_I965G(dev
) && !HAS_PCH_SPLIT(dev
)) {
3350 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
3351 I915_WRITE(dpll_md_reg
, (0 << DPLL_MD_UDI_DIVIDER_SHIFT
) |
3352 ((sdvo_pixel_multiply
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
));
3354 I915_WRITE(dpll_md_reg
, 0);
3356 /* write it again -- the BIOS does, after all */
3357 I915_WRITE(dpll_reg
, dpll
);
3359 I915_READ(dpll_reg
);
3360 /* Wait for the clocks to stabilize. */
3364 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
3365 I915_WRITE(fp_reg
+ 4, fp2
);
3366 intel_crtc
->lowfreq_avail
= true;
3367 if (HAS_PIPE_CXSR(dev
)) {
3368 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3369 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
3372 I915_WRITE(fp_reg
+ 4, fp
);
3373 intel_crtc
->lowfreq_avail
= false;
3374 if (HAS_PIPE_CXSR(dev
)) {
3375 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3376 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
3380 I915_WRITE(htot_reg
, (adjusted_mode
->crtc_hdisplay
- 1) |
3381 ((adjusted_mode
->crtc_htotal
- 1) << 16));
3382 I915_WRITE(hblank_reg
, (adjusted_mode
->crtc_hblank_start
- 1) |
3383 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
3384 I915_WRITE(hsync_reg
, (adjusted_mode
->crtc_hsync_start
- 1) |
3385 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
3386 I915_WRITE(vtot_reg
, (adjusted_mode
->crtc_vdisplay
- 1) |
3387 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
3388 I915_WRITE(vblank_reg
, (adjusted_mode
->crtc_vblank_start
- 1) |
3389 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
3390 I915_WRITE(vsync_reg
, (adjusted_mode
->crtc_vsync_start
- 1) |
3391 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
3392 /* pipesrc and dspsize control the size that is scaled from, which should
3393 * always be the user's requested size.
3395 if (!HAS_PCH_SPLIT(dev
)) {
3396 I915_WRITE(dspsize_reg
, ((mode
->vdisplay
- 1) << 16) |
3397 (mode
->hdisplay
- 1));
3398 I915_WRITE(dsppos_reg
, 0);
3400 I915_WRITE(pipesrc_reg
, ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
3402 if (HAS_PCH_SPLIT(dev
)) {
3403 I915_WRITE(data_m1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
3404 I915_WRITE(data_n1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_n
);
3405 I915_WRITE(link_m1_reg
, m_n
.link_m
);
3406 I915_WRITE(link_n1_reg
, m_n
.link_n
);
3409 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
3411 /* enable FDI RX PLL too */
3412 temp
= I915_READ(fdi_rx_reg
);
3413 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
);
3418 I915_WRITE(pipeconf_reg
, pipeconf
);
3419 I915_READ(pipeconf_reg
);
3421 intel_wait_for_vblank(dev
);
3423 if (IS_IRONLAKE(dev
)) {
3424 /* enable address swizzle for tiling buffer */
3425 temp
= I915_READ(DISP_ARB_CTL
);
3426 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
3429 I915_WRITE(dspcntr_reg
, dspcntr
);
3431 /* Flush the plane changes */
3432 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
3434 if ((IS_I965G(dev
) || plane
== 0))
3435 intel_update_fbc(crtc
, &crtc
->mode
);
3437 intel_update_watermarks(dev
);
3439 drm_vblank_post_modeset(dev
, pipe
);
3444 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3445 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
3447 struct drm_device
*dev
= crtc
->dev
;
3448 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3449 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3450 int palreg
= (intel_crtc
->pipe
== 0) ? PALETTE_A
: PALETTE_B
;
3453 /* The clocks have to be on to load the palette. */
3457 /* use legacy palette for Ironlake */
3458 if (HAS_PCH_SPLIT(dev
))
3459 palreg
= (intel_crtc
->pipe
== 0) ? LGC_PALETTE_A
:
3462 for (i
= 0; i
< 256; i
++) {
3463 I915_WRITE(palreg
+ 4 * i
,
3464 (intel_crtc
->lut_r
[i
] << 16) |
3465 (intel_crtc
->lut_g
[i
] << 8) |
3466 intel_crtc
->lut_b
[i
]);
3470 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
3471 struct drm_file
*file_priv
,
3473 uint32_t width
, uint32_t height
)
3475 struct drm_device
*dev
= crtc
->dev
;
3476 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3477 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3478 struct drm_gem_object
*bo
;
3479 struct drm_i915_gem_object
*obj_priv
;
3480 int pipe
= intel_crtc
->pipe
;
3481 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
3482 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
3483 uint32_t temp
= I915_READ(control
);
3487 DRM_DEBUG_KMS("\n");
3489 /* if we want to turn off the cursor ignore width and height */
3491 DRM_DEBUG_KMS("cursor off\n");
3492 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3493 temp
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
3494 temp
|= CURSOR_MODE_DISABLE
;
3496 temp
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
3500 mutex_lock(&dev
->struct_mutex
);
3504 /* Currently we only support 64x64 cursors */
3505 if (width
!= 64 || height
!= 64) {
3506 DRM_ERROR("we currently only support 64x64 cursors\n");
3510 bo
= drm_gem_object_lookup(dev
, file_priv
, handle
);
3514 obj_priv
= to_intel_bo(bo
);
3516 if (bo
->size
< width
* height
* 4) {
3517 DRM_ERROR("buffer is to small\n");
3522 /* we only need to pin inside GTT if cursor is non-phy */
3523 mutex_lock(&dev
->struct_mutex
);
3524 if (!dev_priv
->info
->cursor_needs_physical
) {
3525 ret
= i915_gem_object_pin(bo
, PAGE_SIZE
);
3527 DRM_ERROR("failed to pin cursor bo\n");
3530 addr
= obj_priv
->gtt_offset
;
3532 ret
= i915_gem_attach_phys_object(dev
, bo
, (pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
);
3534 DRM_ERROR("failed to attach phys object\n");
3537 addr
= obj_priv
->phys_obj
->handle
->busaddr
;
3541 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
3543 /* Hooray for CUR*CNTR differences */
3544 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3545 temp
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
3546 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
3547 temp
|= (pipe
<< 28); /* Connect to correct pipe */
3549 temp
&= ~(CURSOR_FORMAT_MASK
);
3550 temp
|= CURSOR_ENABLE
;
3551 temp
|= CURSOR_FORMAT_ARGB
| CURSOR_GAMMA_ENABLE
;
3555 I915_WRITE(control
, temp
);
3556 I915_WRITE(base
, addr
);
3558 if (intel_crtc
->cursor_bo
) {
3559 if (dev_priv
->info
->cursor_needs_physical
) {
3560 if (intel_crtc
->cursor_bo
!= bo
)
3561 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
3563 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
3564 drm_gem_object_unreference(intel_crtc
->cursor_bo
);
3567 mutex_unlock(&dev
->struct_mutex
);
3569 intel_crtc
->cursor_addr
= addr
;
3570 intel_crtc
->cursor_bo
= bo
;
3574 mutex_unlock(&dev
->struct_mutex
);
3576 drm_gem_object_unreference_unlocked(bo
);
3580 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
3582 struct drm_device
*dev
= crtc
->dev
;
3583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3584 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3585 struct intel_framebuffer
*intel_fb
;
3586 int pipe
= intel_crtc
->pipe
;
3591 intel_fb
= to_intel_framebuffer(crtc
->fb
);
3592 intel_mark_busy(dev
, intel_fb
->obj
);
3596 temp
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
3600 temp
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
3604 temp
|= x
<< CURSOR_X_SHIFT
;
3605 temp
|= y
<< CURSOR_Y_SHIFT
;
3607 adder
= intel_crtc
->cursor_addr
;
3608 I915_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
3609 I915_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, adder
);
3614 /** Sets the color ramps on behalf of RandR */
3615 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
3616 u16 blue
, int regno
)
3618 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3620 intel_crtc
->lut_r
[regno
] = red
>> 8;
3621 intel_crtc
->lut_g
[regno
] = green
>> 8;
3622 intel_crtc
->lut_b
[regno
] = blue
>> 8;
3625 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3626 u16
*blue
, int regno
)
3628 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3630 *red
= intel_crtc
->lut_r
[regno
] << 8;
3631 *green
= intel_crtc
->lut_g
[regno
] << 8;
3632 *blue
= intel_crtc
->lut_b
[regno
] << 8;
3635 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3636 u16
*blue
, uint32_t size
)
3638 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3644 for (i
= 0; i
< 256; i
++) {
3645 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
3646 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
3647 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
3650 intel_crtc_load_lut(crtc
);
3654 * Get a pipe with a simple mode set on it for doing load-based monitor
3657 * It will be up to the load-detect code to adjust the pipe as appropriate for
3658 * its requirements. The pipe will be connected to no other encoders.
3660 * Currently this code will only succeed if there is a pipe with no encoders
3661 * configured for it. In the future, it could choose to temporarily disable
3662 * some outputs to free up a pipe for its use.
3664 * \return crtc, or NULL if no pipes are available.
3667 /* VESA 640x480x72Hz mode to set on the pipe */
3668 static struct drm_display_mode load_detect_mode
= {
3669 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
3670 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
3673 struct drm_crtc
*intel_get_load_detect_pipe(struct intel_encoder
*intel_encoder
,
3674 struct drm_display_mode
*mode
,
3677 struct intel_crtc
*intel_crtc
;
3678 struct drm_crtc
*possible_crtc
;
3679 struct drm_crtc
*supported_crtc
=NULL
;
3680 struct drm_encoder
*encoder
= &intel_encoder
->enc
;
3681 struct drm_crtc
*crtc
= NULL
;
3682 struct drm_device
*dev
= encoder
->dev
;
3683 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3684 struct drm_crtc_helper_funcs
*crtc_funcs
;
3688 * Algorithm gets a little messy:
3689 * - if the connector already has an assigned crtc, use it (but make
3690 * sure it's on first)
3691 * - try to find the first unused crtc that can drive this connector,
3692 * and use that if we find one
3693 * - if there are no unused crtcs available, try to use the first
3694 * one we found that supports the connector
3697 /* See if we already have a CRTC for this connector */
3698 if (encoder
->crtc
) {
3699 crtc
= encoder
->crtc
;
3700 /* Make sure the crtc and connector are running */
3701 intel_crtc
= to_intel_crtc(crtc
);
3702 *dpms_mode
= intel_crtc
->dpms_mode
;
3703 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3704 crtc_funcs
= crtc
->helper_private
;
3705 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3706 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3711 /* Find an unused one (if possible) */
3712 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
3714 if (!(encoder
->possible_crtcs
& (1 << i
)))
3716 if (!possible_crtc
->enabled
) {
3717 crtc
= possible_crtc
;
3720 if (!supported_crtc
)
3721 supported_crtc
= possible_crtc
;
3725 * If we didn't find an unused CRTC, don't use any.
3731 encoder
->crtc
= crtc
;
3732 intel_encoder
->base
.encoder
= encoder
;
3733 intel_encoder
->load_detect_temp
= true;
3735 intel_crtc
= to_intel_crtc(crtc
);
3736 *dpms_mode
= intel_crtc
->dpms_mode
;
3738 if (!crtc
->enabled
) {
3740 mode
= &load_detect_mode
;
3741 drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, crtc
->fb
);
3743 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3744 crtc_funcs
= crtc
->helper_private
;
3745 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3748 /* Add this connector to the crtc */
3749 encoder_funcs
->mode_set(encoder
, &crtc
->mode
, &crtc
->mode
);
3750 encoder_funcs
->commit(encoder
);
3752 /* let the connector get through one full cycle before testing */
3753 intel_wait_for_vblank(dev
);
3758 void intel_release_load_detect_pipe(struct intel_encoder
*intel_encoder
, int dpms_mode
)
3760 struct drm_encoder
*encoder
= &intel_encoder
->enc
;
3761 struct drm_device
*dev
= encoder
->dev
;
3762 struct drm_crtc
*crtc
= encoder
->crtc
;
3763 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3764 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3766 if (intel_encoder
->load_detect_temp
) {
3767 encoder
->crtc
= NULL
;
3768 intel_encoder
->base
.encoder
= NULL
;
3769 intel_encoder
->load_detect_temp
= false;
3770 crtc
->enabled
= drm_helper_crtc_in_use(crtc
);
3771 drm_helper_disable_unused_functions(dev
);
3774 /* Switch crtc and encoder back off if necessary */
3775 if (crtc
->enabled
&& dpms_mode
!= DRM_MODE_DPMS_ON
) {
3776 if (encoder
->crtc
== crtc
)
3777 encoder_funcs
->dpms(encoder
, dpms_mode
);
3778 crtc_funcs
->dpms(crtc
, dpms_mode
);
3782 /* Returns the clock of the currently programmed mode of the given pipe. */
3783 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
3785 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3786 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3787 int pipe
= intel_crtc
->pipe
;
3788 u32 dpll
= I915_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
3790 intel_clock_t clock
;
3792 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
3793 fp
= I915_READ((pipe
== 0) ? FPA0
: FPB0
);
3795 fp
= I915_READ((pipe
== 0) ? FPA1
: FPB1
);
3797 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
3798 if (IS_PINEVIEW(dev
)) {
3799 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
3800 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3802 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
3803 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3807 if (IS_PINEVIEW(dev
))
3808 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
3809 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
3811 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
3812 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3814 switch (dpll
& DPLL_MODE_MASK
) {
3815 case DPLLB_MODE_DAC_SERIAL
:
3816 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
3819 case DPLLB_MODE_LVDS
:
3820 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
3824 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3825 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
3829 /* XXX: Handle the 100Mhz refclk */
3830 intel_clock(dev
, 96000, &clock
);
3832 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
3835 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
3836 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3839 if ((dpll
& PLL_REF_INPUT_MASK
) ==
3840 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
3841 /* XXX: might not be 66MHz */
3842 intel_clock(dev
, 66000, &clock
);
3844 intel_clock(dev
, 48000, &clock
);
3846 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
3849 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
3850 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
3852 if (dpll
& PLL_P2_DIVIDE_BY_4
)
3857 intel_clock(dev
, 48000, &clock
);
3861 /* XXX: It would be nice to validate the clocks, but we can't reuse
3862 * i830PllIsValid() because it relies on the xf86_config connector
3863 * configuration being accurate, which it isn't necessarily.
3869 /** Returns the currently programmed mode of the given pipe. */
3870 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
3871 struct drm_crtc
*crtc
)
3873 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3874 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3875 int pipe
= intel_crtc
->pipe
;
3876 struct drm_display_mode
*mode
;
3877 int htot
= I915_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
3878 int hsync
= I915_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
3879 int vtot
= I915_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
3880 int vsync
= I915_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
3882 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
3886 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
3887 mode
->hdisplay
= (htot
& 0xffff) + 1;
3888 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
3889 mode
->hsync_start
= (hsync
& 0xffff) + 1;
3890 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
3891 mode
->vdisplay
= (vtot
& 0xffff) + 1;
3892 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
3893 mode
->vsync_start
= (vsync
& 0xffff) + 1;
3894 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
3896 drm_mode_set_name(mode
);
3897 drm_mode_set_crtcinfo(mode
, 0);
3902 #define GPU_IDLE_TIMEOUT 500 /* ms */
3904 /* When this timer fires, we've been idle for awhile */
3905 static void intel_gpu_idle_timer(unsigned long arg
)
3907 struct drm_device
*dev
= (struct drm_device
*)arg
;
3908 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3910 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3912 dev_priv
->busy
= false;
3914 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3917 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3919 static void intel_crtc_idle_timer(unsigned long arg
)
3921 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
3922 struct drm_crtc
*crtc
= &intel_crtc
->base
;
3923 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
3925 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3927 intel_crtc
->busy
= false;
3929 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3932 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
)
3934 struct drm_device
*dev
= crtc
->dev
;
3935 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3936 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3937 int pipe
= intel_crtc
->pipe
;
3938 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3939 int dpll
= I915_READ(dpll_reg
);
3941 if (HAS_PCH_SPLIT(dev
))
3944 if (!dev_priv
->lvds_downclock_avail
)
3947 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
3948 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3950 /* Unlock panel regs */
3951 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3953 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
3954 I915_WRITE(dpll_reg
, dpll
);
3955 dpll
= I915_READ(dpll_reg
);
3956 intel_wait_for_vblank(dev
);
3957 dpll
= I915_READ(dpll_reg
);
3958 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
3959 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3961 /* ...and lock them again */
3962 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
3965 /* Schedule downclock */
3967 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
3968 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
3971 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
3973 struct drm_device
*dev
= crtc
->dev
;
3974 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3975 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3976 int pipe
= intel_crtc
->pipe
;
3977 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3978 int dpll
= I915_READ(dpll_reg
);
3980 if (HAS_PCH_SPLIT(dev
))
3983 if (!dev_priv
->lvds_downclock_avail
)
3987 * Since this is called by a timer, we should never get here in
3990 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
3991 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3993 /* Unlock panel regs */
3994 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3996 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
3997 I915_WRITE(dpll_reg
, dpll
);
3998 dpll
= I915_READ(dpll_reg
);
3999 intel_wait_for_vblank(dev
);
4000 dpll
= I915_READ(dpll_reg
);
4001 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
4002 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4004 /* ...and lock them again */
4005 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
4011 * intel_idle_update - adjust clocks for idleness
4012 * @work: work struct
4014 * Either the GPU or display (or both) went idle. Check the busy status
4015 * here and adjust the CRTC and GPU clocks as necessary.
4017 static void intel_idle_update(struct work_struct
*work
)
4019 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
4021 struct drm_device
*dev
= dev_priv
->dev
;
4022 struct drm_crtc
*crtc
;
4023 struct intel_crtc
*intel_crtc
;
4025 if (!i915_powersave
)
4028 mutex_lock(&dev
->struct_mutex
);
4030 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4031 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4032 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4035 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4036 /* Skip inactive CRTCs */
4040 intel_crtc
= to_intel_crtc(crtc
);
4041 if (!intel_crtc
->busy
)
4042 intel_decrease_pllclock(crtc
);
4045 mutex_unlock(&dev
->struct_mutex
);
4049 * intel_mark_busy - mark the GPU and possibly the display busy
4051 * @obj: object we're operating on
4053 * Callers can use this function to indicate that the GPU is busy processing
4054 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4055 * buffer), we'll also mark the display as busy, so we know to increase its
4058 void intel_mark_busy(struct drm_device
*dev
, struct drm_gem_object
*obj
)
4060 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4061 struct drm_crtc
*crtc
= NULL
;
4062 struct intel_framebuffer
*intel_fb
;
4063 struct intel_crtc
*intel_crtc
;
4065 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
4068 if (!dev_priv
->busy
) {
4069 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4072 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4073 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4074 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4075 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4077 dev_priv
->busy
= true;
4079 mod_timer(&dev_priv
->idle_timer
, jiffies
+
4080 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
4082 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4086 intel_crtc
= to_intel_crtc(crtc
);
4087 intel_fb
= to_intel_framebuffer(crtc
->fb
);
4088 if (intel_fb
->obj
== obj
) {
4089 if (!intel_crtc
->busy
) {
4090 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4093 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4094 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4095 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4096 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4098 /* Non-busy -> busy, upclock */
4099 intel_increase_pllclock(crtc
, true);
4100 intel_crtc
->busy
= true;
4102 /* Busy -> busy, put off timer */
4103 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
4104 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
4110 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
4112 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4114 drm_crtc_cleanup(crtc
);
4118 struct intel_unpin_work
{
4119 struct work_struct work
;
4120 struct drm_device
*dev
;
4121 struct drm_gem_object
*old_fb_obj
;
4122 struct drm_gem_object
*pending_flip_obj
;
4123 struct drm_pending_vblank_event
*event
;
4127 static void intel_unpin_work_fn(struct work_struct
*__work
)
4129 struct intel_unpin_work
*work
=
4130 container_of(__work
, struct intel_unpin_work
, work
);
4132 mutex_lock(&work
->dev
->struct_mutex
);
4133 i915_gem_object_unpin(work
->old_fb_obj
);
4134 drm_gem_object_unreference(work
->pending_flip_obj
);
4135 drm_gem_object_unreference(work
->old_fb_obj
);
4136 mutex_unlock(&work
->dev
->struct_mutex
);
4140 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
4142 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4143 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
4144 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4145 struct intel_unpin_work
*work
;
4146 struct drm_i915_gem_object
*obj_priv
;
4147 struct drm_pending_vblank_event
*e
;
4149 unsigned long flags
;
4151 /* Ignore early vblank irqs */
4152 if (intel_crtc
== NULL
)
4155 spin_lock_irqsave(&dev
->event_lock
, flags
);
4156 work
= intel_crtc
->unpin_work
;
4157 if (work
== NULL
|| !work
->pending
) {
4158 if (work
&& !work
->pending
) {
4159 obj_priv
= to_intel_bo(work
->pending_flip_obj
);
4160 DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4162 atomic_read(&obj_priv
->pending_flip
));
4164 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4168 intel_crtc
->unpin_work
= NULL
;
4169 drm_vblank_put(dev
, intel_crtc
->pipe
);
4173 do_gettimeofday(&now
);
4174 e
->event
.sequence
= drm_vblank_count(dev
, intel_crtc
->pipe
);
4175 e
->event
.tv_sec
= now
.tv_sec
;
4176 e
->event
.tv_usec
= now
.tv_usec
;
4177 list_add_tail(&e
->base
.link
,
4178 &e
->base
.file_priv
->event_list
);
4179 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
4182 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4184 obj_priv
= to_intel_bo(work
->pending_flip_obj
);
4186 /* Initial scanout buffer will have a 0 pending flip count */
4187 if ((atomic_read(&obj_priv
->pending_flip
) == 0) ||
4188 atomic_dec_and_test(&obj_priv
->pending_flip
))
4189 DRM_WAKEUP(&dev_priv
->pending_flip_queue
);
4190 schedule_work(&work
->work
);
4193 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
4195 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4196 struct intel_crtc
*intel_crtc
=
4197 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
4198 unsigned long flags
;
4200 spin_lock_irqsave(&dev
->event_lock
, flags
);
4201 if (intel_crtc
->unpin_work
) {
4202 intel_crtc
->unpin_work
->pending
= 1;
4204 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4206 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4209 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
4210 struct drm_framebuffer
*fb
,
4211 struct drm_pending_vblank_event
*event
)
4213 struct drm_device
*dev
= crtc
->dev
;
4214 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4215 struct intel_framebuffer
*intel_fb
;
4216 struct drm_i915_gem_object
*obj_priv
;
4217 struct drm_gem_object
*obj
;
4218 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4219 struct intel_unpin_work
*work
;
4220 unsigned long flags
;
4221 int pipesrc_reg
= (intel_crtc
->pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
4225 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
4229 mutex_lock(&dev
->struct_mutex
);
4231 work
->event
= event
;
4232 work
->dev
= crtc
->dev
;
4233 intel_fb
= to_intel_framebuffer(crtc
->fb
);
4234 work
->old_fb_obj
= intel_fb
->obj
;
4235 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
4237 /* We borrow the event spin lock for protecting unpin_work */
4238 spin_lock_irqsave(&dev
->event_lock
, flags
);
4239 if (intel_crtc
->unpin_work
) {
4240 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4241 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4243 mutex_unlock(&dev
->struct_mutex
);
4246 intel_crtc
->unpin_work
= work
;
4247 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4249 intel_fb
= to_intel_framebuffer(fb
);
4250 obj
= intel_fb
->obj
;
4252 ret
= intel_pin_and_fence_fb_obj(dev
, obj
);
4254 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4257 intel_crtc
->unpin_work
= NULL
;
4258 mutex_unlock(&dev
->struct_mutex
);
4262 /* Reference the objects for the scheduled work. */
4263 drm_gem_object_reference(work
->old_fb_obj
);
4264 drm_gem_object_reference(obj
);
4267 i915_gem_object_flush_write_domain(obj
);
4268 drm_vblank_get(dev
, intel_crtc
->pipe
);
4269 obj_priv
= to_intel_bo(obj
);
4270 atomic_inc(&obj_priv
->pending_flip
);
4271 work
->pending_flip_obj
= obj
;
4274 OUT_RING(MI_DISPLAY_FLIP
|
4275 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
4276 OUT_RING(fb
->pitch
);
4277 if (IS_I965G(dev
)) {
4278 OUT_RING(obj_priv
->gtt_offset
| obj_priv
->tiling_mode
);
4279 pipesrc
= I915_READ(pipesrc_reg
);
4280 OUT_RING(pipesrc
& 0x0fff0fff);
4282 OUT_RING(obj_priv
->gtt_offset
);
4287 mutex_unlock(&dev
->struct_mutex
);
4292 static const struct drm_crtc_helper_funcs intel_helper_funcs
= {
4293 .dpms
= intel_crtc_dpms
,
4294 .mode_fixup
= intel_crtc_mode_fixup
,
4295 .mode_set
= intel_crtc_mode_set
,
4296 .mode_set_base
= intel_pipe_set_base
,
4297 .prepare
= intel_crtc_prepare
,
4298 .commit
= intel_crtc_commit
,
4299 .load_lut
= intel_crtc_load_lut
,
4302 static const struct drm_crtc_funcs intel_crtc_funcs
= {
4303 .cursor_set
= intel_crtc_cursor_set
,
4304 .cursor_move
= intel_crtc_cursor_move
,
4305 .gamma_set
= intel_crtc_gamma_set
,
4306 .set_config
= drm_crtc_helper_set_config
,
4307 .destroy
= intel_crtc_destroy
,
4308 .page_flip
= intel_crtc_page_flip
,
4312 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
4314 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4315 struct intel_crtc
*intel_crtc
;
4318 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
4319 if (intel_crtc
== NULL
)
4322 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
4324 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
4325 intel_crtc
->pipe
= pipe
;
4326 intel_crtc
->plane
= pipe
;
4327 for (i
= 0; i
< 256; i
++) {
4328 intel_crtc
->lut_r
[i
] = i
;
4329 intel_crtc
->lut_g
[i
] = i
;
4330 intel_crtc
->lut_b
[i
] = i
;
4333 /* Swap pipes & planes for FBC on pre-965 */
4334 intel_crtc
->pipe
= pipe
;
4335 intel_crtc
->plane
= pipe
;
4336 if (IS_MOBILE(dev
) && (IS_I9XX(dev
) && !IS_I965G(dev
))) {
4337 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4338 intel_crtc
->plane
= ((pipe
== 0) ? 1 : 0);
4341 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
4342 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
4343 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
4344 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
4346 intel_crtc
->cursor_addr
= 0;
4347 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_OFF
;
4348 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
4350 intel_crtc
->busy
= false;
4352 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
4353 (unsigned long)intel_crtc
);
4356 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
4357 struct drm_file
*file_priv
)
4359 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4360 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
4361 struct drm_mode_object
*drmmode_obj
;
4362 struct intel_crtc
*crtc
;
4365 DRM_ERROR("called with no initialization\n");
4369 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
4370 DRM_MODE_OBJECT_CRTC
);
4373 DRM_ERROR("no such CRTC id\n");
4377 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
4378 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
4383 struct drm_crtc
*intel_get_crtc_from_pipe(struct drm_device
*dev
, int pipe
)
4385 struct drm_crtc
*crtc
= NULL
;
4387 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4388 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4389 if (intel_crtc
->pipe
== pipe
)
4395 static int intel_connector_clones(struct drm_device
*dev
, int type_mask
)
4398 struct drm_connector
*connector
;
4401 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
4402 struct intel_encoder
*intel_encoder
= to_intel_encoder(connector
);
4403 if (type_mask
& intel_encoder
->clone_mask
)
4404 index_mask
|= (1 << entry
);
4411 static void intel_setup_outputs(struct drm_device
*dev
)
4413 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4414 struct drm_connector
*connector
;
4416 intel_crt_init(dev
);
4418 /* Set up integrated LVDS */
4419 if (IS_MOBILE(dev
) && !IS_I830(dev
))
4420 intel_lvds_init(dev
);
4422 if (HAS_PCH_SPLIT(dev
)) {
4425 if (IS_MOBILE(dev
) && (I915_READ(DP_A
) & DP_DETECTED
))
4426 intel_dp_init(dev
, DP_A
);
4428 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
4430 /* found = intel_sdvo_init(dev, HDMIB); */
4433 intel_hdmi_init(dev
, HDMIB
);
4434 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
4435 intel_dp_init(dev
, PCH_DP_B
);
4438 if (I915_READ(HDMIC
) & PORT_DETECTED
)
4439 intel_hdmi_init(dev
, HDMIC
);
4441 if (I915_READ(HDMID
) & PORT_DETECTED
)
4442 intel_hdmi_init(dev
, HDMID
);
4444 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
4445 intel_dp_init(dev
, PCH_DP_C
);
4447 if (I915_READ(PCH_DP_D
) & DP_DETECTED
)
4448 intel_dp_init(dev
, PCH_DP_D
);
4450 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
4453 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
4454 DRM_DEBUG_KMS("probing SDVOB\n");
4455 found
= intel_sdvo_init(dev
, SDVOB
);
4456 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
4457 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4458 intel_hdmi_init(dev
, SDVOB
);
4461 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
4462 DRM_DEBUG_KMS("probing DP_B\n");
4463 intel_dp_init(dev
, DP_B
);
4467 /* Before G4X SDVOC doesn't have its own detect register */
4469 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
4470 DRM_DEBUG_KMS("probing SDVOC\n");
4471 found
= intel_sdvo_init(dev
, SDVOC
);
4474 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
4476 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
4477 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4478 intel_hdmi_init(dev
, SDVOC
);
4480 if (SUPPORTS_INTEGRATED_DP(dev
)) {
4481 DRM_DEBUG_KMS("probing DP_C\n");
4482 intel_dp_init(dev
, DP_C
);
4486 if (SUPPORTS_INTEGRATED_DP(dev
) &&
4487 (I915_READ(DP_D
) & DP_DETECTED
)) {
4488 DRM_DEBUG_KMS("probing DP_D\n");
4489 intel_dp_init(dev
, DP_D
);
4491 } else if (IS_GEN2(dev
))
4492 intel_dvo_init(dev
);
4494 if (SUPPORTS_TV(dev
))
4497 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
4498 struct intel_encoder
*intel_encoder
= to_intel_encoder(connector
);
4499 struct drm_encoder
*encoder
= &intel_encoder
->enc
;
4501 encoder
->possible_crtcs
= intel_encoder
->crtc_mask
;
4502 encoder
->possible_clones
= intel_connector_clones(dev
,
4503 intel_encoder
->clone_mask
);
4507 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
4509 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4510 struct drm_device
*dev
= fb
->dev
;
4513 intelfb_remove(dev
, fb
);
4515 drm_framebuffer_cleanup(fb
);
4516 drm_gem_object_unreference_unlocked(intel_fb
->obj
);
4521 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
4522 struct drm_file
*file_priv
,
4523 unsigned int *handle
)
4525 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4526 struct drm_gem_object
*object
= intel_fb
->obj
;
4528 return drm_gem_handle_create(file_priv
, object
, handle
);
4531 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
4532 .destroy
= intel_user_framebuffer_destroy
,
4533 .create_handle
= intel_user_framebuffer_create_handle
,
4536 int intel_framebuffer_create(struct drm_device
*dev
,
4537 struct drm_mode_fb_cmd
*mode_cmd
,
4538 struct drm_framebuffer
**fb
,
4539 struct drm_gem_object
*obj
)
4541 struct intel_framebuffer
*intel_fb
;
4544 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
4548 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
4550 DRM_ERROR("framebuffer init failed %d\n", ret
);
4554 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
4556 intel_fb
->obj
= obj
;
4558 *fb
= &intel_fb
->base
;
4564 static struct drm_framebuffer
*
4565 intel_user_framebuffer_create(struct drm_device
*dev
,
4566 struct drm_file
*filp
,
4567 struct drm_mode_fb_cmd
*mode_cmd
)
4569 struct drm_gem_object
*obj
;
4570 struct drm_framebuffer
*fb
;
4573 obj
= drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
);
4577 ret
= intel_framebuffer_create(dev
, mode_cmd
, &fb
, obj
);
4579 drm_gem_object_unreference_unlocked(obj
);
4586 static const struct drm_mode_config_funcs intel_mode_funcs
= {
4587 .fb_create
= intel_user_framebuffer_create
,
4588 .fb_changed
= intelfb_probe
,
4591 static struct drm_gem_object
*
4592 intel_alloc_power_context(struct drm_device
*dev
)
4594 struct drm_gem_object
*pwrctx
;
4597 pwrctx
= drm_gem_object_alloc(dev
, 4096);
4599 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4603 mutex_lock(&dev
->struct_mutex
);
4604 ret
= i915_gem_object_pin(pwrctx
, 4096);
4606 DRM_ERROR("failed to pin power context: %d\n", ret
);
4610 ret
= i915_gem_object_set_to_gtt_domain(pwrctx
, 1);
4612 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
4615 mutex_unlock(&dev
->struct_mutex
);
4620 i915_gem_object_unpin(pwrctx
);
4622 drm_gem_object_unreference(pwrctx
);
4623 mutex_unlock(&dev
->struct_mutex
);
4627 void ironlake_enable_drps(struct drm_device
*dev
)
4629 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4630 u32 rgvmodectl
= I915_READ(MEMMODECTL
), rgvswctl
;
4631 u8 fmax
, fmin
, fstart
, vstart
;
4634 /* 100ms RC evaluation intervals */
4635 I915_WRITE(RCUPEI
, 100000);
4636 I915_WRITE(RCDNEI
, 100000);
4638 /* Set max/min thresholds to 90ms and 80ms respectively */
4639 I915_WRITE(RCBMAXAVG
, 90000);
4640 I915_WRITE(RCBMINAVG
, 80000);
4642 I915_WRITE(MEMIHYST
, 1);
4644 /* Set up min, max, and cur for interrupt handling */
4645 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
4646 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
4647 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
4648 MEMMODE_FSTART_SHIFT
;
4649 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
4652 dev_priv
->max_delay
= fstart
; /* can't go to fmax w/o IPS */
4653 dev_priv
->min_delay
= fmin
;
4654 dev_priv
->cur_delay
= fstart
;
4656 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
4659 * Interrupts will be enabled in ironlake_irq_postinstall
4662 I915_WRITE(VIDSTART
, vstart
);
4663 POSTING_READ(VIDSTART
);
4665 rgvmodectl
|= MEMMODE_SWMODE_EN
;
4666 I915_WRITE(MEMMODECTL
, rgvmodectl
);
4668 while (I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) {
4670 DRM_ERROR("stuck trying to change perf mode\n");
4677 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
4678 (fstart
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
4679 I915_WRITE(MEMSWCTL
, rgvswctl
);
4680 POSTING_READ(MEMSWCTL
);
4682 rgvswctl
|= MEMCTL_CMD_STS
;
4683 I915_WRITE(MEMSWCTL
, rgvswctl
);
4686 void ironlake_disable_drps(struct drm_device
*dev
)
4688 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4692 /* Ack interrupts, disable EFC interrupt */
4693 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
4694 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
4695 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
4696 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
4697 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
4699 /* Go back to the starting frequency */
4700 fstart
= (I915_READ(MEMMODECTL
) & MEMMODE_FSTART_MASK
) >>
4701 MEMMODE_FSTART_SHIFT
;
4702 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
4703 (fstart
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
4704 I915_WRITE(MEMSWCTL
, rgvswctl
);
4706 rgvswctl
|= MEMCTL_CMD_STS
;
4707 I915_WRITE(MEMSWCTL
, rgvswctl
);
4712 void intel_init_clock_gating(struct drm_device
*dev
)
4714 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4717 * Disable clock gating reported to work incorrectly according to the
4718 * specs, but enable as much else as we can.
4720 if (HAS_PCH_SPLIT(dev
)) {
4721 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
4723 if (IS_IRONLAKE(dev
)) {
4724 /* Required for FBC */
4725 dspclk_gate
|= DPFDUNIT_CLOCK_GATE_DISABLE
;
4726 /* Required for CxSR */
4727 dspclk_gate
|= DPARBUNIT_CLOCK_GATE_DISABLE
;
4729 I915_WRITE(PCH_3DCGDIS0
,
4730 MARIUNIT_CLOCK_GATE_DISABLE
|
4731 SVSMUNIT_CLOCK_GATE_DISABLE
);
4734 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
4736 } else if (IS_G4X(dev
)) {
4737 uint32_t dspclk_gate
;
4738 I915_WRITE(RENCLK_GATE_D1
, 0);
4739 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
4740 GS_UNIT_CLOCK_GATE_DISABLE
|
4741 CL_UNIT_CLOCK_GATE_DISABLE
);
4742 I915_WRITE(RAMCLK_GATE_D
, 0);
4743 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
4744 OVRUNIT_CLOCK_GATE_DISABLE
|
4745 OVCUNIT_CLOCK_GATE_DISABLE
;
4747 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
4748 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
4749 } else if (IS_I965GM(dev
)) {
4750 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
4751 I915_WRITE(RENCLK_GATE_D2
, 0);
4752 I915_WRITE(DSPCLK_GATE_D
, 0);
4753 I915_WRITE(RAMCLK_GATE_D
, 0);
4754 I915_WRITE16(DEUC
, 0);
4755 } else if (IS_I965G(dev
)) {
4756 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
4757 I965_RCC_CLOCK_GATE_DISABLE
|
4758 I965_RCPB_CLOCK_GATE_DISABLE
|
4759 I965_ISC_CLOCK_GATE_DISABLE
|
4760 I965_FBC_CLOCK_GATE_DISABLE
);
4761 I915_WRITE(RENCLK_GATE_D2
, 0);
4762 } else if (IS_I9XX(dev
)) {
4763 u32 dstate
= I915_READ(D_STATE
);
4765 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
4766 DSTATE_DOT_CLOCK_GATING
;
4767 I915_WRITE(D_STATE
, dstate
);
4768 } else if (IS_I85X(dev
) || IS_I865G(dev
)) {
4769 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
4770 } else if (IS_I830(dev
)) {
4771 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
4775 * GPU can automatically power down the render unit if given a page
4778 if (I915_HAS_RC6(dev
) && drm_core_check_feature(dev
, DRIVER_MODESET
)) {
4779 struct drm_i915_gem_object
*obj_priv
= NULL
;
4781 if (dev_priv
->pwrctx
) {
4782 obj_priv
= to_intel_bo(dev_priv
->pwrctx
);
4784 struct drm_gem_object
*pwrctx
;
4786 pwrctx
= intel_alloc_power_context(dev
);
4788 dev_priv
->pwrctx
= pwrctx
;
4789 obj_priv
= to_intel_bo(pwrctx
);
4794 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
| PWRCTX_EN
);
4795 I915_WRITE(MCHBAR_RENDER_STANDBY
,
4796 I915_READ(MCHBAR_RENDER_STANDBY
) & ~RCX_SW_EXIT
);
4801 /* Set up chip specific display functions */
4802 static void intel_init_display(struct drm_device
*dev
)
4804 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4806 /* We always want a DPMS function */
4807 if (HAS_PCH_SPLIT(dev
))
4808 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
4810 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
4812 /* Only mobile has FBC, leave pointers NULL for other chips */
4813 if (IS_MOBILE(dev
)) {
4815 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
4816 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
4817 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
4818 } else if (IS_I965GM(dev
)) {
4819 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
4820 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
4821 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
4823 /* 855GM needs testing */
4826 /* Returns the core display clock speed */
4827 if (IS_I945G(dev
) || (IS_G33(dev
) && ! IS_PINEVIEW_M(dev
)))
4828 dev_priv
->display
.get_display_clock_speed
=
4829 i945_get_display_clock_speed
;
4830 else if (IS_I915G(dev
))
4831 dev_priv
->display
.get_display_clock_speed
=
4832 i915_get_display_clock_speed
;
4833 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
4834 dev_priv
->display
.get_display_clock_speed
=
4835 i9xx_misc_get_display_clock_speed
;
4836 else if (IS_I915GM(dev
))
4837 dev_priv
->display
.get_display_clock_speed
=
4838 i915gm_get_display_clock_speed
;
4839 else if (IS_I865G(dev
))
4840 dev_priv
->display
.get_display_clock_speed
=
4841 i865_get_display_clock_speed
;
4842 else if (IS_I85X(dev
))
4843 dev_priv
->display
.get_display_clock_speed
=
4844 i855_get_display_clock_speed
;
4846 dev_priv
->display
.get_display_clock_speed
=
4847 i830_get_display_clock_speed
;
4849 /* For FIFO watermark updates */
4850 if (HAS_PCH_SPLIT(dev
))
4851 dev_priv
->display
.update_wm
= NULL
;
4852 else if (IS_G4X(dev
))
4853 dev_priv
->display
.update_wm
= g4x_update_wm
;
4854 else if (IS_I965G(dev
))
4855 dev_priv
->display
.update_wm
= i965_update_wm
;
4856 else if (IS_I9XX(dev
)) {
4857 dev_priv
->display
.update_wm
= i9xx_update_wm
;
4858 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
4859 } else if (IS_I85X(dev
)) {
4860 dev_priv
->display
.update_wm
= i9xx_update_wm
;
4861 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
4863 dev_priv
->display
.update_wm
= i830_update_wm
;
4865 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
4867 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
4871 void intel_modeset_init(struct drm_device
*dev
)
4873 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4877 drm_mode_config_init(dev
);
4879 dev
->mode_config
.min_width
= 0;
4880 dev
->mode_config
.min_height
= 0;
4882 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
4884 intel_init_display(dev
);
4886 if (IS_I965G(dev
)) {
4887 dev
->mode_config
.max_width
= 8192;
4888 dev
->mode_config
.max_height
= 8192;
4889 } else if (IS_I9XX(dev
)) {
4890 dev
->mode_config
.max_width
= 4096;
4891 dev
->mode_config
.max_height
= 4096;
4893 dev
->mode_config
.max_width
= 2048;
4894 dev
->mode_config
.max_height
= 2048;
4897 /* set memory base */
4899 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 2);
4901 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 0);
4903 if (IS_MOBILE(dev
) || IS_I9XX(dev
))
4907 DRM_DEBUG_KMS("%d display pipe%s available.\n",
4908 num_pipe
, num_pipe
> 1 ? "s" : "");
4910 for (i
= 0; i
< num_pipe
; i
++) {
4911 intel_crtc_init(dev
, i
);
4914 intel_setup_outputs(dev
);
4916 intel_init_clock_gating(dev
);
4918 if (IS_IRONLAKE_M(dev
))
4919 ironlake_enable_drps(dev
);
4921 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
4922 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
4923 (unsigned long)dev
);
4925 intel_setup_overlay(dev
);
4927 if (IS_PINEVIEW(dev
) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
4929 dev_priv
->mem_freq
))
4930 DRM_INFO("failed to find known CxSR latency "
4931 "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4932 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
4935 void intel_modeset_cleanup(struct drm_device
*dev
)
4937 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4938 struct drm_crtc
*crtc
;
4939 struct intel_crtc
*intel_crtc
;
4941 mutex_lock(&dev
->struct_mutex
);
4943 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4944 /* Skip inactive CRTCs */
4948 intel_crtc
= to_intel_crtc(crtc
);
4949 intel_increase_pllclock(crtc
, false);
4950 del_timer_sync(&intel_crtc
->idle_timer
);
4953 del_timer_sync(&dev_priv
->idle_timer
);
4955 if (dev_priv
->display
.disable_fbc
)
4956 dev_priv
->display
.disable_fbc(dev
);
4958 if (dev_priv
->pwrctx
) {
4959 struct drm_i915_gem_object
*obj_priv
;
4961 obj_priv
= to_intel_bo(dev_priv
->pwrctx
);
4962 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
&~ PWRCTX_EN
);
4964 i915_gem_object_unpin(dev_priv
->pwrctx
);
4965 drm_gem_object_unreference(dev_priv
->pwrctx
);
4968 if (IS_IRONLAKE_M(dev
))
4969 ironlake_disable_drps(dev
);
4971 mutex_unlock(&dev
->struct_mutex
);
4973 drm_mode_config_cleanup(dev
);
4977 /* current intel driver doesn't take advantage of encoders
4978 always give back the encoder for the connector
4980 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
4982 struct intel_encoder
*intel_encoder
= to_intel_encoder(connector
);
4984 return &intel_encoder
->enc
;
4988 * set vga decode state - true == enable VGA decode
4990 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
4992 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4995 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
4997 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
4999 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
5000 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);