2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
98 #include "fsl_pq_mdio.h"
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
104 const char gfar_driver_name
[] = "Gianfar Ethernet";
105 const char gfar_driver_version
[] = "1.3";
107 static int gfar_enet_open(struct net_device
*dev
);
108 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
109 static void gfar_reset_task(struct work_struct
*work
);
110 static void gfar_timeout(struct net_device
*dev
);
111 static int gfar_close(struct net_device
*dev
);
112 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
114 struct sk_buff
*skb
);
115 static int gfar_set_mac_address(struct net_device
*dev
);
116 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
117 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
118 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
119 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
120 static void adjust_link(struct net_device
*dev
);
121 static void init_registers(struct net_device
*dev
);
122 static int init_phy(struct net_device
*dev
);
123 static int gfar_probe(struct of_device
*ofdev
,
124 const struct of_device_id
*match
);
125 static int gfar_remove(struct of_device
*ofdev
);
126 static void free_skb_resources(struct gfar_private
*priv
);
127 static void gfar_set_multi(struct net_device
*dev
);
128 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
129 static void gfar_configure_serdes(struct net_device
*dev
);
130 static int gfar_poll(struct napi_struct
*napi
, int budget
);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device
*dev
);
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
136 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
138 static void gfar_vlan_rx_register(struct net_device
*netdev
,
139 struct vlan_group
*grp
);
140 void gfar_halt(struct net_device
*dev
);
141 static void gfar_halt_nodisable(struct net_device
*dev
);
142 void gfar_start(struct net_device
*dev
);
143 static void gfar_clear_exact_match(struct net_device
*dev
);
144 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
145 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
158 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
159 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
160 lstatus
|= BD_LFLAG(RXBD_WRAP
);
164 bdp
->lstatus
= lstatus
;
167 static int gfar_init_bds(struct net_device
*ndev
)
169 struct gfar_private
*priv
= netdev_priv(ndev
);
170 struct gfar_priv_tx_q
*tx_queue
= NULL
;
171 struct gfar_priv_rx_q
*rx_queue
= NULL
;
176 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
177 tx_queue
= priv
->tx_queue
[i
];
178 /* Initialize some variables in our dev structure */
179 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
180 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
181 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
182 tx_queue
->skb_curtx
= 0;
183 tx_queue
->skb_dirtytx
= 0;
185 /* Initialize Transmit Descriptor Ring */
186 txbdp
= tx_queue
->tx_bd_base
;
187 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
193 /* Set the last descriptor in the ring to indicate wrap */
195 txbdp
->status
|= TXBD_WRAP
;
198 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
199 rx_queue
= priv
->rx_queue
[i
];
200 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
201 rx_queue
->skb_currx
= 0;
202 rxbdp
= rx_queue
->rx_bd_base
;
204 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
205 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
208 gfar_init_rxbdp(rx_queue
, rxbdp
,
211 skb
= gfar_new_skb(ndev
);
213 pr_err("%s: Can't allocate RX buffers\n",
215 goto err_rxalloc_fail
;
217 rx_queue
->rx_skbuff
[j
] = skb
;
219 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
230 free_skb_resources(priv
);
234 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
239 struct gfar_private
*priv
= netdev_priv(ndev
);
240 struct device
*dev
= &priv
->ofdev
->dev
;
241 struct gfar_priv_tx_q
*tx_queue
= NULL
;
242 struct gfar_priv_rx_q
*rx_queue
= NULL
;
244 priv
->total_tx_ring_size
= 0;
245 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
246 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
248 priv
->total_rx_ring_size
= 0;
249 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
250 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
252 /* Allocate memory for the buffer descriptors */
253 vaddr
= dma_alloc_coherent(dev
,
254 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
255 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
258 if (netif_msg_ifup(priv
))
259 pr_err("%s: Could not allocate buffer descriptors!\n",
264 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
265 tx_queue
= priv
->tx_queue
[i
];
266 tx_queue
->tx_bd_base
= (struct txbd8
*) vaddr
;
267 tx_queue
->tx_bd_dma_base
= addr
;
268 tx_queue
->dev
= ndev
;
269 /* enet DMA only understands physical addresses */
270 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
271 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
274 /* Start the rx descriptor ring where the tx ring leaves off */
275 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
276 rx_queue
= priv
->rx_queue
[i
];
277 rx_queue
->rx_bd_base
= (struct rxbd8
*) vaddr
;
278 rx_queue
->rx_bd_dma_base
= addr
;
279 rx_queue
->dev
= ndev
;
280 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
281 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
284 /* Setup the skbuff rings */
285 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
286 tx_queue
= priv
->tx_queue
[i
];
287 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
288 tx_queue
->tx_ring_size
, GFP_KERNEL
);
289 if (!tx_queue
->tx_skbuff
) {
290 if (netif_msg_ifup(priv
))
291 pr_err("%s: Could not allocate tx_skbuff\n",
296 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
297 tx_queue
->tx_skbuff
[k
] = NULL
;
300 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
301 rx_queue
= priv
->rx_queue
[i
];
302 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
303 rx_queue
->rx_ring_size
, GFP_KERNEL
);
305 if (!rx_queue
->rx_skbuff
) {
306 if (netif_msg_ifup(priv
))
307 pr_err("%s: Could not allocate rx_skbuff\n",
312 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
313 rx_queue
->rx_skbuff
[j
] = NULL
;
316 if (gfar_init_bds(ndev
))
322 free_skb_resources(priv
);
326 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
328 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
332 baddr
= ®s
->tbase0
;
333 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
334 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
338 baddr
= ®s
->rbase0
;
339 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
340 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
345 static void gfar_init_mac(struct net_device
*ndev
)
347 struct gfar_private
*priv
= netdev_priv(ndev
);
348 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv
);
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
359 if (priv
->rx_filer_enable
) {
360 rctrl
|= RCTRL_FILREN
;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
365 if (priv
->rx_csum_enable
)
366 rctrl
|= RCTRL_CHECKSUMMING
;
368 if (priv
->extended_hash
) {
369 rctrl
|= RCTRL_EXTHASH
;
371 gfar_clear_exact_match(ndev
);
376 rctrl
&= ~RCTRL_PAL_MASK
;
377 rctrl
|= RCTRL_PADDING(priv
->padding
);
380 /* keep vlan related bits if it's enabled */
382 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
383 tctrl
|= TCTRL_VLINS
;
386 /* Init rctrl based on our settings */
387 gfar_write(®s
->rctrl
, rctrl
);
389 if (ndev
->features
& NETIF_F_IP_CSUM
)
390 tctrl
|= TCTRL_INIT_CSUM
;
392 tctrl
|= TCTRL_TXSCHED_PRIO
;
394 gfar_write(®s
->tctrl
, tctrl
);
396 /* Set the extraction length and index */
397 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
398 ATTRELI_EI(priv
->rx_stash_index
);
400 gfar_write(®s
->attreli
, attrs
);
402 /* Start with defaults, and add stashing or locking
403 * depending on the approprate variables */
404 attrs
= ATTR_INIT_SETTINGS
;
406 if (priv
->bd_stash_en
)
407 attrs
|= ATTR_BDSTASH
;
409 if (priv
->rx_stash_size
!= 0)
410 attrs
|= ATTR_BUFSTASH
;
412 gfar_write(®s
->attr
, attrs
);
414 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
415 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
416 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
419 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
421 struct gfar_private
*priv
= netdev_priv(dev
);
422 struct netdev_queue
*txq
;
423 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
424 unsigned long tx_packets
= 0, tx_bytes
= 0;
427 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
428 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
429 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
430 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
433 dev
->stats
.rx_packets
= rx_packets
;
434 dev
->stats
.rx_bytes
= rx_bytes
;
435 dev
->stats
.rx_dropped
= rx_dropped
;
437 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
438 txq
= netdev_get_tx_queue(dev
, i
);
439 tx_bytes
+= txq
->tx_bytes
;
440 tx_packets
+= txq
->tx_packets
;
443 dev
->stats
.tx_bytes
= tx_bytes
;
444 dev
->stats
.tx_packets
= tx_packets
;
449 static const struct net_device_ops gfar_netdev_ops
= {
450 .ndo_open
= gfar_enet_open
,
451 .ndo_start_xmit
= gfar_start_xmit
,
452 .ndo_stop
= gfar_close
,
453 .ndo_change_mtu
= gfar_change_mtu
,
454 .ndo_set_multicast_list
= gfar_set_multi
,
455 .ndo_tx_timeout
= gfar_timeout
,
456 .ndo_do_ioctl
= gfar_ioctl
,
457 .ndo_get_stats
= gfar_get_stats
,
458 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
459 .ndo_set_mac_address
= eth_mac_addr
,
460 .ndo_validate_addr
= eth_validate_addr
,
461 #ifdef CONFIG_NET_POLL_CONTROLLER
462 .ndo_poll_controller
= gfar_netpoll
,
466 unsigned int ftp_rqfpr
[MAX_FILER_IDX
+ 1];
467 unsigned int ftp_rqfcr
[MAX_FILER_IDX
+ 1];
469 void lock_rx_qs(struct gfar_private
*priv
)
473 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
474 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
477 void lock_tx_qs(struct gfar_private
*priv
)
481 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
482 spin_lock(&priv
->tx_queue
[i
]->txlock
);
485 void unlock_rx_qs(struct gfar_private
*priv
)
489 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
490 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
493 void unlock_tx_qs(struct gfar_private
*priv
)
497 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
498 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
501 /* Returns 1 if incoming frames use an FCB */
502 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
504 return priv
->vlgrp
|| priv
->rx_csum_enable
;
507 static void free_tx_pointers(struct gfar_private
*priv
)
511 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
512 kfree(priv
->tx_queue
[i
]);
515 static void free_rx_pointers(struct gfar_private
*priv
)
519 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
520 kfree(priv
->rx_queue
[i
]);
523 static void unmap_group_regs(struct gfar_private
*priv
)
527 for (i
= 0; i
< MAXGROUPS
; i
++)
528 if (priv
->gfargrp
[i
].regs
)
529 iounmap(priv
->gfargrp
[i
].regs
);
532 static void disable_napi(struct gfar_private
*priv
)
536 for (i
= 0; i
< priv
->num_grps
; i
++)
537 napi_disable(&priv
->gfargrp
[i
].napi
);
540 static void enable_napi(struct gfar_private
*priv
)
544 for (i
= 0; i
< priv
->num_grps
; i
++)
545 napi_enable(&priv
->gfargrp
[i
].napi
);
548 static int gfar_parse_group(struct device_node
*np
,
549 struct gfar_private
*priv
, const char *model
)
553 priv
->gfargrp
[priv
->num_grps
].regs
= of_iomap(np
, 0);
554 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
557 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
558 irq_of_parse_and_map(np
, 0);
560 /* If we aren't the FEC we have multiple interrupts */
561 if (model
&& strcasecmp(model
, "FEC")) {
562 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
563 irq_of_parse_and_map(np
, 1);
564 priv
->gfargrp
[priv
->num_grps
].interruptError
=
565 irq_of_parse_and_map(np
,2);
566 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
< 0 ||
567 priv
->gfargrp
[priv
->num_grps
].interruptReceive
< 0 ||
568 priv
->gfargrp
[priv
->num_grps
].interruptError
< 0) {
573 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
574 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
575 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
576 if(priv
->mode
== MQ_MG_MODE
) {
577 queue_mask
= (u32
*)of_get_property(np
,
578 "fsl,rx-bit-map", NULL
);
579 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
580 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
581 queue_mask
= (u32
*)of_get_property(np
,
582 "fsl,tx-bit-map", NULL
);
583 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
584 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
586 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
587 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
594 static int gfar_of_init(struct of_device
*ofdev
, struct net_device
**pdev
)
598 const void *mac_addr
;
600 struct net_device
*dev
= NULL
;
601 struct gfar_private
*priv
= NULL
;
602 struct device_node
*np
= ofdev
->node
;
603 struct device_node
*child
= NULL
;
605 const u32
*stash_len
;
606 const u32
*stash_idx
;
607 unsigned int num_tx_qs
, num_rx_qs
;
608 u32
*tx_queues
, *rx_queues
;
610 if (!np
|| !of_device_is_available(np
))
613 /* parse the num of tx and rx queues */
614 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
615 num_tx_qs
= tx_queues
? *tx_queues
: 1;
617 if (num_tx_qs
> MAX_TX_QS
) {
618 printk(KERN_ERR
"num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
619 num_tx_qs
, MAX_TX_QS
);
620 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
624 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
625 num_rx_qs
= rx_queues
? *rx_queues
: 1;
627 if (num_rx_qs
> MAX_RX_QS
) {
628 printk(KERN_ERR
"num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
629 num_tx_qs
, MAX_TX_QS
);
630 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
634 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
639 priv
= netdev_priv(dev
);
640 priv
->node
= ofdev
->node
;
643 dev
->num_tx_queues
= num_tx_qs
;
644 dev
->real_num_tx_queues
= num_tx_qs
;
645 priv
->num_tx_queues
= num_tx_qs
;
646 priv
->num_rx_queues
= num_rx_qs
;
647 priv
->num_grps
= 0x0;
649 model
= of_get_property(np
, "model", NULL
);
651 for (i
= 0; i
< MAXGROUPS
; i
++)
652 priv
->gfargrp
[i
].regs
= NULL
;
654 /* Parse and initialize group specific information */
655 if (of_device_is_compatible(np
, "fsl,etsec2")) {
656 priv
->mode
= MQ_MG_MODE
;
657 for_each_child_of_node(np
, child
) {
658 err
= gfar_parse_group(child
, priv
, model
);
663 priv
->mode
= SQ_SG_MODE
;
664 err
= gfar_parse_group(np
, priv
, model
);
669 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
670 priv
->tx_queue
[i
] = NULL
;
671 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
672 priv
->rx_queue
[i
] = NULL
;
674 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
675 priv
->tx_queue
[i
] = (struct gfar_priv_tx_q
*)kzalloc(
676 sizeof (struct gfar_priv_tx_q
), GFP_KERNEL
);
677 if (!priv
->tx_queue
[i
]) {
679 goto tx_alloc_failed
;
681 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
682 priv
->tx_queue
[i
]->qindex
= i
;
683 priv
->tx_queue
[i
]->dev
= dev
;
684 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
687 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
688 priv
->rx_queue
[i
] = (struct gfar_priv_rx_q
*)kzalloc(
689 sizeof (struct gfar_priv_rx_q
), GFP_KERNEL
);
690 if (!priv
->rx_queue
[i
]) {
692 goto rx_alloc_failed
;
694 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
695 priv
->rx_queue
[i
]->qindex
= i
;
696 priv
->rx_queue
[i
]->dev
= dev
;
697 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
701 stash
= of_get_property(np
, "bd-stash", NULL
);
704 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
705 priv
->bd_stash_en
= 1;
708 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
711 priv
->rx_stash_size
= *stash_len
;
713 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
716 priv
->rx_stash_index
= *stash_idx
;
718 if (stash_len
|| stash_idx
)
719 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
721 mac_addr
= of_get_mac_address(np
);
723 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
725 if (model
&& !strcasecmp(model
, "TSEC"))
727 FSL_GIANFAR_DEV_HAS_GIGABIT
|
728 FSL_GIANFAR_DEV_HAS_COALESCE
|
729 FSL_GIANFAR_DEV_HAS_RMON
|
730 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
731 if (model
&& !strcasecmp(model
, "eTSEC"))
733 FSL_GIANFAR_DEV_HAS_GIGABIT
|
734 FSL_GIANFAR_DEV_HAS_COALESCE
|
735 FSL_GIANFAR_DEV_HAS_RMON
|
736 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
737 FSL_GIANFAR_DEV_HAS_PADDING
|
738 FSL_GIANFAR_DEV_HAS_CSUM
|
739 FSL_GIANFAR_DEV_HAS_VLAN
|
740 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
741 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
;
743 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
745 /* We only care about rgmii-id. The rest are autodetected */
746 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
747 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
749 priv
->interface
= PHY_INTERFACE_MODE_MII
;
751 if (of_get_property(np
, "fsl,magic-packet", NULL
))
752 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
754 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
756 /* Find the TBI PHY. If it's not there, we don't support SGMII */
757 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
762 free_rx_pointers(priv
);
764 free_tx_pointers(priv
);
766 unmap_group_regs(priv
);
771 /* Ioctl MII Interface */
772 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
774 struct gfar_private
*priv
= netdev_priv(dev
);
776 if (!netif_running(dev
))
782 return phy_mii_ioctl(priv
->phydev
, if_mii(rq
), cmd
);
785 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
787 unsigned int new_bit_map
= 0x0;
788 int mask
= 0x1 << (max_qs
- 1), i
;
789 for (i
= 0; i
< max_qs
; i
++) {
791 new_bit_map
= new_bit_map
+ (1 << i
);
797 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
800 u32 rqfpr
= FPR_FILER_MASK
;
804 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
805 ftp_rqfpr
[rqfar
] = rqfpr
;
806 ftp_rqfcr
[rqfar
] = rqfcr
;
807 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
810 rqfcr
= RQFCR_CMP_NOMATCH
;
811 ftp_rqfpr
[rqfar
] = rqfpr
;
812 ftp_rqfcr
[rqfar
] = rqfcr
;
813 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
816 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
818 ftp_rqfcr
[rqfar
] = rqfcr
;
819 ftp_rqfpr
[rqfar
] = rqfpr
;
820 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
823 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
825 ftp_rqfcr
[rqfar
] = rqfcr
;
826 ftp_rqfpr
[rqfar
] = rqfpr
;
827 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
832 static void gfar_init_filer_table(struct gfar_private
*priv
)
835 u32 rqfar
= MAX_FILER_IDX
;
837 u32 rqfpr
= FPR_FILER_MASK
;
840 rqfcr
= RQFCR_CMP_MATCH
;
841 ftp_rqfcr
[rqfar
] = rqfcr
;
842 ftp_rqfpr
[rqfar
] = rqfpr
;
843 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
845 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
846 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
847 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
848 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
849 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
850 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
852 /* cur_filer_idx indicated the fisrt non-masked rule */
853 priv
->cur_filer_idx
= rqfar
;
855 /* Rest are masked rules */
856 rqfcr
= RQFCR_CMP_NOMATCH
;
857 for (i
= 0; i
< rqfar
; i
++) {
858 ftp_rqfcr
[i
] = rqfcr
;
859 ftp_rqfpr
[i
] = rqfpr
;
860 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
864 /* Set up the ethernet device structure, private data,
865 * and anything else we need before we start */
866 static int gfar_probe(struct of_device
*ofdev
,
867 const struct of_device_id
*match
)
870 struct net_device
*dev
= NULL
;
871 struct gfar_private
*priv
= NULL
;
872 struct gfar __iomem
*regs
= NULL
;
873 int err
= 0, i
, grp_idx
= 0;
875 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
879 err
= gfar_of_init(ofdev
, &dev
);
884 priv
= netdev_priv(dev
);
887 priv
->node
= ofdev
->node
;
888 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
890 spin_lock_init(&priv
->bflock
);
891 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
893 dev_set_drvdata(&ofdev
->dev
, priv
);
894 regs
= priv
->gfargrp
[0].regs
;
896 /* Stop the DMA engine now, in case it was running before */
897 /* (The firmware could have used it, and left it running). */
900 /* Reset MAC layer */
901 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
903 /* We need to delay at least 3 TX clocks */
906 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
907 gfar_write(®s
->maccfg1
, tempval
);
909 /* Initialize MACCFG2. */
910 gfar_write(®s
->maccfg2
, MACCFG2_INIT_SETTINGS
);
912 /* Initialize ECNTRL */
913 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
915 /* Set the dev->base_addr to the gfar reg region */
916 dev
->base_addr
= (unsigned long) regs
;
918 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
920 /* Fill in the dev structure */
921 dev
->watchdog_timeo
= TX_TIMEOUT
;
923 dev
->netdev_ops
= &gfar_netdev_ops
;
924 dev
->ethtool_ops
= &gfar_ethtool_ops
;
926 /* Register for napi ...We are registering NAPI for each grp */
927 for (i
= 0; i
< priv
->num_grps
; i
++)
928 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
930 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
931 priv
->rx_csum_enable
= 1;
932 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
934 priv
->rx_csum_enable
= 0;
938 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
939 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
941 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
942 priv
->extended_hash
= 1;
943 priv
->hash_width
= 9;
945 priv
->hash_regs
[0] = ®s
->igaddr0
;
946 priv
->hash_regs
[1] = ®s
->igaddr1
;
947 priv
->hash_regs
[2] = ®s
->igaddr2
;
948 priv
->hash_regs
[3] = ®s
->igaddr3
;
949 priv
->hash_regs
[4] = ®s
->igaddr4
;
950 priv
->hash_regs
[5] = ®s
->igaddr5
;
951 priv
->hash_regs
[6] = ®s
->igaddr6
;
952 priv
->hash_regs
[7] = ®s
->igaddr7
;
953 priv
->hash_regs
[8] = ®s
->gaddr0
;
954 priv
->hash_regs
[9] = ®s
->gaddr1
;
955 priv
->hash_regs
[10] = ®s
->gaddr2
;
956 priv
->hash_regs
[11] = ®s
->gaddr3
;
957 priv
->hash_regs
[12] = ®s
->gaddr4
;
958 priv
->hash_regs
[13] = ®s
->gaddr5
;
959 priv
->hash_regs
[14] = ®s
->gaddr6
;
960 priv
->hash_regs
[15] = ®s
->gaddr7
;
963 priv
->extended_hash
= 0;
964 priv
->hash_width
= 8;
966 priv
->hash_regs
[0] = ®s
->gaddr0
;
967 priv
->hash_regs
[1] = ®s
->gaddr1
;
968 priv
->hash_regs
[2] = ®s
->gaddr2
;
969 priv
->hash_regs
[3] = ®s
->gaddr3
;
970 priv
->hash_regs
[4] = ®s
->gaddr4
;
971 priv
->hash_regs
[5] = ®s
->gaddr5
;
972 priv
->hash_regs
[6] = ®s
->gaddr6
;
973 priv
->hash_regs
[7] = ®s
->gaddr7
;
976 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
977 priv
->padding
= DEFAULT_PADDING
;
981 if (dev
->features
& NETIF_F_IP_CSUM
)
982 dev
->hard_header_len
+= GMAC_FCB_LEN
;
984 /* Program the isrg regs only if number of grps > 1 */
985 if (priv
->num_grps
> 1) {
986 baddr
= ®s
->isrg0
;
987 for (i
= 0; i
< priv
->num_grps
; i
++) {
988 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
989 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
990 gfar_write(baddr
, isrg
);
996 /* Need to reverse the bit maps as bit_map's MSB is q0
997 * but, for_each_set_bit parses from right to left, which
998 * basically reverses the queue numbers */
999 for (i
= 0; i
< priv
->num_grps
; i
++) {
1000 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1001 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1002 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1003 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1006 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1007 * also assign queues to groups */
1008 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1009 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1010 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1011 priv
->num_rx_queues
) {
1012 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1013 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1014 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1015 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1017 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1018 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1019 priv
->num_tx_queues
) {
1020 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1021 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1022 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1023 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1025 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1026 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1030 gfar_write(®s
->rqueue
, rqueue
);
1031 gfar_write(®s
->tqueue
, tqueue
);
1033 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1035 /* Initializing some of the rx/tx queue level parameters */
1036 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1037 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1038 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1039 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1040 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1043 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1044 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1045 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1046 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1049 /* enable filer if using multiple RX queues*/
1050 if(priv
->num_rx_queues
> 1)
1051 priv
->rx_filer_enable
= 1;
1052 /* Enable most messages by default */
1053 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1055 /* Carrier starts down, phylib will bring it up */
1056 netif_carrier_off(dev
);
1058 err
= register_netdev(dev
);
1061 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1066 device_init_wakeup(&dev
->dev
,
1067 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1069 /* fill out IRQ number and name fields */
1070 len_devname
= strlen(dev
->name
);
1071 for (i
= 0; i
< priv
->num_grps
; i
++) {
1072 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1074 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1075 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1076 "_g", sizeof("_g"));
1077 priv
->gfargrp
[i
].int_name_tx
[
1078 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1079 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1080 priv
->gfargrp
[i
].int_name_tx
)],
1081 "_tx", sizeof("_tx") + 1);
1083 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1085 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1086 "_g", sizeof("_g"));
1087 priv
->gfargrp
[i
].int_name_rx
[
1088 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1089 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1090 priv
->gfargrp
[i
].int_name_rx
)],
1091 "_rx", sizeof("_rx") + 1);
1093 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1095 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1096 "_g", sizeof("_g"));
1097 priv
->gfargrp
[i
].int_name_er
[strlen(
1098 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1099 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1100 priv
->gfargrp
[i
].int_name_er
)],
1101 "_er", sizeof("_er") + 1);
1103 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1106 /* Initialize the filer table */
1107 gfar_init_filer_table(priv
);
1109 /* Create all the sysfs files */
1110 gfar_init_sysfs(dev
);
1112 /* Print out the device info */
1113 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
1115 /* Even more device info helps when determining which kernel */
1116 /* provided which set of benchmarks. */
1117 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
1118 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1119 printk(KERN_INFO
"%s: RX BD ring size for Q[%d]: %d\n",
1120 dev
->name
, i
, priv
->rx_queue
[i
]->rx_ring_size
);
1121 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1122 printk(KERN_INFO
"%s: TX BD ring size for Q[%d]: %d\n",
1123 dev
->name
, i
, priv
->tx_queue
[i
]->tx_ring_size
);
1128 unmap_group_regs(priv
);
1129 free_tx_pointers(priv
);
1130 free_rx_pointers(priv
);
1132 of_node_put(priv
->phy_node
);
1134 of_node_put(priv
->tbi_node
);
1139 static int gfar_remove(struct of_device
*ofdev
)
1141 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1144 of_node_put(priv
->phy_node
);
1146 of_node_put(priv
->tbi_node
);
1148 dev_set_drvdata(&ofdev
->dev
, NULL
);
1150 unregister_netdev(priv
->ndev
);
1151 unmap_group_regs(priv
);
1152 free_netdev(priv
->ndev
);
1159 static int gfar_suspend(struct device
*dev
)
1161 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1162 struct net_device
*ndev
= priv
->ndev
;
1163 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1164 unsigned long flags
;
1167 int magic_packet
= priv
->wol_en
&&
1168 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1170 netif_device_detach(ndev
);
1172 if (netif_running(ndev
)) {
1174 local_irq_save(flags
);
1178 gfar_halt_nodisable(ndev
);
1180 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1181 tempval
= gfar_read(®s
->maccfg1
);
1183 tempval
&= ~MACCFG1_TX_EN
;
1186 tempval
&= ~MACCFG1_RX_EN
;
1188 gfar_write(®s
->maccfg1
, tempval
);
1192 local_irq_restore(flags
);
1197 /* Enable interrupt on Magic Packet */
1198 gfar_write(®s
->imask
, IMASK_MAG
);
1200 /* Enable Magic Packet mode */
1201 tempval
= gfar_read(®s
->maccfg2
);
1202 tempval
|= MACCFG2_MPEN
;
1203 gfar_write(®s
->maccfg2
, tempval
);
1205 phy_stop(priv
->phydev
);
1212 static int gfar_resume(struct device
*dev
)
1214 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1215 struct net_device
*ndev
= priv
->ndev
;
1216 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1217 unsigned long flags
;
1219 int magic_packet
= priv
->wol_en
&&
1220 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1222 if (!netif_running(ndev
)) {
1223 netif_device_attach(ndev
);
1227 if (!magic_packet
&& priv
->phydev
)
1228 phy_start(priv
->phydev
);
1230 /* Disable Magic Packet mode, in case something
1233 local_irq_save(flags
);
1237 tempval
= gfar_read(®s
->maccfg2
);
1238 tempval
&= ~MACCFG2_MPEN
;
1239 gfar_write(®s
->maccfg2
, tempval
);
1245 local_irq_restore(flags
);
1247 netif_device_attach(ndev
);
1254 static int gfar_restore(struct device
*dev
)
1256 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1257 struct net_device
*ndev
= priv
->ndev
;
1259 if (!netif_running(ndev
))
1262 gfar_init_bds(ndev
);
1263 init_registers(ndev
);
1264 gfar_set_mac_address(ndev
);
1265 gfar_init_mac(ndev
);
1270 priv
->oldduplex
= -1;
1273 phy_start(priv
->phydev
);
1275 netif_device_attach(ndev
);
1281 static struct dev_pm_ops gfar_pm_ops
= {
1282 .suspend
= gfar_suspend
,
1283 .resume
= gfar_resume
,
1284 .freeze
= gfar_suspend
,
1285 .thaw
= gfar_resume
,
1286 .restore
= gfar_restore
,
1289 #define GFAR_PM_OPS (&gfar_pm_ops)
1291 static int gfar_legacy_suspend(struct of_device
*ofdev
, pm_message_t state
)
1293 return gfar_suspend(&ofdev
->dev
);
1296 static int gfar_legacy_resume(struct of_device
*ofdev
)
1298 return gfar_resume(&ofdev
->dev
);
1303 #define GFAR_PM_OPS NULL
1304 #define gfar_legacy_suspend NULL
1305 #define gfar_legacy_resume NULL
1309 /* Reads the controller's registers to determine what interface
1310 * connects it to the PHY.
1312 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1314 struct gfar_private
*priv
= netdev_priv(dev
);
1315 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1318 ecntrl
= gfar_read(®s
->ecntrl
);
1320 if (ecntrl
& ECNTRL_SGMII_MODE
)
1321 return PHY_INTERFACE_MODE_SGMII
;
1323 if (ecntrl
& ECNTRL_TBI_MODE
) {
1324 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1325 return PHY_INTERFACE_MODE_RTBI
;
1327 return PHY_INTERFACE_MODE_TBI
;
1330 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1331 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1332 return PHY_INTERFACE_MODE_RMII
;
1334 phy_interface_t interface
= priv
->interface
;
1337 * This isn't autodetected right now, so it must
1338 * be set by the device tree or platform code.
1340 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1341 return PHY_INTERFACE_MODE_RGMII_ID
;
1343 return PHY_INTERFACE_MODE_RGMII
;
1347 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1348 return PHY_INTERFACE_MODE_GMII
;
1350 return PHY_INTERFACE_MODE_MII
;
1354 /* Initializes driver's PHY state, and attaches to the PHY.
1355 * Returns 0 on success.
1357 static int init_phy(struct net_device
*dev
)
1359 struct gfar_private
*priv
= netdev_priv(dev
);
1360 uint gigabit_support
=
1361 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1362 SUPPORTED_1000baseT_Full
: 0;
1363 phy_interface_t interface
;
1367 priv
->oldduplex
= -1;
1369 interface
= gfar_get_interface(dev
);
1371 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1374 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1376 if (!priv
->phydev
) {
1377 dev_err(&dev
->dev
, "could not attach to PHY\n");
1381 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1382 gfar_configure_serdes(dev
);
1384 /* Remove any features not supported by the controller */
1385 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1386 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1392 * Initialize TBI PHY interface for communicating with the
1393 * SERDES lynx PHY on the chip. We communicate with this PHY
1394 * through the MDIO bus on each controller, treating it as a
1395 * "normal" PHY at the address found in the TBIPA register. We assume
1396 * that the TBIPA register is valid. Either the MDIO bus code will set
1397 * it to a value that doesn't conflict with other PHYs on the bus, or the
1398 * value doesn't matter, as there are no other PHYs on the bus.
1400 static void gfar_configure_serdes(struct net_device
*dev
)
1402 struct gfar_private
*priv
= netdev_priv(dev
);
1403 struct phy_device
*tbiphy
;
1405 if (!priv
->tbi_node
) {
1406 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1407 "device tree specify a tbi-handle\n");
1411 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1413 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1418 * If the link is already up, we must already be ok, and don't need to
1419 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1420 * everything for us? Resetting it takes the link down and requires
1421 * several seconds for it to come back.
1423 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1426 /* Single clk mode, mii mode off(for serdes communication) */
1427 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1429 phy_write(tbiphy
, MII_ADVERTISE
,
1430 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1431 ADVERTISE_1000XPSE_ASYM
);
1433 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1434 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1437 static void init_registers(struct net_device
*dev
)
1439 struct gfar_private
*priv
= netdev_priv(dev
);
1440 struct gfar __iomem
*regs
= NULL
;
1443 for (i
= 0; i
< priv
->num_grps
; i
++) {
1444 regs
= priv
->gfargrp
[i
].regs
;
1446 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1448 /* Initialize IMASK */
1449 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1452 regs
= priv
->gfargrp
[0].regs
;
1453 /* Init hash registers to zero */
1454 gfar_write(®s
->igaddr0
, 0);
1455 gfar_write(®s
->igaddr1
, 0);
1456 gfar_write(®s
->igaddr2
, 0);
1457 gfar_write(®s
->igaddr3
, 0);
1458 gfar_write(®s
->igaddr4
, 0);
1459 gfar_write(®s
->igaddr5
, 0);
1460 gfar_write(®s
->igaddr6
, 0);
1461 gfar_write(®s
->igaddr7
, 0);
1463 gfar_write(®s
->gaddr0
, 0);
1464 gfar_write(®s
->gaddr1
, 0);
1465 gfar_write(®s
->gaddr2
, 0);
1466 gfar_write(®s
->gaddr3
, 0);
1467 gfar_write(®s
->gaddr4
, 0);
1468 gfar_write(®s
->gaddr5
, 0);
1469 gfar_write(®s
->gaddr6
, 0);
1470 gfar_write(®s
->gaddr7
, 0);
1472 /* Zero out the rmon mib registers if it has them */
1473 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1474 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1476 /* Mask off the CAM interrupts */
1477 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1478 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1481 /* Initialize the max receive buffer length */
1482 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1484 /* Initialize the Minimum Frame Length Register */
1485 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1489 /* Halt the receive and transmit queues */
1490 static void gfar_halt_nodisable(struct net_device
*dev
)
1492 struct gfar_private
*priv
= netdev_priv(dev
);
1493 struct gfar __iomem
*regs
= NULL
;
1497 for (i
= 0; i
< priv
->num_grps
; i
++) {
1498 regs
= priv
->gfargrp
[i
].regs
;
1499 /* Mask all interrupts */
1500 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1502 /* Clear all interrupts */
1503 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1506 regs
= priv
->gfargrp
[0].regs
;
1507 /* Stop the DMA, and wait for it to stop */
1508 tempval
= gfar_read(®s
->dmactrl
);
1509 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1510 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1511 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1512 gfar_write(®s
->dmactrl
, tempval
);
1514 spin_event_timeout(((gfar_read(®s
->ievent
) &
1515 (IEVENT_GRSC
| IEVENT_GTSC
)) ==
1516 (IEVENT_GRSC
| IEVENT_GTSC
)), -1, 0);
1520 /* Halt the receive and transmit queues */
1521 void gfar_halt(struct net_device
*dev
)
1523 struct gfar_private
*priv
= netdev_priv(dev
);
1524 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1527 gfar_halt_nodisable(dev
);
1529 /* Disable Rx and Tx */
1530 tempval
= gfar_read(®s
->maccfg1
);
1531 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1532 gfar_write(®s
->maccfg1
, tempval
);
1535 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1537 free_irq(grp
->interruptError
, grp
);
1538 free_irq(grp
->interruptTransmit
, grp
);
1539 free_irq(grp
->interruptReceive
, grp
);
1542 void stop_gfar(struct net_device
*dev
)
1544 struct gfar_private
*priv
= netdev_priv(dev
);
1545 unsigned long flags
;
1548 phy_stop(priv
->phydev
);
1552 local_irq_save(flags
);
1560 local_irq_restore(flags
);
1563 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1564 for (i
= 0; i
< priv
->num_grps
; i
++)
1565 free_grp_irqs(&priv
->gfargrp
[i
]);
1567 for (i
= 0; i
< priv
->num_grps
; i
++)
1568 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1572 free_skb_resources(priv
);
1575 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1577 struct txbd8
*txbdp
;
1578 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1581 txbdp
= tx_queue
->tx_bd_base
;
1583 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1584 if (!tx_queue
->tx_skbuff
[i
])
1587 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1588 txbdp
->length
, DMA_TO_DEVICE
);
1590 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1593 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1594 txbdp
->length
, DMA_TO_DEVICE
);
1597 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1598 tx_queue
->tx_skbuff
[i
] = NULL
;
1600 kfree(tx_queue
->tx_skbuff
);
1603 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1605 struct rxbd8
*rxbdp
;
1606 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1609 rxbdp
= rx_queue
->rx_bd_base
;
1611 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1612 if (rx_queue
->rx_skbuff
[i
]) {
1613 dma_unmap_single(&priv
->ofdev
->dev
,
1614 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1616 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1617 rx_queue
->rx_skbuff
[i
] = NULL
;
1623 kfree(rx_queue
->rx_skbuff
);
1626 /* If there are any tx skbs or rx skbs still around, free them.
1627 * Then free tx_skbuff and rx_skbuff */
1628 static void free_skb_resources(struct gfar_private
*priv
)
1630 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1631 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1634 /* Go through all the buffer descriptors and free their data buffers */
1635 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1636 tx_queue
= priv
->tx_queue
[i
];
1637 if(tx_queue
->tx_skbuff
)
1638 free_skb_tx_queue(tx_queue
);
1641 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1642 rx_queue
= priv
->rx_queue
[i
];
1643 if(rx_queue
->rx_skbuff
)
1644 free_skb_rx_queue(rx_queue
);
1647 dma_free_coherent(&priv
->ofdev
->dev
,
1648 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1649 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1650 priv
->tx_queue
[0]->tx_bd_base
,
1651 priv
->tx_queue
[0]->tx_bd_dma_base
);
1654 void gfar_start(struct net_device
*dev
)
1656 struct gfar_private
*priv
= netdev_priv(dev
);
1657 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1661 /* Enable Rx and Tx in MACCFG1 */
1662 tempval
= gfar_read(®s
->maccfg1
);
1663 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1664 gfar_write(®s
->maccfg1
, tempval
);
1666 /* Initialize DMACTRL to have WWR and WOP */
1667 tempval
= gfar_read(®s
->dmactrl
);
1668 tempval
|= DMACTRL_INIT_SETTINGS
;
1669 gfar_write(®s
->dmactrl
, tempval
);
1671 /* Make sure we aren't stopped */
1672 tempval
= gfar_read(®s
->dmactrl
);
1673 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1674 gfar_write(®s
->dmactrl
, tempval
);
1676 for (i
= 0; i
< priv
->num_grps
; i
++) {
1677 regs
= priv
->gfargrp
[i
].regs
;
1678 /* Clear THLT/RHLT, so that the DMA starts polling now */
1679 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1680 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1681 /* Unmask the interrupts we look for */
1682 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1685 dev
->trans_start
= jiffies
;
1688 void gfar_configure_coalescing(struct gfar_private
*priv
,
1689 unsigned long tx_mask
, unsigned long rx_mask
)
1691 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1695 /* Backward compatible case ---- even if we enable
1696 * multiple queues, there's only single reg to program
1698 gfar_write(®s
->txic
, 0);
1699 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1700 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1702 gfar_write(®s
->rxic
, 0);
1703 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1704 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1706 if (priv
->mode
== MQ_MG_MODE
) {
1707 baddr
= ®s
->txic0
;
1708 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
1709 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1710 gfar_write(baddr
+ i
, 0);
1711 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1715 baddr
= ®s
->rxic0
;
1716 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
1717 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1718 gfar_write(baddr
+ i
, 0);
1719 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1725 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1727 struct gfar_private
*priv
= grp
->priv
;
1728 struct net_device
*dev
= priv
->ndev
;
1731 /* If the device has multiple interrupts, register for
1732 * them. Otherwise, only register for the one */
1733 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1734 /* Install our interrupt handlers for Error,
1735 * Transmit, and Receive */
1736 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1737 grp
->int_name_er
,grp
)) < 0) {
1738 if (netif_msg_intr(priv
))
1739 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1740 dev
->name
, grp
->interruptError
);
1745 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1746 0, grp
->int_name_tx
, grp
)) < 0) {
1747 if (netif_msg_intr(priv
))
1748 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1749 dev
->name
, grp
->interruptTransmit
);
1753 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1754 grp
->int_name_rx
, grp
)) < 0) {
1755 if (netif_msg_intr(priv
))
1756 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1757 dev
->name
, grp
->interruptReceive
);
1761 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1762 grp
->int_name_tx
, grp
)) < 0) {
1763 if (netif_msg_intr(priv
))
1764 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1765 dev
->name
, grp
->interruptTransmit
);
1773 free_irq(grp
->interruptTransmit
, grp
);
1775 free_irq(grp
->interruptError
, grp
);
1781 /* Bring the controller up and running */
1782 int startup_gfar(struct net_device
*ndev
)
1784 struct gfar_private
*priv
= netdev_priv(ndev
);
1785 struct gfar __iomem
*regs
= NULL
;
1788 for (i
= 0; i
< priv
->num_grps
; i
++) {
1789 regs
= priv
->gfargrp
[i
].regs
;
1790 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1793 regs
= priv
->gfargrp
[0].regs
;
1794 err
= gfar_alloc_skb_resources(ndev
);
1798 gfar_init_mac(ndev
);
1800 for (i
= 0; i
< priv
->num_grps
; i
++) {
1801 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1803 for (j
= 0; j
< i
; j
++)
1804 free_grp_irqs(&priv
->gfargrp
[j
]);
1809 /* Start the controller */
1812 phy_start(priv
->phydev
);
1814 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1819 free_skb_resources(priv
);
1823 /* Called when something needs to use the ethernet device */
1824 /* Returns 0 for success. */
1825 static int gfar_enet_open(struct net_device
*dev
)
1827 struct gfar_private
*priv
= netdev_priv(dev
);
1832 skb_queue_head_init(&priv
->rx_recycle
);
1834 /* Initialize a bunch of registers */
1835 init_registers(dev
);
1837 gfar_set_mac_address(dev
);
1839 err
= init_phy(dev
);
1846 err
= startup_gfar(dev
);
1852 netif_tx_start_all_queues(dev
);
1854 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1859 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1861 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1863 memset(fcb
, 0, GMAC_FCB_LEN
);
1868 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1872 /* If we're here, it's a IP packet with a TCP or UDP
1873 * payload. We set it to checksum, using a pseudo-header
1876 flags
= TXFCB_DEFAULT
;
1878 /* Tell the controller what the protocol is */
1879 /* And provide the already calculated phcs */
1880 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1882 fcb
->phcs
= udp_hdr(skb
)->check
;
1884 fcb
->phcs
= tcp_hdr(skb
)->check
;
1886 /* l3os is the distance between the start of the
1887 * frame (skb->data) and the start of the IP hdr.
1888 * l4os is the distance between the start of the
1889 * l3 hdr and the l4 hdr */
1890 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1891 fcb
->l4os
= skb_network_header_len(skb
);
1896 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1898 fcb
->flags
|= TXFCB_VLN
;
1899 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1902 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
1903 struct txbd8
*base
, int ring_size
)
1905 struct txbd8
*new_bd
= bdp
+ stride
;
1907 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
1910 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
1913 return skip_txbd(bdp
, 1, base
, ring_size
);
1916 /* This is called by the kernel when a frame is ready for transmission. */
1917 /* It is pointed to by the dev->hard_start_xmit function pointer */
1918 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1920 struct gfar_private
*priv
= netdev_priv(dev
);
1921 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1922 struct netdev_queue
*txq
;
1923 struct gfar __iomem
*regs
= NULL
;
1924 struct txfcb
*fcb
= NULL
;
1925 struct txbd8
*txbdp
, *txbdp_start
, *base
;
1929 unsigned long flags
;
1930 unsigned int nr_frags
, length
;
1933 rq
= skb
->queue_mapping
;
1934 tx_queue
= priv
->tx_queue
[rq
];
1935 txq
= netdev_get_tx_queue(dev
, rq
);
1936 base
= tx_queue
->tx_bd_base
;
1937 regs
= tx_queue
->grp
->regs
;
1939 /* make space for additional header when fcb is needed */
1940 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1941 (priv
->vlgrp
&& vlan_tx_tag_present(skb
))) &&
1942 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
1943 struct sk_buff
*skb_new
;
1945 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
1947 dev
->stats
.tx_errors
++;
1949 return NETDEV_TX_OK
;
1955 /* total number of fragments in the SKB */
1956 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1958 /* check if there is space to queue this packet */
1959 if ((nr_frags
+1) > tx_queue
->num_txbdfree
) {
1960 /* no space, stop the queue */
1961 netif_tx_stop_queue(txq
);
1962 dev
->stats
.tx_fifo_errors
++;
1963 return NETDEV_TX_BUSY
;
1966 /* Update transmit stats */
1967 txq
->tx_bytes
+= skb
->len
;
1970 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
1972 if (nr_frags
== 0) {
1973 lstatus
= txbdp
->lstatus
| BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1975 /* Place the fragment addresses and lengths into the TxBDs */
1976 for (i
= 0; i
< nr_frags
; i
++) {
1977 /* Point at the next BD, wrapping as needed */
1978 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
1980 length
= skb_shinfo(skb
)->frags
[i
].size
;
1982 lstatus
= txbdp
->lstatus
| length
|
1983 BD_LFLAG(TXBD_READY
);
1985 /* Handle the last BD specially */
1986 if (i
== nr_frags
- 1)
1987 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1989 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
1990 skb_shinfo(skb
)->frags
[i
].page
,
1991 skb_shinfo(skb
)->frags
[i
].page_offset
,
1995 /* set the TxBD length and buffer pointer */
1996 txbdp
->bufPtr
= bufaddr
;
1997 txbdp
->lstatus
= lstatus
;
2000 lstatus
= txbdp_start
->lstatus
;
2003 /* Set up checksumming */
2004 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2005 fcb
= gfar_add_fcb(skb
);
2006 lstatus
|= BD_LFLAG(TXBD_TOE
);
2007 gfar_tx_checksum(skb
, fcb
);
2010 if (priv
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2011 if (unlikely(NULL
== fcb
)) {
2012 fcb
= gfar_add_fcb(skb
);
2013 lstatus
|= BD_LFLAG(TXBD_TOE
);
2016 gfar_tx_vlan(skb
, fcb
);
2019 /* setup the TxBD length and buffer pointer for the first BD */
2020 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2021 skb_headlen(skb
), DMA_TO_DEVICE
);
2023 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2026 * We can work in parallel with gfar_clean_tx_ring(), except
2027 * when modifying num_txbdfree. Note that we didn't grab the lock
2028 * when we were reading the num_txbdfree and checking for available
2029 * space, that's because outside of this function it can only grow,
2030 * and once we've got needed space, it cannot suddenly disappear.
2032 * The lock also protects us from gfar_error(), which can modify
2033 * regs->tstat and thus retrigger the transfers, which is why we
2034 * also must grab the lock before setting ready bit for the first
2035 * to be transmitted BD.
2037 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2040 * The powerpc-specific eieio() is used, as wmb() has too strong
2041 * semantics (it requires synchronization between cacheable and
2042 * uncacheable mappings, which eieio doesn't provide and which we
2043 * don't need), thus requiring a more expensive sync instruction. At
2044 * some point, the set of architecture-independent barrier functions
2045 * should be expanded to include weaker barriers.
2049 txbdp_start
->lstatus
= lstatus
;
2051 eieio(); /* force lstatus write before tx_skbuff */
2053 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2055 /* Update the current skb pointer to the next entry we will use
2056 * (wrapping if necessary) */
2057 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2058 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2060 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2062 /* reduce TxBD free count */
2063 tx_queue
->num_txbdfree
-= (nr_frags
+ 1);
2065 dev
->trans_start
= jiffies
;
2067 /* If the next BD still needs to be cleaned up, then the bds
2068 are full. We need to tell the kernel to stop sending us stuff. */
2069 if (!tx_queue
->num_txbdfree
) {
2070 netif_tx_stop_queue(txq
);
2072 dev
->stats
.tx_fifo_errors
++;
2075 /* Tell the DMA to go go go */
2076 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2079 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2081 return NETDEV_TX_OK
;
2084 /* Stops the kernel queue, and halts the controller */
2085 static int gfar_close(struct net_device
*dev
)
2087 struct gfar_private
*priv
= netdev_priv(dev
);
2091 skb_queue_purge(&priv
->rx_recycle
);
2092 cancel_work_sync(&priv
->reset_task
);
2095 /* Disconnect from the PHY */
2096 phy_disconnect(priv
->phydev
);
2097 priv
->phydev
= NULL
;
2099 netif_tx_stop_all_queues(dev
);
2104 /* Changes the mac address if the controller is not running. */
2105 static int gfar_set_mac_address(struct net_device
*dev
)
2107 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2113 /* Enables and disables VLAN insertion/extraction */
2114 static void gfar_vlan_rx_register(struct net_device
*dev
,
2115 struct vlan_group
*grp
)
2117 struct gfar_private
*priv
= netdev_priv(dev
);
2118 struct gfar __iomem
*regs
= NULL
;
2119 unsigned long flags
;
2122 regs
= priv
->gfargrp
[0].regs
;
2123 local_irq_save(flags
);
2129 /* Enable VLAN tag insertion */
2130 tempval
= gfar_read(®s
->tctrl
);
2131 tempval
|= TCTRL_VLINS
;
2133 gfar_write(®s
->tctrl
, tempval
);
2135 /* Enable VLAN tag extraction */
2136 tempval
= gfar_read(®s
->rctrl
);
2137 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2138 gfar_write(®s
->rctrl
, tempval
);
2140 /* Disable VLAN tag insertion */
2141 tempval
= gfar_read(®s
->tctrl
);
2142 tempval
&= ~TCTRL_VLINS
;
2143 gfar_write(®s
->tctrl
, tempval
);
2145 /* Disable VLAN tag extraction */
2146 tempval
= gfar_read(®s
->rctrl
);
2147 tempval
&= ~RCTRL_VLEX
;
2148 /* If parse is no longer required, then disable parser */
2149 if (tempval
& RCTRL_REQ_PARSER
)
2150 tempval
|= RCTRL_PRSDEP_INIT
;
2152 tempval
&= ~RCTRL_PRSDEP_INIT
;
2153 gfar_write(®s
->rctrl
, tempval
);
2156 gfar_change_mtu(dev
, dev
->mtu
);
2159 local_irq_restore(flags
);
2162 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2164 int tempsize
, tempval
;
2165 struct gfar_private
*priv
= netdev_priv(dev
);
2166 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2167 int oldsize
= priv
->rx_buffer_size
;
2168 int frame_size
= new_mtu
+ ETH_HLEN
;
2171 frame_size
+= VLAN_HLEN
;
2173 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2174 if (netif_msg_drv(priv
))
2175 printk(KERN_ERR
"%s: Invalid MTU setting\n",
2180 if (gfar_uses_fcb(priv
))
2181 frame_size
+= GMAC_FCB_LEN
;
2183 frame_size
+= priv
->padding
;
2186 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2187 INCREMENTAL_BUFFER_SIZE
;
2189 /* Only stop and start the controller if it isn't already
2190 * stopped, and we changed something */
2191 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2194 priv
->rx_buffer_size
= tempsize
;
2198 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2199 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2201 /* If the mtu is larger than the max size for standard
2202 * ethernet frames (ie, a jumbo frame), then set maccfg2
2203 * to allow huge frames, and to check the length */
2204 tempval
= gfar_read(®s
->maccfg2
);
2206 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
2207 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2209 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2211 gfar_write(®s
->maccfg2
, tempval
);
2213 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2219 /* gfar_reset_task gets scheduled when a packet has not been
2220 * transmitted after a set amount of time.
2221 * For now, assume that clearing out all the structures, and
2222 * starting over will fix the problem.
2224 static void gfar_reset_task(struct work_struct
*work
)
2226 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2228 struct net_device
*dev
= priv
->ndev
;
2230 if (dev
->flags
& IFF_UP
) {
2231 netif_tx_stop_all_queues(dev
);
2234 netif_tx_start_all_queues(dev
);
2237 netif_tx_schedule_all(dev
);
2240 static void gfar_timeout(struct net_device
*dev
)
2242 struct gfar_private
*priv
= netdev_priv(dev
);
2244 dev
->stats
.tx_errors
++;
2245 schedule_work(&priv
->reset_task
);
2248 /* Interrupt Handler for Transmit complete */
2249 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2251 struct net_device
*dev
= tx_queue
->dev
;
2252 struct gfar_private
*priv
= netdev_priv(dev
);
2253 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2255 struct txbd8
*lbdp
= NULL
;
2256 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2257 struct sk_buff
*skb
;
2259 int tx_ring_size
= tx_queue
->tx_ring_size
;
2265 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2266 bdp
= tx_queue
->dirty_tx
;
2267 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2269 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2270 unsigned long flags
;
2272 frags
= skb_shinfo(skb
)->nr_frags
;
2273 lbdp
= skip_txbd(bdp
, frags
, base
, tx_ring_size
);
2275 lstatus
= lbdp
->lstatus
;
2277 /* Only clean completed frames */
2278 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2279 (lstatus
& BD_LENGTH_MASK
))
2282 dma_unmap_single(&priv
->ofdev
->dev
,
2287 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2288 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2290 for (i
= 0; i
< frags
; i
++) {
2291 dma_unmap_page(&priv
->ofdev
->dev
,
2295 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2296 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2300 * If there's room in the queue (limit it to rx_buffer_size)
2301 * we add this skb back into the pool, if it's the right size
2303 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2304 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2306 __skb_queue_head(&priv
->rx_recycle
, skb
);
2308 dev_kfree_skb_any(skb
);
2310 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2312 skb_dirtytx
= (skb_dirtytx
+ 1) &
2313 TX_RING_MOD_MASK(tx_ring_size
);
2316 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2317 tx_queue
->num_txbdfree
+= frags
+ 1;
2318 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2321 /* If we freed a buffer, we can restart transmission, if necessary */
2322 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2323 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2325 /* Update dirty indicators */
2326 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2327 tx_queue
->dirty_tx
= bdp
;
2332 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2334 unsigned long flags
;
2336 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2337 if (napi_schedule_prep(&gfargrp
->napi
)) {
2338 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2339 __napi_schedule(&gfargrp
->napi
);
2342 * Clear IEVENT, so interrupts aren't called again
2343 * because of the packets that have already arrived.
2345 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2347 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2351 /* Interrupt Handler for Transmit complete */
2352 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2354 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2358 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2359 struct sk_buff
*skb
)
2361 struct net_device
*dev
= rx_queue
->dev
;
2362 struct gfar_private
*priv
= netdev_priv(dev
);
2365 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2366 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2367 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2371 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2373 unsigned int alignamount
;
2374 struct gfar_private
*priv
= netdev_priv(dev
);
2375 struct sk_buff
*skb
= NULL
;
2377 skb
= __skb_dequeue(&priv
->rx_recycle
);
2379 skb
= netdev_alloc_skb(dev
,
2380 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2385 alignamount
= RXBUF_ALIGNMENT
-
2386 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
2388 /* We need the data buffer to be aligned properly. We will reserve
2389 * as many bytes as needed to align the data properly
2391 skb_reserve(skb
, alignamount
);
2392 GFAR_CB(skb
)->alignamount
= alignamount
;
2397 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2399 struct gfar_private
*priv
= netdev_priv(dev
);
2400 struct net_device_stats
*stats
= &dev
->stats
;
2401 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2403 /* If the packet was truncated, none of the other errors
2405 if (status
& RXBD_TRUNCATED
) {
2406 stats
->rx_length_errors
++;
2412 /* Count the errors, if there were any */
2413 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2414 stats
->rx_length_errors
++;
2416 if (status
& RXBD_LARGE
)
2421 if (status
& RXBD_NONOCTET
) {
2422 stats
->rx_frame_errors
++;
2423 estats
->rx_nonoctet
++;
2425 if (status
& RXBD_CRCERR
) {
2426 estats
->rx_crcerr
++;
2427 stats
->rx_crc_errors
++;
2429 if (status
& RXBD_OVERRUN
) {
2430 estats
->rx_overrun
++;
2431 stats
->rx_crc_errors
++;
2435 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2437 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2441 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2443 /* If valid headers were found, and valid sums
2444 * were verified, then we tell the kernel that no
2445 * checksumming is necessary. Otherwise, it is */
2446 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2447 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2449 skb
->ip_summed
= CHECKSUM_NONE
;
2453 /* gfar_process_frame() -- handle one incoming packet if skb
2455 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2458 struct gfar_private
*priv
= netdev_priv(dev
);
2459 struct rxfcb
*fcb
= NULL
;
2463 /* fcb is at the beginning if exists */
2464 fcb
= (struct rxfcb
*)skb
->data
;
2466 /* Remove the FCB from the skb */
2467 /* Remove the padded bytes, if there are any */
2469 skb_record_rx_queue(skb
, fcb
->rq
);
2470 skb_pull(skb
, amount_pull
);
2473 if (priv
->rx_csum_enable
)
2474 gfar_rx_checksum(skb
, fcb
);
2476 /* Tell the skb what kind of packet this is */
2477 skb
->protocol
= eth_type_trans(skb
, dev
);
2479 /* Send the packet up the stack */
2480 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
2481 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
2483 ret
= netif_receive_skb(skb
);
2485 if (NET_RX_DROP
== ret
)
2486 priv
->extra_stats
.kernel_dropped
++;
2491 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2492 * until the budget/quota has been reached. Returns the number
2495 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2497 struct net_device
*dev
= rx_queue
->dev
;
2498 struct rxbd8
*bdp
, *base
;
2499 struct sk_buff
*skb
;
2503 struct gfar_private
*priv
= netdev_priv(dev
);
2505 /* Get the first full descriptor */
2506 bdp
= rx_queue
->cur_rx
;
2507 base
= rx_queue
->rx_bd_base
;
2509 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0) +
2512 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2513 struct sk_buff
*newskb
;
2516 /* Add another skb for the future */
2517 newskb
= gfar_new_skb(dev
);
2519 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2521 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2522 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2524 /* We drop the frame if we failed to allocate a new buffer */
2525 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2526 bdp
->status
& RXBD_ERR
)) {
2527 count_errors(bdp
->status
, dev
);
2529 if (unlikely(!newskb
))
2533 * We need to un-reserve() the skb to what it
2534 * was before gfar_new_skb() re-aligned
2535 * it to an RXBUF_ALIGNMENT boundary
2536 * before we put the skb back on the
2539 skb_reserve(skb
, -GFAR_CB(skb
)->alignamount
);
2540 __skb_queue_head(&priv
->rx_recycle
, skb
);
2543 /* Increment the number of packets */
2544 rx_queue
->stats
.rx_packets
++;
2548 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2549 /* Remove the FCS from the packet length */
2550 skb_put(skb
, pkt_len
);
2551 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2552 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2553 gfar_process_frame(dev
, skb
, amount_pull
);
2556 if (netif_msg_rx_err(priv
))
2558 "%s: Missing skb!\n", dev
->name
);
2559 rx_queue
->stats
.rx_dropped
++;
2560 priv
->extra_stats
.rx_skbmissing
++;
2565 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2567 /* Setup the new bdp */
2568 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2570 /* Update to the next pointer */
2571 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2573 /* update to point at the next skb */
2574 rx_queue
->skb_currx
=
2575 (rx_queue
->skb_currx
+ 1) &
2576 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2579 /* Update the current rxbd pointer to be the next one */
2580 rx_queue
->cur_rx
= bdp
;
2585 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2587 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2588 struct gfar_priv_grp
, napi
);
2589 struct gfar_private
*priv
= gfargrp
->priv
;
2590 struct gfar __iomem
*regs
= gfargrp
->regs
;
2591 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2592 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2593 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2594 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2595 unsigned long serviced_queues
= 0;
2598 num_queues
= gfargrp
->num_rx_queues
;
2599 budget_per_queue
= budget
/num_queues
;
2601 /* Clear IEVENT, so interrupts aren't called again
2602 * because of the packets that have already arrived */
2603 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2605 while (num_queues
&& left_over_budget
) {
2607 budget_per_queue
= left_over_budget
/num_queues
;
2608 left_over_budget
= 0;
2610 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2611 if (test_bit(i
, &serviced_queues
))
2613 rx_queue
= priv
->rx_queue
[i
];
2614 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2616 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2617 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2619 rx_cleaned
+= rx_cleaned_per_queue
;
2620 if(rx_cleaned_per_queue
< budget_per_queue
) {
2621 left_over_budget
= left_over_budget
+
2622 (budget_per_queue
- rx_cleaned_per_queue
);
2623 set_bit(i
, &serviced_queues
);
2632 if (rx_cleaned
< budget
) {
2633 napi_complete(napi
);
2635 /* Clear the halt bit in RSTAT */
2636 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2638 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2640 /* If we are coalescing interrupts, update the timer */
2641 /* Otherwise, clear it */
2642 gfar_configure_coalescing(priv
,
2643 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2649 #ifdef CONFIG_NET_POLL_CONTROLLER
2651 * Polling 'interrupt' - used by things like netconsole to send skbs
2652 * without having to re-enable interrupts. It's not called while
2653 * the interrupt routine is executing.
2655 static void gfar_netpoll(struct net_device
*dev
)
2657 struct gfar_private
*priv
= netdev_priv(dev
);
2660 /* If the device has multiple interrupts, run tx/rx */
2661 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2662 for (i
= 0; i
< priv
->num_grps
; i
++) {
2663 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2664 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2665 disable_irq(priv
->gfargrp
[i
].interruptError
);
2666 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2668 enable_irq(priv
->gfargrp
[i
].interruptError
);
2669 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2670 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2673 for (i
= 0; i
< priv
->num_grps
; i
++) {
2674 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2675 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2677 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2683 /* The interrupt handler for devices with one interrupt */
2684 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2686 struct gfar_priv_grp
*gfargrp
= grp_id
;
2688 /* Save ievent for future reference */
2689 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2691 /* Check for reception */
2692 if (events
& IEVENT_RX_MASK
)
2693 gfar_receive(irq
, grp_id
);
2695 /* Check for transmit completion */
2696 if (events
& IEVENT_TX_MASK
)
2697 gfar_transmit(irq
, grp_id
);
2699 /* Check for errors */
2700 if (events
& IEVENT_ERR_MASK
)
2701 gfar_error(irq
, grp_id
);
2706 /* Called every time the controller might need to be made
2707 * aware of new link state. The PHY code conveys this
2708 * information through variables in the phydev structure, and this
2709 * function converts those variables into the appropriate
2710 * register values, and can bring down the device if needed.
2712 static void adjust_link(struct net_device
*dev
)
2714 struct gfar_private
*priv
= netdev_priv(dev
);
2715 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2716 unsigned long flags
;
2717 struct phy_device
*phydev
= priv
->phydev
;
2720 local_irq_save(flags
);
2724 u32 tempval
= gfar_read(®s
->maccfg2
);
2725 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2727 /* Now we make sure that we can be in full duplex mode.
2728 * If not, we operate in half-duplex mode. */
2729 if (phydev
->duplex
!= priv
->oldduplex
) {
2731 if (!(phydev
->duplex
))
2732 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2734 tempval
|= MACCFG2_FULL_DUPLEX
;
2736 priv
->oldduplex
= phydev
->duplex
;
2739 if (phydev
->speed
!= priv
->oldspeed
) {
2741 switch (phydev
->speed
) {
2744 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2746 ecntrl
&= ~(ECNTRL_R100
);
2751 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2753 /* Reduced mode distinguishes
2754 * between 10 and 100 */
2755 if (phydev
->speed
== SPEED_100
)
2756 ecntrl
|= ECNTRL_R100
;
2758 ecntrl
&= ~(ECNTRL_R100
);
2761 if (netif_msg_link(priv
))
2763 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2764 dev
->name
, phydev
->speed
);
2768 priv
->oldspeed
= phydev
->speed
;
2771 gfar_write(®s
->maccfg2
, tempval
);
2772 gfar_write(®s
->ecntrl
, ecntrl
);
2774 if (!priv
->oldlink
) {
2778 } else if (priv
->oldlink
) {
2782 priv
->oldduplex
= -1;
2785 if (new_state
&& netif_msg_link(priv
))
2786 phy_print_status(phydev
);
2788 local_irq_restore(flags
);
2791 /* Update the hash table based on the current list of multicast
2792 * addresses we subscribe to. Also, change the promiscuity of
2793 * the device based on the flags (this function is called
2794 * whenever dev->flags is changed */
2795 static void gfar_set_multi(struct net_device
*dev
)
2797 struct dev_mc_list
*mc_ptr
;
2798 struct gfar_private
*priv
= netdev_priv(dev
);
2799 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2802 if (dev
->flags
& IFF_PROMISC
) {
2803 /* Set RCTRL to PROM */
2804 tempval
= gfar_read(®s
->rctrl
);
2805 tempval
|= RCTRL_PROM
;
2806 gfar_write(®s
->rctrl
, tempval
);
2808 /* Set RCTRL to not PROM */
2809 tempval
= gfar_read(®s
->rctrl
);
2810 tempval
&= ~(RCTRL_PROM
);
2811 gfar_write(®s
->rctrl
, tempval
);
2814 if (dev
->flags
& IFF_ALLMULTI
) {
2815 /* Set the hash to rx all multicast frames */
2816 gfar_write(®s
->igaddr0
, 0xffffffff);
2817 gfar_write(®s
->igaddr1
, 0xffffffff);
2818 gfar_write(®s
->igaddr2
, 0xffffffff);
2819 gfar_write(®s
->igaddr3
, 0xffffffff);
2820 gfar_write(®s
->igaddr4
, 0xffffffff);
2821 gfar_write(®s
->igaddr5
, 0xffffffff);
2822 gfar_write(®s
->igaddr6
, 0xffffffff);
2823 gfar_write(®s
->igaddr7
, 0xffffffff);
2824 gfar_write(®s
->gaddr0
, 0xffffffff);
2825 gfar_write(®s
->gaddr1
, 0xffffffff);
2826 gfar_write(®s
->gaddr2
, 0xffffffff);
2827 gfar_write(®s
->gaddr3
, 0xffffffff);
2828 gfar_write(®s
->gaddr4
, 0xffffffff);
2829 gfar_write(®s
->gaddr5
, 0xffffffff);
2830 gfar_write(®s
->gaddr6
, 0xffffffff);
2831 gfar_write(®s
->gaddr7
, 0xffffffff);
2836 /* zero out the hash */
2837 gfar_write(®s
->igaddr0
, 0x0);
2838 gfar_write(®s
->igaddr1
, 0x0);
2839 gfar_write(®s
->igaddr2
, 0x0);
2840 gfar_write(®s
->igaddr3
, 0x0);
2841 gfar_write(®s
->igaddr4
, 0x0);
2842 gfar_write(®s
->igaddr5
, 0x0);
2843 gfar_write(®s
->igaddr6
, 0x0);
2844 gfar_write(®s
->igaddr7
, 0x0);
2845 gfar_write(®s
->gaddr0
, 0x0);
2846 gfar_write(®s
->gaddr1
, 0x0);
2847 gfar_write(®s
->gaddr2
, 0x0);
2848 gfar_write(®s
->gaddr3
, 0x0);
2849 gfar_write(®s
->gaddr4
, 0x0);
2850 gfar_write(®s
->gaddr5
, 0x0);
2851 gfar_write(®s
->gaddr6
, 0x0);
2852 gfar_write(®s
->gaddr7
, 0x0);
2854 /* If we have extended hash tables, we need to
2855 * clear the exact match registers to prepare for
2857 if (priv
->extended_hash
) {
2858 em_num
= GFAR_EM_NUM
+ 1;
2859 gfar_clear_exact_match(dev
);
2866 if (netdev_mc_empty(dev
))
2869 /* Parse the list, and set the appropriate bits */
2870 netdev_for_each_mc_addr(mc_ptr
, dev
) {
2872 gfar_set_mac_for_addr(dev
, idx
,
2876 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
2884 /* Clears each of the exact match registers to zero, so they
2885 * don't interfere with normal reception */
2886 static void gfar_clear_exact_match(struct net_device
*dev
)
2889 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
2891 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
2892 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
2895 /* Set the appropriate hash bit for the given addr */
2896 /* The algorithm works like so:
2897 * 1) Take the Destination Address (ie the multicast address), and
2898 * do a CRC on it (little endian), and reverse the bits of the
2900 * 2) Use the 8 most significant bits as a hash into a 256-entry
2901 * table. The table is controlled through 8 32-bit registers:
2902 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2903 * gaddr7. This means that the 3 most significant bits in the
2904 * hash index which gaddr register to use, and the 5 other bits
2905 * indicate which bit (assuming an IBM numbering scheme, which
2906 * for PowerPC (tm) is usually the case) in the register holds
2908 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
2911 struct gfar_private
*priv
= netdev_priv(dev
);
2912 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
2913 int width
= priv
->hash_width
;
2914 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
2915 u8 whichreg
= result
>> (32 - width
+ 5);
2916 u32 value
= (1 << (31-whichbit
));
2918 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
2920 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
2926 /* There are multiple MAC Address register pairs on some controllers
2927 * This function sets the numth pair to a given address
2929 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
2931 struct gfar_private
*priv
= netdev_priv(dev
);
2932 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2934 char tmpbuf
[MAC_ADDR_LEN
];
2936 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
2940 /* Now copy it into the mac registers backwards, cuz */
2941 /* little endian is silly */
2942 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
2943 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
2945 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
2947 tempval
= *((u32
*) (tmpbuf
+ 4));
2949 gfar_write(macptr
+1, tempval
);
2952 /* GFAR error interrupt handler */
2953 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
2955 struct gfar_priv_grp
*gfargrp
= grp_id
;
2956 struct gfar __iomem
*regs
= gfargrp
->regs
;
2957 struct gfar_private
*priv
= gfargrp
->priv
;
2958 struct net_device
*dev
= priv
->ndev
;
2960 /* Save ievent for future reference */
2961 u32 events
= gfar_read(®s
->ievent
);
2964 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
2966 /* Magic Packet is not an error. */
2967 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
2968 (events
& IEVENT_MAG
))
2969 events
&= ~IEVENT_MAG
;
2972 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2973 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2974 dev
->name
, events
, gfar_read(®s
->imask
));
2976 /* Update the error counters */
2977 if (events
& IEVENT_TXE
) {
2978 dev
->stats
.tx_errors
++;
2980 if (events
& IEVENT_LC
)
2981 dev
->stats
.tx_window_errors
++;
2982 if (events
& IEVENT_CRL
)
2983 dev
->stats
.tx_aborted_errors
++;
2984 if (events
& IEVENT_XFUN
) {
2985 unsigned long flags
;
2987 if (netif_msg_tx_err(priv
))
2988 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
2989 "packet dropped.\n", dev
->name
);
2990 dev
->stats
.tx_dropped
++;
2991 priv
->extra_stats
.tx_underrun
++;
2993 local_irq_save(flags
);
2996 /* Reactivate the Tx Queues */
2997 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3000 local_irq_restore(flags
);
3002 if (netif_msg_tx_err(priv
))
3003 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
3005 if (events
& IEVENT_BSY
) {
3006 dev
->stats
.rx_errors
++;
3007 priv
->extra_stats
.rx_bsy
++;
3009 gfar_receive(irq
, grp_id
);
3011 if (netif_msg_rx_err(priv
))
3012 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
3013 dev
->name
, gfar_read(®s
->rstat
));
3015 if (events
& IEVENT_BABR
) {
3016 dev
->stats
.rx_errors
++;
3017 priv
->extra_stats
.rx_babr
++;
3019 if (netif_msg_rx_err(priv
))
3020 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
3022 if (events
& IEVENT_EBERR
) {
3023 priv
->extra_stats
.eberr
++;
3024 if (netif_msg_rx_err(priv
))
3025 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
3027 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
3028 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
3030 if (events
& IEVENT_BABT
) {
3031 priv
->extra_stats
.tx_babt
++;
3032 if (netif_msg_tx_err(priv
))
3033 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
3038 static struct of_device_id gfar_match
[] =
3042 .compatible
= "gianfar",
3045 .compatible
= "fsl,etsec2",
3049 MODULE_DEVICE_TABLE(of
, gfar_match
);
3051 /* Structure for a device driver */
3052 static struct of_platform_driver gfar_driver
= {
3053 .name
= "fsl-gianfar",
3054 .match_table
= gfar_match
,
3056 .probe
= gfar_probe
,
3057 .remove
= gfar_remove
,
3058 .suspend
= gfar_legacy_suspend
,
3059 .resume
= gfar_legacy_resume
,
3060 .driver
.pm
= GFAR_PM_OPS
,
3063 static int __init
gfar_init(void)
3065 return of_register_platform_driver(&gfar_driver
);
3068 static void __exit
gfar_exit(void)
3070 of_unregister_platform_driver(&gfar_driver
);
3073 module_init(gfar_init
);
3074 module_exit(gfar_exit
);