1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
29 #include "workarounds.h"
31 /* Hardware control for SFC4000 (aka Falcon). */
33 static const unsigned int
34 /* "Large" EEPROM device: Atmel AT25640 or similar
35 * 8 KB, 16-bit address, 32 B write block */
36 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
37 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
38 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
39 /* Default flash device: Atmel AT25F1024
40 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
42 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
43 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
44 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
45 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
47 /**************************************************************************
49 * I2C bus - this is a bit-bashing interface using GPIO pins
50 * Note that it uses the output enables to tristate the outputs
51 * SDA is the data pin and SCL is the clock
53 **************************************************************************
55 static void falcon_setsda(void *data
, int state
)
57 struct efx_nic
*efx
= (struct efx_nic
*)data
;
60 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
61 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
62 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
65 static void falcon_setscl(void *data
, int state
)
67 struct efx_nic
*efx
= (struct efx_nic
*)data
;
70 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
71 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
72 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
75 static int falcon_getsda(void *data
)
77 struct efx_nic
*efx
= (struct efx_nic
*)data
;
80 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
81 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
84 static int falcon_getscl(void *data
)
86 struct efx_nic
*efx
= (struct efx_nic
*)data
;
89 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
90 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
93 static struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
94 .setsda
= falcon_setsda
,
95 .setscl
= falcon_setscl
,
96 .getsda
= falcon_getsda
,
97 .getscl
= falcon_getscl
,
99 /* Wait up to 50 ms for slave to let us pull SCL high */
100 .timeout
= DIV_ROUND_UP(HZ
, 20),
103 static void falcon_push_irq_moderation(struct efx_channel
*channel
)
105 efx_dword_t timer_cmd
;
106 struct efx_nic
*efx
= channel
->efx
;
108 /* Set timer register */
109 if (channel
->irq_moderation
) {
110 EFX_POPULATE_DWORD_2(timer_cmd
,
111 FRF_AB_TC_TIMER_MODE
,
112 FFE_BB_TIMER_MODE_INT_HLDOFF
,
114 channel
->irq_moderation
- 1);
116 EFX_POPULATE_DWORD_2(timer_cmd
,
117 FRF_AB_TC_TIMER_MODE
,
118 FFE_BB_TIMER_MODE_DIS
,
119 FRF_AB_TC_TIMER_VAL
, 0);
121 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
122 efx_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
126 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
);
128 static void falcon_prepare_flush(struct efx_nic
*efx
)
130 falcon_deconfigure_mac_wrapper(efx
);
132 /* Wait for the tx and rx fifo's to get to the next packet boundary
133 * (~1ms without back-pressure), then to drain the remainder of the
134 * fifo's at data path speeds (negligible), with a healthy margin. */
138 /* Acknowledge a legacy interrupt from Falcon
140 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143 * BIU. Interrupt acknowledge is read sensitive so must write instead
144 * (then read to ensure the BIU collector is flushed)
146 * NB most hardware supports MSI interrupts
148 inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
152 EFX_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
153 efx_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
154 efx_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
158 irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
160 struct efx_nic
*efx
= dev_id
;
161 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
162 struct efx_channel
*channel
;
166 /* Check to see if this is our interrupt. If it isn't, we
167 * exit without having touched the hardware.
169 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
170 EFX_TRACE(efx
, "IRQ %d on CPU %d not for me\n", irq
,
171 raw_smp_processor_id());
174 efx
->last_irq_cpu
= raw_smp_processor_id();
175 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
176 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
178 /* Check to see if we have a serious error condition */
179 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
180 if (unlikely(syserr
))
181 return efx_nic_fatal_interrupt(efx
);
183 /* Determine interrupting queues, clear interrupt status
184 * register and acknowledge the device interrupt.
186 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH
> EFX_MAX_CHANNELS
);
187 queues
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_INT_Q
);
188 EFX_ZERO_OWORD(*int_ker
);
189 wmb(); /* Ensure the vector is cleared before interrupt ack */
190 falcon_irq_ack_a1(efx
);
192 /* Schedule processing of any interrupting queues */
193 channel
= &efx
->channel
[0];
196 efx_schedule_channel(channel
);
203 /**************************************************************************
207 **************************************************************************
210 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
212 static int falcon_spi_poll(struct efx_nic
*efx
)
215 efx_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
216 return EFX_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
219 /* Wait for SPI command completion */
220 static int falcon_spi_wait(struct efx_nic
*efx
)
222 /* Most commands will finish quickly, so we start polling at
223 * very short intervals. Sometimes the command may have to
224 * wait for VPD or expansion ROM access outside of our
225 * control, so we allow up to 100 ms. */
226 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
229 for (i
= 0; i
< 10; i
++) {
230 if (!falcon_spi_poll(efx
))
236 if (!falcon_spi_poll(efx
))
238 if (time_after_eq(jiffies
, timeout
)) {
239 EFX_ERR(efx
, "timed out waiting for SPI\n");
242 schedule_timeout_uninterruptible(1);
246 int falcon_spi_cmd(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
247 unsigned int command
, int address
,
248 const void *in
, void *out
, size_t len
)
250 bool addressed
= (address
>= 0);
251 bool reading
= (out
!= NULL
);
255 /* Input validation */
256 if (len
> FALCON_SPI_MAX_LEN
)
258 BUG_ON(!mutex_is_locked(&efx
->spi_lock
));
260 /* Check that previous command is not still running */
261 rc
= falcon_spi_poll(efx
);
265 /* Program address register, if we have an address */
267 EFX_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
268 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
271 /* Program data register, if we have data */
273 memcpy(®
, in
, len
);
274 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
277 /* Issue read/write command */
278 EFX_POPULATE_OWORD_7(reg
,
279 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
280 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
281 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
282 FRF_AB_EE_SPI_HCMD_READ
, reading
,
283 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
284 FRF_AB_EE_SPI_HCMD_ADBCNT
,
285 (addressed
? spi
->addr_len
: 0),
286 FRF_AB_EE_SPI_HCMD_ENC
, command
);
287 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
289 /* Wait for read/write to complete */
290 rc
= falcon_spi_wait(efx
);
296 efx_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
297 memcpy(out
, ®
, len
);
304 falcon_spi_write_limit(const struct efx_spi_device
*spi
, size_t start
)
306 return min(FALCON_SPI_MAX_LEN
,
307 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
311 efx_spi_munge_command(const struct efx_spi_device
*spi
,
312 const u8 command
, const unsigned int address
)
314 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
317 /* Wait up to 10 ms for buffered write completion */
319 falcon_spi_wait_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
)
321 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
326 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
327 &status
, sizeof(status
));
330 if (!(status
& SPI_STATUS_NRDY
))
332 if (time_after_eq(jiffies
, timeout
)) {
333 EFX_ERR(efx
, "SPI write timeout on device %d"
334 " last status=0x%02x\n",
335 spi
->device_id
, status
);
338 schedule_timeout_uninterruptible(1);
342 int falcon_spi_read(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
343 loff_t start
, size_t len
, size_t *retlen
, u8
*buffer
)
345 size_t block_len
, pos
= 0;
346 unsigned int command
;
350 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
352 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
353 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
, NULL
,
354 buffer
+ pos
, block_len
);
359 /* Avoid locking up the system */
361 if (signal_pending(current
)) {
373 falcon_spi_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
374 loff_t start
, size_t len
, size_t *retlen
, const u8
*buffer
)
376 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
377 size_t block_len
, pos
= 0;
378 unsigned int command
;
382 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
386 block_len
= min(len
- pos
,
387 falcon_spi_write_limit(spi
, start
+ pos
));
388 command
= efx_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
389 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
390 buffer
+ pos
, NULL
, block_len
);
394 rc
= falcon_spi_wait_write(efx
, spi
);
398 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
399 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
400 NULL
, verify_buffer
, block_len
);
401 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
408 /* Avoid locking up the system */
410 if (signal_pending(current
)) {
421 /**************************************************************************
425 **************************************************************************
428 static void falcon_push_multicast_hash(struct efx_nic
*efx
)
430 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
432 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
434 efx_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
435 efx_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
438 static void falcon_reset_macs(struct efx_nic
*efx
)
440 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
441 efx_oword_t reg
, mac_ctrl
;
444 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
445 /* It's not safe to use GLB_CTL_REG to reset the
446 * macs, so instead use the internal MAC resets
448 if (!EFX_IS10G(efx
)) {
449 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 1);
450 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
453 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 0);
454 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
458 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
459 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
461 for (count
= 0; count
< 10000; count
++) {
462 efx_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
463 if (EFX_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
469 EFX_ERR(efx
, "timed out waiting for XMAC core reset\n");
473 /* Mac stats will fail whist the TX fifo is draining */
474 WARN_ON(nic_data
->stats_disable_count
== 0);
476 efx_reado(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
477 EFX_SET_OWORD_FIELD(mac_ctrl
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
478 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
480 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
481 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
482 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
483 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
484 efx_writeo(efx
, ®
, FR_AB_GLB_CTL
);
488 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
489 if (!EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
490 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
491 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
492 EFX_LOG(efx
, "Completed MAC reset after %d loops\n",
497 EFX_ERR(efx
, "MAC reset failed\n");
504 /* Ensure the correct MAC is selected before statistics
505 * are re-enabled by the caller */
506 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
509 void falcon_drain_tx_fifo(struct efx_nic
*efx
)
513 if ((efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) ||
514 (efx
->loopback_mode
!= LOOPBACK_NONE
))
517 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
518 /* There is no point in draining more than once */
519 if (EFX_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
522 falcon_reset_macs(efx
);
525 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
529 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
532 /* Isolate the MAC -> RX */
533 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
534 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
535 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
537 /* Isolate TX -> MAC */
538 falcon_drain_tx_fifo(efx
);
541 void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
543 struct efx_link_state
*link_state
= &efx
->link_state
;
547 switch (link_state
->speed
) {
548 case 10000: link_speed
= 3; break;
549 case 1000: link_speed
= 2; break;
550 case 100: link_speed
= 1; break;
551 default: link_speed
= 0; break;
553 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
554 * as advertised. Disable to ensure packets are not
555 * indefinitely held and TX queue can be flushed at any point
556 * while the link is down. */
557 EFX_POPULATE_OWORD_5(reg
,
558 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
559 FRF_AB_MAC_BCAD_ACPT
, 1,
560 FRF_AB_MAC_UC_PROM
, efx
->promiscuous
,
561 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
562 FRF_AB_MAC_SPEED
, link_speed
);
563 /* On B0, MAC backpressure can be disabled and packets get
565 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
566 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
570 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
572 /* Restore the multicast hash registers. */
573 falcon_push_multicast_hash(efx
);
575 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
576 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
577 * initialisation but it may read back as 0) */
578 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
579 /* Unisolate the MAC -> RX */
580 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
581 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
582 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
585 static void falcon_stats_request(struct efx_nic
*efx
)
587 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
590 WARN_ON(nic_data
->stats_pending
);
591 WARN_ON(nic_data
->stats_disable_count
);
593 if (nic_data
->stats_dma_done
== NULL
)
594 return; /* no mac selected */
596 *nic_data
->stats_dma_done
= FALCON_STATS_NOT_DONE
;
597 nic_data
->stats_pending
= true;
598 wmb(); /* ensure done flag is clear */
600 /* Initiate DMA transfer of stats */
601 EFX_POPULATE_OWORD_2(reg
,
602 FRF_AB_MAC_STAT_DMA_CMD
, 1,
603 FRF_AB_MAC_STAT_DMA_ADR
,
604 efx
->stats_buffer
.dma_addr
);
605 efx_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
607 mod_timer(&nic_data
->stats_timer
, round_jiffies_up(jiffies
+ HZ
/ 2));
610 static void falcon_stats_complete(struct efx_nic
*efx
)
612 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
614 if (!nic_data
->stats_pending
)
617 nic_data
->stats_pending
= 0;
618 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
619 rmb(); /* read the done flag before the stats */
620 efx
->mac_op
->update_stats(efx
);
622 EFX_ERR(efx
, "timed out waiting for statistics\n");
626 static void falcon_stats_timer_func(unsigned long context
)
628 struct efx_nic
*efx
= (struct efx_nic
*)context
;
629 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
631 spin_lock(&efx
->stats_lock
);
633 falcon_stats_complete(efx
);
634 if (nic_data
->stats_disable_count
== 0)
635 falcon_stats_request(efx
);
637 spin_unlock(&efx
->stats_lock
);
640 static void falcon_switch_mac(struct efx_nic
*efx
);
642 static bool falcon_loopback_link_poll(struct efx_nic
*efx
)
644 struct efx_link_state old_state
= efx
->link_state
;
646 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
647 WARN_ON(!LOOPBACK_INTERNAL(efx
));
649 efx
->link_state
.fd
= true;
650 efx
->link_state
.fc
= efx
->wanted_fc
;
651 efx
->link_state
.up
= true;
653 if (efx
->loopback_mode
== LOOPBACK_GMAC
)
654 efx
->link_state
.speed
= 1000;
656 efx
->link_state
.speed
= 10000;
658 return !efx_link_state_equal(&efx
->link_state
, &old_state
);
661 static int falcon_reconfigure_port(struct efx_nic
*efx
)
665 WARN_ON(efx_nic_rev(efx
) > EFX_REV_FALCON_B0
);
667 /* Poll the PHY link state *before* reconfiguring it. This means we
668 * will pick up the correct speed (in loopback) to select the correct
671 if (LOOPBACK_INTERNAL(efx
))
672 falcon_loopback_link_poll(efx
);
674 efx
->phy_op
->poll(efx
);
676 falcon_stop_nic_stats(efx
);
677 falcon_deconfigure_mac_wrapper(efx
);
679 falcon_switch_mac(efx
);
681 efx
->phy_op
->reconfigure(efx
);
682 rc
= efx
->mac_op
->reconfigure(efx
);
685 falcon_start_nic_stats(efx
);
687 /* Synchronise efx->link_state with the kernel */
688 efx_link_status_changed(efx
);
693 /**************************************************************************
695 * PHY access via GMII
697 **************************************************************************
700 /* Wait for GMII access to complete */
701 static int falcon_gmii_wait(struct efx_nic
*efx
)
706 /* wait upto 50ms - taken max from datasheet */
707 for (count
= 0; count
< 5000; count
++) {
708 efx_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
709 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
710 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
711 EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
712 EFX_ERR(efx
, "error from GMII access "
714 EFX_OWORD_VAL(md_stat
));
721 EFX_ERR(efx
, "timed out waiting for GMII\n");
725 /* Write an MDIO register of a PHY connected to Falcon. */
726 static int falcon_mdio_write(struct net_device
*net_dev
,
727 int prtad
, int devad
, u16 addr
, u16 value
)
729 struct efx_nic
*efx
= netdev_priv(net_dev
);
733 EFX_REGDUMP(efx
, "writing MDIO %d register %d.%d with 0x%04x\n",
734 prtad
, devad
, addr
, value
);
736 mutex_lock(&efx
->mdio_lock
);
738 /* Check MDIO not currently being accessed */
739 rc
= falcon_gmii_wait(efx
);
743 /* Write the address/ID register */
744 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
745 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
747 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
748 FRF_AB_MD_DEV_ADR
, devad
);
749 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
752 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
753 efx_writeo(efx
, ®
, FR_AB_MD_TXD
);
755 EFX_POPULATE_OWORD_2(reg
,
758 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
760 /* Wait for data to be written */
761 rc
= falcon_gmii_wait(efx
);
763 /* Abort the write operation */
764 EFX_POPULATE_OWORD_2(reg
,
767 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
772 mutex_unlock(&efx
->mdio_lock
);
776 /* Read an MDIO register of a PHY connected to Falcon. */
777 static int falcon_mdio_read(struct net_device
*net_dev
,
778 int prtad
, int devad
, u16 addr
)
780 struct efx_nic
*efx
= netdev_priv(net_dev
);
784 mutex_lock(&efx
->mdio_lock
);
786 /* Check MDIO not currently being accessed */
787 rc
= falcon_gmii_wait(efx
);
791 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
792 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
794 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
795 FRF_AB_MD_DEV_ADR
, devad
);
796 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
798 /* Request data to be read */
799 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
800 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
802 /* Wait for data to become available */
803 rc
= falcon_gmii_wait(efx
);
805 efx_reado(efx
, ®
, FR_AB_MD_RXD
);
806 rc
= EFX_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
807 EFX_REGDUMP(efx
, "read from MDIO %d register %d.%d, got %04x\n",
808 prtad
, devad
, addr
, rc
);
810 /* Abort the read operation */
811 EFX_POPULATE_OWORD_2(reg
,
814 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
816 EFX_LOG(efx
, "read from MDIO %d register %d.%d, got error %d\n",
817 prtad
, devad
, addr
, rc
);
821 mutex_unlock(&efx
->mdio_lock
);
825 static void falcon_clock_mac(struct efx_nic
*efx
)
828 efx_oword_t nic_stat
;
830 /* Configure the NIC generated MAC clock correctly */
831 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
832 strap_val
= EFX_IS10G(efx
) ? 5 : 3;
833 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
834 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP_EN
, 1);
835 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP
, strap_val
);
836 efx_writeo(efx
, &nic_stat
, FR_AB_NIC_STAT
);
838 /* Falcon A1 does not support 1G/10G speed switching
839 * and must not be used with a PHY that does. */
840 BUG_ON(EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_PINS
) !=
845 static void falcon_switch_mac(struct efx_nic
*efx
)
847 struct efx_mac_operations
*old_mac_op
= efx
->mac_op
;
848 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
849 unsigned int stats_done_offset
;
851 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
852 WARN_ON(nic_data
->stats_disable_count
== 0);
854 efx
->mac_op
= (EFX_IS10G(efx
) ?
855 &falcon_xmac_operations
: &falcon_gmac_operations
);
858 stats_done_offset
= XgDmaDone_offset
;
860 stats_done_offset
= GDmaDone_offset
;
861 nic_data
->stats_dma_done
= efx
->stats_buffer
.addr
+ stats_done_offset
;
863 if (old_mac_op
== efx
->mac_op
)
866 falcon_clock_mac(efx
);
868 EFX_LOG(efx
, "selected %cMAC\n", EFX_IS10G(efx
) ? 'X' : 'G');
869 /* Not all macs support a mac-level link state */
870 efx
->xmac_poll_required
= false;
871 falcon_reset_macs(efx
);
874 /* This call is responsible for hooking in the MAC and PHY operations */
875 static int falcon_probe_port(struct efx_nic
*efx
)
879 switch (efx
->phy_type
) {
880 case PHY_TYPE_SFX7101
:
881 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
883 case PHY_TYPE_SFT9001A
:
884 case PHY_TYPE_SFT9001B
:
885 efx
->phy_op
= &falcon_sft9001_phy_ops
;
887 case PHY_TYPE_QT2022C2
:
888 case PHY_TYPE_QT2025C
:
889 efx
->phy_op
= &falcon_qt202x_phy_ops
;
892 EFX_ERR(efx
, "Unknown PHY type %d\n",
897 /* Fill out MDIO structure and loopback modes */
898 efx
->mdio
.mdio_read
= falcon_mdio_read
;
899 efx
->mdio
.mdio_write
= falcon_mdio_write
;
900 rc
= efx
->phy_op
->probe(efx
);
904 /* Initial assumption */
905 efx
->link_state
.speed
= 10000;
906 efx
->link_state
.fd
= true;
908 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
909 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
910 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
912 efx
->wanted_fc
= EFX_FC_RX
;
913 if (efx
->mdio
.mmds
& MDIO_DEVS_AN
)
914 efx
->wanted_fc
|= EFX_FC_AUTO
;
916 /* Allocate buffer for stats */
917 rc
= efx_nic_alloc_buffer(efx
, &efx
->stats_buffer
,
918 FALCON_MAC_STATS_SIZE
);
921 EFX_LOG(efx
, "stats buffer at %llx (virt %p phys %llx)\n",
922 (u64
)efx
->stats_buffer
.dma_addr
,
923 efx
->stats_buffer
.addr
,
924 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
929 static void falcon_remove_port(struct efx_nic
*efx
)
931 efx
->phy_op
->remove(efx
);
932 efx_nic_free_buffer(efx
, &efx
->stats_buffer
);
935 /**************************************************************************
939 **************************************************************************/
942 falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
944 struct falcon_nvconfig
*nvconfig
;
945 struct efx_spi_device
*spi
;
947 int rc
, magic_num
, struct_ver
;
948 __le16
*word
, *limit
;
951 spi
= efx
->spi_flash
? efx
->spi_flash
: efx
->spi_eeprom
;
955 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
958 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
960 mutex_lock(&efx
->spi_lock
);
961 rc
= falcon_spi_read(efx
, spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
962 mutex_unlock(&efx
->spi_lock
);
964 EFX_ERR(efx
, "Failed to read %s\n",
965 efx
->spi_flash
? "flash" : "EEPROM");
970 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
971 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
974 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
975 EFX_ERR(efx
, "NVRAM bad magic 0x%x\n", magic_num
);
978 if (struct_ver
< 2) {
979 EFX_ERR(efx
, "NVRAM has ancient version 0x%x\n", struct_ver
);
981 } else if (struct_ver
< 4) {
982 word
= &nvconfig
->board_magic_num
;
983 limit
= (__le16
*) (nvconfig
+ 1);
986 limit
= region
+ FALCON_NVCONFIG_END
;
988 for (csum
= 0; word
< limit
; ++word
)
989 csum
+= le16_to_cpu(*word
);
991 if (~csum
& 0xffff) {
992 EFX_ERR(efx
, "NVRAM has incorrect checksum\n");
998 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
1005 static int falcon_test_nvram(struct efx_nic
*efx
)
1007 return falcon_read_nvram(efx
, NULL
);
1010 static const struct efx_nic_register_test falcon_b0_register_tests
[] = {
1012 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1014 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1016 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1017 { FR_AZ_TX_RESERVED
,
1018 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1020 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1021 { FR_AZ_SRM_TX_DC_CFG
,
1022 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1024 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1025 { FR_AZ_RX_DC_PF_WM
,
1026 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1028 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1030 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1032 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1034 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1036 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1038 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1039 { FR_AB_XM_RX_PARAM
,
1040 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1042 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1044 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1046 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1049 static int falcon_b0_test_registers(struct efx_nic
*efx
)
1051 return efx_nic_test_registers(efx
, falcon_b0_register_tests
,
1052 ARRAY_SIZE(falcon_b0_register_tests
));
1055 /**************************************************************************
1059 **************************************************************************
1062 /* Resets NIC to known state. This routine must be called in process
1063 * context and is allowed to sleep. */
1064 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
1066 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1067 efx_oword_t glb_ctl_reg_ker
;
1070 EFX_LOG(efx
, "performing %s hardware reset\n", RESET_TYPE(method
));
1072 /* Initiate device reset */
1073 if (method
== RESET_TYPE_WORLD
) {
1074 rc
= pci_save_state(efx
->pci_dev
);
1076 EFX_ERR(efx
, "failed to backup PCI state of primary "
1077 "function prior to hardware reset\n");
1080 if (efx_nic_is_dual_func(efx
)) {
1081 rc
= pci_save_state(nic_data
->pci_dev2
);
1083 EFX_ERR(efx
, "failed to backup PCI state of "
1084 "secondary function prior to "
1085 "hardware reset\n");
1090 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
1091 FRF_AB_EXT_PHY_RST_DUR
,
1092 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1095 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
1096 /* exclude PHY from "invisible" reset */
1097 FRF_AB_EXT_PHY_RST_CTL
,
1098 method
== RESET_TYPE_INVISIBLE
,
1099 /* exclude EEPROM/flash and PCIe */
1100 FRF_AB_PCIE_CORE_RST_CTL
, 1,
1101 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
1102 FRF_AB_PCIE_SD_RST_CTL
, 1,
1103 FRF_AB_EE_RST_CTL
, 1,
1104 FRF_AB_EXT_PHY_RST_DUR
,
1105 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1108 efx_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1110 EFX_LOG(efx
, "waiting for hardware reset\n");
1111 schedule_timeout_uninterruptible(HZ
/ 20);
1113 /* Restore PCI configuration if needed */
1114 if (method
== RESET_TYPE_WORLD
) {
1115 if (efx_nic_is_dual_func(efx
)) {
1116 rc
= pci_restore_state(nic_data
->pci_dev2
);
1118 EFX_ERR(efx
, "failed to restore PCI config for "
1119 "the secondary function\n");
1123 rc
= pci_restore_state(efx
->pci_dev
);
1125 EFX_ERR(efx
, "failed to restore PCI config for the "
1126 "primary function\n");
1129 EFX_LOG(efx
, "successfully restored PCI config\n");
1132 /* Assert that reset complete */
1133 efx_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1134 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
1136 EFX_ERR(efx
, "timed out waiting for hardware reset\n");
1139 EFX_LOG(efx
, "hardware reset complete\n");
1143 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1146 pci_restore_state(efx
->pci_dev
);
1153 static void falcon_monitor(struct efx_nic
*efx
)
1158 BUG_ON(!mutex_is_locked(&efx
->mac_lock
));
1160 rc
= falcon_board(efx
)->type
->monitor(efx
);
1162 EFX_ERR(efx
, "Board sensor %s; shutting down PHY\n",
1163 (rc
== -ERANGE
) ? "reported fault" : "failed");
1164 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
1165 rc
= __efx_reconfigure_port(efx
);
1169 if (LOOPBACK_INTERNAL(efx
))
1170 link_changed
= falcon_loopback_link_poll(efx
);
1172 link_changed
= efx
->phy_op
->poll(efx
);
1175 falcon_stop_nic_stats(efx
);
1176 falcon_deconfigure_mac_wrapper(efx
);
1178 falcon_switch_mac(efx
);
1179 rc
= efx
->mac_op
->reconfigure(efx
);
1182 falcon_start_nic_stats(efx
);
1184 efx_link_status_changed(efx
);
1188 falcon_poll_xmac(efx
);
1191 /* Zeroes out the SRAM contents. This routine must be called in
1192 * process context and is allowed to sleep.
1194 static int falcon_reset_sram(struct efx_nic
*efx
)
1196 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
1199 /* Set the SRAM wake/sleep GPIO appropriately. */
1200 efx_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1201 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
1202 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
1203 efx_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1205 /* Initiate SRAM reset */
1206 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
1207 FRF_AZ_SRM_INIT_EN
, 1,
1208 FRF_AZ_SRM_NB_SZ
, 0);
1209 efx_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1211 /* Wait for SRAM reset to complete */
1214 EFX_LOG(efx
, "waiting for SRAM reset (attempt %d)...\n", count
);
1216 /* SRAM reset is slow; expect around 16ms */
1217 schedule_timeout_uninterruptible(HZ
/ 50);
1219 /* Check for reset complete */
1220 efx_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1221 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
1222 EFX_LOG(efx
, "SRAM reset complete\n");
1226 } while (++count
< 20); /* wait upto 0.4 sec */
1228 EFX_ERR(efx
, "timed out waiting for SRAM reset\n");
1232 static int falcon_spi_device_init(struct efx_nic
*efx
,
1233 struct efx_spi_device
**spi_device_ret
,
1234 unsigned int device_id
, u32 device_type
)
1236 struct efx_spi_device
*spi_device
;
1238 if (device_type
!= 0) {
1239 spi_device
= kzalloc(sizeof(*spi_device
), GFP_KERNEL
);
1242 spi_device
->device_id
= device_id
;
1244 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
1245 spi_device
->addr_len
=
1246 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
1247 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
1248 spi_device
->addr_len
== 1);
1249 spi_device
->erase_command
=
1250 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
1251 spi_device
->erase_size
=
1252 1 << SPI_DEV_TYPE_FIELD(device_type
,
1253 SPI_DEV_TYPE_ERASE_SIZE
);
1254 spi_device
->block_size
=
1255 1 << SPI_DEV_TYPE_FIELD(device_type
,
1256 SPI_DEV_TYPE_BLOCK_SIZE
);
1261 kfree(*spi_device_ret
);
1262 *spi_device_ret
= spi_device
;
1266 static void falcon_remove_spi_devices(struct efx_nic
*efx
)
1268 kfree(efx
->spi_eeprom
);
1269 efx
->spi_eeprom
= NULL
;
1270 kfree(efx
->spi_flash
);
1271 efx
->spi_flash
= NULL
;
1274 /* Extract non-volatile configuration */
1275 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
1277 struct falcon_nvconfig
*nvconfig
;
1281 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
1285 rc
= falcon_read_nvram(efx
, nvconfig
);
1286 if (rc
== -EINVAL
) {
1287 EFX_ERR(efx
, "NVRAM is invalid therefore using defaults\n");
1288 efx
->phy_type
= PHY_TYPE_NONE
;
1289 efx
->mdio
.prtad
= MDIO_PRTAD_NONE
;
1295 struct falcon_nvconfig_board_v2
*v2
= &nvconfig
->board_v2
;
1296 struct falcon_nvconfig_board_v3
*v3
= &nvconfig
->board_v3
;
1298 efx
->phy_type
= v2
->port0_phy_type
;
1299 efx
->mdio
.prtad
= v2
->port0_phy_addr
;
1300 board_rev
= le16_to_cpu(v2
->board_revision
);
1302 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
1303 rc
= falcon_spi_device_init(
1304 efx
, &efx
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
1305 le32_to_cpu(v3
->spi_device_type
1306 [FFE_AB_SPI_DEVICE_FLASH
]));
1309 rc
= falcon_spi_device_init(
1310 efx
, &efx
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
1311 le32_to_cpu(v3
->spi_device_type
1312 [FFE_AB_SPI_DEVICE_EEPROM
]));
1318 /* Read the MAC addresses */
1319 memcpy(efx
->mac_address
, nvconfig
->mac_address
[0], ETH_ALEN
);
1321 EFX_LOG(efx
, "PHY is %d phy_id %d\n", efx
->phy_type
, efx
->mdio
.prtad
);
1323 rc
= falcon_probe_board(efx
, board_rev
);
1331 falcon_remove_spi_devices(efx
);
1337 /* Probe all SPI devices on the NIC */
1338 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
1340 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
1343 efx_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
1344 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1345 efx_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1347 if (EFX_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
1348 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
1349 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
1350 EFX_LOG(efx
, "Booted from %s\n",
1351 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
? "flash" : "EEPROM");
1353 /* Disable VPD and set clock dividers to safe
1354 * values for initial programming. */
1356 EFX_LOG(efx
, "Booted from internal ASIC settings;"
1357 " setting SPI config\n");
1358 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
1359 /* 125 MHz / 7 ~= 20 MHz */
1360 FRF_AB_EE_SF_CLOCK_DIV
, 7,
1361 /* 125 MHz / 63 ~= 2 MHz */
1362 FRF_AB_EE_EE_CLOCK_DIV
, 63);
1363 efx_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1366 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
1367 falcon_spi_device_init(efx
, &efx
->spi_flash
,
1368 FFE_AB_SPI_DEVICE_FLASH
,
1369 default_flash_type
);
1370 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
1371 falcon_spi_device_init(efx
, &efx
->spi_eeprom
,
1372 FFE_AB_SPI_DEVICE_EEPROM
,
1376 static int falcon_probe_nic(struct efx_nic
*efx
)
1378 struct falcon_nic_data
*nic_data
;
1379 struct falcon_board
*board
;
1382 /* Allocate storage for hardware specific data */
1383 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
1386 efx
->nic_data
= nic_data
;
1390 if (efx_nic_fpga_ver(efx
) != 0) {
1391 EFX_ERR(efx
, "Falcon FPGA not supported\n");
1395 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1396 efx_oword_t nic_stat
;
1397 struct pci_dev
*dev
;
1398 u8 pci_rev
= efx
->pci_dev
->revision
;
1400 if ((pci_rev
== 0xff) || (pci_rev
== 0)) {
1401 EFX_ERR(efx
, "Falcon rev A0 not supported\n");
1404 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1405 if (EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) == 0) {
1406 EFX_ERR(efx
, "Falcon rev A1 1G not supported\n");
1409 if (EFX_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
1410 EFX_ERR(efx
, "Falcon rev A1 PCI-X not supported\n");
1414 dev
= pci_dev_get(efx
->pci_dev
);
1415 while ((dev
= pci_get_device(EFX_VENDID_SFC
, FALCON_A_S_DEVID
,
1417 if (dev
->bus
== efx
->pci_dev
->bus
&&
1418 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
1419 nic_data
->pci_dev2
= dev
;
1423 if (!nic_data
->pci_dev2
) {
1424 EFX_ERR(efx
, "failed to find secondary function\n");
1430 /* Now we can reset the NIC */
1431 rc
= falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1433 EFX_ERR(efx
, "failed to reset NIC\n");
1437 /* Allocate memory for INT_KER */
1438 rc
= efx_nic_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
));
1441 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
1443 EFX_LOG(efx
, "INT_KER at %llx (virt %p phys %llx)\n",
1444 (u64
)efx
->irq_status
.dma_addr
,
1445 efx
->irq_status
.addr
, (u64
)virt_to_phys(efx
->irq_status
.addr
));
1447 falcon_probe_spi_devices(efx
);
1449 /* Read in the non-volatile configuration */
1450 rc
= falcon_probe_nvconfig(efx
);
1454 /* Initialise I2C adapter */
1455 board
= falcon_board(efx
);
1456 board
->i2c_adap
.owner
= THIS_MODULE
;
1457 board
->i2c_data
= falcon_i2c_bit_operations
;
1458 board
->i2c_data
.data
= efx
;
1459 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
1460 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
1461 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
1462 sizeof(board
->i2c_adap
.name
));
1463 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
1467 rc
= falcon_board(efx
)->type
->init(efx
);
1469 EFX_ERR(efx
, "failed to initialise board\n");
1473 nic_data
->stats_disable_count
= 1;
1474 setup_timer(&nic_data
->stats_timer
, &falcon_stats_timer_func
,
1475 (unsigned long)efx
);
1480 BUG_ON(i2c_del_adapter(&board
->i2c_adap
));
1481 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1483 falcon_remove_spi_devices(efx
);
1484 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1487 if (nic_data
->pci_dev2
) {
1488 pci_dev_put(nic_data
->pci_dev2
);
1489 nic_data
->pci_dev2
= NULL
;
1493 kfree(efx
->nic_data
);
1497 static void falcon_init_rx_cfg(struct efx_nic
*efx
)
1499 /* Prior to Siena the RX DMA engine will split each frame at
1500 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1501 * be so large that that never happens. */
1502 const unsigned huge_buf_size
= (3 * 4096) >> 5;
1503 /* RX control FIFO thresholds (32 entries) */
1504 const unsigned ctrl_xon_thr
= 20;
1505 const unsigned ctrl_xoff_thr
= 25;
1506 /* RX data FIFO thresholds (256-byte units; size varies) */
1507 int data_xon_thr
= efx_nic_rx_xon_thresh
>> 8;
1508 int data_xoff_thr
= efx_nic_rx_xoff_thresh
>> 8;
1511 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1512 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1513 /* Data FIFO size is 5.5K */
1514 if (data_xon_thr
< 0)
1515 data_xon_thr
= 512 >> 8;
1516 if (data_xoff_thr
< 0)
1517 data_xoff_thr
= 2048 >> 8;
1518 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
1519 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
1521 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, data_xon_thr
);
1522 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, data_xoff_thr
);
1523 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
1524 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1526 /* Data FIFO size is 80K; register fields moved */
1527 if (data_xon_thr
< 0)
1528 data_xon_thr
= 27648 >> 8; /* ~3*max MTU */
1529 if (data_xoff_thr
< 0)
1530 data_xoff_thr
= 54272 >> 8; /* ~80Kb - 3*max MTU */
1531 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
1532 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
1534 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, data_xon_thr
);
1535 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, data_xoff_thr
);
1536 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
1537 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1538 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
1540 /* Always enable XOFF signal from RX FIFO. We enable
1541 * or disable transmission of pause frames at the MAC. */
1542 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
1543 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1546 /* This call performs hardware-specific global initialisation, such as
1547 * defining the descriptor cache sizes and number of RSS channels.
1548 * It does not set up any buffers, descriptor rings or event queues.
1550 static int falcon_init_nic(struct efx_nic
*efx
)
1555 /* Use on-chip SRAM */
1556 efx_reado(efx
, &temp
, FR_AB_NIC_STAT
);
1557 EFX_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
1558 efx_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
1560 /* Set the source of the GMAC clock */
1561 if (efx_nic_rev(efx
) == EFX_REV_FALCON_B0
) {
1562 efx_reado(efx
, &temp
, FR_AB_GPIO_CTL
);
1563 EFX_SET_OWORD_FIELD(temp
, FRF_AB_USE_NIC_CLK
, true);
1564 efx_writeo(efx
, &temp
, FR_AB_GPIO_CTL
);
1567 /* Select the correct MAC */
1568 falcon_clock_mac(efx
);
1570 rc
= falcon_reset_sram(efx
);
1574 /* Clear the parity enables on the TX data fifos as
1575 * they produce false parity errors because of timing issues
1577 if (EFX_WORKAROUND_5129(efx
)) {
1578 efx_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
1579 EFX_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
1580 efx_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
1583 if (EFX_WORKAROUND_7244(efx
)) {
1584 efx_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1585 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
1586 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
1587 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
1588 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
1589 efx_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1592 /* XXX This is documented only for Falcon A0/A1 */
1593 /* Setup RX. Wait for descriptor is broken and must
1594 * be disabled. RXDP recovery shouldn't be needed, but is.
1596 efx_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
1597 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
1598 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
1599 if (EFX_WORKAROUND_5583(efx
))
1600 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
1601 efx_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
1603 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1604 * descriptors (which is bad).
1606 efx_reado(efx
, &temp
, FR_AZ_TX_CFG
);
1607 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
1608 efx_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
1610 falcon_init_rx_cfg(efx
);
1612 /* Set destination of both TX and RX Flush events */
1613 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1614 EFX_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
1615 efx_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
1618 efx_nic_init_common(efx
);
1623 static void falcon_remove_nic(struct efx_nic
*efx
)
1625 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1626 struct falcon_board
*board
= falcon_board(efx
);
1629 board
->type
->fini(efx
);
1631 /* Remove I2C adapter and clear it in preparation for a retry */
1632 rc
= i2c_del_adapter(&board
->i2c_adap
);
1634 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1636 falcon_remove_spi_devices(efx
);
1637 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1639 falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1641 /* Release the second function after the reset */
1642 if (nic_data
->pci_dev2
) {
1643 pci_dev_put(nic_data
->pci_dev2
);
1644 nic_data
->pci_dev2
= NULL
;
1647 /* Tear down the private nic state */
1648 kfree(efx
->nic_data
);
1649 efx
->nic_data
= NULL
;
1652 static void falcon_update_nic_stats(struct efx_nic
*efx
)
1654 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1657 if (nic_data
->stats_disable_count
)
1660 efx_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
1661 efx
->n_rx_nodesc_drop_cnt
+=
1662 EFX_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
1664 if (nic_data
->stats_pending
&&
1665 *nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
1666 nic_data
->stats_pending
= false;
1667 rmb(); /* read the done flag before the stats */
1668 efx
->mac_op
->update_stats(efx
);
1672 void falcon_start_nic_stats(struct efx_nic
*efx
)
1674 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1676 spin_lock_bh(&efx
->stats_lock
);
1677 if (--nic_data
->stats_disable_count
== 0)
1678 falcon_stats_request(efx
);
1679 spin_unlock_bh(&efx
->stats_lock
);
1682 void falcon_stop_nic_stats(struct efx_nic
*efx
)
1684 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1689 spin_lock_bh(&efx
->stats_lock
);
1690 ++nic_data
->stats_disable_count
;
1691 spin_unlock_bh(&efx
->stats_lock
);
1693 del_timer_sync(&nic_data
->stats_timer
);
1695 /* Wait enough time for the most recent transfer to
1697 for (i
= 0; i
< 4 && nic_data
->stats_pending
; i
++) {
1698 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
)
1703 spin_lock_bh(&efx
->stats_lock
);
1704 falcon_stats_complete(efx
);
1705 spin_unlock_bh(&efx
->stats_lock
);
1708 static void falcon_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1710 falcon_board(efx
)->type
->set_id_led(efx
, mode
);
1713 /**************************************************************************
1717 **************************************************************************
1720 static void falcon_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1724 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1727 static int falcon_set_wol(struct efx_nic
*efx
, u32 type
)
1734 /**************************************************************************
1736 * Revision-dependent attributes used by efx.c and nic.c
1738 **************************************************************************
1741 struct efx_nic_type falcon_a1_nic_type
= {
1742 .probe
= falcon_probe_nic
,
1743 .remove
= falcon_remove_nic
,
1744 .init
= falcon_init_nic
,
1745 .fini
= efx_port_dummy_op_void
,
1746 .monitor
= falcon_monitor
,
1747 .reset
= falcon_reset_hw
,
1748 .probe_port
= falcon_probe_port
,
1749 .remove_port
= falcon_remove_port
,
1750 .prepare_flush
= falcon_prepare_flush
,
1751 .update_stats
= falcon_update_nic_stats
,
1752 .start_stats
= falcon_start_nic_stats
,
1753 .stop_stats
= falcon_stop_nic_stats
,
1754 .set_id_led
= falcon_set_id_led
,
1755 .push_irq_moderation
= falcon_push_irq_moderation
,
1756 .push_multicast_hash
= falcon_push_multicast_hash
,
1757 .reconfigure_port
= falcon_reconfigure_port
,
1758 .get_wol
= falcon_get_wol
,
1759 .set_wol
= falcon_set_wol
,
1760 .resume_wol
= efx_port_dummy_op_void
,
1761 .test_nvram
= falcon_test_nvram
,
1762 .default_mac_ops
= &falcon_xmac_operations
,
1764 .revision
= EFX_REV_FALCON_A1
,
1765 .mem_map_size
= 0x20000,
1766 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
1767 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
1768 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
1769 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
1770 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
1771 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1772 .rx_buffer_padding
= 0x24,
1773 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
1774 .phys_addr_channels
= 4,
1775 .tx_dc_base
= 0x130000,
1776 .rx_dc_base
= 0x100000,
1777 .offload_features
= NETIF_F_IP_CSUM
,
1778 .reset_world_flags
= ETH_RESET_IRQ
,
1781 struct efx_nic_type falcon_b0_nic_type
= {
1782 .probe
= falcon_probe_nic
,
1783 .remove
= falcon_remove_nic
,
1784 .init
= falcon_init_nic
,
1785 .fini
= efx_port_dummy_op_void
,
1786 .monitor
= falcon_monitor
,
1787 .reset
= falcon_reset_hw
,
1788 .probe_port
= falcon_probe_port
,
1789 .remove_port
= falcon_remove_port
,
1790 .prepare_flush
= falcon_prepare_flush
,
1791 .update_stats
= falcon_update_nic_stats
,
1792 .start_stats
= falcon_start_nic_stats
,
1793 .stop_stats
= falcon_stop_nic_stats
,
1794 .set_id_led
= falcon_set_id_led
,
1795 .push_irq_moderation
= falcon_push_irq_moderation
,
1796 .push_multicast_hash
= falcon_push_multicast_hash
,
1797 .reconfigure_port
= falcon_reconfigure_port
,
1798 .get_wol
= falcon_get_wol
,
1799 .set_wol
= falcon_set_wol
,
1800 .resume_wol
= efx_port_dummy_op_void
,
1801 .test_registers
= falcon_b0_test_registers
,
1802 .test_nvram
= falcon_test_nvram
,
1803 .default_mac_ops
= &falcon_xmac_operations
,
1805 .revision
= EFX_REV_FALCON_B0
,
1806 /* Map everything up to and including the RSS indirection
1807 * table. Don't map MSI-X table, MSI-X PBA since Linux
1808 * requires that they not be mapped. */
1809 .mem_map_size
= (FR_BZ_RX_INDIRECTION_TBL
+
1810 FR_BZ_RX_INDIRECTION_TBL_STEP
*
1811 FR_BZ_RX_INDIRECTION_TBL_ROWS
),
1812 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
1813 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
1814 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
1815 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
1816 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
1817 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1818 .rx_buffer_padding
= 0,
1819 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
1820 .phys_addr_channels
= 32, /* Hardware limit is 64, but the legacy
1821 * interrupt handler only supports 32
1823 .tx_dc_base
= 0x130000,
1824 .rx_dc_base
= 0x100000,
1825 .offload_features
= NETIF_F_IP_CSUM
,
1826 .reset_world_flags
= ETH_RESET_IRQ
,