2 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 * CX23888 Integrated Consumer Infrared Controller
6 * Copyright (C) 2009 Andy Walls <awalls@radix.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
32 static unsigned int ir_888_debug
;
33 module_param(ir_888_debug
, int, 0644);
34 MODULE_PARM_DESC(ir_888_debug
, "enable debug messages [CX23888 IR controller]");
36 #define CX23888_IR_REG_BASE 0x170000
38 * These CX23888 register offsets have a straightforward one to one mapping
39 * to the CX23885 register offsets of 0x200 through 0x218
41 #define CX23888_IR_CNTRL_REG 0x170000
42 #define CNTRL_WIN_3_3 0x00000000
43 #define CNTRL_WIN_4_3 0x00000001
44 #define CNTRL_WIN_3_4 0x00000002
45 #define CNTRL_WIN_4_4 0x00000003
46 #define CNTRL_WIN 0x00000003
47 #define CNTRL_EDG_NONE 0x00000000
48 #define CNTRL_EDG_FALL 0x00000004
49 #define CNTRL_EDG_RISE 0x00000008
50 #define CNTRL_EDG_BOTH 0x0000000C
51 #define CNTRL_EDG 0x0000000C
52 #define CNTRL_DMD 0x00000010
53 #define CNTRL_MOD 0x00000020
54 #define CNTRL_RFE 0x00000040
55 #define CNTRL_TFE 0x00000080
56 #define CNTRL_RXE 0x00000100
57 #define CNTRL_TXE 0x00000200
58 #define CNTRL_RIC 0x00000400
59 #define CNTRL_TIC 0x00000800
60 #define CNTRL_CPL 0x00001000
61 #define CNTRL_LBM 0x00002000
62 #define CNTRL_R 0x00004000
64 #define CX23888_IR_TXCLK_REG 0x170004
65 #define TXCLK_TCD 0x0000FFFF
67 #define CX23888_IR_RXCLK_REG 0x170008
68 #define RXCLK_RCD 0x0000FFFF
70 #define CX23888_IR_CDUTY_REG 0x17000C
71 #define CDUTY_CDC 0x0000000F
73 #define CX23888_IR_STATS_REG 0x170010
74 #define STATS_RTO 0x00000001
75 #define STATS_ROR 0x00000002
76 #define STATS_RBY 0x00000004
77 #define STATS_TBY 0x00000008
78 #define STATS_RSR 0x00000010
79 #define STATS_TSR 0x00000020
81 #define CX23888_IR_IRQEN_REG 0x170014
82 #define IRQEN_RTE 0x00000001
83 #define IRQEN_ROE 0x00000002
84 #define IRQEN_RSE 0x00000010
85 #define IRQEN_TSE 0x00000020
87 #define CX23888_IR_FILTR_REG 0x170018
88 #define FILTR_LPF 0x0000FFFF
90 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
91 #define CX23888_IR_FIFO_REG 0x170040
92 #define FIFO_RXTX 0x0000FFFF
93 #define FIFO_RXTX_LVL 0x00010000
94 #define FIFO_RXTX_RTO 0x0001FFFF
95 #define FIFO_RX_NDV 0x00020000
96 #define FIFO_RX_DEPTH 8
97 #define FIFO_TX_DEPTH 8
99 /* CX23888 unique registers */
100 #define CX23888_IR_SEEDP_REG 0x17001C
101 #define CX23888_IR_TIMOL_REG 0x170020
102 #define CX23888_IR_WAKE0_REG 0x170024
103 #define CX23888_IR_WAKE1_REG 0x170028
104 #define CX23888_IR_WAKE2_REG 0x17002C
105 #define CX23888_IR_MASK0_REG 0x170030
106 #define CX23888_IR_MASK1_REG 0x170034
107 #define CX23888_IR_MAKS2_REG 0x170038
108 #define CX23888_IR_DPIPG_REG 0x17003C
109 #define CX23888_IR_LEARN_REG 0x170044
111 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
112 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
114 #define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
115 #define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
117 struct cx23888_ir_state
{
118 struct v4l2_subdev sd
;
119 struct cx23885_dev
*dev
;
123 struct v4l2_subdev_ir_parameters rx_params
;
124 struct mutex rx_params_lock
;
125 atomic_t rxclk_divider
;
128 struct kfifo rx_kfifo
;
129 spinlock_t rx_kfifo_lock
;
131 struct v4l2_subdev_ir_parameters tx_params
;
132 struct mutex tx_params_lock
;
133 atomic_t txclk_divider
;
136 static inline struct cx23888_ir_state
*to_state(struct v4l2_subdev
*sd
)
138 return v4l2_get_subdevdata(sd
);
142 * IR register block read and write functions
145 inline int cx23888_ir_write4(struct cx23885_dev
*dev
, u32 addr
, u32 value
)
147 cx_write(addr
, value
);
151 static inline u32
cx23888_ir_read4(struct cx23885_dev
*dev
, u32 addr
)
153 return cx_read(addr
);
156 static inline int cx23888_ir_and_or4(struct cx23885_dev
*dev
, u32 addr
,
157 u32 and_mask
, u32 or_value
)
159 cx_andor(addr
, ~and_mask
, or_value
);
164 * Rx and Tx Clock Divider register computations
166 * Note the largest clock divider value of 0xffff corresponds to:
167 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
168 * which fits in 21 bits, so we'll use unsigned int for time arguments.
170 static inline u16
count_to_clock_divider(unsigned int d
)
172 if (d
> RXCLK_RCD
+ 1)
181 static inline u16
ns_to_clock_divider(unsigned int ns
)
183 return count_to_clock_divider(
184 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
187 static inline unsigned int clock_divider_to_ns(unsigned int divider
)
189 /* Period of the Rx or Tx clock in ns */
190 return DIV_ROUND_CLOSEST((divider
+ 1) * 1000,
191 CX23888_IR_REFCLK_FREQ
/ 1000000);
194 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
196 return count_to_clock_divider(
197 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* 16));
200 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
202 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
205 static inline u16
freq_to_clock_divider(unsigned int freq
,
206 unsigned int rollovers
)
208 return count_to_clock_divider(
209 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* rollovers
));
212 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
213 unsigned int rollovers
)
215 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
,
216 (divider
+ 1) * rollovers
);
220 * Low Pass Filter register calculations
222 * Note the largest count value of 0xffff corresponds to:
223 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
224 * which fits in 21 bits, so we'll use unsigned int for time arguments.
226 static inline u16
count_to_lpf_count(unsigned int d
)
235 static inline u16
ns_to_lpf_count(unsigned int ns
)
237 return count_to_lpf_count(
238 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
241 static inline unsigned int lpf_count_to_ns(unsigned int count
)
243 /* Duration of the Low Pass Filter rejection window in ns */
244 return DIV_ROUND_CLOSEST(count
* 1000,
245 CX23888_IR_REFCLK_FREQ
/ 1000000);
248 static inline unsigned int lpf_count_to_us(unsigned int count
)
250 /* Duration of the Low Pass Filter rejection window in us */
251 return DIV_ROUND_CLOSEST(count
, CX23888_IR_REFCLK_FREQ
/ 1000000);
255 * FIFO register pulse width count compuations
257 static u32
clock_divider_to_resolution(u16 divider
)
260 * Resolution is the duration of 1 tick of the readable portion of
261 * of the pulse width counter as read from the FIFO. The two lsb's are
262 * not readable, hence the << 2. This function returns ns.
264 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
265 CX23888_IR_REFCLK_FREQ
/ 1000000);
268 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
274 * The 2 lsb's of the pulse width timer count are not readable, hence
275 * the (count << 2) | 0x3
277 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
278 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
279 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
284 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
290 * The 2 lsb's of the pulse width timer count are not readable, hence
291 * the (count << 2) | 0x3
293 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
294 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
295 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
297 return (unsigned int) n
;
301 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
303 * The total pulse clock count is an 18 bit pulse width timer count as the most
304 * significant part and (up to) 16 bit clock divider count as a modulus.
305 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
306 * width timer count's least significant bit.
308 static u64
ns_to_pulse_clocks(u32 ns
)
312 clocks
= CX23888_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
313 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
319 static u16
pulse_clocks_to_clock_divider(u64 count
)
323 rem
= do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
325 /* net result needs to be rounded down and decremented by 1 */
326 if (count
> RXCLK_RCD
+ 1)
336 * IR Control Register helpers
338 enum tx_fifo_watermark
{
339 TX_FIFO_HALF_EMPTY
= 0,
340 TX_FIFO_EMPTY
= CNTRL_TIC
,
343 enum rx_fifo_watermark
{
344 RX_FIFO_HALF_FULL
= 0,
345 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
348 static inline void control_tx_irq_watermark(struct cx23885_dev
*dev
,
349 enum tx_fifo_watermark level
)
351 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
354 static inline void control_rx_irq_watermark(struct cx23885_dev
*dev
,
355 enum rx_fifo_watermark level
)
357 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
360 static inline void control_tx_enable(struct cx23885_dev
*dev
, bool enable
)
362 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
363 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
366 static inline void control_rx_enable(struct cx23885_dev
*dev
, bool enable
)
368 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
369 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
372 static inline void control_tx_modulation_enable(struct cx23885_dev
*dev
,
375 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_MOD
,
376 enable
? CNTRL_MOD
: 0);
379 static inline void control_rx_demodulation_enable(struct cx23885_dev
*dev
,
382 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_DMD
,
383 enable
? CNTRL_DMD
: 0);
386 static inline void control_rx_s_edge_detection(struct cx23885_dev
*dev
,
389 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
390 edge_types
& CNTRL_EDG_BOTH
);
393 static void control_rx_s_carrier_window(struct cx23885_dev
*dev
,
394 unsigned int carrier
,
395 unsigned int *carrier_range_low
,
396 unsigned int *carrier_range_high
)
399 unsigned int c16
= carrier
* 16;
401 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
403 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
406 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
409 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
411 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
414 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
416 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
419 static inline void control_tx_polarity_invert(struct cx23885_dev
*dev
,
422 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_CPL
,
423 invert
? CNTRL_CPL
: 0);
427 * IR Rx & Tx Clock Register helpers
429 static unsigned int txclk_tx_s_carrier(struct cx23885_dev
*dev
,
433 *divider
= carrier_freq_to_clock_divider(freq
);
434 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
435 return clock_divider_to_carrier_freq(*divider
);
438 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev
*dev
,
442 *divider
= carrier_freq_to_clock_divider(freq
);
443 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
444 return clock_divider_to_carrier_freq(*divider
);
447 static u32
txclk_tx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
452 if (ns
> V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
)
453 ns
= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
;
454 pulse_clocks
= ns_to_pulse_clocks(ns
);
455 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
456 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
457 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
460 static u32
rxclk_rx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
465 if (ns
> V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
)
466 ns
= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
;
467 pulse_clocks
= ns_to_pulse_clocks(ns
);
468 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
469 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
470 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
474 * IR Tx Carrier Duty Cycle register helpers
476 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev
*dev
,
477 unsigned int duty_cycle
)
480 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
485 cx23888_ir_write4(dev
, CX23888_IR_CDUTY_REG
, n
);
486 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
490 * IR Filter Register helpers
492 static u32
filter_rx_s_min_width(struct cx23885_dev
*dev
, u32 min_width_ns
)
494 u32 count
= ns_to_lpf_count(min_width_ns
);
495 cx23888_ir_write4(dev
, CX23888_IR_FILTR_REG
, count
);
496 return lpf_count_to_ns(count
);
500 * IR IRQ Enable Register helpers
502 static inline void irqenable_rx(struct cx23885_dev
*dev
, u32 mask
)
504 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
505 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
,
506 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
509 static inline void irqenable_tx(struct cx23885_dev
*dev
, u32 mask
)
512 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
516 * V4L2 Subdevice IR Ops
518 static int cx23888_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
,
521 struct cx23888_ir_state
*state
= to_state(sd
);
522 struct cx23885_dev
*dev
= state
->dev
;
525 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
526 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
527 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
529 u32 rx_data
[FIFO_RX_DEPTH
];
532 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
534 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
535 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
536 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
537 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
539 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
540 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Reuqest IRQ Enable */
541 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
542 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
545 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Status: %s %s %s %s %s %s\n",
546 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
547 rto
? "rto" : " ", ror
? "ror" : " ",
548 stats
& STATS_TBY
? "tby" : " ",
549 stats
& STATS_RBY
? "rby" : " ");
551 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Enables: %s %s %s %s\n",
552 tse
? "tse" : " ", rse
? "rse" : " ",
553 rte
? "rte" : " ", roe
? "roe" : " ");
556 * Transmitter interrupt service
561 * Check the watermark threshold setting
562 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
563 * Push the data to the hardware FIFO.
564 * If there was nothing more to send in the tx_kfifo, disable
565 * the TSR IRQ and notify the v4l2_device.
566 * If there was something in the tx_kfifo, check the tx_kfifo
567 * level and notify the v4l2_device, if it is low.
569 /* For now, inhibit TSR interrupt until Tx is implemented */
570 irqenable_tx(dev
, 0);
571 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
572 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
577 * Receiver interrupt service
580 if ((rse
&& rsr
) || (rte
&& rto
)) {
582 * Receive data on RSR to clear the STATS_RSR.
583 * Receive data on RTO, since we may not have yet hit the RSR
584 * watermark when we receive the RTO.
586 for (i
= 0, v
= FIFO_RX_NDV
;
587 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
589 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
590 v
= cx23888_ir_read4(dev
, CX23888_IR_FIFO_REG
);
591 rx_data
[i
++] = v
& ~FIFO_RX_NDV
;
596 k
= kfifo_in_locked(&state
->rx_kfifo
,
597 (unsigned char *) rx_data
, j
,
598 &state
->rx_kfifo_lock
);
600 kror
++; /* rx_kfifo over run */
608 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
609 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
613 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
614 * the Rx FIFO Over Run status (STATS_ROR)
617 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
618 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
622 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
623 * the Rx Pulse Width Timer Time Out (STATS_RTO)
626 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
629 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
630 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
& ~v
);
631 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
);
635 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
636 if (kfifo_len(&state
->rx_kfifo
) >= CX23888_IR_RX_KFIFO_SIZE
/ 2)
637 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
638 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
641 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
646 static int cx23888_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
649 struct cx23888_ir_state
*state
= to_state(sd
);
650 bool invert
= (bool) atomic_read(&state
->rx_invert
);
651 u16 divider
= (u16
) atomic_read(&state
->rxclk_divider
);
657 n
= count
/ sizeof(u32
) * sizeof(u32
);
663 n
= kfifo_out_locked(&state
->rx_kfifo
, buf
, n
, &state
->rx_kfifo_lock
);
666 *num
= n
* sizeof(u32
);
668 for (p
= (u32
*) buf
, i
= 0; i
< n
; p
++, i
++) {
669 if ((*p
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
670 *p
= V4L2_SUBDEV_IR_PULSE_RX_SEQ_END
;
671 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: end of rx\n");
675 u
= (*p
& FIFO_RXTX_LVL
) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK
: 0;
677 u
= u
? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK
;
679 v
= (u32
) pulse_width_count_to_ns((u16
) (*p
& FIFO_RXTX
),
681 if (v
>= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
)
682 v
= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
- 1;
686 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: %10u ns %s\n",
687 v
, u
? "mark" : "space");
692 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
693 struct v4l2_subdev_ir_parameters
*p
)
695 struct cx23888_ir_state
*state
= to_state(sd
);
696 mutex_lock(&state
->rx_params_lock
);
697 memcpy(p
, &state
->rx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
698 mutex_unlock(&state
->rx_params_lock
);
702 static int cx23888_ir_rx_shutdown(struct v4l2_subdev
*sd
)
704 struct cx23888_ir_state
*state
= to_state(sd
);
705 struct cx23885_dev
*dev
= state
->dev
;
707 mutex_lock(&state
->rx_params_lock
);
709 /* Disable or slow down all IR Rx circuits and counters */
710 irqenable_rx(dev
, 0);
711 control_rx_enable(dev
, false);
712 control_rx_demodulation_enable(dev
, false);
713 control_rx_s_edge_detection(dev
, CNTRL_EDG_NONE
);
714 filter_rx_s_min_width(dev
, 0);
715 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, RXCLK_RCD
);
717 state
->rx_params
.shutdown
= true;
719 mutex_unlock(&state
->rx_params_lock
);
723 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
724 struct v4l2_subdev_ir_parameters
*p
)
726 struct cx23888_ir_state
*state
= to_state(sd
);
727 struct cx23885_dev
*dev
= state
->dev
;
728 struct v4l2_subdev_ir_parameters
*o
= &state
->rx_params
;
732 return cx23888_ir_rx_shutdown(sd
);
734 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
737 mutex_lock(&state
->rx_params_lock
);
739 o
->shutdown
= p
->shutdown
;
741 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
743 o
->bytes_per_data_element
= p
->bytes_per_data_element
= sizeof(u32
);
745 /* Before we tweak the hardware, we have to disable the receiver */
746 irqenable_rx(dev
, 0);
747 control_rx_enable(dev
, false);
749 control_rx_demodulation_enable(dev
, p
->modulation
);
750 o
->modulation
= p
->modulation
;
753 p
->carrier_freq
= rxclk_rx_s_carrier(dev
, p
->carrier_freq
,
756 o
->carrier_freq
= p
->carrier_freq
;
758 o
->duty_cycle
= p
->duty_cycle
= 50;
760 control_rx_s_carrier_window(dev
, p
->carrier_freq
,
761 &p
->carrier_range_lower
,
762 &p
->carrier_range_upper
);
763 o
->carrier_range_lower
= p
->carrier_range_lower
;
764 o
->carrier_range_upper
= p
->carrier_range_upper
;
767 rxclk_rx_s_max_pulse_width(dev
, p
->max_pulse_width
,
769 o
->max_pulse_width
= p
->max_pulse_width
;
771 atomic_set(&state
->rxclk_divider
, rxclk_divider
);
773 p
->noise_filter_min_width
=
774 filter_rx_s_min_width(dev
, p
->noise_filter_min_width
);
775 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
777 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
778 o
->resolution
= p
->resolution
;
780 /* FIXME - make this dependent on resolution for better performance */
781 control_rx_irq_watermark(dev
, RX_FIFO_HALF_FULL
);
783 control_rx_s_edge_detection(dev
, CNTRL_EDG_BOTH
);
785 o
->invert
= p
->invert
;
786 atomic_set(&state
->rx_invert
, p
->invert
);
788 o
->interrupt_enable
= p
->interrupt_enable
;
789 o
->enable
= p
->enable
;
793 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
794 kfifo_reset(&state
->rx_kfifo
);
795 /* reset tx_fifo too if there is one... */
796 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
797 if (p
->interrupt_enable
)
798 irqenable_rx(dev
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
799 control_rx_enable(dev
, p
->enable
);
802 mutex_unlock(&state
->rx_params_lock
);
807 static int cx23888_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
810 struct cx23888_ir_state
*state
= to_state(sd
);
811 struct cx23885_dev
*dev
= state
->dev
;
812 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
813 irqenable_tx(dev
, IRQEN_TSE
);
818 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
819 struct v4l2_subdev_ir_parameters
*p
)
821 struct cx23888_ir_state
*state
= to_state(sd
);
822 mutex_lock(&state
->tx_params_lock
);
823 memcpy(p
, &state
->tx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
824 mutex_unlock(&state
->tx_params_lock
);
828 static int cx23888_ir_tx_shutdown(struct v4l2_subdev
*sd
)
830 struct cx23888_ir_state
*state
= to_state(sd
);
831 struct cx23885_dev
*dev
= state
->dev
;
833 mutex_lock(&state
->tx_params_lock
);
835 /* Disable or slow down all IR Tx circuits and counters */
836 irqenable_tx(dev
, 0);
837 control_tx_enable(dev
, false);
838 control_tx_modulation_enable(dev
, false);
839 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, TXCLK_TCD
);
841 state
->tx_params
.shutdown
= true;
843 mutex_unlock(&state
->tx_params_lock
);
847 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
848 struct v4l2_subdev_ir_parameters
*p
)
850 struct cx23888_ir_state
*state
= to_state(sd
);
851 struct cx23885_dev
*dev
= state
->dev
;
852 struct v4l2_subdev_ir_parameters
*o
= &state
->tx_params
;
856 return cx23888_ir_tx_shutdown(sd
);
858 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
861 mutex_lock(&state
->tx_params_lock
);
863 o
->shutdown
= p
->shutdown
;
865 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
867 o
->bytes_per_data_element
= p
->bytes_per_data_element
= sizeof(u32
);
869 /* Before we tweak the hardware, we have to disable the transmitter */
870 irqenable_tx(dev
, 0);
871 control_tx_enable(dev
, false);
873 control_tx_modulation_enable(dev
, p
->modulation
);
874 o
->modulation
= p
->modulation
;
877 p
->carrier_freq
= txclk_tx_s_carrier(dev
, p
->carrier_freq
,
879 o
->carrier_freq
= p
->carrier_freq
;
881 p
->duty_cycle
= cduty_tx_s_duty_cycle(dev
, p
->duty_cycle
);
882 o
->duty_cycle
= p
->duty_cycle
;
885 txclk_tx_s_max_pulse_width(dev
, p
->max_pulse_width
,
887 o
->max_pulse_width
= p
->max_pulse_width
;
889 atomic_set(&state
->txclk_divider
, txclk_divider
);
891 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
892 o
->resolution
= p
->resolution
;
894 /* FIXME - make this dependent on resolution for better performance */
895 control_tx_irq_watermark(dev
, TX_FIFO_HALF_EMPTY
);
897 control_tx_polarity_invert(dev
, p
->invert
);
898 o
->invert
= p
->invert
;
900 o
->interrupt_enable
= p
->interrupt_enable
;
901 o
->enable
= p
->enable
;
903 if (p
->interrupt_enable
)
904 irqenable_tx(dev
, IRQEN_TSE
);
905 control_tx_enable(dev
, p
->enable
);
908 mutex_unlock(&state
->tx_params_lock
);
914 * V4L2 Subdevice Core Ops
916 static int cx23888_ir_log_status(struct v4l2_subdev
*sd
)
918 struct cx23888_ir_state
*state
= to_state(sd
);
919 struct cx23885_dev
*dev
= state
->dev
;
923 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
924 u32 txclk
= cx23888_ir_read4(dev
, CX23888_IR_TXCLK_REG
) & TXCLK_TCD
;
925 u32 rxclk
= cx23888_ir_read4(dev
, CX23888_IR_RXCLK_REG
) & RXCLK_RCD
;
926 u32 cduty
= cx23888_ir_read4(dev
, CX23888_IR_CDUTY_REG
) & CDUTY_CDC
;
927 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
928 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
929 u32 filtr
= cx23888_ir_read4(dev
, CX23888_IR_FILTR_REG
) & FILTR_LPF
;
931 v4l2_info(sd
, "IR Receiver:\n");
932 v4l2_info(sd
, "\tEnabled: %s\n",
933 cntrl
& CNTRL_RXE
? "yes" : "no");
934 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
935 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
936 v4l2_info(sd
, "\tFIFO: %s\n",
937 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
938 switch (cntrl
& CNTRL_EDG
) {
949 s
= "rising & falling edges";
955 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
956 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
957 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
958 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
959 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
960 v4l2_info(sd
, "\tLoopback mode: %s\n",
961 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
962 if (cntrl
& CNTRL_DMD
) {
963 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
964 clock_divider_to_carrier_freq(rxclk
));
965 switch (cntrl
& CNTRL_WIN
) {
987 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks "
988 "-%1d/+%1d, %u to %u Hz\n", i
, j
,
989 clock_divider_to_freq(rxclk
, 16 + j
),
990 clock_divider_to_freq(rxclk
, 16 - i
));
992 v4l2_info(sd
, "\tMax measurable pulse width: %u us, "
994 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
995 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
997 v4l2_info(sd
, "\tLow pass filter: %s\n",
998 filtr
? "enabled" : "disabled");
1000 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, "
1002 lpf_count_to_us(filtr
),
1003 lpf_count_to_ns(filtr
));
1004 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1005 stats
& STATS_RTO
? "yes" : "no");
1006 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1007 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1008 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1009 stats
& STATS_ROR
? "yes" : "no");
1010 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1011 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1012 v4l2_info(sd
, "\tBusy: %s\n",
1013 stats
& STATS_RBY
? "yes" : "no");
1014 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1015 stats
& STATS_RSR
? "yes" : "no");
1016 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1017 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1019 v4l2_info(sd
, "IR Transmitter:\n");
1020 v4l2_info(sd
, "\tEnabled: %s\n",
1021 cntrl
& CNTRL_TXE
? "yes" : "no");
1022 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1023 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1024 v4l2_info(sd
, "\tFIFO: %s\n",
1025 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1026 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1027 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1028 v4l2_info(sd
, "\tSignal polarity: %s\n",
1029 cntrl
& CNTRL_CPL
? "0:mark 1:space" : "0:space 1:mark");
1030 if (cntrl
& CNTRL_MOD
) {
1031 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1032 clock_divider_to_carrier_freq(txclk
));
1033 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1036 v4l2_info(sd
, "\tMax pulse width: %u us, "
1038 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1039 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1041 v4l2_info(sd
, "\tBusy: %s\n",
1042 stats
& STATS_TBY
? "yes" : "no");
1043 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1044 stats
& STATS_TSR
? "yes" : "no");
1045 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1046 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1051 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match
*match
)
1053 return match
->type
== V4L2_CHIP_MATCH_HOST
&& match
->addr
== 2;
1056 static int cx23888_ir_g_chip_ident(struct v4l2_subdev
*sd
,
1057 struct v4l2_dbg_chip_ident
*chip
)
1059 struct cx23888_ir_state
*state
= to_state(sd
);
1061 if (cx23888_ir_dbg_match(&chip
->match
)) {
1062 chip
->ident
= state
->id
;
1063 chip
->revision
= state
->rev
;
1068 #ifdef CONFIG_VIDEO_ADV_DEBUG
1069 static int cx23888_ir_g_register(struct v4l2_subdev
*sd
,
1070 struct v4l2_dbg_register
*reg
)
1072 struct cx23888_ir_state
*state
= to_state(sd
);
1073 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1075 if (!cx23888_ir_dbg_match(®
->match
))
1077 if ((addr
& 0x3) != 0)
1079 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1081 if (!capable(CAP_SYS_ADMIN
))
1084 reg
->val
= cx23888_ir_read4(state
->dev
, addr
);
1088 static int cx23888_ir_s_register(struct v4l2_subdev
*sd
,
1089 struct v4l2_dbg_register
*reg
)
1091 struct cx23888_ir_state
*state
= to_state(sd
);
1092 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1094 if (!cx23888_ir_dbg_match(®
->match
))
1096 if ((addr
& 0x3) != 0)
1098 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1100 if (!capable(CAP_SYS_ADMIN
))
1102 cx23888_ir_write4(state
->dev
, addr
, reg
->val
);
1107 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops
= {
1108 .g_chip_ident
= cx23888_ir_g_chip_ident
,
1109 .log_status
= cx23888_ir_log_status
,
1110 #ifdef CONFIG_VIDEO_ADV_DEBUG
1111 .g_register
= cx23888_ir_g_register
,
1112 .s_register
= cx23888_ir_s_register
,
1116 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops
= {
1117 .interrupt_service_routine
= cx23888_ir_irq_handler
,
1119 .rx_read
= cx23888_ir_rx_read
,
1120 .rx_g_parameters
= cx23888_ir_rx_g_parameters
,
1121 .rx_s_parameters
= cx23888_ir_rx_s_parameters
,
1123 .tx_write
= cx23888_ir_tx_write
,
1124 .tx_g_parameters
= cx23888_ir_tx_g_parameters
,
1125 .tx_s_parameters
= cx23888_ir_tx_s_parameters
,
1128 static const struct v4l2_subdev_ops cx23888_ir_controller_ops
= {
1129 .core
= &cx23888_ir_core_ops
,
1130 .ir
= &cx23888_ir_ir_ops
,
1133 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1134 .bytes_per_data_element
= sizeof(u32
),
1135 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1138 .interrupt_enable
= false,
1142 .carrier_freq
= 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1144 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1145 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1146 .noise_filter_min_width
= 333333, /* ns */
1147 .carrier_range_lower
= 35000,
1148 .carrier_range_upper
= 37000,
1152 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1153 .bytes_per_data_element
= sizeof(u32
),
1154 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1157 .interrupt_enable
= false,
1161 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1162 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1166 int cx23888_ir_probe(struct cx23885_dev
*dev
)
1168 struct cx23888_ir_state
*state
;
1169 struct v4l2_subdev
*sd
;
1170 struct v4l2_subdev_ir_parameters default_params
;
1173 state
= kzalloc(sizeof(struct cx23888_ir_state
), GFP_KERNEL
);
1177 spin_lock_init(&state
->rx_kfifo_lock
);
1178 if (kfifo_alloc(&state
->rx_kfifo
, CX23888_IR_RX_KFIFO_SIZE
, GFP_KERNEL
))
1182 state
->id
= V4L2_IDENT_CX23888_IR
;
1186 v4l2_subdev_init(sd
, &cx23888_ir_controller_ops
);
1187 v4l2_set_subdevdata(sd
, state
);
1188 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1189 snprintf(sd
->name
, sizeof(sd
->name
), "%s/888-ir", dev
->name
);
1190 sd
->grp_id
= CX23885_HW_888_IR
;
1192 ret
= v4l2_device_register_subdev(&dev
->v4l2_dev
, sd
);
1195 * Ensure no interrupts arrive from '888 specific conditions,
1196 * since we ignore them in this driver to have commonality with
1197 * similar IR controller cores.
1199 cx23888_ir_write4(dev
, CX23888_IR_IRQEN_REG
, 0);
1201 mutex_init(&state
->rx_params_lock
);
1202 memcpy(&default_params
, &default_rx_params
,
1203 sizeof(struct v4l2_subdev_ir_parameters
));
1204 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1206 mutex_init(&state
->tx_params_lock
);
1207 memcpy(&default_params
, &default_tx_params
,
1208 sizeof(struct v4l2_subdev_ir_parameters
));
1209 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1211 kfifo_free(&state
->rx_kfifo
);
1216 int cx23888_ir_remove(struct cx23885_dev
*dev
)
1218 struct v4l2_subdev
*sd
;
1219 struct cx23888_ir_state
*state
;
1221 sd
= cx23885_find_hw(dev
, CX23885_HW_888_IR
);
1225 cx23888_ir_rx_shutdown(sd
);
1226 cx23888_ir_tx_shutdown(sd
);
1228 state
= to_state(sd
);
1229 v4l2_device_unregister_subdev(sd
);
1230 kfifo_free(&state
->rx_kfifo
);
1232 /* Nothing more to free() as state held the actual v4l2_subdev object */