Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / net / chelsio / sge.c
blobdf3a1410696eeb6f53e36a5ed0609f466d27cedf
1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
40 #include "common.h"
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
58 #include "cpl5_cmd.h"
59 #include "sge.h"
60 #include "regs.h"
61 #include "espi.h"
63 /* This belongs in if_ether.h */
64 #define ETH_P_CPL5 0xf
66 #define SGE_CMDQ_N 2
67 #define SGE_FREELQ_N 2
68 #define SGE_CMDQ0_E_N 1024
69 #define SGE_CMDQ1_E_N 128
70 #define SGE_FREEL_SIZE 4096
71 #define SGE_JUMBO_FREEL_SIZE 512
72 #define SGE_FREEL_REFILL_THRESH 16
73 #define SGE_RESPQ_E_N 1024
74 #define SGE_INTRTIMER_NRES 1000
75 #define SGE_RX_SM_BUF_SIZE 1536
76 #define SGE_TX_DESC_MAX_PLEN 16384
78 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
81 * Period of the TX buffer reclaim timer. This timer does not need to run
82 * frequently as TX buffers are usually reclaimed by new TX packets.
84 #define TX_RECLAIM_PERIOD (HZ / 4)
86 #define M_CMD_LEN 0x7fffffff
87 #define V_CMD_LEN(v) (v)
88 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
89 #define V_CMD_GEN1(v) ((v) << 31)
90 #define V_CMD_GEN2(v) (v)
91 #define F_CMD_DATAVALID (1 << 1)
92 #define F_CMD_SOP (1 << 2)
93 #define V_CMD_EOP(v) ((v) << 3)
96 * Command queue, receive buffer list, and response queue descriptors.
98 #if defined(__BIG_ENDIAN_BITFIELD)
99 struct cmdQ_e {
100 u32 addr_lo;
101 u32 len_gen;
102 u32 flags;
103 u32 addr_hi;
106 struct freelQ_e {
107 u32 addr_lo;
108 u32 len_gen;
109 u32 gen2;
110 u32 addr_hi;
113 struct respQ_e {
114 u32 Qsleeping : 4;
115 u32 Cmdq1CreditReturn : 5;
116 u32 Cmdq1DmaComplete : 5;
117 u32 Cmdq0CreditReturn : 5;
118 u32 Cmdq0DmaComplete : 5;
119 u32 FreelistQid : 2;
120 u32 CreditValid : 1;
121 u32 DataValid : 1;
122 u32 Offload : 1;
123 u32 Eop : 1;
124 u32 Sop : 1;
125 u32 GenerationBit : 1;
126 u32 BufferLength;
128 #elif defined(__LITTLE_ENDIAN_BITFIELD)
129 struct cmdQ_e {
130 u32 len_gen;
131 u32 addr_lo;
132 u32 addr_hi;
133 u32 flags;
136 struct freelQ_e {
137 u32 len_gen;
138 u32 addr_lo;
139 u32 addr_hi;
140 u32 gen2;
143 struct respQ_e {
144 u32 BufferLength;
145 u32 GenerationBit : 1;
146 u32 Sop : 1;
147 u32 Eop : 1;
148 u32 Offload : 1;
149 u32 DataValid : 1;
150 u32 CreditValid : 1;
151 u32 FreelistQid : 2;
152 u32 Cmdq0DmaComplete : 5;
153 u32 Cmdq0CreditReturn : 5;
154 u32 Cmdq1DmaComplete : 5;
155 u32 Cmdq1CreditReturn : 5;
156 u32 Qsleeping : 4;
158 #endif
161 * SW Context Command and Freelist Queue Descriptors
163 struct cmdQ_ce {
164 struct sk_buff *skb;
165 DECLARE_PCI_UNMAP_ADDR(dma_addr);
166 DECLARE_PCI_UNMAP_LEN(dma_len);
169 struct freelQ_ce {
170 struct sk_buff *skb;
171 DECLARE_PCI_UNMAP_ADDR(dma_addr);
172 DECLARE_PCI_UNMAP_LEN(dma_len);
176 * SW command, freelist and response rings
178 struct cmdQ {
179 unsigned long status; /* HW DMA fetch status */
180 unsigned int in_use; /* # of in-use command descriptors */
181 unsigned int size; /* # of descriptors */
182 unsigned int processed; /* total # of descs HW has processed */
183 unsigned int cleaned; /* total # of descs SW has reclaimed */
184 unsigned int stop_thres; /* SW TX queue suspend threshold */
185 u16 pidx; /* producer index (SW) */
186 u16 cidx; /* consumer index (HW) */
187 u8 genbit; /* current generation (=valid) bit */
188 u8 sop; /* is next entry start of packet? */
189 struct cmdQ_e *entries; /* HW command descriptor Q */
190 struct cmdQ_ce *centries; /* SW command context descriptor Q */
191 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
192 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
195 struct freelQ {
196 unsigned int credits; /* # of available RX buffers */
197 unsigned int size; /* free list capacity */
198 u16 pidx; /* producer index (SW) */
199 u16 cidx; /* consumer index (HW) */
200 u16 rx_buffer_size; /* Buffer size on this free list */
201 u16 dma_offset; /* DMA offset to align IP headers */
202 u16 recycleq_idx; /* skb recycle q to use */
203 u8 genbit; /* current generation (=valid) bit */
204 struct freelQ_e *entries; /* HW freelist descriptor Q */
205 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
206 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
209 struct respQ {
210 unsigned int credits; /* credits to be returned to SGE */
211 unsigned int size; /* # of response Q descriptors */
212 u16 cidx; /* consumer index (SW) */
213 u8 genbit; /* current generation(=valid) bit */
214 struct respQ_e *entries; /* HW response descriptor Q */
215 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
218 /* Bit flags for cmdQ.status */
219 enum {
220 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
221 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
224 /* T204 TX SW scheduler */
226 /* Per T204 TX port */
227 struct sched_port {
228 unsigned int avail; /* available bits - quota */
229 unsigned int drain_bits_per_1024ns; /* drain rate */
230 unsigned int speed; /* drain rate, mbps */
231 unsigned int mtu; /* mtu size */
232 struct sk_buff_head skbq; /* pending skbs */
235 /* Per T204 device */
236 struct sched {
237 ktime_t last_updated; /* last time quotas were computed */
238 unsigned int max_avail; /* max bits to be sent to any port */
239 unsigned int port; /* port index (round robin ports) */
240 unsigned int num; /* num skbs in per port queues */
241 struct sched_port p[MAX_NPORTS];
242 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
244 static void restart_sched(unsigned long);
248 * Main SGE data structure
250 * Interrupts are handled by a single CPU and it is likely that on a MP system
251 * the application is migrated to another CPU. In that scenario, we try to
252 * separate the RX(in irq context) and TX state in order to decrease memory
253 * contention.
255 struct sge {
256 struct adapter *adapter; /* adapter backpointer */
257 struct net_device *netdev; /* netdevice backpointer */
258 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
259 struct respQ respQ; /* response Q */
260 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
261 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
262 unsigned int jumbo_fl; /* jumbo freelist Q index */
263 unsigned int intrtimer_nres; /* no-resource interrupt timer */
264 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
265 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
266 struct timer_list espibug_timer;
267 unsigned long espibug_timeout;
268 struct sk_buff *espibug_skb[MAX_NPORTS];
269 u32 sge_control; /* shadow value of sge control reg */
270 struct sge_intr_counts stats;
271 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
272 struct sched *tx_sched;
273 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
277 * stop tasklet and free all pending skb's
279 static void tx_sched_stop(struct sge *sge)
281 struct sched *s = sge->tx_sched;
282 int i;
284 tasklet_kill(&s->sched_tsk);
286 for (i = 0; i < MAX_NPORTS; i++)
287 __skb_queue_purge(&s->p[s->port].skbq);
291 * t1_sched_update_parms() is called when the MTU or link speed changes. It
292 * re-computes scheduler parameters to scope with the change.
294 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
295 unsigned int mtu, unsigned int speed)
297 struct sched *s = sge->tx_sched;
298 struct sched_port *p = &s->p[port];
299 unsigned int max_avail_segs;
301 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
302 if (speed)
303 p->speed = speed;
304 if (mtu)
305 p->mtu = mtu;
307 if (speed || mtu) {
308 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
309 do_div(drain, (p->mtu + 50) * 1000);
310 p->drain_bits_per_1024ns = (unsigned int) drain;
312 if (p->speed < 1000)
313 p->drain_bits_per_1024ns =
314 90 * p->drain_bits_per_1024ns / 100;
317 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
318 p->drain_bits_per_1024ns -= 16;
319 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
320 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
321 } else {
322 s->max_avail = 16384;
323 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
326 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
327 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
328 p->speed, s->max_avail, max_avail_segs,
329 p->drain_bits_per_1024ns);
331 return max_avail_segs * (p->mtu - 40);
334 #if 0
337 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
338 * data that can be pushed per port.
340 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
342 struct sched *s = sge->tx_sched;
343 unsigned int i;
345 s->max_avail = val;
346 for (i = 0; i < MAX_NPORTS; i++)
347 t1_sched_update_parms(sge, i, 0, 0);
351 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
352 * is draining.
354 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
355 unsigned int val)
357 struct sched *s = sge->tx_sched;
358 struct sched_port *p = &s->p[port];
359 p->drain_bits_per_1024ns = val * 1024 / 1000;
360 t1_sched_update_parms(sge, port, 0, 0);
363 #endif /* 0 */
367 * get_clock() implements a ns clock (see ktime_get)
369 static inline ktime_t get_clock(void)
371 struct timespec ts;
373 ktime_get_ts(&ts);
374 return timespec_to_ktime(ts);
378 * tx_sched_init() allocates resources and does basic initialization.
380 static int tx_sched_init(struct sge *sge)
382 struct sched *s;
383 int i;
385 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
386 if (!s)
387 return -ENOMEM;
389 pr_debug("tx_sched_init\n");
390 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
391 sge->tx_sched = s;
393 for (i = 0; i < MAX_NPORTS; i++) {
394 skb_queue_head_init(&s->p[i].skbq);
395 t1_sched_update_parms(sge, i, 1500, 1000);
398 return 0;
402 * sched_update_avail() computes the delta since the last time it was called
403 * and updates the per port quota (number of bits that can be sent to the any
404 * port).
406 static inline int sched_update_avail(struct sge *sge)
408 struct sched *s = sge->tx_sched;
409 ktime_t now = get_clock();
410 unsigned int i;
411 long long delta_time_ns;
413 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
415 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
416 if (delta_time_ns < 15000)
417 return 0;
419 for (i = 0; i < MAX_NPORTS; i++) {
420 struct sched_port *p = &s->p[i];
421 unsigned int delta_avail;
423 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
424 p->avail = min(p->avail + delta_avail, s->max_avail);
427 s->last_updated = now;
429 return 1;
433 * sched_skb() is called from two different places. In the tx path, any
434 * packet generating load on an output port will call sched_skb()
435 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
436 * context (skb == NULL).
437 * The scheduler only returns a skb (which will then be sent) if the
438 * length of the skb is <= the current quota of the output port.
440 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
441 unsigned int credits)
443 struct sched *s = sge->tx_sched;
444 struct sk_buff_head *skbq;
445 unsigned int i, len, update = 1;
447 pr_debug("sched_skb %p\n", skb);
448 if (!skb) {
449 if (!s->num)
450 return NULL;
451 } else {
452 skbq = &s->p[skb->dev->if_port].skbq;
453 __skb_queue_tail(skbq, skb);
454 s->num++;
455 skb = NULL;
458 if (credits < MAX_SKB_FRAGS + 1)
459 goto out;
461 again:
462 for (i = 0; i < MAX_NPORTS; i++) {
463 s->port = ++s->port & (MAX_NPORTS - 1);
464 skbq = &s->p[s->port].skbq;
466 skb = skb_peek(skbq);
468 if (!skb)
469 continue;
471 len = skb->len;
472 if (len <= s->p[s->port].avail) {
473 s->p[s->port].avail -= len;
474 s->num--;
475 __skb_unlink(skb, skbq);
476 goto out;
478 skb = NULL;
481 if (update-- && sched_update_avail(sge))
482 goto again;
484 out:
485 /* If there are more pending skbs, we use the hardware to schedule us
486 * again.
488 if (s->num && !skb) {
489 struct cmdQ *q = &sge->cmdQ[0];
490 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
491 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
492 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
493 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
496 pr_debug("sched_skb ret %p\n", skb);
498 return skb;
502 * PIO to indicate that memory mapped Q contains valid descriptor(s).
504 static inline void doorbell_pio(struct adapter *adapter, u32 val)
506 wmb();
507 writel(val, adapter->regs + A_SG_DOORBELL);
511 * Frees all RX buffers on the freelist Q. The caller must make sure that
512 * the SGE is turned off before calling this function.
514 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
516 unsigned int cidx = q->cidx;
518 while (q->credits--) {
519 struct freelQ_ce *ce = &q->centries[cidx];
521 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
522 pci_unmap_len(ce, dma_len),
523 PCI_DMA_FROMDEVICE);
524 dev_kfree_skb(ce->skb);
525 ce->skb = NULL;
526 if (++cidx == q->size)
527 cidx = 0;
532 * Free RX free list and response queue resources.
534 static void free_rx_resources(struct sge *sge)
536 struct pci_dev *pdev = sge->adapter->pdev;
537 unsigned int size, i;
539 if (sge->respQ.entries) {
540 size = sizeof(struct respQ_e) * sge->respQ.size;
541 pci_free_consistent(pdev, size, sge->respQ.entries,
542 sge->respQ.dma_addr);
545 for (i = 0; i < SGE_FREELQ_N; i++) {
546 struct freelQ *q = &sge->freelQ[i];
548 if (q->centries) {
549 free_freelQ_buffers(pdev, q);
550 kfree(q->centries);
552 if (q->entries) {
553 size = sizeof(struct freelQ_e) * q->size;
554 pci_free_consistent(pdev, size, q->entries,
555 q->dma_addr);
561 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
562 * response queue.
564 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
566 struct pci_dev *pdev = sge->adapter->pdev;
567 unsigned int size, i;
569 for (i = 0; i < SGE_FREELQ_N; i++) {
570 struct freelQ *q = &sge->freelQ[i];
572 q->genbit = 1;
573 q->size = p->freelQ_size[i];
574 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
575 size = sizeof(struct freelQ_e) * q->size;
576 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
577 if (!q->entries)
578 goto err_no_mem;
580 size = sizeof(struct freelQ_ce) * q->size;
581 q->centries = kzalloc(size, GFP_KERNEL);
582 if (!q->centries)
583 goto err_no_mem;
587 * Calculate the buffer sizes for the two free lists. FL0 accommodates
588 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
589 * including all the sk_buff overhead.
591 * Note: For T2 FL0 and FL1 are reversed.
593 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
594 sizeof(struct cpl_rx_data) +
595 sge->freelQ[!sge->jumbo_fl].dma_offset;
597 size = (16 * 1024) -
598 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
600 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
603 * Setup which skb recycle Q should be used when recycling buffers from
604 * each free list.
606 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
607 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
609 sge->respQ.genbit = 1;
610 sge->respQ.size = SGE_RESPQ_E_N;
611 sge->respQ.credits = 0;
612 size = sizeof(struct respQ_e) * sge->respQ.size;
613 sge->respQ.entries =
614 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
615 if (!sge->respQ.entries)
616 goto err_no_mem;
617 return 0;
619 err_no_mem:
620 free_rx_resources(sge);
621 return -ENOMEM;
625 * Reclaims n TX descriptors and frees the buffers associated with them.
627 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
629 struct cmdQ_ce *ce;
630 struct pci_dev *pdev = sge->adapter->pdev;
631 unsigned int cidx = q->cidx;
633 q->in_use -= n;
634 ce = &q->centries[cidx];
635 while (n--) {
636 if (likely(pci_unmap_len(ce, dma_len))) {
637 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
638 pci_unmap_len(ce, dma_len),
639 PCI_DMA_TODEVICE);
640 if (q->sop)
641 q->sop = 0;
643 if (ce->skb) {
644 dev_kfree_skb_any(ce->skb);
645 q->sop = 1;
647 ce++;
648 if (++cidx == q->size) {
649 cidx = 0;
650 ce = q->centries;
653 q->cidx = cidx;
657 * Free TX resources.
659 * Assumes that SGE is stopped and all interrupts are disabled.
661 static void free_tx_resources(struct sge *sge)
663 struct pci_dev *pdev = sge->adapter->pdev;
664 unsigned int size, i;
666 for (i = 0; i < SGE_CMDQ_N; i++) {
667 struct cmdQ *q = &sge->cmdQ[i];
669 if (q->centries) {
670 if (q->in_use)
671 free_cmdQ_buffers(sge, q, q->in_use);
672 kfree(q->centries);
674 if (q->entries) {
675 size = sizeof(struct cmdQ_e) * q->size;
676 pci_free_consistent(pdev, size, q->entries,
677 q->dma_addr);
683 * Allocates basic TX resources, consisting of memory mapped command Qs.
685 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
687 struct pci_dev *pdev = sge->adapter->pdev;
688 unsigned int size, i;
690 for (i = 0; i < SGE_CMDQ_N; i++) {
691 struct cmdQ *q = &sge->cmdQ[i];
693 q->genbit = 1;
694 q->sop = 1;
695 q->size = p->cmdQ_size[i];
696 q->in_use = 0;
697 q->status = 0;
698 q->processed = q->cleaned = 0;
699 q->stop_thres = 0;
700 spin_lock_init(&q->lock);
701 size = sizeof(struct cmdQ_e) * q->size;
702 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
703 if (!q->entries)
704 goto err_no_mem;
706 size = sizeof(struct cmdQ_ce) * q->size;
707 q->centries = kzalloc(size, GFP_KERNEL);
708 if (!q->centries)
709 goto err_no_mem;
713 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
714 * only. For queue 0 set the stop threshold so we can handle one more
715 * packet from each port, plus reserve an additional 24 entries for
716 * Ethernet packets only. Queue 1 never suspends nor do we reserve
717 * space for Ethernet packets.
719 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
720 (MAX_SKB_FRAGS + 1);
721 return 0;
723 err_no_mem:
724 free_tx_resources(sge);
725 return -ENOMEM;
728 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
729 u32 size, int base_reg_lo,
730 int base_reg_hi, int size_reg)
732 writel((u32)addr, adapter->regs + base_reg_lo);
733 writel(addr >> 32, adapter->regs + base_reg_hi);
734 writel(size, adapter->regs + size_reg);
738 * Enable/disable VLAN acceleration.
740 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
742 struct sge *sge = adapter->sge;
744 sge->sge_control &= ~F_VLAN_XTRACT;
745 if (on_off)
746 sge->sge_control |= F_VLAN_XTRACT;
747 if (adapter->open_device_map) {
748 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
749 readl(adapter->regs + A_SG_CONTROL); /* flush */
754 * Programs the various SGE registers. However, the engine is not yet enabled,
755 * but sge->sge_control is setup and ready to go.
757 static void configure_sge(struct sge *sge, struct sge_params *p)
759 struct adapter *ap = sge->adapter;
761 writel(0, ap->regs + A_SG_CONTROL);
762 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
763 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
764 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
765 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
766 setup_ring_params(ap, sge->freelQ[0].dma_addr,
767 sge->freelQ[0].size, A_SG_FL0BASELWR,
768 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
769 setup_ring_params(ap, sge->freelQ[1].dma_addr,
770 sge->freelQ[1].size, A_SG_FL1BASELWR,
771 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
773 /* The threshold comparison uses <. */
774 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
776 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
777 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
778 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
780 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
781 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
782 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
783 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
785 #if defined(__BIG_ENDIAN_BITFIELD)
786 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
787 #endif
789 /* Initialize no-resource timer */
790 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
792 t1_sge_set_coalesce_params(sge, p);
796 * Return the payload capacity of the jumbo free-list buffers.
798 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
800 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
801 sge->freelQ[sge->jumbo_fl].dma_offset -
802 sizeof(struct cpl_rx_data);
806 * Frees all SGE related resources and the sge structure itself
808 void t1_sge_destroy(struct sge *sge)
810 int i;
812 for_each_port(sge->adapter, i)
813 free_percpu(sge->port_stats[i]);
815 kfree(sge->tx_sched);
816 free_tx_resources(sge);
817 free_rx_resources(sge);
818 kfree(sge);
822 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
823 * context Q) until the Q is full or alloc_skb fails.
825 * It is possible that the generation bits already match, indicating that the
826 * buffer is already valid and nothing needs to be done. This happens when we
827 * copied a received buffer into a new sk_buff during the interrupt processing.
829 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
830 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
831 * aligned.
833 static void refill_free_list(struct sge *sge, struct freelQ *q)
835 struct pci_dev *pdev = sge->adapter->pdev;
836 struct freelQ_ce *ce = &q->centries[q->pidx];
837 struct freelQ_e *e = &q->entries[q->pidx];
838 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
840 while (q->credits < q->size) {
841 struct sk_buff *skb;
842 dma_addr_t mapping;
844 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
845 if (!skb)
846 break;
848 skb_reserve(skb, q->dma_offset);
849 mapping = pci_map_single(pdev, skb->data, dma_len,
850 PCI_DMA_FROMDEVICE);
851 skb_reserve(skb, sge->rx_pkt_pad);
853 ce->skb = skb;
854 pci_unmap_addr_set(ce, dma_addr, mapping);
855 pci_unmap_len_set(ce, dma_len, dma_len);
856 e->addr_lo = (u32)mapping;
857 e->addr_hi = (u64)mapping >> 32;
858 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
859 wmb();
860 e->gen2 = V_CMD_GEN2(q->genbit);
862 e++;
863 ce++;
864 if (++q->pidx == q->size) {
865 q->pidx = 0;
866 q->genbit ^= 1;
867 ce = q->centries;
868 e = q->entries;
870 q->credits++;
875 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
876 * of both rings, we go into 'few interrupt mode' in order to give the system
877 * time to free up resources.
879 static void freelQs_empty(struct sge *sge)
881 struct adapter *adapter = sge->adapter;
882 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
883 u32 irqholdoff_reg;
885 refill_free_list(sge, &sge->freelQ[0]);
886 refill_free_list(sge, &sge->freelQ[1]);
888 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
889 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
890 irq_reg |= F_FL_EXHAUSTED;
891 irqholdoff_reg = sge->fixed_intrtimer;
892 } else {
893 /* Clear the F_FL_EXHAUSTED interrupts for now */
894 irq_reg &= ~F_FL_EXHAUSTED;
895 irqholdoff_reg = sge->intrtimer_nres;
897 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
898 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
900 /* We reenable the Qs to force a freelist GTS interrupt later */
901 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
904 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
905 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
906 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
907 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
910 * Disable SGE Interrupts
912 void t1_sge_intr_disable(struct sge *sge)
914 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
916 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
917 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
921 * Enable SGE interrupts.
923 void t1_sge_intr_enable(struct sge *sge)
925 u32 en = SGE_INT_ENABLE;
926 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
928 if (sge->adapter->flags & TSO_CAPABLE)
929 en &= ~F_PACKET_TOO_BIG;
930 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
931 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
935 * Clear SGE interrupts.
937 void t1_sge_intr_clear(struct sge *sge)
939 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
940 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
944 * SGE 'Error' interrupt handler
946 int t1_sge_intr_error_handler(struct sge *sge)
948 struct adapter *adapter = sge->adapter;
949 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
951 if (adapter->flags & TSO_CAPABLE)
952 cause &= ~F_PACKET_TOO_BIG;
953 if (cause & F_RESPQ_EXHAUSTED)
954 sge->stats.respQ_empty++;
955 if (cause & F_RESPQ_OVERFLOW) {
956 sge->stats.respQ_overflow++;
957 pr_alert("%s: SGE response queue overflow\n",
958 adapter->name);
960 if (cause & F_FL_EXHAUSTED) {
961 sge->stats.freelistQ_empty++;
962 freelQs_empty(sge);
964 if (cause & F_PACKET_TOO_BIG) {
965 sge->stats.pkt_too_big++;
966 pr_alert("%s: SGE max packet size exceeded\n",
967 adapter->name);
969 if (cause & F_PACKET_MISMATCH) {
970 sge->stats.pkt_mismatch++;
971 pr_alert("%s: SGE packet mismatch\n", adapter->name);
973 if (cause & SGE_INT_FATAL)
974 t1_fatal_err(adapter);
976 writel(cause, adapter->regs + A_SG_INT_CAUSE);
977 return 0;
980 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
982 return &sge->stats;
985 void t1_sge_get_port_stats(const struct sge *sge, int port,
986 struct sge_port_stats *ss)
988 int cpu;
990 memset(ss, 0, sizeof(*ss));
991 for_each_possible_cpu(cpu) {
992 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
994 ss->rx_cso_good += st->rx_cso_good;
995 ss->tx_cso += st->tx_cso;
996 ss->tx_tso += st->tx_tso;
997 ss->tx_need_hdrroom += st->tx_need_hdrroom;
998 ss->vlan_xtract += st->vlan_xtract;
999 ss->vlan_insert += st->vlan_insert;
1004 * recycle_fl_buf - recycle a free list buffer
1005 * @fl: the free list
1006 * @idx: index of buffer to recycle
1008 * Recycles the specified buffer on the given free list by adding it at
1009 * the next available slot on the list.
1011 static void recycle_fl_buf(struct freelQ *fl, int idx)
1013 struct freelQ_e *from = &fl->entries[idx];
1014 struct freelQ_e *to = &fl->entries[fl->pidx];
1016 fl->centries[fl->pidx] = fl->centries[idx];
1017 to->addr_lo = from->addr_lo;
1018 to->addr_hi = from->addr_hi;
1019 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1020 wmb();
1021 to->gen2 = V_CMD_GEN2(fl->genbit);
1022 fl->credits++;
1024 if (++fl->pidx == fl->size) {
1025 fl->pidx = 0;
1026 fl->genbit ^= 1;
1030 static int copybreak __read_mostly = 256;
1031 module_param(copybreak, int, 0);
1032 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1035 * get_packet - return the next ingress packet buffer
1036 * @pdev: the PCI device that received the packet
1037 * @fl: the SGE free list holding the packet
1038 * @len: the actual packet length, excluding any SGE padding
1040 * Get the next packet from a free list and complete setup of the
1041 * sk_buff. If the packet is small we make a copy and recycle the
1042 * original buffer, otherwise we use the original buffer itself. If a
1043 * positive drop threshold is supplied packets are dropped and their
1044 * buffers recycled if (a) the number of remaining buffers is under the
1045 * threshold and the packet is too big to copy, or (b) the packet should
1046 * be copied but there is no memory for the copy.
1048 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1049 struct freelQ *fl, unsigned int len)
1051 struct sk_buff *skb;
1052 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1054 if (len < copybreak) {
1055 skb = alloc_skb(len + 2, GFP_ATOMIC);
1056 if (!skb)
1057 goto use_orig_buf;
1059 skb_reserve(skb, 2); /* align IP header */
1060 skb_put(skb, len);
1061 pci_dma_sync_single_for_cpu(pdev,
1062 pci_unmap_addr(ce, dma_addr),
1063 pci_unmap_len(ce, dma_len),
1064 PCI_DMA_FROMDEVICE);
1065 skb_copy_from_linear_data(ce->skb, skb->data, len);
1066 pci_dma_sync_single_for_device(pdev,
1067 pci_unmap_addr(ce, dma_addr),
1068 pci_unmap_len(ce, dma_len),
1069 PCI_DMA_FROMDEVICE);
1070 recycle_fl_buf(fl, fl->cidx);
1071 return skb;
1074 use_orig_buf:
1075 if (fl->credits < 2) {
1076 recycle_fl_buf(fl, fl->cidx);
1077 return NULL;
1080 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1081 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1082 skb = ce->skb;
1083 prefetch(skb->data);
1085 skb_put(skb, len);
1086 return skb;
1090 * unexpected_offload - handle an unexpected offload packet
1091 * @adapter: the adapter
1092 * @fl: the free list that received the packet
1094 * Called when we receive an unexpected offload packet (e.g., the TOE
1095 * function is disabled or the card is a NIC). Prints a message and
1096 * recycles the buffer.
1098 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1100 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1101 struct sk_buff *skb = ce->skb;
1103 pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1104 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1105 pr_err("%s: unexpected offload packet, cmd %u\n",
1106 adapter->name, *skb->data);
1107 recycle_fl_buf(fl, fl->cidx);
1111 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1112 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1113 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1114 * Note that the *_large_page_tx_descs stuff will be optimized out when
1115 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1117 * compute_large_page_descs() computes how many additional descriptors are
1118 * required to break down the stack's request.
1120 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1122 unsigned int count = 0;
1124 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1125 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1126 unsigned int i, len = skb->len - skb->data_len;
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1131 for (i = 0; nfrags--; i++) {
1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133 len = frag->size;
1134 while (len > SGE_TX_DESC_MAX_PLEN) {
1135 count++;
1136 len -= SGE_TX_DESC_MAX_PLEN;
1140 return count;
1144 * Write a cmdQ entry.
1146 * Since this function writes the 'flags' field, it must not be used to
1147 * write the first cmdQ entry.
1149 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1150 unsigned int len, unsigned int gen,
1151 unsigned int eop)
1153 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1155 e->addr_lo = (u32)mapping;
1156 e->addr_hi = (u64)mapping >> 32;
1157 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1158 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1162 * See comment for previous function.
1164 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1165 * *desc_len exceeds HW's capability.
1167 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168 struct cmdQ_e **e,
1169 struct cmdQ_ce **ce,
1170 unsigned int *gen,
1171 dma_addr_t *desc_mapping,
1172 unsigned int *desc_len,
1173 unsigned int nfrags,
1174 struct cmdQ *q)
1176 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1177 struct cmdQ_e *e1 = *e;
1178 struct cmdQ_ce *ce1 = *ce;
1180 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1181 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1182 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1183 *gen, nfrags == 0 && *desc_len == 0);
1184 ce1->skb = NULL;
1185 pci_unmap_len_set(ce1, dma_len, 0);
1186 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1187 if (*desc_len) {
1188 ce1++;
1189 e1++;
1190 if (++pidx == q->size) {
1191 pidx = 0;
1192 *gen ^= 1;
1193 ce1 = q->centries;
1194 e1 = q->entries;
1198 *e = e1;
1199 *ce = ce1;
1201 return pidx;
1205 * Write the command descriptors to transmit the given skb starting at
1206 * descriptor pidx with the given generation.
1208 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1209 unsigned int pidx, unsigned int gen,
1210 struct cmdQ *q)
1212 dma_addr_t mapping, desc_mapping;
1213 struct cmdQ_e *e, *e1;
1214 struct cmdQ_ce *ce;
1215 unsigned int i, flags, first_desc_len, desc_len,
1216 nfrags = skb_shinfo(skb)->nr_frags;
1218 e = e1 = &q->entries[pidx];
1219 ce = &q->centries[pidx];
1221 mapping = pci_map_single(adapter->pdev, skb->data,
1222 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1224 desc_mapping = mapping;
1225 desc_len = skb->len - skb->data_len;
1227 flags = F_CMD_DATAVALID | F_CMD_SOP |
1228 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229 V_CMD_GEN2(gen);
1230 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1231 desc_len : SGE_TX_DESC_MAX_PLEN;
1232 e->addr_lo = (u32)desc_mapping;
1233 e->addr_hi = (u64)desc_mapping >> 32;
1234 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235 ce->skb = NULL;
1236 pci_unmap_len_set(ce, dma_len, 0);
1238 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1239 desc_len > SGE_TX_DESC_MAX_PLEN) {
1240 desc_mapping += first_desc_len;
1241 desc_len -= first_desc_len;
1242 e1++;
1243 ce++;
1244 if (++pidx == q->size) {
1245 pidx = 0;
1246 gen ^= 1;
1247 e1 = q->entries;
1248 ce = q->centries;
1250 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251 &desc_mapping, &desc_len,
1252 nfrags, q);
1254 if (likely(desc_len))
1255 write_tx_desc(e1, desc_mapping, desc_len, gen,
1256 nfrags == 0);
1259 ce->skb = NULL;
1260 pci_unmap_addr_set(ce, dma_addr, mapping);
1261 pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1263 for (i = 0; nfrags--; i++) {
1264 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1265 e1++;
1266 ce++;
1267 if (++pidx == q->size) {
1268 pidx = 0;
1269 gen ^= 1;
1270 e1 = q->entries;
1271 ce = q->centries;
1274 mapping = pci_map_page(adapter->pdev, frag->page,
1275 frag->page_offset, frag->size,
1276 PCI_DMA_TODEVICE);
1277 desc_mapping = mapping;
1278 desc_len = frag->size;
1280 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1281 &desc_mapping, &desc_len,
1282 nfrags, q);
1283 if (likely(desc_len))
1284 write_tx_desc(e1, desc_mapping, desc_len, gen,
1285 nfrags == 0);
1286 ce->skb = NULL;
1287 pci_unmap_addr_set(ce, dma_addr, mapping);
1288 pci_unmap_len_set(ce, dma_len, frag->size);
1290 ce->skb = skb;
1291 wmb();
1292 e->flags = flags;
1296 * Clean up completed Tx buffers.
1298 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1300 unsigned int reclaim = q->processed - q->cleaned;
1302 if (reclaim) {
1303 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1304 q->processed, q->cleaned);
1305 free_cmdQ_buffers(sge, q, reclaim);
1306 q->cleaned += reclaim;
1311 * Called from tasklet. Checks the scheduler for any
1312 * pending skbs that can be sent.
1314 static void restart_sched(unsigned long arg)
1316 struct sge *sge = (struct sge *) arg;
1317 struct adapter *adapter = sge->adapter;
1318 struct cmdQ *q = &sge->cmdQ[0];
1319 struct sk_buff *skb;
1320 unsigned int credits, queued_skb = 0;
1322 spin_lock(&q->lock);
1323 reclaim_completed_tx(sge, q);
1325 credits = q->size - q->in_use;
1326 pr_debug("restart_sched credits=%d\n", credits);
1327 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1328 unsigned int genbit, pidx, count;
1329 count = 1 + skb_shinfo(skb)->nr_frags;
1330 count += compute_large_page_tx_descs(skb);
1331 q->in_use += count;
1332 genbit = q->genbit;
1333 pidx = q->pidx;
1334 q->pidx += count;
1335 if (q->pidx >= q->size) {
1336 q->pidx -= q->size;
1337 q->genbit ^= 1;
1339 write_tx_descs(adapter, skb, pidx, genbit, q);
1340 credits = q->size - q->in_use;
1341 queued_skb = 1;
1344 if (queued_skb) {
1345 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1347 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1351 spin_unlock(&q->lock);
1355 * sge_rx - process an ingress ethernet packet
1356 * @sge: the sge structure
1357 * @fl: the free list that contains the packet buffer
1358 * @len: the packet length
1360 * Process an ingress ethernet pakcet and deliver it to the stack.
1362 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1364 struct sk_buff *skb;
1365 const struct cpl_rx_pkt *p;
1366 struct adapter *adapter = sge->adapter;
1367 struct sge_port_stats *st;
1369 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1370 if (unlikely(!skb)) {
1371 sge->stats.rx_drops++;
1372 return;
1375 p = (const struct cpl_rx_pkt *) skb->data;
1376 if (p->iff >= adapter->params.nports) {
1377 kfree_skb(skb);
1378 return;
1380 __skb_pull(skb, sizeof(*p));
1382 st = this_cpu_ptr(sge->port_stats[p->iff]);
1384 skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
1385 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1386 skb->protocol == htons(ETH_P_IP) &&
1387 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1388 ++st->rx_cso_good;
1389 skb->ip_summed = CHECKSUM_UNNECESSARY;
1390 } else
1391 skb->ip_summed = CHECKSUM_NONE;
1393 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1394 st->vlan_xtract++;
1395 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1396 ntohs(p->vlan));
1397 } else
1398 netif_receive_skb(skb);
1402 * Returns true if a command queue has enough available descriptors that
1403 * we can resume Tx operation after temporarily disabling its packet queue.
1405 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1407 unsigned int r = q->processed - q->cleaned;
1409 return q->in_use - r < (q->size >> 1);
1413 * Called when sufficient space has become available in the SGE command queues
1414 * after the Tx packet schedulers have been suspended to restart the Tx path.
1416 static void restart_tx_queues(struct sge *sge)
1418 struct adapter *adap = sge->adapter;
1419 int i;
1421 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1422 return;
1424 for_each_port(adap, i) {
1425 struct net_device *nd = adap->port[i].dev;
1427 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1428 netif_running(nd)) {
1429 sge->stats.cmdQ_restarted[2]++;
1430 netif_wake_queue(nd);
1436 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1437 * information.
1439 static unsigned int update_tx_info(struct adapter *adapter,
1440 unsigned int flags,
1441 unsigned int pr0)
1443 struct sge *sge = adapter->sge;
1444 struct cmdQ *cmdq = &sge->cmdQ[0];
1446 cmdq->processed += pr0;
1447 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1448 freelQs_empty(sge);
1449 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1451 if (flags & F_CMDQ0_ENABLE) {
1452 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1454 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1455 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1456 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1457 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1459 if (sge->tx_sched)
1460 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1462 flags &= ~F_CMDQ0_ENABLE;
1465 if (unlikely(sge->stopped_tx_queues != 0))
1466 restart_tx_queues(sge);
1468 return flags;
1472 * Process SGE responses, up to the supplied budget. Returns the number of
1473 * responses processed. A negative budget is effectively unlimited.
1475 static int process_responses(struct adapter *adapter, int budget)
1477 struct sge *sge = adapter->sge;
1478 struct respQ *q = &sge->respQ;
1479 struct respQ_e *e = &q->entries[q->cidx];
1480 int done = 0;
1481 unsigned int flags = 0;
1482 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1484 while (done < budget && e->GenerationBit == q->genbit) {
1485 flags |= e->Qsleeping;
1487 cmdq_processed[0] += e->Cmdq0CreditReturn;
1488 cmdq_processed[1] += e->Cmdq1CreditReturn;
1490 /* We batch updates to the TX side to avoid cacheline
1491 * ping-pong of TX state information on MP where the sender
1492 * might run on a different CPU than this function...
1494 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1495 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1496 cmdq_processed[0] = 0;
1499 if (unlikely(cmdq_processed[1] > 16)) {
1500 sge->cmdQ[1].processed += cmdq_processed[1];
1501 cmdq_processed[1] = 0;
1504 if (likely(e->DataValid)) {
1505 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1507 BUG_ON(!e->Sop || !e->Eop);
1508 if (unlikely(e->Offload))
1509 unexpected_offload(adapter, fl);
1510 else
1511 sge_rx(sge, fl, e->BufferLength);
1513 ++done;
1516 * Note: this depends on each packet consuming a
1517 * single free-list buffer; cf. the BUG above.
1519 if (++fl->cidx == fl->size)
1520 fl->cidx = 0;
1521 prefetch(fl->centries[fl->cidx].skb);
1523 if (unlikely(--fl->credits <
1524 fl->size - SGE_FREEL_REFILL_THRESH))
1525 refill_free_list(sge, fl);
1526 } else
1527 sge->stats.pure_rsps++;
1529 e++;
1530 if (unlikely(++q->cidx == q->size)) {
1531 q->cidx = 0;
1532 q->genbit ^= 1;
1533 e = q->entries;
1535 prefetch(e);
1537 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1538 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1539 q->credits = 0;
1543 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1544 sge->cmdQ[1].processed += cmdq_processed[1];
1546 return done;
1549 static inline int responses_pending(const struct adapter *adapter)
1551 const struct respQ *Q = &adapter->sge->respQ;
1552 const struct respQ_e *e = &Q->entries[Q->cidx];
1554 return (e->GenerationBit == Q->genbit);
1558 * A simpler version of process_responses() that handles only pure (i.e.,
1559 * non data-carrying) responses. Such respones are too light-weight to justify
1560 * calling a softirq when using NAPI, so we handle them specially in hard
1561 * interrupt context. The function is called with a pointer to a response,
1562 * which the caller must ensure is a valid pure response. Returns 1 if it
1563 * encounters a valid data-carrying response, 0 otherwise.
1565 static int process_pure_responses(struct adapter *adapter)
1567 struct sge *sge = adapter->sge;
1568 struct respQ *q = &sge->respQ;
1569 struct respQ_e *e = &q->entries[q->cidx];
1570 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1571 unsigned int flags = 0;
1572 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1574 prefetch(fl->centries[fl->cidx].skb);
1575 if (e->DataValid)
1576 return 1;
1578 do {
1579 flags |= e->Qsleeping;
1581 cmdq_processed[0] += e->Cmdq0CreditReturn;
1582 cmdq_processed[1] += e->Cmdq1CreditReturn;
1584 e++;
1585 if (unlikely(++q->cidx == q->size)) {
1586 q->cidx = 0;
1587 q->genbit ^= 1;
1588 e = q->entries;
1590 prefetch(e);
1592 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1593 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1594 q->credits = 0;
1596 sge->stats.pure_rsps++;
1597 } while (e->GenerationBit == q->genbit && !e->DataValid);
1599 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1600 sge->cmdQ[1].processed += cmdq_processed[1];
1602 return e->GenerationBit == q->genbit;
1606 * Handler for new data events when using NAPI. This does not need any locking
1607 * or protection from interrupts as data interrupts are off at this point and
1608 * other adapter interrupts do not interfere.
1610 int t1_poll(struct napi_struct *napi, int budget)
1612 struct adapter *adapter = container_of(napi, struct adapter, napi);
1613 int work_done = process_responses(adapter, budget);
1615 if (likely(work_done < budget)) {
1616 napi_complete(napi);
1617 writel(adapter->sge->respQ.cidx,
1618 adapter->regs + A_SG_SLEEPING);
1620 return work_done;
1623 irqreturn_t t1_interrupt(int irq, void *data)
1625 struct adapter *adapter = data;
1626 struct sge *sge = adapter->sge;
1627 int handled;
1629 if (likely(responses_pending(adapter))) {
1630 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1632 if (napi_schedule_prep(&adapter->napi)) {
1633 if (process_pure_responses(adapter))
1634 __napi_schedule(&adapter->napi);
1635 else {
1636 /* no data, no NAPI needed */
1637 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1638 /* undo schedule_prep */
1639 napi_enable(&adapter->napi);
1642 return IRQ_HANDLED;
1645 spin_lock(&adapter->async_lock);
1646 handled = t1_slow_intr_handler(adapter);
1647 spin_unlock(&adapter->async_lock);
1649 if (!handled)
1650 sge->stats.unhandled_irqs++;
1652 return IRQ_RETVAL(handled != 0);
1656 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1658 * The code figures out how many entries the sk_buff will require in the
1659 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1660 * has complete. Then, it doesn't access the global structure anymore, but
1661 * uses the corresponding fields on the stack. In conjuction with a spinlock
1662 * around that code, we can make the function reentrant without holding the
1663 * lock when we actually enqueue (which might be expensive, especially on
1664 * architectures with IO MMUs).
1666 * This runs with softirqs disabled.
1668 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1669 unsigned int qid, struct net_device *dev)
1671 struct sge *sge = adapter->sge;
1672 struct cmdQ *q = &sge->cmdQ[qid];
1673 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1675 if (!spin_trylock(&q->lock))
1676 return NETDEV_TX_LOCKED;
1678 reclaim_completed_tx(sge, q);
1680 pidx = q->pidx;
1681 credits = q->size - q->in_use;
1682 count = 1 + skb_shinfo(skb)->nr_frags;
1683 count += compute_large_page_tx_descs(skb);
1685 /* Ethernet packet */
1686 if (unlikely(credits < count)) {
1687 if (!netif_queue_stopped(dev)) {
1688 netif_stop_queue(dev);
1689 set_bit(dev->if_port, &sge->stopped_tx_queues);
1690 sge->stats.cmdQ_full[2]++;
1691 pr_err("%s: Tx ring full while queue awake!\n",
1692 adapter->name);
1694 spin_unlock(&q->lock);
1695 return NETDEV_TX_BUSY;
1698 if (unlikely(credits - count < q->stop_thres)) {
1699 netif_stop_queue(dev);
1700 set_bit(dev->if_port, &sge->stopped_tx_queues);
1701 sge->stats.cmdQ_full[2]++;
1704 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1705 * through the scheduler.
1707 if (sge->tx_sched && !qid && skb->dev) {
1708 use_sched:
1709 use_sched_skb = 1;
1710 /* Note that the scheduler might return a different skb than
1711 * the one passed in.
1713 skb = sched_skb(sge, skb, credits);
1714 if (!skb) {
1715 spin_unlock(&q->lock);
1716 return NETDEV_TX_OK;
1718 pidx = q->pidx;
1719 count = 1 + skb_shinfo(skb)->nr_frags;
1720 count += compute_large_page_tx_descs(skb);
1723 q->in_use += count;
1724 genbit = q->genbit;
1725 pidx = q->pidx;
1726 q->pidx += count;
1727 if (q->pidx >= q->size) {
1728 q->pidx -= q->size;
1729 q->genbit ^= 1;
1731 spin_unlock(&q->lock);
1733 write_tx_descs(adapter, skb, pidx, genbit, q);
1736 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1737 * the doorbell if the Q is asleep. There is a natural race, where
1738 * the hardware is going to sleep just after we checked, however,
1739 * then the interrupt handler will detect the outstanding TX packet
1740 * and ring the doorbell for us.
1742 if (qid)
1743 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1744 else {
1745 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1746 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1747 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1748 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1752 if (use_sched_skb) {
1753 if (spin_trylock(&q->lock)) {
1754 credits = q->size - q->in_use;
1755 skb = NULL;
1756 goto use_sched;
1759 return NETDEV_TX_OK;
1762 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1765 * eth_hdr_len - return the length of an Ethernet header
1766 * @data: pointer to the start of the Ethernet header
1768 * Returns the length of an Ethernet header, including optional VLAN tag.
1770 static inline int eth_hdr_len(const void *data)
1772 const struct ethhdr *e = data;
1774 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1778 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1780 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1782 struct adapter *adapter = dev->ml_priv;
1783 struct sge *sge = adapter->sge;
1784 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1785 struct cpl_tx_pkt *cpl;
1786 struct sk_buff *orig_skb = skb;
1787 int ret;
1789 if (skb->protocol == htons(ETH_P_CPL5))
1790 goto send;
1793 * We are using a non-standard hard_header_len.
1794 * Allocate more header room in the rare cases it is not big enough.
1796 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1797 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1798 ++st->tx_need_hdrroom;
1799 dev_kfree_skb_any(orig_skb);
1800 if (!skb)
1801 return NETDEV_TX_OK;
1804 if (skb_shinfo(skb)->gso_size) {
1805 int eth_type;
1806 struct cpl_tx_pkt_lso *hdr;
1808 ++st->tx_tso;
1810 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1811 CPL_ETH_II : CPL_ETH_II_VLAN;
1813 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1814 hdr->opcode = CPL_TX_PKT_LSO;
1815 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1816 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1817 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1818 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1819 skb_shinfo(skb)->gso_size));
1820 hdr->len = htonl(skb->len - sizeof(*hdr));
1821 cpl = (struct cpl_tx_pkt *)hdr;
1822 } else {
1824 * Packets shorter than ETH_HLEN can break the MAC, drop them
1825 * early. Also, we may get oversized packets because some
1826 * parts of the kernel don't handle our unusual hard_header_len
1827 * right, drop those too.
1829 if (unlikely(skb->len < ETH_HLEN ||
1830 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1831 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1832 skb->len, eth_hdr_len(skb->data), dev->mtu);
1833 dev_kfree_skb_any(skb);
1834 return NETDEV_TX_OK;
1837 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1838 skb->ip_summed == CHECKSUM_PARTIAL &&
1839 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1840 if (unlikely(skb_checksum_help(skb))) {
1841 pr_debug("%s: unable to do udp checksum\n", dev->name);
1842 dev_kfree_skb_any(skb);
1843 return NETDEV_TX_OK;
1847 /* Hmmm, assuming to catch the gratious arp... and we'll use
1848 * it to flush out stuck espi packets...
1850 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1851 if (skb->protocol == htons(ETH_P_ARP) &&
1852 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1853 adapter->sge->espibug_skb[dev->if_port] = skb;
1854 /* We want to re-use this skb later. We
1855 * simply bump the reference count and it
1856 * will not be freed...
1858 skb = skb_get(skb);
1862 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1863 cpl->opcode = CPL_TX_PKT;
1864 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1865 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1866 /* the length field isn't used so don't bother setting it */
1868 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1870 cpl->iff = dev->if_port;
1872 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1873 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1874 cpl->vlan_valid = 1;
1875 cpl->vlan = htons(vlan_tx_tag_get(skb));
1876 st->vlan_insert++;
1877 } else
1878 #endif
1879 cpl->vlan_valid = 0;
1881 send:
1882 ret = t1_sge_tx(skb, adapter, 0, dev);
1884 /* If transmit busy, and we reallocated skb's due to headroom limit,
1885 * then silently discard to avoid leak.
1887 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1888 dev_kfree_skb_any(skb);
1889 ret = NETDEV_TX_OK;
1891 return ret;
1895 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1897 static void sge_tx_reclaim_cb(unsigned long data)
1899 int i;
1900 struct sge *sge = (struct sge *)data;
1902 for (i = 0; i < SGE_CMDQ_N; ++i) {
1903 struct cmdQ *q = &sge->cmdQ[i];
1905 if (!spin_trylock(&q->lock))
1906 continue;
1908 reclaim_completed_tx(sge, q);
1909 if (i == 0 && q->in_use) { /* flush pending credits */
1910 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1912 spin_unlock(&q->lock);
1914 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1918 * Propagate changes of the SGE coalescing parameters to the HW.
1920 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1922 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1923 core_ticks_per_usec(sge->adapter);
1924 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1925 return 0;
1929 * Allocates both RX and TX resources and configures the SGE. However,
1930 * the hardware is not enabled yet.
1932 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1934 if (alloc_rx_resources(sge, p))
1935 return -ENOMEM;
1936 if (alloc_tx_resources(sge, p)) {
1937 free_rx_resources(sge);
1938 return -ENOMEM;
1940 configure_sge(sge, p);
1943 * Now that we have sized the free lists calculate the payload
1944 * capacity of the large buffers. Other parts of the driver use
1945 * this to set the max offload coalescing size so that RX packets
1946 * do not overflow our large buffers.
1948 p->large_buf_capacity = jumbo_payload_capacity(sge);
1949 return 0;
1953 * Disables the DMA engine.
1955 void t1_sge_stop(struct sge *sge)
1957 int i;
1958 writel(0, sge->adapter->regs + A_SG_CONTROL);
1959 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1961 if (is_T2(sge->adapter))
1962 del_timer_sync(&sge->espibug_timer);
1964 del_timer_sync(&sge->tx_reclaim_timer);
1965 if (sge->tx_sched)
1966 tx_sched_stop(sge);
1968 for (i = 0; i < MAX_NPORTS; i++)
1969 kfree_skb(sge->espibug_skb[i]);
1973 * Enables the DMA engine.
1975 void t1_sge_start(struct sge *sge)
1977 refill_free_list(sge, &sge->freelQ[0]);
1978 refill_free_list(sge, &sge->freelQ[1]);
1980 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1981 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1982 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1984 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1986 if (is_T2(sge->adapter))
1987 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1991 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1993 static void espibug_workaround_t204(unsigned long data)
1995 struct adapter *adapter = (struct adapter *)data;
1996 struct sge *sge = adapter->sge;
1997 unsigned int nports = adapter->params.nports;
1998 u32 seop[MAX_NPORTS];
2000 if (adapter->open_device_map & PORT_MASK) {
2001 int i;
2003 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2004 return;
2006 for (i = 0; i < nports; i++) {
2007 struct sk_buff *skb = sge->espibug_skb[i];
2009 if (!netif_running(adapter->port[i].dev) ||
2010 netif_queue_stopped(adapter->port[i].dev) ||
2011 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2012 continue;
2014 if (!skb->cb[0]) {
2015 u8 ch_mac_addr[ETH_ALEN] = {
2016 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2019 skb_copy_to_linear_data_offset(skb,
2020 sizeof(struct cpl_tx_pkt),
2021 ch_mac_addr,
2022 ETH_ALEN);
2023 skb_copy_to_linear_data_offset(skb,
2024 skb->len - 10,
2025 ch_mac_addr,
2026 ETH_ALEN);
2027 skb->cb[0] = 0xff;
2030 /* bump the reference count to avoid freeing of
2031 * the skb once the DMA has completed.
2033 skb = skb_get(skb);
2034 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2037 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2040 static void espibug_workaround(unsigned long data)
2042 struct adapter *adapter = (struct adapter *)data;
2043 struct sge *sge = adapter->sge;
2045 if (netif_running(adapter->port[0].dev)) {
2046 struct sk_buff *skb = sge->espibug_skb[0];
2047 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2049 if ((seop & 0xfff0fff) == 0xfff && skb) {
2050 if (!skb->cb[0]) {
2051 u8 ch_mac_addr[ETH_ALEN] =
2052 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2053 skb_copy_to_linear_data_offset(skb,
2054 sizeof(struct cpl_tx_pkt),
2055 ch_mac_addr,
2056 ETH_ALEN);
2057 skb_copy_to_linear_data_offset(skb,
2058 skb->len - 10,
2059 ch_mac_addr,
2060 ETH_ALEN);
2061 skb->cb[0] = 0xff;
2064 /* bump the reference count to avoid freeing of the
2065 * skb once the DMA has completed.
2067 skb = skb_get(skb);
2068 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2071 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2075 * Creates a t1_sge structure and returns suggested resource parameters.
2077 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2078 struct sge_params *p)
2080 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2081 int i;
2083 if (!sge)
2084 return NULL;
2086 sge->adapter = adapter;
2087 sge->netdev = adapter->port[0].dev;
2088 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2089 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2091 for_each_port(adapter, i) {
2092 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2093 if (!sge->port_stats[i])
2094 goto nomem_port;
2097 init_timer(&sge->tx_reclaim_timer);
2098 sge->tx_reclaim_timer.data = (unsigned long)sge;
2099 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2101 if (is_T2(sge->adapter)) {
2102 init_timer(&sge->espibug_timer);
2104 if (adapter->params.nports > 1) {
2105 tx_sched_init(sge);
2106 sge->espibug_timer.function = espibug_workaround_t204;
2107 } else
2108 sge->espibug_timer.function = espibug_workaround;
2109 sge->espibug_timer.data = (unsigned long)sge->adapter;
2111 sge->espibug_timeout = 1;
2112 /* for T204, every 10ms */
2113 if (adapter->params.nports > 1)
2114 sge->espibug_timeout = HZ/100;
2118 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2119 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2120 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2121 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2122 if (sge->tx_sched) {
2123 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2124 p->rx_coalesce_usecs = 15;
2125 else
2126 p->rx_coalesce_usecs = 50;
2127 } else
2128 p->rx_coalesce_usecs = 50;
2130 p->coalesce_enable = 0;
2131 p->sample_interval_usecs = 0;
2133 return sge;
2134 nomem_port:
2135 while (i >= 0) {
2136 free_percpu(sge->port_stats[i]);
2137 --i;
2139 kfree(sge);
2140 return NULL;