2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/compatmac.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/mtd/inftl.h>
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
41 static unsigned long __initdata doc_locations
[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /* CONFIG_MTD_DOCPROBE_HIGH */
50 0xc8000, 0xca000, 0xcc000, 0xce000,
51 0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 0xd8000, 0xda000, 0xdc000, 0xde000,
53 0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #warning Unknown architecture for DiskOnChip. No default probe locations defined
61 static struct mtd_info
*doclist
= NULL
;
64 void __iomem
*virtadr
;
65 unsigned long physadr
;
68 int chips_per_floor
; /* The number of chips detected on each floor */
73 struct mtd_info
*nextdoc
;
76 /* This is the syndrome computed by the HW ecc generator upon reading an empty
77 page, one with all 0xff for data and stored ecc code. */
78 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
80 /* This is the ecc value computed by the HW ecc generator upon writing an empty
81 page, one with all 0xff for data. */
82 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
84 #define INFTL_BBT_RESERVED_BLOCKS 4
86 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
87 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
88 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
90 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
91 unsigned int bitmask
);
92 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
95 module_param(debug
, int, 0);
97 static int try_dword
= 1;
98 module_param(try_dword
, int, 0);
100 static int no_ecc_failures
= 0;
101 module_param(no_ecc_failures
, int, 0);
103 static int no_autopart
= 0;
104 module_param(no_autopart
, int, 0);
106 static int show_firmware_partition
= 0;
107 module_param(show_firmware_partition
, int, 0);
109 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
110 static int inftl_bbt_write
= 1;
112 static int inftl_bbt_write
= 0;
114 module_param(inftl_bbt_write
, int, 0);
116 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
117 module_param(doc_config_location
, ulong
, 0);
118 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
120 /* Sector size for HW ECC */
121 #define SECTOR_SIZE 512
122 /* The sector bytes are packed into NB_DATA 10 bit words */
123 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
124 /* Number of roots */
126 /* First consective root */
128 /* Number of symbols */
131 /* the Reed Solomon control structure */
132 static struct rs_control
*rs_decoder
;
135 * The HW decoder in the DoC ASIC's provides us a error syndrome,
136 * which we must convert to a standard syndrom usable by the generic
137 * Reed-Solomon library code.
139 * Fabrice Bellard figured this out in the old docecc code. I added
140 * some comments, improved a minor bit and converted it to make use
141 * of the generic Reed-Solomon libary. tglx
143 static int doc_ecc_decode(struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
145 int i
, j
, nerr
, errpos
[8];
147 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
149 /* Convert the ecc bytes into words */
150 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
151 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
152 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
153 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
156 /* Initialize the syndrom buffer */
157 for (i
= 0; i
< NROOTS
; i
++)
161 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
162 * where x = alpha^(FCR + i)
164 for (j
= 1; j
< NROOTS
; j
++) {
167 tmp
= rs
->index_of
[ds
[j
]];
168 for (i
= 0; i
< NROOTS
; i
++)
169 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
172 /* Calc s[i] = s[i] / alpha^(v + i) */
173 for (i
= 0; i
< NROOTS
; i
++) {
175 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
177 /* Call the decoder library */
178 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
180 /* Incorrectable errors ? */
185 * Correct the errors. The bitpositions are a bit of magic,
186 * but they are given by the design of the de/encoder circuit
189 for (i
= 0; i
< nerr
; i
++) {
190 int index
, bitpos
, pos
= 1015 - errpos
[i
];
192 if (pos
>= NB_DATA
&& pos
< 1019)
195 /* extract bit position (MSB first) */
196 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
197 /* now correct the following 10 bits. At most two bytes
198 can be modified since pos is even */
199 index
= (pos
>> 3) ^ 1;
201 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
202 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
204 if (index
< SECTOR_SIZE
)
207 index
= ((pos
>> 3) + 1) ^ 1;
208 bitpos
= (bitpos
+ 10) & 7;
211 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
212 val
= (uint8_t) (errval
[i
] << (8 - bitpos
));
214 if (index
< SECTOR_SIZE
)
219 /* If the parity is wrong, no rescue possible */
220 return parity
? -EBADMSG
: nerr
;
223 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
228 for (i
= 0; i
< cycles
; i
++) {
229 if (DoC_is_Millennium(doc
))
230 dummy
= ReadDOC(doc
->virtadr
, NOP
);
231 else if (DoC_is_MillenniumPlus(doc
))
232 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
234 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
239 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
241 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
242 static int _DoC_WaitReady(struct doc_priv
*doc
)
244 void __iomem
*docptr
= doc
->virtadr
;
245 unsigned long timeo
= jiffies
+ (HZ
* 10);
248 printk("_DoC_WaitReady...\n");
249 /* Out-of-line routine to wait for chip response */
250 if (DoC_is_MillenniumPlus(doc
)) {
251 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
252 if (time_after(jiffies
, timeo
)) {
253 printk("_DoC_WaitReady timed out.\n");
260 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
261 if (time_after(jiffies
, timeo
)) {
262 printk("_DoC_WaitReady timed out.\n");
273 static inline int DoC_WaitReady(struct doc_priv
*doc
)
275 void __iomem
*docptr
= doc
->virtadr
;
278 if (DoC_is_MillenniumPlus(doc
)) {
281 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
282 /* Call the out-of-line routine to wait */
283 ret
= _DoC_WaitReady(doc
);
287 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
288 /* Call the out-of-line routine to wait */
289 ret
= _DoC_WaitReady(doc
);
294 printk("DoC_WaitReady OK\n");
298 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
300 struct nand_chip
*this = mtd
->priv
;
301 struct doc_priv
*doc
= this->priv
;
302 void __iomem
*docptr
= doc
->virtadr
;
305 printk("write_byte %02x\n", datum
);
306 WriteDOC(datum
, docptr
, CDSNSlowIO
);
307 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
310 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
312 struct nand_chip
*this = mtd
->priv
;
313 struct doc_priv
*doc
= this->priv
;
314 void __iomem
*docptr
= doc
->virtadr
;
317 ReadDOC(docptr
, CDSNSlowIO
);
319 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
321 printk("read_byte returns %02x\n", ret
);
325 static void doc2000_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
327 struct nand_chip
*this = mtd
->priv
;
328 struct doc_priv
*doc
= this->priv
;
329 void __iomem
*docptr
= doc
->virtadr
;
332 printk("writebuf of %d bytes: ", len
);
333 for (i
= 0; i
< len
; i
++) {
334 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
336 printk("%02x ", buf
[i
]);
342 static void doc2000_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
344 struct nand_chip
*this = mtd
->priv
;
345 struct doc_priv
*doc
= this->priv
;
346 void __iomem
*docptr
= doc
->virtadr
;
350 printk("readbuf of %d bytes: ", len
);
352 for (i
= 0; i
< len
; i
++) {
353 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
357 static void doc2000_readbuf_dword(struct mtd_info
*mtd
, u_char
*buf
, int len
)
359 struct nand_chip
*this = mtd
->priv
;
360 struct doc_priv
*doc
= this->priv
;
361 void __iomem
*docptr
= doc
->virtadr
;
365 printk("readbuf_dword of %d bytes: ", len
);
367 if (unlikely((((unsigned long)buf
) | len
) & 3)) {
368 for (i
= 0; i
< len
; i
++) {
369 *(uint8_t *) (&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
372 for (i
= 0; i
< len
; i
+= 4) {
373 *(uint32_t *) (&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
378 static int doc2000_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
380 struct nand_chip
*this = mtd
->priv
;
381 struct doc_priv
*doc
= this->priv
;
382 void __iomem
*docptr
= doc
->virtadr
;
385 for (i
= 0; i
< len
; i
++)
386 if (buf
[i
] != ReadDOC(docptr
, 2k_CDSN_IO
))
391 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
393 struct nand_chip
*this = mtd
->priv
;
394 struct doc_priv
*doc
= this->priv
;
397 doc200x_select_chip(mtd
, nr
);
398 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
399 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
400 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
401 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
403 /* We cant' use dev_ready here, but at least we wait for the
404 * command to complete
408 ret
= this->read_byte(mtd
) << 8;
409 ret
|= this->read_byte(mtd
);
411 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
412 /* First chip probe. See if we get same results by 32-bit access */
417 void __iomem
*docptr
= doc
->virtadr
;
419 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
420 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
421 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
422 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
,
423 NAND_NCE
| NAND_CTRL_CHANGE
);
427 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
428 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
429 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
430 this->read_buf
= &doc2000_readbuf_dword
;
437 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
439 struct nand_chip
*this = mtd
->priv
;
440 struct doc_priv
*doc
= this->priv
;
444 /* Max 4 chips per floor on DiskOnChip 2000 */
445 doc
->chips_per_floor
= 4;
447 /* Find out what the first chip is */
448 mfrid
= doc200x_ident_chip(mtd
, 0);
450 /* Find how many chips in each floor. */
451 for (i
= 1; i
< 4; i
++) {
452 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
455 doc
->chips_per_floor
= i
;
456 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
459 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this)
461 struct doc_priv
*doc
= this->priv
;
466 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
468 status
= (int)this->read_byte(mtd
);
473 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
475 struct nand_chip
*this = mtd
->priv
;
476 struct doc_priv
*doc
= this->priv
;
477 void __iomem
*docptr
= doc
->virtadr
;
479 WriteDOC(datum
, docptr
, CDSNSlowIO
);
480 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
481 WriteDOC(datum
, docptr
, WritePipeTerm
);
484 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
486 struct nand_chip
*this = mtd
->priv
;
487 struct doc_priv
*doc
= this->priv
;
488 void __iomem
*docptr
= doc
->virtadr
;
490 //ReadDOC(docptr, CDSNSlowIO);
491 /* 11.4.5 -- delay twice to allow extended length cycle */
493 ReadDOC(docptr
, ReadPipeInit
);
494 //return ReadDOC(docptr, Mil_CDSN_IO);
495 return ReadDOC(docptr
, LastDataRead
);
498 static void doc2001_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
500 struct nand_chip
*this = mtd
->priv
;
501 struct doc_priv
*doc
= this->priv
;
502 void __iomem
*docptr
= doc
->virtadr
;
505 for (i
= 0; i
< len
; i
++)
506 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
507 /* Terminate write pipeline */
508 WriteDOC(0x00, docptr
, WritePipeTerm
);
511 static void doc2001_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
513 struct nand_chip
*this = mtd
->priv
;
514 struct doc_priv
*doc
= this->priv
;
515 void __iomem
*docptr
= doc
->virtadr
;
518 /* Start read pipeline */
519 ReadDOC(docptr
, ReadPipeInit
);
521 for (i
= 0; i
< len
- 1; i
++)
522 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
524 /* Terminate read pipeline */
525 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
528 static int doc2001_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
530 struct nand_chip
*this = mtd
->priv
;
531 struct doc_priv
*doc
= this->priv
;
532 void __iomem
*docptr
= doc
->virtadr
;
535 /* Start read pipeline */
536 ReadDOC(docptr
, ReadPipeInit
);
538 for (i
= 0; i
< len
- 1; i
++)
539 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
540 ReadDOC(docptr
, LastDataRead
);
543 if (buf
[i
] != ReadDOC(docptr
, LastDataRead
))
548 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
550 struct nand_chip
*this = mtd
->priv
;
551 struct doc_priv
*doc
= this->priv
;
552 void __iomem
*docptr
= doc
->virtadr
;
555 ReadDOC(docptr
, Mplus_ReadPipeInit
);
556 ReadDOC(docptr
, Mplus_ReadPipeInit
);
557 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
559 printk("read_byte returns %02x\n", ret
);
563 static void doc2001plus_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
565 struct nand_chip
*this = mtd
->priv
;
566 struct doc_priv
*doc
= this->priv
;
567 void __iomem
*docptr
= doc
->virtadr
;
571 printk("writebuf of %d bytes: ", len
);
572 for (i
= 0; i
< len
; i
++) {
573 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
575 printk("%02x ", buf
[i
]);
581 static void doc2001plus_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
583 struct nand_chip
*this = mtd
->priv
;
584 struct doc_priv
*doc
= this->priv
;
585 void __iomem
*docptr
= doc
->virtadr
;
589 printk("readbuf of %d bytes: ", len
);
591 /* Start read pipeline */
592 ReadDOC(docptr
, Mplus_ReadPipeInit
);
593 ReadDOC(docptr
, Mplus_ReadPipeInit
);
595 for (i
= 0; i
< len
- 2; i
++) {
596 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
);
598 printk("%02x ", buf
[i
]);
601 /* Terminate read pipeline */
602 buf
[len
- 2] = ReadDOC(docptr
, Mplus_LastDataRead
);
604 printk("%02x ", buf
[len
- 2]);
605 buf
[len
- 1] = ReadDOC(docptr
, Mplus_LastDataRead
);
607 printk("%02x ", buf
[len
- 1]);
612 static int doc2001plus_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
614 struct nand_chip
*this = mtd
->priv
;
615 struct doc_priv
*doc
= this->priv
;
616 void __iomem
*docptr
= doc
->virtadr
;
620 printk("verifybuf of %d bytes: ", len
);
622 /* Start read pipeline */
623 ReadDOC(docptr
, Mplus_ReadPipeInit
);
624 ReadDOC(docptr
, Mplus_ReadPipeInit
);
626 for (i
= 0; i
< len
- 2; i
++)
627 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
628 ReadDOC(docptr
, Mplus_LastDataRead
);
629 ReadDOC(docptr
, Mplus_LastDataRead
);
632 if (buf
[len
- 2] != ReadDOC(docptr
, Mplus_LastDataRead
))
634 if (buf
[len
- 1] != ReadDOC(docptr
, Mplus_LastDataRead
))
639 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
641 struct nand_chip
*this = mtd
->priv
;
642 struct doc_priv
*doc
= this->priv
;
643 void __iomem
*docptr
= doc
->virtadr
;
647 printk("select chip (%d)\n", chip
);
650 /* Disable flash internally */
651 WriteDOC(0, docptr
, Mplus_FlashSelect
);
655 floor
= chip
/ doc
->chips_per_floor
;
656 chip
-= (floor
* doc
->chips_per_floor
);
658 /* Assert ChipEnable and deassert WriteProtect */
659 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
660 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
663 doc
->curfloor
= floor
;
666 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
668 struct nand_chip
*this = mtd
->priv
;
669 struct doc_priv
*doc
= this->priv
;
670 void __iomem
*docptr
= doc
->virtadr
;
674 printk("select chip (%d)\n", chip
);
679 floor
= chip
/ doc
->chips_per_floor
;
680 chip
-= (floor
* doc
->chips_per_floor
);
682 /* 11.4.4 -- deassert CE before changing chip */
683 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
685 WriteDOC(floor
, docptr
, FloorSelect
);
686 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
688 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
691 doc
->curfloor
= floor
;
694 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
696 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
699 struct nand_chip
*this = mtd
->priv
;
700 struct doc_priv
*doc
= this->priv
;
701 void __iomem
*docptr
= doc
->virtadr
;
703 if (ctrl
& NAND_CTRL_CHANGE
) {
704 doc
->CDSNControl
&= ~CDSN_CTRL_MSK
;
705 doc
->CDSNControl
|= ctrl
& CDSN_CTRL_MSK
;
707 printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
708 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
709 /* 11.4.3 -- 4 NOPs after CSDNControl write */
712 if (cmd
!= NAND_CMD_NONE
) {
713 if (DoC_is_2000(doc
))
714 doc2000_write_byte(mtd
, cmd
);
716 doc2001_write_byte(mtd
, cmd
);
720 static void doc2001plus_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
722 struct nand_chip
*this = mtd
->priv
;
723 struct doc_priv
*doc
= this->priv
;
724 void __iomem
*docptr
= doc
->virtadr
;
727 * Must terminate write pipeline before sending any commands
730 if (command
== NAND_CMD_PAGEPROG
) {
731 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
732 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
736 * Write out the command to the device.
738 if (command
== NAND_CMD_SEQIN
) {
741 if (column
>= mtd
->writesize
) {
743 column
-= mtd
->writesize
;
744 readcmd
= NAND_CMD_READOOB
;
745 } else if (column
< 256) {
746 /* First 256 bytes --> READ0 */
747 readcmd
= NAND_CMD_READ0
;
750 readcmd
= NAND_CMD_READ1
;
752 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
754 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
755 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
756 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
758 if (column
!= -1 || page_addr
!= -1) {
759 /* Serially input address */
761 /* Adjust columns for 16 bit buswidth */
762 if (this->options
& NAND_BUSWIDTH_16
)
764 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
766 if (page_addr
!= -1) {
767 WriteDOC((unsigned char)(page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
768 WriteDOC((unsigned char)((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
769 /* One more address cycle for higher density devices */
770 if (this->chipsize
& 0x0c000000) {
771 WriteDOC((unsigned char)((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
772 printk("high density\n");
775 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
776 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
778 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
779 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
780 WriteDOC(0, docptr
, Mplus_FlashControl
);
784 * program and erase have their own busy handlers
785 * status and sequential in needs no delay
789 case NAND_CMD_PAGEPROG
:
790 case NAND_CMD_ERASE1
:
791 case NAND_CMD_ERASE2
:
793 case NAND_CMD_STATUS
:
799 udelay(this->chip_delay
);
800 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
801 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
802 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
803 while (!(this->read_byte(mtd
) & 0x40)) ;
806 /* This applies to read commands */
809 * If we don't have access to the busy pin, we apply the given
812 if (!this->dev_ready
) {
813 udelay(this->chip_delay
);
818 /* Apply this short delay always to ensure that we do wait tWB in
819 * any case on any machine. */
821 /* wait until command is processed */
822 while (!this->dev_ready(mtd
)) ;
825 static int doc200x_dev_ready(struct mtd_info
*mtd
)
827 struct nand_chip
*this = mtd
->priv
;
828 struct doc_priv
*doc
= this->priv
;
829 void __iomem
*docptr
= doc
->virtadr
;
831 if (DoC_is_MillenniumPlus(doc
)) {
832 /* 11.4.2 -- must NOP four times before checking FR/B# */
834 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
836 printk("not ready\n");
840 printk("was ready\n");
843 /* 11.4.2 -- must NOP four times before checking FR/B# */
845 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
847 printk("not ready\n");
850 /* 11.4.2 -- Must NOP twice if it's ready */
853 printk("was ready\n");
858 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
860 /* This is our last resort if we couldn't find or create a BBT. Just
861 pretend all blocks are good. */
865 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
867 struct nand_chip
*this = mtd
->priv
;
868 struct doc_priv
*doc
= this->priv
;
869 void __iomem
*docptr
= doc
->virtadr
;
871 /* Prime the ECC engine */
874 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
875 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
878 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
879 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
884 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
886 struct nand_chip
*this = mtd
->priv
;
887 struct doc_priv
*doc
= this->priv
;
888 void __iomem
*docptr
= doc
->virtadr
;
890 /* Prime the ECC engine */
893 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
894 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
897 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
898 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
903 /* This code is only called on write */
904 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, unsigned char *ecc_code
)
906 struct nand_chip
*this = mtd
->priv
;
907 struct doc_priv
*doc
= this->priv
;
908 void __iomem
*docptr
= doc
->virtadr
;
912 /* flush the pipeline */
913 if (DoC_is_2000(doc
)) {
914 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
915 WriteDOC(0, docptr
, 2k_CDSN_IO
);
916 WriteDOC(0, docptr
, 2k_CDSN_IO
);
917 WriteDOC(0, docptr
, 2k_CDSN_IO
);
918 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
919 } else if (DoC_is_MillenniumPlus(doc
)) {
920 WriteDOC(0, docptr
, Mplus_NOP
);
921 WriteDOC(0, docptr
, Mplus_NOP
);
922 WriteDOC(0, docptr
, Mplus_NOP
);
924 WriteDOC(0, docptr
, NOP
);
925 WriteDOC(0, docptr
, NOP
);
926 WriteDOC(0, docptr
, NOP
);
929 for (i
= 0; i
< 6; i
++) {
930 if (DoC_is_MillenniumPlus(doc
))
931 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
933 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
934 if (ecc_code
[i
] != empty_write_ecc
[i
])
937 if (DoC_is_MillenniumPlus(doc
))
938 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
940 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
942 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
944 /* Note: this somewhat expensive test should not be triggered
945 often. It could be optimized away by examining the data in
946 the writebuf routine, and remembering the result. */
947 for (i
= 0; i
< 512; i
++) {
954 /* If emptymatch still =1, we do have an all-0xff data buffer.
955 Return all-0xff ecc value instead of the computed one, so
956 it'll look just like a freshly-erased page. */
958 memset(ecc_code
, 0xff, 6);
963 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
964 u_char
*read_ecc
, u_char
*isnull
)
967 struct nand_chip
*this = mtd
->priv
;
968 struct doc_priv
*doc
= this->priv
;
969 void __iomem
*docptr
= doc
->virtadr
;
971 volatile u_char dummy
;
974 /* flush the pipeline */
975 if (DoC_is_2000(doc
)) {
976 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
977 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
978 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
979 } else if (DoC_is_MillenniumPlus(doc
)) {
980 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
981 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
982 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
984 dummy
= ReadDOC(docptr
, ECCConf
);
985 dummy
= ReadDOC(docptr
, ECCConf
);
986 dummy
= ReadDOC(docptr
, ECCConf
);
989 /* Error occured ? */
991 for (i
= 0; i
< 6; i
++) {
992 if (DoC_is_MillenniumPlus(doc
))
993 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
995 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
996 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
999 /* If emptymatch=1, the read syndrome is consistent with an
1000 all-0xff data and stored ecc block. Check the stored ecc. */
1002 for (i
= 0; i
< 6; i
++) {
1003 if (read_ecc
[i
] == 0xff)
1009 /* If emptymatch still =1, check the data block. */
1011 /* Note: this somewhat expensive test should not be triggered
1012 often. It could be optimized away by examining the data in
1013 the readbuf routine, and remembering the result. */
1014 for (i
= 0; i
< 512; i
++) {
1021 /* If emptymatch still =1, this is almost certainly a freshly-
1022 erased block, in which case the ECC will not come out right.
1023 We'll suppress the error and tell the caller everything's
1024 OK. Because it is. */
1026 ret
= doc_ecc_decode(rs_decoder
, dat
, calc_ecc
);
1028 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
1030 if (DoC_is_MillenniumPlus(doc
))
1031 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1033 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1034 if (no_ecc_failures
&& (ret
== -EBADMSG
)) {
1035 printk(KERN_ERR
"suppressing ECC failure\n");
1041 //u_char mydatabuf[528];
1043 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1044 * attempt to retain compatibility. It used to read:
1045 * .oobfree = { {8, 8} }
1046 * Since that leaves two bytes unusable, it was changed. But the following
1047 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1048 * .oobfree = { {6, 10} }
1049 * jffs2 seems to handle the above gracefully, but the current scheme seems
1050 * safer. The only problem with it is that any code that parses oobfree must
1051 * be able to handle out-of-order segments.
1053 static struct nand_ecclayout doc200x_oobinfo
= {
1055 .eccpos
= {0, 1, 2, 3, 4, 5},
1056 .oobfree
= {{8, 8}, {6, 2}}
1059 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1060 On successful return, buf will contain a copy of the media header for
1061 further processing. id is the string to scan for, and will presumably be
1062 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1063 header. The page #s of the found media headers are placed in mh0_page and
1064 mh1_page in the DOC private structure. */
1065 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
, const char *id
, int findmirror
)
1067 struct nand_chip
*this = mtd
->priv
;
1068 struct doc_priv
*doc
= this->priv
;
1073 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1074 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1075 if (retlen
!= mtd
->writesize
)
1078 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n", offs
);
1080 if (memcmp(buf
, id
, 6))
1082 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1083 if (doc
->mh0_page
== -1) {
1084 doc
->mh0_page
= offs
>> this->page_shift
;
1089 doc
->mh1_page
= offs
>> this->page_shift
;
1092 if (doc
->mh0_page
== -1) {
1093 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1096 /* Only one mediaheader was found. We want buf to contain a
1097 mediaheader on return, so we'll have to re-read the one we found. */
1098 offs
= doc
->mh0_page
<< this->page_shift
;
1099 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1100 if (retlen
!= mtd
->writesize
) {
1101 /* Insanity. Give up. */
1102 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1108 static inline int __init
nftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1110 struct nand_chip
*this = mtd
->priv
;
1111 struct doc_priv
*doc
= this->priv
;
1114 struct NFTLMediaHeader
*mh
;
1115 const unsigned psize
= 1 << this->page_shift
;
1117 unsigned blocks
, maxblocks
;
1118 int offs
, numheaders
;
1120 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1122 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1125 if (!(numheaders
= find_media_headers(mtd
, buf
, "ANAND", 1)))
1127 mh
= (struct NFTLMediaHeader
*)buf
;
1129 le16_to_cpus(&mh
->NumEraseUnits
);
1130 le16_to_cpus(&mh
->FirstPhysicalEUN
);
1131 le32_to_cpus(&mh
->FormattedSize
);
1133 printk(KERN_INFO
" DataOrgID = %s\n"
1134 " NumEraseUnits = %d\n"
1135 " FirstPhysicalEUN = %d\n"
1136 " FormattedSize = %d\n"
1137 " UnitSizeFactor = %d\n",
1138 mh
->DataOrgID
, mh
->NumEraseUnits
,
1139 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1140 mh
->UnitSizeFactor
);
1142 blocks
= mtd
->size
>> this->phys_erase_shift
;
1143 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1145 if (mh
->UnitSizeFactor
== 0x00) {
1146 /* Auto-determine UnitSizeFactor. The constraints are:
1147 - There can be at most 32768 virtual blocks.
1148 - There can be at most (virtual block size - page size)
1149 virtual blocks (because MediaHeader+BBT must fit in 1).
1151 mh
->UnitSizeFactor
= 0xff;
1152 while (blocks
> maxblocks
) {
1154 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1155 mh
->UnitSizeFactor
--;
1157 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1160 /* NOTE: The lines below modify internal variables of the NAND and MTD
1161 layers; variables with have already been configured by nand_scan.
1162 Unfortunately, we didn't know before this point what these values
1163 should be. Thus, this code is somewhat dependant on the exact
1164 implementation of the NAND layer. */
1165 if (mh
->UnitSizeFactor
!= 0xff) {
1166 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1167 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1168 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1169 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1170 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1173 if (blocks
> maxblocks
) {
1174 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1178 /* Skip past the media headers. */
1179 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1180 offs
<<= this->page_shift
;
1181 offs
+= mtd
->erasesize
;
1183 if (show_firmware_partition
== 1) {
1184 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1185 parts
[0].offset
= 0;
1186 parts
[0].size
= offs
;
1190 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1191 parts
[numparts
].offset
= offs
;
1192 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1194 offs
+= parts
[numparts
].size
;
1197 if (offs
< mtd
->size
) {
1198 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1199 parts
[numparts
].offset
= offs
;
1200 parts
[numparts
].size
= mtd
->size
- offs
;
1210 /* This is a stripped-down copy of the code in inftlmount.c */
1211 static inline int __init
inftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1213 struct nand_chip
*this = mtd
->priv
;
1214 struct doc_priv
*doc
= this->priv
;
1217 struct INFTLMediaHeader
*mh
;
1218 struct INFTLPartition
*ip
;
1221 int vshift
, lastvunit
= 0;
1223 int end
= mtd
->size
;
1225 if (inftl_bbt_write
)
1226 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1228 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1230 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1234 if (!find_media_headers(mtd
, buf
, "BNAND", 0))
1236 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1237 mh
= (struct INFTLMediaHeader
*)buf
;
1239 le32_to_cpus(&mh
->NoOfBootImageBlocks
);
1240 le32_to_cpus(&mh
->NoOfBinaryPartitions
);
1241 le32_to_cpus(&mh
->NoOfBDTLPartitions
);
1242 le32_to_cpus(&mh
->BlockMultiplierBits
);
1243 le32_to_cpus(&mh
->FormatFlags
);
1244 le32_to_cpus(&mh
->PercentUsed
);
1246 printk(KERN_INFO
" bootRecordID = %s\n"
1247 " NoOfBootImageBlocks = %d\n"
1248 " NoOfBinaryPartitions = %d\n"
1249 " NoOfBDTLPartitions = %d\n"
1250 " BlockMultiplerBits = %d\n"
1251 " FormatFlgs = %d\n"
1252 " OsakVersion = %d.%d.%d.%d\n"
1253 " PercentUsed = %d\n",
1254 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1255 mh
->NoOfBinaryPartitions
,
1256 mh
->NoOfBDTLPartitions
,
1257 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1258 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1259 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1260 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1261 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1264 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1266 blocks
= mtd
->size
>> vshift
;
1267 if (blocks
> 32768) {
1268 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1272 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1273 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1274 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1278 /* Scan the partitions */
1279 for (i
= 0; (i
< 4); i
++) {
1280 ip
= &(mh
->Partitions
[i
]);
1281 le32_to_cpus(&ip
->virtualUnits
);
1282 le32_to_cpus(&ip
->firstUnit
);
1283 le32_to_cpus(&ip
->lastUnit
);
1284 le32_to_cpus(&ip
->flags
);
1285 le32_to_cpus(&ip
->spareUnits
);
1286 le32_to_cpus(&ip
->Reserved0
);
1288 printk(KERN_INFO
" PARTITION[%d] ->\n"
1289 " virtualUnits = %d\n"
1293 " spareUnits = %d\n",
1294 i
, ip
->virtualUnits
, ip
->firstUnit
,
1295 ip
->lastUnit
, ip
->flags
,
1298 if ((show_firmware_partition
== 1) &&
1299 (i
== 0) && (ip
->firstUnit
> 0)) {
1300 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1301 parts
[0].offset
= 0;
1302 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1306 if (ip
->flags
& INFTL_BINARY
)
1307 parts
[numparts
].name
= " DiskOnChip BDK partition";
1309 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1310 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1311 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1313 if (ip
->lastUnit
> lastvunit
)
1314 lastvunit
= ip
->lastUnit
;
1315 if (ip
->flags
& INFTL_LAST
)
1319 if ((lastvunit
<< vshift
) < end
) {
1320 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1321 parts
[numparts
].offset
= lastvunit
<< vshift
;
1322 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1331 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1334 struct nand_chip
*this = mtd
->priv
;
1335 struct doc_priv
*doc
= this->priv
;
1336 struct mtd_partition parts
[2];
1338 memset((char *)parts
, 0, sizeof(parts
));
1339 /* On NFTL, we have to find the media headers before we can read the
1340 BBTs, since they're stored in the media header eraseblocks. */
1341 numparts
= nftl_partscan(mtd
, parts
);
1344 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1345 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1347 this->bbt_td
->veroffs
= 7;
1348 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1349 if (doc
->mh1_page
!= -1) {
1350 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1351 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1353 this->bbt_md
->veroffs
= 7;
1354 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1356 this->bbt_md
= NULL
;
1359 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1360 At least as nand_bbt.c is currently written. */
1361 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1363 add_mtd_device(mtd
);
1364 #ifdef CONFIG_MTD_PARTITIONS
1366 add_mtd_partitions(mtd
, parts
, numparts
);
1371 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1374 struct nand_chip
*this = mtd
->priv
;
1375 struct doc_priv
*doc
= this->priv
;
1376 struct mtd_partition parts
[5];
1378 if (this->numchips
> doc
->chips_per_floor
) {
1379 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1383 if (DoC_is_MillenniumPlus(doc
)) {
1384 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1385 if (inftl_bbt_write
)
1386 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1387 this->bbt_td
->pages
[0] = 2;
1388 this->bbt_md
= NULL
;
1390 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1391 if (inftl_bbt_write
)
1392 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1393 this->bbt_td
->offs
= 8;
1394 this->bbt_td
->len
= 8;
1395 this->bbt_td
->veroffs
= 7;
1396 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1397 this->bbt_td
->reserved_block_code
= 0x01;
1398 this->bbt_td
->pattern
= "MSYS_BBT";
1400 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1401 if (inftl_bbt_write
)
1402 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1403 this->bbt_md
->offs
= 8;
1404 this->bbt_md
->len
= 8;
1405 this->bbt_md
->veroffs
= 7;
1406 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1407 this->bbt_md
->reserved_block_code
= 0x01;
1408 this->bbt_md
->pattern
= "TBB_SYSM";
1411 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1412 At least as nand_bbt.c is currently written. */
1413 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1415 memset((char *)parts
, 0, sizeof(parts
));
1416 numparts
= inftl_partscan(mtd
, parts
);
1417 /* At least for now, require the INFTL Media Header. We could probably
1418 do without it for non-INFTL use, since all it gives us is
1419 autopartitioning, but I want to give it more thought. */
1422 add_mtd_device(mtd
);
1423 #ifdef CONFIG_MTD_PARTITIONS
1425 add_mtd_partitions(mtd
, parts
, numparts
);
1430 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1432 struct nand_chip
*this = mtd
->priv
;
1433 struct doc_priv
*doc
= this->priv
;
1435 this->read_byte
= doc2000_read_byte
;
1436 this->write_buf
= doc2000_writebuf
;
1437 this->read_buf
= doc2000_readbuf
;
1438 this->verify_buf
= doc2000_verifybuf
;
1439 this->scan_bbt
= nftl_scan_bbt
;
1441 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1442 doc2000_count_chips(mtd
);
1443 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1444 return (4 * doc
->chips_per_floor
);
1447 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1449 struct nand_chip
*this = mtd
->priv
;
1450 struct doc_priv
*doc
= this->priv
;
1452 this->read_byte
= doc2001_read_byte
;
1453 this->write_buf
= doc2001_writebuf
;
1454 this->read_buf
= doc2001_readbuf
;
1455 this->verify_buf
= doc2001_verifybuf
;
1457 ReadDOC(doc
->virtadr
, ChipID
);
1458 ReadDOC(doc
->virtadr
, ChipID
);
1459 ReadDOC(doc
->virtadr
, ChipID
);
1460 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1461 /* It's not a Millennium; it's one of the newer
1462 DiskOnChip 2000 units with a similar ASIC.
1463 Treat it like a Millennium, except that it
1464 can have multiple chips. */
1465 doc2000_count_chips(mtd
);
1466 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1467 this->scan_bbt
= inftl_scan_bbt
;
1468 return (4 * doc
->chips_per_floor
);
1470 /* Bog-standard Millennium */
1471 doc
->chips_per_floor
= 1;
1472 mtd
->name
= "DiskOnChip Millennium";
1473 this->scan_bbt
= nftl_scan_bbt
;
1478 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1480 struct nand_chip
*this = mtd
->priv
;
1481 struct doc_priv
*doc
= this->priv
;
1483 this->read_byte
= doc2001plus_read_byte
;
1484 this->write_buf
= doc2001plus_writebuf
;
1485 this->read_buf
= doc2001plus_readbuf
;
1486 this->verify_buf
= doc2001plus_verifybuf
;
1487 this->scan_bbt
= inftl_scan_bbt
;
1488 this->cmd_ctrl
= NULL
;
1489 this->select_chip
= doc2001plus_select_chip
;
1490 this->cmdfunc
= doc2001plus_command
;
1491 this->ecc
.hwctl
= doc2001plus_enable_hwecc
;
1493 doc
->chips_per_floor
= 1;
1494 mtd
->name
= "DiskOnChip Millennium Plus";
1499 static int __init
doc_probe(unsigned long physadr
)
1501 unsigned char ChipID
;
1502 struct mtd_info
*mtd
;
1503 struct nand_chip
*nand
;
1504 struct doc_priv
*doc
;
1505 void __iomem
*virtadr
;
1506 unsigned char save_control
;
1507 unsigned char tmp
, tmpb
, tmpc
;
1508 int reg
, len
, numchips
;
1511 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1513 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1517 /* It's not possible to cleanly detect the DiskOnChip - the
1518 * bootup procedure will put the device into reset mode, and
1519 * it's not possible to talk to it without actually writing
1520 * to the DOCControl register. So we store the current contents
1521 * of the DOCControl register's location, in case we later decide
1522 * that it's not a DiskOnChip, and want to put it back how we
1525 save_control
= ReadDOC(virtadr
, DOCControl
);
1527 /* Reset the DiskOnChip ASIC */
1528 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1529 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1531 /* Enable the DiskOnChip ASIC */
1532 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1533 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1535 ChipID
= ReadDOC(virtadr
, ChipID
);
1538 case DOC_ChipID_Doc2k
:
1539 reg
= DoC_2k_ECCStatus
;
1541 case DOC_ChipID_DocMil
:
1544 case DOC_ChipID_DocMilPlus16
:
1545 case DOC_ChipID_DocMilPlus32
:
1547 /* Possible Millennium Plus, need to do more checks */
1548 /* Possibly release from power down mode */
1549 for (tmp
= 0; (tmp
< 4); tmp
++)
1550 ReadDOC(virtadr
, Mplus_Power
);
1552 /* Reset the Millennium Plus ASIC */
1553 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1554 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1555 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1558 /* Enable the Millennium Plus ASIC */
1559 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1560 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1561 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1564 ChipID
= ReadDOC(virtadr
, ChipID
);
1567 case DOC_ChipID_DocMilPlus16
:
1568 reg
= DoC_Mplus_Toggle
;
1570 case DOC_ChipID_DocMilPlus32
:
1571 printk(KERN_ERR
"DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1582 /* Check the TOGGLE bit in the ECC register */
1583 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1584 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1585 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1586 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1587 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1592 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1593 unsigned char oldval
;
1594 unsigned char newval
;
1597 /* Use the alias resolution register to determine if this is
1598 in fact the same DOC aliased to a new address. If writes
1599 to one chip's alias resolution register change the value on
1600 the other chip, they're the same chip. */
1601 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1602 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1603 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1605 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1606 newval
= ReadDOC(virtadr
, AliasResolution
);
1608 if (oldval
!= newval
)
1610 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1611 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1612 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1613 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1615 WriteDOC(~newval
, virtadr
, AliasResolution
);
1616 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1617 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1620 if (oldval
== newval
) {
1621 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1626 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1628 len
= sizeof(struct mtd_info
) +
1629 sizeof(struct nand_chip
) + sizeof(struct doc_priv
) + (2 * sizeof(struct nand_bbt_descr
));
1630 mtd
= kzalloc(len
, GFP_KERNEL
);
1632 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1637 nand
= (struct nand_chip
*) (mtd
+ 1);
1638 doc
= (struct doc_priv
*) (nand
+ 1);
1639 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1640 nand
->bbt_md
= nand
->bbt_td
+ 1;
1643 mtd
->owner
= THIS_MODULE
;
1646 nand
->select_chip
= doc200x_select_chip
;
1647 nand
->cmd_ctrl
= doc200x_hwcontrol
;
1648 nand
->dev_ready
= doc200x_dev_ready
;
1649 nand
->waitfunc
= doc200x_wait
;
1650 nand
->block_bad
= doc200x_block_bad
;
1651 nand
->ecc
.hwctl
= doc200x_enable_hwecc
;
1652 nand
->ecc
.calculate
= doc200x_calculate_ecc
;
1653 nand
->ecc
.correct
= doc200x_correct_data
;
1655 nand
->ecc
.layout
= &doc200x_oobinfo
;
1656 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1657 nand
->ecc
.size
= 512;
1658 nand
->ecc
.bytes
= 6;
1659 nand
->options
= NAND_USE_FLASH_BBT
;
1661 doc
->physadr
= physadr
;
1662 doc
->virtadr
= virtadr
;
1663 doc
->ChipID
= ChipID
;
1668 doc
->nextdoc
= doclist
;
1670 if (ChipID
== DOC_ChipID_Doc2k
)
1671 numchips
= doc2000_init(mtd
);
1672 else if (ChipID
== DOC_ChipID_DocMilPlus16
)
1673 numchips
= doc2001plus_init(mtd
);
1675 numchips
= doc2001_init(mtd
);
1677 if ((ret
= nand_scan(mtd
, numchips
))) {
1678 /* DBB note: i believe nand_release is necessary here, as
1679 buffers may have been allocated in nand_base. Check with
1681 /* nand_release will call del_mtd_device, but we haven't yet
1682 added it. This is handled without incident by
1683 del_mtd_device, as far as I can tell. */
1694 /* Put back the contents of the DOCControl register, in case it's not
1695 actually a DiskOnChip. */
1696 WriteDOC(save_control
, virtadr
, DOCControl
);
1702 static void release_nanddoc(void)
1704 struct mtd_info
*mtd
, *nextmtd
;
1705 struct nand_chip
*nand
;
1706 struct doc_priv
*doc
;
1708 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1712 nextmtd
= doc
->nextdoc
;
1714 iounmap(doc
->virtadr
);
1719 static int __init
init_nanddoc(void)
1723 /* We could create the decoder on demand, if memory is a concern.
1724 * This way we have it handy, if an error happens
1726 * Symbolsize is 10 (bits)
1727 * Primitve polynomial is x^10+x^3+1
1728 * first consecutive root is 510
1729 * primitve element to generate roots = 1
1730 * generator polinomial degree = 4
1732 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1734 printk(KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1738 if (doc_config_location
) {
1739 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1740 ret
= doc_probe(doc_config_location
);
1744 for (i
= 0; (doc_locations
[i
] != 0xffffffff); i
++) {
1745 doc_probe(doc_locations
[i
]);
1748 /* No banner message any more. Print a message if no DiskOnChip
1749 found, so the user knows we at least tried. */
1751 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1757 free_rs(rs_decoder
);
1761 static void __exit
cleanup_nanddoc(void)
1763 /* Cleanup the nand/DoC resources */
1766 /* Free the reed solomon resources */
1768 free_rs(rs_decoder
);
1772 module_init(init_nanddoc
);
1773 module_exit(cleanup_nanddoc
);
1775 MODULE_LICENSE("GPL");
1776 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1777 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");