2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
97 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
98 const struct ubi_ec_hdr
*ec_hdr
);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
100 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
101 const struct ubi_vid_hdr
*vid_hdr
);
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
132 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
135 int err
, retries
= 0;
139 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
141 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
142 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
145 err
= paranoid_check_not_bad(ubi
, pnum
);
149 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
151 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, buf
);
153 if (err
== -EUCLEAN
) {
155 * -EUCLEAN is reported if there was a bit-flip which
156 * was corrected, so this is harmless.
158 * We do not report about it here unless debugging is
159 * enabled. A corresponding message will be printed
160 * later, when it is has been scrubbed.
162 dbg_msg("fixable bit-flip detected at PEB %d", pnum
);
163 ubi_assert(len
== read
);
164 return UBI_IO_BITFLIPS
;
167 if (read
!= len
&& retries
++ < UBI_IO_RETRIES
) {
168 dbg_io("error %d while reading %d bytes from PEB %d:%d,"
169 " read only %zd bytes, retry",
170 err
, len
, pnum
, offset
, read
);
175 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
176 "read %zd bytes", err
, len
, pnum
, offset
, read
);
177 ubi_dbg_dump_stack();
180 * The driver should never return -EBADMSG if it failed to read
181 * all the requested data. But some buggy drivers might do
182 * this, so we change it to -EIO.
184 if (read
!= len
&& err
== -EBADMSG
) {
189 ubi_assert(len
== read
);
191 if (ubi_dbg_is_bitflip()) {
192 dbg_gen("bit-flip (emulated)");
193 err
= UBI_IO_BITFLIPS
;
201 * ubi_io_write - write data to a physical eraseblock.
202 * @ubi: UBI device description object
203 * @buf: buffer with the data to write
204 * @pnum: physical eraseblock number to write to
205 * @offset: offset within the physical eraseblock where to write
206 * @len: how many bytes to write
208 * This function writes @len bytes of data from buffer @buf to offset @offset
209 * of physical eraseblock @pnum. If all the data were successfully written,
210 * zero is returned. If an error occurred, this function returns a negative
211 * error code. If %-EIO is returned, the physical eraseblock most probably went
214 * Note, in case of an error, it is possible that something was still written
215 * to the flash media, but may be some garbage.
217 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
224 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
226 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
227 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
228 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
229 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
232 ubi_err("read-only mode");
236 /* The below has to be compiled out if paranoid checks are disabled */
238 err
= paranoid_check_not_bad(ubi
, pnum
);
242 /* The area we are writing to has to contain all 0xFF bytes */
243 err
= ubi_dbg_check_all_ff(ubi
, pnum
, offset
, len
);
247 if (offset
>= ubi
->leb_start
) {
249 * We write to the data area of the physical eraseblock. Make
250 * sure it has valid EC and VID headers.
252 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
255 err
= paranoid_check_peb_vid_hdr(ubi
, pnum
);
260 if (ubi_dbg_is_write_failure()) {
261 dbg_err("cannot write %d bytes to PEB %d:%d "
262 "(emulated)", len
, pnum
, offset
);
263 ubi_dbg_dump_stack();
267 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
268 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, len
, &written
, buf
);
270 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
271 "%zd bytes", err
, len
, pnum
, offset
, written
);
272 ubi_dbg_dump_stack();
273 ubi_dbg_dump_flash(ubi
, pnum
, offset
, len
);
275 ubi_assert(written
== len
);
278 err
= ubi_dbg_check_write(ubi
, buf
, pnum
, offset
, len
);
283 * Since we always write sequentially, the rest of the PEB has
284 * to contain only 0xFF bytes.
287 len
= ubi
->peb_size
- offset
;
289 err
= ubi_dbg_check_all_ff(ubi
, pnum
, offset
, len
);
296 * erase_callback - MTD erasure call-back.
297 * @ei: MTD erase information object.
299 * Note, even though MTD erase interface is asynchronous, all the current
300 * implementations are synchronous anyway.
302 static void erase_callback(struct erase_info
*ei
)
304 wake_up_interruptible((wait_queue_head_t
*)ei
->priv
);
308 * do_sync_erase - synchronously erase a physical eraseblock.
309 * @ubi: UBI device description object
310 * @pnum: the physical eraseblock number to erase
312 * This function synchronously erases physical eraseblock @pnum and returns
313 * zero in case of success and a negative error code in case of failure. If
314 * %-EIO is returned, the physical eraseblock most probably went bad.
316 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
318 int err
, retries
= 0;
319 struct erase_info ei
;
320 wait_queue_head_t wq
;
322 dbg_io("erase PEB %d", pnum
);
325 init_waitqueue_head(&wq
);
326 memset(&ei
, 0, sizeof(struct erase_info
));
329 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
330 ei
.len
= ubi
->peb_size
;
331 ei
.callback
= erase_callback
;
332 ei
.priv
= (unsigned long)&wq
;
334 err
= ubi
->mtd
->erase(ubi
->mtd
, &ei
);
336 if (retries
++ < UBI_IO_RETRIES
) {
337 dbg_io("error %d while erasing PEB %d, retry",
342 ubi_err("cannot erase PEB %d, error %d", pnum
, err
);
343 ubi_dbg_dump_stack();
347 err
= wait_event_interruptible(wq
, ei
.state
== MTD_ERASE_DONE
||
348 ei
.state
== MTD_ERASE_FAILED
);
350 ubi_err("interrupted PEB %d erasure", pnum
);
354 if (ei
.state
== MTD_ERASE_FAILED
) {
355 if (retries
++ < UBI_IO_RETRIES
) {
356 dbg_io("error while erasing PEB %d, retry", pnum
);
360 ubi_err("cannot erase PEB %d", pnum
);
361 ubi_dbg_dump_stack();
365 err
= ubi_dbg_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
369 if (ubi_dbg_is_erase_failure() && !err
) {
370 dbg_err("cannot erase PEB %d (emulated)", pnum
);
378 * check_pattern - check if buffer contains only a certain byte pattern.
379 * @buf: buffer to check
380 * @patt: the pattern to check
381 * @size: buffer size in bytes
383 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
384 * something else was also found.
386 static int check_pattern(const void *buf
, uint8_t patt
, int size
)
390 for (i
= 0; i
< size
; i
++)
391 if (((const uint8_t *)buf
)[i
] != patt
)
396 /* Patterns to write to a physical eraseblock when torturing it */
397 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
400 * torture_peb - test a supposedly bad physical eraseblock.
401 * @ubi: UBI device description object
402 * @pnum: the physical eraseblock number to test
404 * This function returns %-EIO if the physical eraseblock did not pass the
405 * test, a positive number of erase operations done if the test was
406 * successfully passed, and other negative error codes in case of other errors.
408 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
410 int err
, i
, patt_count
;
412 ubi_msg("run torture test for PEB %d", pnum
);
413 patt_count
= ARRAY_SIZE(patterns
);
414 ubi_assert(patt_count
> 0);
416 mutex_lock(&ubi
->buf_mutex
);
417 for (i
= 0; i
< patt_count
; i
++) {
418 err
= do_sync_erase(ubi
, pnum
);
422 /* Make sure the PEB contains only 0xFF bytes */
423 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
427 err
= check_pattern(ubi
->peb_buf1
, 0xFF, ubi
->peb_size
);
429 ubi_err("erased PEB %d, but a non-0xFF byte found",
435 /* Write a pattern and check it */
436 memset(ubi
->peb_buf1
, patterns
[i
], ubi
->peb_size
);
437 err
= ubi_io_write(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
441 memset(ubi
->peb_buf1
, ~patterns
[i
], ubi
->peb_size
);
442 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
446 err
= check_pattern(ubi
->peb_buf1
, patterns
[i
], ubi
->peb_size
);
448 ubi_err("pattern %x checking failed for PEB %d",
456 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum
);
459 mutex_unlock(&ubi
->buf_mutex
);
460 if (err
== UBI_IO_BITFLIPS
|| err
== -EBADMSG
) {
462 * If a bit-flip or data integrity error was detected, the test
463 * has not passed because it happened on a freshly erased
464 * physical eraseblock which means something is wrong with it.
466 ubi_err("read problems on freshly erased PEB %d, must be bad",
474 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
475 * @ubi: UBI device description object
476 * @pnum: physical eraseblock number to prepare
478 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
479 * algorithm: the PEB is first filled with zeroes, then it is erased. And
480 * filling with zeroes starts from the end of the PEB. This was observed with
481 * Spansion S29GL512N NOR flash.
483 * This means that in case of a power cut we may end up with intact data at the
484 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
485 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
486 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
487 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
489 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
490 * magic numbers in order to invalidate them and prevent the failures. Returns
491 * zero in case of success and a negative error code in case of failure.
493 static int nor_erase_prepare(struct ubi_device
*ubi
, int pnum
)
499 struct ubi_vid_hdr vid_hdr
;
501 addr
= (loff_t
)pnum
* ubi
->peb_size
+ ubi
->vid_hdr_aloffset
;
502 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
504 addr
-= ubi
->vid_hdr_aloffset
;
505 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, 4, &written
,
512 * We failed to write to the media. This was observed with Spansion
513 * S29GL512N NOR flash. Most probably the eraseblock erasure was
514 * interrupted at a very inappropriate moment, so it became unwritable.
515 * In this case we probably anyway have garbage in this PEB.
517 err1
= ubi_io_read_vid_hdr(ubi
, pnum
, &vid_hdr
, 0);
518 if (err1
== UBI_IO_BAD_VID_HDR
)
520 * The VID header is corrupted, so we can safely erase this
521 * PEB and not afraid that it will be treated as a valid PEB in
522 * case of an unclean reboot.
527 * The PEB contains a valid VID header, but we cannot invalidate it.
528 * Supposedly the flash media or the driver is screwed up, so return an
531 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
533 ubi_dbg_dump_flash(ubi
, pnum
, 0, ubi
->peb_size
);
538 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
539 * @ubi: UBI device description object
540 * @pnum: physical eraseblock number to erase
541 * @torture: if this physical eraseblock has to be tortured
543 * This function synchronously erases physical eraseblock @pnum. If @torture
544 * flag is not zero, the physical eraseblock is checked by means of writing
545 * different patterns to it and reading them back. If the torturing is enabled,
546 * the physical eraseblock is erased more than once.
548 * This function returns the number of erasures made in case of success, %-EIO
549 * if the erasure failed or the torturing test failed, and other negative error
550 * codes in case of other errors. Note, %-EIO means that the physical
553 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
557 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
559 err
= paranoid_check_not_bad(ubi
, pnum
);
564 ubi_err("read-only mode");
568 if (ubi
->nor_flash
) {
569 err
= nor_erase_prepare(ubi
, pnum
);
575 ret
= torture_peb(ubi
, pnum
);
580 err
= do_sync_erase(ubi
, pnum
);
588 * ubi_io_is_bad - check if a physical eraseblock is bad.
589 * @ubi: UBI device description object
590 * @pnum: the physical eraseblock number to check
592 * This function returns a positive number if the physical eraseblock is bad,
593 * zero if not, and a negative error code if an error occurred.
595 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
597 struct mtd_info
*mtd
= ubi
->mtd
;
599 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
601 if (ubi
->bad_allowed
) {
604 ret
= mtd
->block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
606 ubi_err("error %d while checking if PEB %d is bad",
609 dbg_io("PEB %d is bad", pnum
);
617 * ubi_io_mark_bad - mark a physical eraseblock as bad.
618 * @ubi: UBI device description object
619 * @pnum: the physical eraseblock number to mark
621 * This function returns zero in case of success and a negative error code in
624 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
627 struct mtd_info
*mtd
= ubi
->mtd
;
629 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
632 ubi_err("read-only mode");
636 if (!ubi
->bad_allowed
)
639 err
= mtd
->block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
641 ubi_err("cannot mark PEB %d bad, error %d", pnum
, err
);
646 * validate_ec_hdr - validate an erase counter header.
647 * @ubi: UBI device description object
648 * @ec_hdr: the erase counter header to check
650 * This function returns zero if the erase counter header is OK, and %1 if
653 static int validate_ec_hdr(const struct ubi_device
*ubi
,
654 const struct ubi_ec_hdr
*ec_hdr
)
657 int vid_hdr_offset
, leb_start
;
659 ec
= be64_to_cpu(ec_hdr
->ec
);
660 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
661 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
663 if (ec_hdr
->version
!= UBI_VERSION
) {
664 ubi_err("node with incompatible UBI version found: "
665 "this UBI version is %d, image version is %d",
666 UBI_VERSION
, (int)ec_hdr
->version
);
670 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
671 ubi_err("bad VID header offset %d, expected %d",
672 vid_hdr_offset
, ubi
->vid_hdr_offset
);
676 if (leb_start
!= ubi
->leb_start
) {
677 ubi_err("bad data offset %d, expected %d",
678 leb_start
, ubi
->leb_start
);
682 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
683 ubi_err("bad erase counter %lld", ec
);
690 ubi_err("bad EC header");
691 ubi_dbg_dump_ec_hdr(ec_hdr
);
692 ubi_dbg_dump_stack();
697 * ubi_io_read_ec_hdr - read and check an erase counter header.
698 * @ubi: UBI device description object
699 * @pnum: physical eraseblock to read from
700 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
702 * @verbose: be verbose if the header is corrupted or was not found
704 * This function reads erase counter header from physical eraseblock @pnum and
705 * stores it in @ec_hdr. This function also checks CRC checksum of the read
706 * erase counter header. The following codes may be returned:
708 * o %0 if the CRC checksum is correct and the header was successfully read;
709 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
710 * and corrected by the flash driver; this is harmless but may indicate that
711 * this eraseblock may become bad soon (but may be not);
712 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
713 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
714 * o a negative error code in case of failure.
716 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
717 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
719 int err
, read_err
= 0;
720 uint32_t crc
, magic
, hdr_crc
;
722 dbg_io("read EC header from PEB %d", pnum
);
723 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
725 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
727 if (err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
731 * We read all the data, but either a correctable bit-flip
732 * occurred, or MTD reported about some data integrity error,
733 * like an ECC error in case of NAND. The former is harmless,
734 * the later may mean that the read data is corrupted. But we
735 * have a CRC check-sum and we will detect this. If the EC
736 * header is still OK, we just report this as there was a
742 magic
= be32_to_cpu(ec_hdr
->magic
);
743 if (magic
!= UBI_EC_HDR_MAGIC
) {
745 * The magic field is wrong. Let's check if we have read all
746 * 0xFF. If yes, this physical eraseblock is assumed to be
749 * But if there was a read error, we do not test it for all
750 * 0xFFs. Even if it does contain all 0xFFs, this error
751 * indicates that something is still wrong with this physical
752 * eraseblock and we anyway cannot treat it as empty.
754 if (read_err
!= -EBADMSG
&&
755 check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
756 /* The physical eraseblock is supposedly empty */
758 ubi_warn("no EC header found at PEB %d, "
759 "only 0xFF bytes", pnum
);
760 else if (UBI_IO_DEBUG
)
761 dbg_msg("no EC header found at PEB %d, "
762 "only 0xFF bytes", pnum
);
763 return UBI_IO_PEB_EMPTY
;
767 * This is not a valid erase counter header, and these are not
768 * 0xFF bytes. Report that the header is corrupted.
771 ubi_warn("bad magic number at PEB %d: %08x instead of "
772 "%08x", pnum
, magic
, UBI_EC_HDR_MAGIC
);
773 ubi_dbg_dump_ec_hdr(ec_hdr
);
774 } else if (UBI_IO_DEBUG
)
775 dbg_msg("bad magic number at PEB %d: %08x instead of "
776 "%08x", pnum
, magic
, UBI_EC_HDR_MAGIC
);
777 return UBI_IO_BAD_EC_HDR
;
780 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
781 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
783 if (hdr_crc
!= crc
) {
785 ubi_warn("bad EC header CRC at PEB %d, calculated "
786 "%#08x, read %#08x", pnum
, crc
, hdr_crc
);
787 ubi_dbg_dump_ec_hdr(ec_hdr
);
788 } else if (UBI_IO_DEBUG
)
789 dbg_msg("bad EC header CRC at PEB %d, calculated "
790 "%#08x, read %#08x", pnum
, crc
, hdr_crc
);
791 return UBI_IO_BAD_EC_HDR
;
794 /* And of course validate what has just been read from the media */
795 err
= validate_ec_hdr(ubi
, ec_hdr
);
797 ubi_err("validation failed for PEB %d", pnum
);
801 return read_err
? UBI_IO_BITFLIPS
: 0;
805 * ubi_io_write_ec_hdr - write an erase counter header.
806 * @ubi: UBI device description object
807 * @pnum: physical eraseblock to write to
808 * @ec_hdr: the erase counter header to write
810 * This function writes erase counter header described by @ec_hdr to physical
811 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
812 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
815 * This function returns zero in case of success and a negative error code in
816 * case of failure. If %-EIO is returned, the physical eraseblock most probably
819 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
820 struct ubi_ec_hdr
*ec_hdr
)
825 dbg_io("write EC header to PEB %d", pnum
);
826 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
828 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
829 ec_hdr
->version
= UBI_VERSION
;
830 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
831 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
832 ec_hdr
->image_seq
= cpu_to_be32(ubi
->image_seq
);
833 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
834 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
836 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
840 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
845 * validate_vid_hdr - validate a volume identifier header.
846 * @ubi: UBI device description object
847 * @vid_hdr: the volume identifier header to check
849 * This function checks that data stored in the volume identifier header
850 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
852 static int validate_vid_hdr(const struct ubi_device
*ubi
,
853 const struct ubi_vid_hdr
*vid_hdr
)
855 int vol_type
= vid_hdr
->vol_type
;
856 int copy_flag
= vid_hdr
->copy_flag
;
857 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
858 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
859 int compat
= vid_hdr
->compat
;
860 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
861 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
862 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
863 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
864 int usable_leb_size
= ubi
->leb_size
- data_pad
;
866 if (copy_flag
!= 0 && copy_flag
!= 1) {
867 dbg_err("bad copy_flag");
871 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
873 dbg_err("negative values");
877 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
878 dbg_err("bad vol_id");
882 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
883 dbg_err("bad compat");
887 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
888 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
889 compat
!= UBI_COMPAT_REJECT
) {
890 dbg_err("bad compat");
894 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
895 dbg_err("bad vol_type");
899 if (data_pad
>= ubi
->leb_size
/ 2) {
900 dbg_err("bad data_pad");
904 if (vol_type
== UBI_VID_STATIC
) {
906 * Although from high-level point of view static volumes may
907 * contain zero bytes of data, but no VID headers can contain
908 * zero at these fields, because they empty volumes do not have
909 * mapped logical eraseblocks.
912 dbg_err("zero used_ebs");
915 if (data_size
== 0) {
916 dbg_err("zero data_size");
919 if (lnum
< used_ebs
- 1) {
920 if (data_size
!= usable_leb_size
) {
921 dbg_err("bad data_size");
924 } else if (lnum
== used_ebs
- 1) {
925 if (data_size
== 0) {
926 dbg_err("bad data_size at last LEB");
930 dbg_err("too high lnum");
934 if (copy_flag
== 0) {
936 dbg_err("non-zero data CRC");
939 if (data_size
!= 0) {
940 dbg_err("non-zero data_size");
944 if (data_size
== 0) {
945 dbg_err("zero data_size of copy");
950 dbg_err("bad used_ebs");
958 ubi_err("bad VID header");
959 ubi_dbg_dump_vid_hdr(vid_hdr
);
960 ubi_dbg_dump_stack();
965 * ubi_io_read_vid_hdr - read and check a volume identifier header.
966 * @ubi: UBI device description object
967 * @pnum: physical eraseblock number to read from
968 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
970 * @verbose: be verbose if the header is corrupted or wasn't found
972 * This function reads the volume identifier header from physical eraseblock
973 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
974 * volume identifier header. The following codes may be returned:
976 * o %0 if the CRC checksum is correct and the header was successfully read;
977 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
978 * and corrected by the flash driver; this is harmless but may indicate that
979 * this eraseblock may become bad soon;
980 * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
982 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
984 * o a negative error code in case of failure.
986 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
987 struct ubi_vid_hdr
*vid_hdr
, int verbose
)
989 int err
, read_err
= 0;
990 uint32_t crc
, magic
, hdr_crc
;
993 dbg_io("read VID header from PEB %d", pnum
);
994 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
996 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
997 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
998 ubi
->vid_hdr_alsize
);
1000 if (err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1004 * We read all the data, but either a correctable bit-flip
1005 * occurred, or MTD reported about some data integrity error,
1006 * like an ECC error in case of NAND. The former is harmless,
1007 * the later may mean the read data is corrupted. But we have a
1008 * CRC check-sum and we will identify this. If the VID header is
1009 * still OK, we just report this as there was a bit-flip.
1014 magic
= be32_to_cpu(vid_hdr
->magic
);
1015 if (magic
!= UBI_VID_HDR_MAGIC
) {
1017 * If we have read all 0xFF bytes, the VID header probably does
1018 * not exist and the physical eraseblock is assumed to be free.
1020 * But if there was a read error, we do not test the data for
1021 * 0xFFs. Even if it does contain all 0xFFs, this error
1022 * indicates that something is still wrong with this physical
1023 * eraseblock and it cannot be regarded as free.
1025 if (read_err
!= -EBADMSG
&&
1026 check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
1027 /* The physical eraseblock is supposedly free */
1029 ubi_warn("no VID header found at PEB %d, "
1030 "only 0xFF bytes", pnum
);
1031 else if (UBI_IO_DEBUG
)
1032 dbg_msg("no VID header found at PEB %d, "
1033 "only 0xFF bytes", pnum
);
1034 return UBI_IO_PEB_FREE
;
1038 * This is not a valid VID header, and these are not 0xFF
1039 * bytes. Report that the header is corrupted.
1042 ubi_warn("bad magic number at PEB %d: %08x instead of "
1043 "%08x", pnum
, magic
, UBI_VID_HDR_MAGIC
);
1044 ubi_dbg_dump_vid_hdr(vid_hdr
);
1045 } else if (UBI_IO_DEBUG
)
1046 dbg_msg("bad magic number at PEB %d: %08x instead of "
1047 "%08x", pnum
, magic
, UBI_VID_HDR_MAGIC
);
1048 return UBI_IO_BAD_VID_HDR
;
1051 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1052 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1054 if (hdr_crc
!= crc
) {
1056 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1057 "read %#08x", pnum
, crc
, hdr_crc
);
1058 ubi_dbg_dump_vid_hdr(vid_hdr
);
1059 } else if (UBI_IO_DEBUG
)
1060 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1061 "read %#08x", pnum
, crc
, hdr_crc
);
1062 return UBI_IO_BAD_VID_HDR
;
1065 /* Validate the VID header that we have just read */
1066 err
= validate_vid_hdr(ubi
, vid_hdr
);
1068 ubi_err("validation failed for PEB %d", pnum
);
1072 return read_err
? UBI_IO_BITFLIPS
: 0;
1076 * ubi_io_write_vid_hdr - write a volume identifier header.
1077 * @ubi: UBI device description object
1078 * @pnum: the physical eraseblock number to write to
1079 * @vid_hdr: the volume identifier header to write
1081 * This function writes the volume identifier header described by @vid_hdr to
1082 * physical eraseblock @pnum. This function automatically fills the
1083 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1084 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1086 * This function returns zero in case of success and a negative error code in
1087 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1090 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1091 struct ubi_vid_hdr
*vid_hdr
)
1097 dbg_io("write VID header to PEB %d", pnum
);
1098 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1100 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
1104 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1105 vid_hdr
->version
= UBI_VERSION
;
1106 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1107 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1109 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1113 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1114 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1115 ubi
->vid_hdr_alsize
);
1119 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1122 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1123 * @ubi: UBI device description object
1124 * @pnum: physical eraseblock number to check
1126 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1127 * it is bad and a negative error code if an error occurred.
1129 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1133 err
= ubi_io_is_bad(ubi
, pnum
);
1137 ubi_err("paranoid check failed for PEB %d", pnum
);
1138 ubi_dbg_dump_stack();
1139 return err
> 0 ? -EINVAL
: err
;
1143 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1144 * @ubi: UBI device description object
1145 * @pnum: physical eraseblock number the erase counter header belongs to
1146 * @ec_hdr: the erase counter header to check
1148 * This function returns zero if the erase counter header contains valid
1149 * values, and %-EINVAL if not.
1151 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1152 const struct ubi_ec_hdr
*ec_hdr
)
1157 magic
= be32_to_cpu(ec_hdr
->magic
);
1158 if (magic
!= UBI_EC_HDR_MAGIC
) {
1159 ubi_err("bad magic %#08x, must be %#08x",
1160 magic
, UBI_EC_HDR_MAGIC
);
1164 err
= validate_ec_hdr(ubi
, ec_hdr
);
1166 ubi_err("paranoid check failed for PEB %d", pnum
);
1173 ubi_dbg_dump_ec_hdr(ec_hdr
);
1174 ubi_dbg_dump_stack();
1179 * paranoid_check_peb_ec_hdr - check erase counter header.
1180 * @ubi: UBI device description object
1181 * @pnum: the physical eraseblock number to check
1183 * This function returns zero if the erase counter header is all right and and
1184 * a negative error code if not or if an error occurred.
1186 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1189 uint32_t crc
, hdr_crc
;
1190 struct ubi_ec_hdr
*ec_hdr
;
1192 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1196 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1197 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1200 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1201 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1202 if (hdr_crc
!= crc
) {
1203 ubi_err("bad CRC, calculated %#08x, read %#08x", crc
, hdr_crc
);
1204 ubi_err("paranoid check failed for PEB %d", pnum
);
1205 ubi_dbg_dump_ec_hdr(ec_hdr
);
1206 ubi_dbg_dump_stack();
1211 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1219 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1220 * @ubi: UBI device description object
1221 * @pnum: physical eraseblock number the volume identifier header belongs to
1222 * @vid_hdr: the volume identifier header to check
1224 * This function returns zero if the volume identifier header is all right, and
1227 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1228 const struct ubi_vid_hdr
*vid_hdr
)
1233 magic
= be32_to_cpu(vid_hdr
->magic
);
1234 if (magic
!= UBI_VID_HDR_MAGIC
) {
1235 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1236 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1240 err
= validate_vid_hdr(ubi
, vid_hdr
);
1242 ubi_err("paranoid check failed for PEB %d", pnum
);
1249 ubi_err("paranoid check failed for PEB %d", pnum
);
1250 ubi_dbg_dump_vid_hdr(vid_hdr
);
1251 ubi_dbg_dump_stack();
1257 * paranoid_check_peb_vid_hdr - check volume identifier header.
1258 * @ubi: UBI device description object
1259 * @pnum: the physical eraseblock number to check
1261 * This function returns zero if the volume identifier header is all right,
1262 * and a negative error code if not or if an error occurred.
1264 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1267 uint32_t crc
, hdr_crc
;
1268 struct ubi_vid_hdr
*vid_hdr
;
1271 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
1275 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1276 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1277 ubi
->vid_hdr_alsize
);
1278 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1281 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_EC_HDR_SIZE_CRC
);
1282 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1283 if (hdr_crc
!= crc
) {
1284 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1285 "read %#08x", pnum
, crc
, hdr_crc
);
1286 ubi_err("paranoid check failed for PEB %d", pnum
);
1287 ubi_dbg_dump_vid_hdr(vid_hdr
);
1288 ubi_dbg_dump_stack();
1293 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1296 ubi_free_vid_hdr(ubi
, vid_hdr
);
1301 * ubi_dbg_check_write - make sure write succeeded.
1302 * @ubi: UBI device description object
1303 * @buf: buffer with data which were written
1304 * @pnum: physical eraseblock number the data were written to
1305 * @offset: offset within the physical eraseblock the data were written to
1306 * @len: how many bytes were written
1308 * This functions reads data which were recently written and compares it with
1309 * the original data buffer - the data have to match. Returns zero if the data
1310 * match and a negative error code if not or in case of failure.
1312 int ubi_dbg_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
1313 int offset
, int len
)
1317 mutex_lock(&ubi
->dbg_buf_mutex
);
1318 err
= ubi_io_read(ubi
, ubi
->dbg_peb_buf
, pnum
, offset
, len
);
1322 for (i
= 0; i
< len
; i
++) {
1323 uint8_t c
= ((uint8_t *)buf
)[i
];
1324 uint8_t c1
= ((uint8_t *)ubi
->dbg_peb_buf
)[i
];
1330 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1332 ubi_msg("data differ at position %d", i
);
1333 dump_len
= max_t(int, 128, len
- i
);
1334 ubi_msg("hex dump of the original buffer from %d to %d",
1336 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1337 buf
+ i
, dump_len
, 1);
1338 ubi_msg("hex dump of the read buffer from %d to %d",
1340 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1341 ubi
->dbg_peb_buf
+ i
, dump_len
, 1);
1342 ubi_dbg_dump_stack();
1346 mutex_unlock(&ubi
->dbg_buf_mutex
);
1351 mutex_unlock(&ubi
->dbg_buf_mutex
);
1356 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1357 * @ubi: UBI device description object
1358 * @pnum: the physical eraseblock number to check
1359 * @offset: the starting offset within the physical eraseblock to check
1360 * @len: the length of the region to check
1362 * This function returns zero if only 0xFF bytes are present at offset
1363 * @offset of the physical eraseblock @pnum, and a negative error code if not
1364 * or if an error occurred.
1366 int ubi_dbg_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
, int len
)
1370 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1372 mutex_lock(&ubi
->dbg_buf_mutex
);
1373 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, ubi
->dbg_peb_buf
);
1374 if (err
&& err
!= -EUCLEAN
) {
1375 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1376 "read %zd bytes", err
, len
, pnum
, offset
, read
);
1380 err
= check_pattern(ubi
->dbg_peb_buf
, 0xFF, len
);
1382 ubi_err("flash region at PEB %d:%d, length %d does not "
1383 "contain all 0xFF bytes", pnum
, offset
, len
);
1386 mutex_unlock(&ubi
->dbg_buf_mutex
);
1391 ubi_err("paranoid check failed for PEB %d", pnum
);
1392 ubi_msg("hex dump of the %d-%d region", offset
, offset
+ len
);
1393 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1394 ubi
->dbg_peb_buf
, len
, 1);
1397 ubi_dbg_dump_stack();
1398 mutex_unlock(&ubi
->dbg_buf_mutex
);
1402 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */