Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / net / smc91x.c
blob860339d51d586c14915596807b31dfa322ccc921
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@fluxnic.net>
39 * Russell King <rmk@arm.linux.org.uk>
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG 0
66 #endif
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/delay.h>
74 #include <linux/interrupt.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/crc32.h>
78 #include <linux/platform_device.h>
79 #include <linux/spinlock.h>
80 #include <linux/ethtool.h>
81 #include <linux/mii.h>
82 #include <linux/workqueue.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
88 #include <asm/io.h>
90 #include "smc91x.h"
92 #ifndef SMC_NOWAIT
93 # define SMC_NOWAIT 0
94 #endif
95 static int nowait = SMC_NOWAIT;
96 module_param(nowait, int, 0400);
97 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
100 * Transmit timeout, default 5 seconds.
102 static int watchdog = 1000;
103 module_param(watchdog, int, 0400);
104 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
106 MODULE_LICENSE("GPL");
107 MODULE_ALIAS("platform:smc91x");
110 * The internal workings of the driver. If you are changing anything
111 * here with the SMC stuff, you should have the datasheet and know
112 * what you are doing.
114 #define CARDNAME "smc91x"
117 * Use power-down feature of the chip
119 #define POWER_DOWN 1
122 * Wait time for memory to be free. This probably shouldn't be
123 * tuned that much, as waiting for this means nothing else happens
124 * in the system
126 #define MEMORY_WAIT_TIME 16
129 * The maximum number of processing loops allowed for each call to the
130 * IRQ handler.
132 #define MAX_IRQ_LOOPS 8
135 * This selects whether TX packets are sent one by one to the SMC91x internal
136 * memory and throttled until transmission completes. This may prevent
137 * RX overruns a litle by keeping much of the memory free for RX packets
138 * but to the expense of reduced TX throughput and increased IRQ overhead.
139 * Note this is not a cure for a too slow data bus or too high IRQ latency.
141 #define THROTTLE_TX_PKTS 0
144 * The MII clock high/low times. 2x this number gives the MII clock period
145 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
147 #define MII_DELAY 1
149 #if SMC_DEBUG > 0
150 #define DBG(n, args...) \
151 do { \
152 if (SMC_DEBUG >= (n)) \
153 printk(args); \
154 } while (0)
156 #define PRINTK(args...) printk(args)
157 #else
158 #define DBG(n, args...) do { } while(0)
159 #define PRINTK(args...) printk(KERN_DEBUG args)
160 #endif
162 #if SMC_DEBUG > 3
163 static void PRINT_PKT(u_char *buf, int length)
165 int i;
166 int remainder;
167 int lines;
169 lines = length / 16;
170 remainder = length % 16;
172 for (i = 0; i < lines ; i ++) {
173 int cur;
174 for (cur = 0; cur < 8; cur++) {
175 u_char a, b;
176 a = *buf++;
177 b = *buf++;
178 printk("%02x%02x ", a, b);
180 printk("\n");
182 for (i = 0; i < remainder/2 ; i++) {
183 u_char a, b;
184 a = *buf++;
185 b = *buf++;
186 printk("%02x%02x ", a, b);
188 printk("\n");
190 #else
191 #define PRINT_PKT(x...) do { } while(0)
192 #endif
195 /* this enables an interrupt in the interrupt mask register */
196 #define SMC_ENABLE_INT(lp, x) do { \
197 unsigned char mask; \
198 unsigned long smc_enable_flags; \
199 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
200 mask = SMC_GET_INT_MASK(lp); \
201 mask |= (x); \
202 SMC_SET_INT_MASK(lp, mask); \
203 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
204 } while (0)
206 /* this disables an interrupt from the interrupt mask register */
207 #define SMC_DISABLE_INT(lp, x) do { \
208 unsigned char mask; \
209 unsigned long smc_disable_flags; \
210 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
211 mask = SMC_GET_INT_MASK(lp); \
212 mask &= ~(x); \
213 SMC_SET_INT_MASK(lp, mask); \
214 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
215 } while (0)
218 * Wait while MMU is busy. This is usually in the order of a few nanosecs
219 * if at all, but let's avoid deadlocking the system if the hardware
220 * decides to go south.
222 #define SMC_WAIT_MMU_BUSY(lp) do { \
223 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
224 unsigned long timeout = jiffies + 2; \
225 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
226 if (time_after(jiffies, timeout)) { \
227 printk("%s: timeout %s line %d\n", \
228 dev->name, __FILE__, __LINE__); \
229 break; \
231 cpu_relax(); \
234 } while (0)
238 * this does a soft reset on the device
240 static void smc_reset(struct net_device *dev)
242 struct smc_local *lp = netdev_priv(dev);
243 void __iomem *ioaddr = lp->base;
244 unsigned int ctl, cfg;
245 struct sk_buff *pending_skb;
247 DBG(2, "%s: %s\n", dev->name, __func__);
249 /* Disable all interrupts, block TX tasklet */
250 spin_lock_irq(&lp->lock);
251 SMC_SELECT_BANK(lp, 2);
252 SMC_SET_INT_MASK(lp, 0);
253 pending_skb = lp->pending_tx_skb;
254 lp->pending_tx_skb = NULL;
255 spin_unlock_irq(&lp->lock);
257 /* free any pending tx skb */
258 if (pending_skb) {
259 dev_kfree_skb(pending_skb);
260 dev->stats.tx_errors++;
261 dev->stats.tx_aborted_errors++;
265 * This resets the registers mostly to defaults, but doesn't
266 * affect EEPROM. That seems unnecessary
268 SMC_SELECT_BANK(lp, 0);
269 SMC_SET_RCR(lp, RCR_SOFTRST);
272 * Setup the Configuration Register
273 * This is necessary because the CONFIG_REG is not affected
274 * by a soft reset
276 SMC_SELECT_BANK(lp, 1);
278 cfg = CONFIG_DEFAULT;
281 * Setup for fast accesses if requested. If the card/system
282 * can't handle it then there will be no recovery except for
283 * a hard reset or power cycle
285 if (lp->cfg.flags & SMC91X_NOWAIT)
286 cfg |= CONFIG_NO_WAIT;
289 * Release from possible power-down state
290 * Configuration register is not affected by Soft Reset
292 cfg |= CONFIG_EPH_POWER_EN;
294 SMC_SET_CONFIG(lp, cfg);
296 /* this should pause enough for the chip to be happy */
298 * elaborate? What does the chip _need_? --jgarzik
300 * This seems to be undocumented, but something the original
301 * driver(s) have always done. Suspect undocumented timing
302 * info/determined empirically. --rmk
304 udelay(1);
306 /* Disable transmit and receive functionality */
307 SMC_SELECT_BANK(lp, 0);
308 SMC_SET_RCR(lp, RCR_CLEAR);
309 SMC_SET_TCR(lp, TCR_CLEAR);
311 SMC_SELECT_BANK(lp, 1);
312 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
315 * Set the control register to automatically release successfully
316 * transmitted packets, to make the best use out of our limited
317 * memory
319 if(!THROTTLE_TX_PKTS)
320 ctl |= CTL_AUTO_RELEASE;
321 else
322 ctl &= ~CTL_AUTO_RELEASE;
323 SMC_SET_CTL(lp, ctl);
325 /* Reset the MMU */
326 SMC_SELECT_BANK(lp, 2);
327 SMC_SET_MMU_CMD(lp, MC_RESET);
328 SMC_WAIT_MMU_BUSY(lp);
332 * Enable Interrupts, Receive, and Transmit
334 static void smc_enable(struct net_device *dev)
336 struct smc_local *lp = netdev_priv(dev);
337 void __iomem *ioaddr = lp->base;
338 int mask;
340 DBG(2, "%s: %s\n", dev->name, __func__);
342 /* see the header file for options in TCR/RCR DEFAULT */
343 SMC_SELECT_BANK(lp, 0);
344 SMC_SET_TCR(lp, lp->tcr_cur_mode);
345 SMC_SET_RCR(lp, lp->rcr_cur_mode);
347 SMC_SELECT_BANK(lp, 1);
348 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
350 /* now, enable interrupts */
351 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
352 if (lp->version >= (CHIP_91100 << 4))
353 mask |= IM_MDINT;
354 SMC_SELECT_BANK(lp, 2);
355 SMC_SET_INT_MASK(lp, mask);
358 * From this point the register bank must _NOT_ be switched away
359 * to something else than bank 2 without proper locking against
360 * races with any tasklet or interrupt handlers until smc_shutdown()
361 * or smc_reset() is called.
366 * this puts the device in an inactive state
368 static void smc_shutdown(struct net_device *dev)
370 struct smc_local *lp = netdev_priv(dev);
371 void __iomem *ioaddr = lp->base;
372 struct sk_buff *pending_skb;
374 DBG(2, "%s: %s\n", CARDNAME, __func__);
376 /* no more interrupts for me */
377 spin_lock_irq(&lp->lock);
378 SMC_SELECT_BANK(lp, 2);
379 SMC_SET_INT_MASK(lp, 0);
380 pending_skb = lp->pending_tx_skb;
381 lp->pending_tx_skb = NULL;
382 spin_unlock_irq(&lp->lock);
383 if (pending_skb)
384 dev_kfree_skb(pending_skb);
386 /* and tell the card to stay away from that nasty outside world */
387 SMC_SELECT_BANK(lp, 0);
388 SMC_SET_RCR(lp, RCR_CLEAR);
389 SMC_SET_TCR(lp, TCR_CLEAR);
391 #ifdef POWER_DOWN
392 /* finally, shut the chip down */
393 SMC_SELECT_BANK(lp, 1);
394 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
395 #endif
399 * This is the procedure to handle the receipt of a packet.
401 static inline void smc_rcv(struct net_device *dev)
403 struct smc_local *lp = netdev_priv(dev);
404 void __iomem *ioaddr = lp->base;
405 unsigned int packet_number, status, packet_len;
407 DBG(3, "%s: %s\n", dev->name, __func__);
409 packet_number = SMC_GET_RXFIFO(lp);
410 if (unlikely(packet_number & RXFIFO_REMPTY)) {
411 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
412 return;
415 /* read from start of packet */
416 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
418 /* First two words are status and packet length */
419 SMC_GET_PKT_HDR(lp, status, packet_len);
420 packet_len &= 0x07ff; /* mask off top bits */
421 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
422 dev->name, packet_number, status,
423 packet_len, packet_len);
425 back:
426 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
427 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
428 /* accept VLAN packets */
429 status &= ~RS_TOOLONG;
430 goto back;
432 if (packet_len < 6) {
433 /* bloody hardware */
434 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
435 dev->name, packet_len, status);
436 status |= RS_TOOSHORT;
438 SMC_WAIT_MMU_BUSY(lp);
439 SMC_SET_MMU_CMD(lp, MC_RELEASE);
440 dev->stats.rx_errors++;
441 if (status & RS_ALGNERR)
442 dev->stats.rx_frame_errors++;
443 if (status & (RS_TOOSHORT | RS_TOOLONG))
444 dev->stats.rx_length_errors++;
445 if (status & RS_BADCRC)
446 dev->stats.rx_crc_errors++;
447 } else {
448 struct sk_buff *skb;
449 unsigned char *data;
450 unsigned int data_len;
452 /* set multicast stats */
453 if (status & RS_MULTICAST)
454 dev->stats.multicast++;
457 * Actual payload is packet_len - 6 (or 5 if odd byte).
458 * We want skb_reserve(2) and the final ctrl word
459 * (2 bytes, possibly containing the payload odd byte).
460 * Furthermore, we add 2 bytes to allow rounding up to
461 * multiple of 4 bytes on 32 bit buses.
462 * Hence packet_len - 6 + 2 + 2 + 2.
464 skb = dev_alloc_skb(packet_len);
465 if (unlikely(skb == NULL)) {
466 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
467 dev->name);
468 SMC_WAIT_MMU_BUSY(lp);
469 SMC_SET_MMU_CMD(lp, MC_RELEASE);
470 dev->stats.rx_dropped++;
471 return;
474 /* Align IP header to 32 bits */
475 skb_reserve(skb, 2);
477 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
478 if (lp->version == 0x90)
479 status |= RS_ODDFRAME;
482 * If odd length: packet_len - 5,
483 * otherwise packet_len - 6.
484 * With the trailing ctrl byte it's packet_len - 4.
486 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
487 data = skb_put(skb, data_len);
488 SMC_PULL_DATA(lp, data, packet_len - 4);
490 SMC_WAIT_MMU_BUSY(lp);
491 SMC_SET_MMU_CMD(lp, MC_RELEASE);
493 PRINT_PKT(data, packet_len - 4);
495 skb->protocol = eth_type_trans(skb, dev);
496 netif_rx(skb);
497 dev->stats.rx_packets++;
498 dev->stats.rx_bytes += data_len;
502 #ifdef CONFIG_SMP
504 * On SMP we have the following problem:
506 * A = smc_hardware_send_pkt()
507 * B = smc_hard_start_xmit()
508 * C = smc_interrupt()
510 * A and B can never be executed simultaneously. However, at least on UP,
511 * it is possible (and even desirable) for C to interrupt execution of
512 * A or B in order to have better RX reliability and avoid overruns.
513 * C, just like A and B, must have exclusive access to the chip and
514 * each of them must lock against any other concurrent access.
515 * Unfortunately this is not possible to have C suspend execution of A or
516 * B taking place on another CPU. On UP this is no an issue since A and B
517 * are run from softirq context and C from hard IRQ context, and there is
518 * no other CPU where concurrent access can happen.
519 * If ever there is a way to force at least B and C to always be executed
520 * on the same CPU then we could use read/write locks to protect against
521 * any other concurrent access and C would always interrupt B. But life
522 * isn't that easy in a SMP world...
524 #define smc_special_trylock(lock, flags) \
525 ({ \
526 int __ret; \
527 local_irq_save(flags); \
528 __ret = spin_trylock(lock); \
529 if (!__ret) \
530 local_irq_restore(flags); \
531 __ret; \
533 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
534 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
535 #else
536 #define smc_special_trylock(lock, flags) (flags == flags)
537 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
538 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
539 #endif
542 * This is called to actually send a packet to the chip.
544 static void smc_hardware_send_pkt(unsigned long data)
546 struct net_device *dev = (struct net_device *)data;
547 struct smc_local *lp = netdev_priv(dev);
548 void __iomem *ioaddr = lp->base;
549 struct sk_buff *skb;
550 unsigned int packet_no, len;
551 unsigned char *buf;
552 unsigned long flags;
554 DBG(3, "%s: %s\n", dev->name, __func__);
556 if (!smc_special_trylock(&lp->lock, flags)) {
557 netif_stop_queue(dev);
558 tasklet_schedule(&lp->tx_task);
559 return;
562 skb = lp->pending_tx_skb;
563 if (unlikely(!skb)) {
564 smc_special_unlock(&lp->lock, flags);
565 return;
567 lp->pending_tx_skb = NULL;
569 packet_no = SMC_GET_AR(lp);
570 if (unlikely(packet_no & AR_FAILED)) {
571 printk("%s: Memory allocation failed.\n", dev->name);
572 dev->stats.tx_errors++;
573 dev->stats.tx_fifo_errors++;
574 smc_special_unlock(&lp->lock, flags);
575 goto done;
578 /* point to the beginning of the packet */
579 SMC_SET_PN(lp, packet_no);
580 SMC_SET_PTR(lp, PTR_AUTOINC);
582 buf = skb->data;
583 len = skb->len;
584 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
585 dev->name, packet_no, len, len, buf);
586 PRINT_PKT(buf, len);
589 * Send the packet length (+6 for status words, length, and ctl.
590 * The card will pad to 64 bytes with zeroes if packet is too small.
592 SMC_PUT_PKT_HDR(lp, 0, len + 6);
594 /* send the actual data */
595 SMC_PUSH_DATA(lp, buf, len & ~1);
597 /* Send final ctl word with the last byte if there is one */
598 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
601 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
602 * have the effect of having at most one packet queued for TX
603 * in the chip's memory at all time.
605 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
606 * when memory allocation (MC_ALLOC) does not succeed right away.
608 if (THROTTLE_TX_PKTS)
609 netif_stop_queue(dev);
611 /* queue the packet for TX */
612 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
613 smc_special_unlock(&lp->lock, flags);
615 dev->trans_start = jiffies;
616 dev->stats.tx_packets++;
617 dev->stats.tx_bytes += len;
619 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
621 done: if (!THROTTLE_TX_PKTS)
622 netif_wake_queue(dev);
624 dev_kfree_skb(skb);
628 * Since I am not sure if I will have enough room in the chip's ram
629 * to store the packet, I call this routine which either sends it
630 * now, or set the card to generates an interrupt when ready
631 * for the packet.
633 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
635 struct smc_local *lp = netdev_priv(dev);
636 void __iomem *ioaddr = lp->base;
637 unsigned int numPages, poll_count, status;
638 unsigned long flags;
640 DBG(3, "%s: %s\n", dev->name, __func__);
642 BUG_ON(lp->pending_tx_skb != NULL);
645 * The MMU wants the number of pages to be the number of 256 bytes
646 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
648 * The 91C111 ignores the size bits, but earlier models don't.
650 * Pkt size for allocating is data length +6 (for additional status
651 * words, length and ctl)
653 * If odd size then last byte is included in ctl word.
655 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
656 if (unlikely(numPages > 7)) {
657 printk("%s: Far too big packet error.\n", dev->name);
658 dev->stats.tx_errors++;
659 dev->stats.tx_dropped++;
660 dev_kfree_skb(skb);
661 return NETDEV_TX_OK;
664 smc_special_lock(&lp->lock, flags);
666 /* now, try to allocate the memory */
667 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
670 * Poll the chip for a short amount of time in case the
671 * allocation succeeds quickly.
673 poll_count = MEMORY_WAIT_TIME;
674 do {
675 status = SMC_GET_INT(lp);
676 if (status & IM_ALLOC_INT) {
677 SMC_ACK_INT(lp, IM_ALLOC_INT);
678 break;
680 } while (--poll_count);
682 smc_special_unlock(&lp->lock, flags);
684 lp->pending_tx_skb = skb;
685 if (!poll_count) {
686 /* oh well, wait until the chip finds memory later */
687 netif_stop_queue(dev);
688 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
689 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
690 } else {
692 * Allocation succeeded: push packet to the chip's own memory
693 * immediately.
695 smc_hardware_send_pkt((unsigned long)dev);
698 return NETDEV_TX_OK;
702 * This handles a TX interrupt, which is only called when:
703 * - a TX error occurred, or
704 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
706 static void smc_tx(struct net_device *dev)
708 struct smc_local *lp = netdev_priv(dev);
709 void __iomem *ioaddr = lp->base;
710 unsigned int saved_packet, packet_no, tx_status, pkt_len;
712 DBG(3, "%s: %s\n", dev->name, __func__);
714 /* If the TX FIFO is empty then nothing to do */
715 packet_no = SMC_GET_TXFIFO(lp);
716 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
717 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
718 return;
721 /* select packet to read from */
722 saved_packet = SMC_GET_PN(lp);
723 SMC_SET_PN(lp, packet_no);
725 /* read the first word (status word) from this packet */
726 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
727 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
728 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
729 dev->name, tx_status, packet_no);
731 if (!(tx_status & ES_TX_SUC))
732 dev->stats.tx_errors++;
734 if (tx_status & ES_LOSTCARR)
735 dev->stats.tx_carrier_errors++;
737 if (tx_status & (ES_LATCOL | ES_16COL)) {
738 PRINTK("%s: %s occurred on last xmit\n", dev->name,
739 (tx_status & ES_LATCOL) ?
740 "late collision" : "too many collisions");
741 dev->stats.tx_window_errors++;
742 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
743 printk(KERN_INFO "%s: unexpectedly large number of "
744 "bad collisions. Please check duplex "
745 "setting.\n", dev->name);
749 /* kill the packet */
750 SMC_WAIT_MMU_BUSY(lp);
751 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
753 /* Don't restore Packet Number Reg until busy bit is cleared */
754 SMC_WAIT_MMU_BUSY(lp);
755 SMC_SET_PN(lp, saved_packet);
757 /* re-enable transmit */
758 SMC_SELECT_BANK(lp, 0);
759 SMC_SET_TCR(lp, lp->tcr_cur_mode);
760 SMC_SELECT_BANK(lp, 2);
764 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
766 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
768 struct smc_local *lp = netdev_priv(dev);
769 void __iomem *ioaddr = lp->base;
770 unsigned int mii_reg, mask;
772 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
773 mii_reg |= MII_MDOE;
775 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
776 if (val & mask)
777 mii_reg |= MII_MDO;
778 else
779 mii_reg &= ~MII_MDO;
781 SMC_SET_MII(lp, mii_reg);
782 udelay(MII_DELAY);
783 SMC_SET_MII(lp, mii_reg | MII_MCLK);
784 udelay(MII_DELAY);
788 static unsigned int smc_mii_in(struct net_device *dev, int bits)
790 struct smc_local *lp = netdev_priv(dev);
791 void __iomem *ioaddr = lp->base;
792 unsigned int mii_reg, mask, val;
794 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
795 SMC_SET_MII(lp, mii_reg);
797 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
798 if (SMC_GET_MII(lp) & MII_MDI)
799 val |= mask;
801 SMC_SET_MII(lp, mii_reg);
802 udelay(MII_DELAY);
803 SMC_SET_MII(lp, mii_reg | MII_MCLK);
804 udelay(MII_DELAY);
807 return val;
811 * Reads a register from the MII Management serial interface
813 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
815 struct smc_local *lp = netdev_priv(dev);
816 void __iomem *ioaddr = lp->base;
817 unsigned int phydata;
819 SMC_SELECT_BANK(lp, 3);
821 /* Idle - 32 ones */
822 smc_mii_out(dev, 0xffffffff, 32);
824 /* Start code (01) + read (10) + phyaddr + phyreg */
825 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
827 /* Turnaround (2bits) + phydata */
828 phydata = smc_mii_in(dev, 18);
830 /* Return to idle state */
831 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
833 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
834 __func__, phyaddr, phyreg, phydata);
836 SMC_SELECT_BANK(lp, 2);
837 return phydata;
841 * Writes a register to the MII Management serial interface
843 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
844 int phydata)
846 struct smc_local *lp = netdev_priv(dev);
847 void __iomem *ioaddr = lp->base;
849 SMC_SELECT_BANK(lp, 3);
851 /* Idle - 32 ones */
852 smc_mii_out(dev, 0xffffffff, 32);
854 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
855 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
857 /* Return to idle state */
858 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
860 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
861 __func__, phyaddr, phyreg, phydata);
863 SMC_SELECT_BANK(lp, 2);
867 * Finds and reports the PHY address
869 static void smc_phy_detect(struct net_device *dev)
871 struct smc_local *lp = netdev_priv(dev);
872 int phyaddr;
874 DBG(2, "%s: %s\n", dev->name, __func__);
876 lp->phy_type = 0;
879 * Scan all 32 PHY addresses if necessary, starting at
880 * PHY#1 to PHY#31, and then PHY#0 last.
882 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
883 unsigned int id1, id2;
885 /* Read the PHY identifiers */
886 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
887 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
889 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
890 dev->name, id1, id2);
892 /* Make sure it is a valid identifier */
893 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
894 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
895 /* Save the PHY's address */
896 lp->mii.phy_id = phyaddr & 31;
897 lp->phy_type = id1 << 16 | id2;
898 break;
904 * Sets the PHY to a configuration as determined by the user
906 static int smc_phy_fixed(struct net_device *dev)
908 struct smc_local *lp = netdev_priv(dev);
909 void __iomem *ioaddr = lp->base;
910 int phyaddr = lp->mii.phy_id;
911 int bmcr, cfg1;
913 DBG(3, "%s: %s\n", dev->name, __func__);
915 /* Enter Link Disable state */
916 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
917 cfg1 |= PHY_CFG1_LNKDIS;
918 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
921 * Set our fixed capabilities
922 * Disable auto-negotiation
924 bmcr = 0;
926 if (lp->ctl_rfduplx)
927 bmcr |= BMCR_FULLDPLX;
929 if (lp->ctl_rspeed == 100)
930 bmcr |= BMCR_SPEED100;
932 /* Write our capabilities to the phy control register */
933 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
935 /* Re-Configure the Receive/Phy Control register */
936 SMC_SELECT_BANK(lp, 0);
937 SMC_SET_RPC(lp, lp->rpc_cur_mode);
938 SMC_SELECT_BANK(lp, 2);
940 return 1;
944 * smc_phy_reset - reset the phy
945 * @dev: net device
946 * @phy: phy address
948 * Issue a software reset for the specified PHY and
949 * wait up to 100ms for the reset to complete. We should
950 * not access the PHY for 50ms after issuing the reset.
952 * The time to wait appears to be dependent on the PHY.
954 * Must be called with lp->lock locked.
956 static int smc_phy_reset(struct net_device *dev, int phy)
958 struct smc_local *lp = netdev_priv(dev);
959 unsigned int bmcr;
960 int timeout;
962 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
964 for (timeout = 2; timeout; timeout--) {
965 spin_unlock_irq(&lp->lock);
966 msleep(50);
967 spin_lock_irq(&lp->lock);
969 bmcr = smc_phy_read(dev, phy, MII_BMCR);
970 if (!(bmcr & BMCR_RESET))
971 break;
974 return bmcr & BMCR_RESET;
978 * smc_phy_powerdown - powerdown phy
979 * @dev: net device
981 * Power down the specified PHY
983 static void smc_phy_powerdown(struct net_device *dev)
985 struct smc_local *lp = netdev_priv(dev);
986 unsigned int bmcr;
987 int phy = lp->mii.phy_id;
989 if (lp->phy_type == 0)
990 return;
992 /* We need to ensure that no calls to smc_phy_configure are
993 pending.
995 cancel_work_sync(&lp->phy_configure);
997 bmcr = smc_phy_read(dev, phy, MII_BMCR);
998 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1002 * smc_phy_check_media - check the media status and adjust TCR
1003 * @dev: net device
1004 * @init: set true for initialisation
1006 * Select duplex mode depending on negotiation state. This
1007 * also updates our carrier state.
1009 static void smc_phy_check_media(struct net_device *dev, int init)
1011 struct smc_local *lp = netdev_priv(dev);
1012 void __iomem *ioaddr = lp->base;
1014 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1015 /* duplex state has changed */
1016 if (lp->mii.full_duplex) {
1017 lp->tcr_cur_mode |= TCR_SWFDUP;
1018 } else {
1019 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1022 SMC_SELECT_BANK(lp, 0);
1023 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1028 * Configures the specified PHY through the MII management interface
1029 * using Autonegotiation.
1030 * Calls smc_phy_fixed() if the user has requested a certain config.
1031 * If RPC ANEG bit is set, the media selection is dependent purely on
1032 * the selection by the MII (either in the MII BMCR reg or the result
1033 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1034 * is controlled by the RPC SPEED and RPC DPLX bits.
1036 static void smc_phy_configure(struct work_struct *work)
1038 struct smc_local *lp =
1039 container_of(work, struct smc_local, phy_configure);
1040 struct net_device *dev = lp->dev;
1041 void __iomem *ioaddr = lp->base;
1042 int phyaddr = lp->mii.phy_id;
1043 int my_phy_caps; /* My PHY capabilities */
1044 int my_ad_caps; /* My Advertised capabilities */
1045 int status;
1047 DBG(3, "%s:smc_program_phy()\n", dev->name);
1049 spin_lock_irq(&lp->lock);
1052 * We should not be called if phy_type is zero.
1054 if (lp->phy_type == 0)
1055 goto smc_phy_configure_exit;
1057 if (smc_phy_reset(dev, phyaddr)) {
1058 printk("%s: PHY reset timed out\n", dev->name);
1059 goto smc_phy_configure_exit;
1063 * Enable PHY Interrupts (for register 18)
1064 * Interrupts listed here are disabled
1066 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1067 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1068 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1069 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1071 /* Configure the Receive/Phy Control register */
1072 SMC_SELECT_BANK(lp, 0);
1073 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1075 /* If the user requested no auto neg, then go set his request */
1076 if (lp->mii.force_media) {
1077 smc_phy_fixed(dev);
1078 goto smc_phy_configure_exit;
1081 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1082 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1084 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1085 printk(KERN_INFO "Auto negotiation NOT supported\n");
1086 smc_phy_fixed(dev);
1087 goto smc_phy_configure_exit;
1090 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1092 if (my_phy_caps & BMSR_100BASE4)
1093 my_ad_caps |= ADVERTISE_100BASE4;
1094 if (my_phy_caps & BMSR_100FULL)
1095 my_ad_caps |= ADVERTISE_100FULL;
1096 if (my_phy_caps & BMSR_100HALF)
1097 my_ad_caps |= ADVERTISE_100HALF;
1098 if (my_phy_caps & BMSR_10FULL)
1099 my_ad_caps |= ADVERTISE_10FULL;
1100 if (my_phy_caps & BMSR_10HALF)
1101 my_ad_caps |= ADVERTISE_10HALF;
1103 /* Disable capabilities not selected by our user */
1104 if (lp->ctl_rspeed != 100)
1105 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1107 if (!lp->ctl_rfduplx)
1108 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1110 /* Update our Auto-Neg Advertisement Register */
1111 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1112 lp->mii.advertising = my_ad_caps;
1115 * Read the register back. Without this, it appears that when
1116 * auto-negotiation is restarted, sometimes it isn't ready and
1117 * the link does not come up.
1119 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1121 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1122 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1124 /* Restart auto-negotiation process in order to advertise my caps */
1125 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1127 smc_phy_check_media(dev, 1);
1129 smc_phy_configure_exit:
1130 SMC_SELECT_BANK(lp, 2);
1131 spin_unlock_irq(&lp->lock);
1135 * smc_phy_interrupt
1137 * Purpose: Handle interrupts relating to PHY register 18. This is
1138 * called from the "hard" interrupt handler under our private spinlock.
1140 static void smc_phy_interrupt(struct net_device *dev)
1142 struct smc_local *lp = netdev_priv(dev);
1143 int phyaddr = lp->mii.phy_id;
1144 int phy18;
1146 DBG(2, "%s: %s\n", dev->name, __func__);
1148 if (lp->phy_type == 0)
1149 return;
1151 for(;;) {
1152 smc_phy_check_media(dev, 0);
1154 /* Read PHY Register 18, Status Output */
1155 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1156 if ((phy18 & PHY_INT_INT) == 0)
1157 break;
1161 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1163 static void smc_10bt_check_media(struct net_device *dev, int init)
1165 struct smc_local *lp = netdev_priv(dev);
1166 void __iomem *ioaddr = lp->base;
1167 unsigned int old_carrier, new_carrier;
1169 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1171 SMC_SELECT_BANK(lp, 0);
1172 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1173 SMC_SELECT_BANK(lp, 2);
1175 if (init || (old_carrier != new_carrier)) {
1176 if (!new_carrier) {
1177 netif_carrier_off(dev);
1178 } else {
1179 netif_carrier_on(dev);
1181 if (netif_msg_link(lp))
1182 printk(KERN_INFO "%s: link %s\n", dev->name,
1183 new_carrier ? "up" : "down");
1187 static void smc_eph_interrupt(struct net_device *dev)
1189 struct smc_local *lp = netdev_priv(dev);
1190 void __iomem *ioaddr = lp->base;
1191 unsigned int ctl;
1193 smc_10bt_check_media(dev, 0);
1195 SMC_SELECT_BANK(lp, 1);
1196 ctl = SMC_GET_CTL(lp);
1197 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1198 SMC_SET_CTL(lp, ctl);
1199 SMC_SELECT_BANK(lp, 2);
1203 * This is the main routine of the driver, to handle the device when
1204 * it needs some attention.
1206 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1208 struct net_device *dev = dev_id;
1209 struct smc_local *lp = netdev_priv(dev);
1210 void __iomem *ioaddr = lp->base;
1211 int status, mask, timeout, card_stats;
1212 int saved_pointer;
1214 DBG(3, "%s: %s\n", dev->name, __func__);
1216 spin_lock(&lp->lock);
1218 /* A preamble may be used when there is a potential race
1219 * between the interruptible transmit functions and this
1220 * ISR. */
1221 SMC_INTERRUPT_PREAMBLE;
1223 saved_pointer = SMC_GET_PTR(lp);
1224 mask = SMC_GET_INT_MASK(lp);
1225 SMC_SET_INT_MASK(lp, 0);
1227 /* set a timeout value, so I don't stay here forever */
1228 timeout = MAX_IRQ_LOOPS;
1230 do {
1231 status = SMC_GET_INT(lp);
1233 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1234 dev->name, status, mask,
1235 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1236 meminfo = SMC_GET_MIR(lp);
1237 SMC_SELECT_BANK(lp, 2); meminfo; }),
1238 SMC_GET_FIFO(lp));
1240 status &= mask;
1241 if (!status)
1242 break;
1244 if (status & IM_TX_INT) {
1245 /* do this before RX as it will free memory quickly */
1246 DBG(3, "%s: TX int\n", dev->name);
1247 smc_tx(dev);
1248 SMC_ACK_INT(lp, IM_TX_INT);
1249 if (THROTTLE_TX_PKTS)
1250 netif_wake_queue(dev);
1251 } else if (status & IM_RCV_INT) {
1252 DBG(3, "%s: RX irq\n", dev->name);
1253 smc_rcv(dev);
1254 } else if (status & IM_ALLOC_INT) {
1255 DBG(3, "%s: Allocation irq\n", dev->name);
1256 tasklet_hi_schedule(&lp->tx_task);
1257 mask &= ~IM_ALLOC_INT;
1258 } else if (status & IM_TX_EMPTY_INT) {
1259 DBG(3, "%s: TX empty\n", dev->name);
1260 mask &= ~IM_TX_EMPTY_INT;
1262 /* update stats */
1263 SMC_SELECT_BANK(lp, 0);
1264 card_stats = SMC_GET_COUNTER(lp);
1265 SMC_SELECT_BANK(lp, 2);
1267 /* single collisions */
1268 dev->stats.collisions += card_stats & 0xF;
1269 card_stats >>= 4;
1271 /* multiple collisions */
1272 dev->stats.collisions += card_stats & 0xF;
1273 } else if (status & IM_RX_OVRN_INT) {
1274 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1275 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1276 eph_st = SMC_GET_EPH_STATUS(lp);
1277 SMC_SELECT_BANK(lp, 2); eph_st; }));
1278 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1279 dev->stats.rx_errors++;
1280 dev->stats.rx_fifo_errors++;
1281 } else if (status & IM_EPH_INT) {
1282 smc_eph_interrupt(dev);
1283 } else if (status & IM_MDINT) {
1284 SMC_ACK_INT(lp, IM_MDINT);
1285 smc_phy_interrupt(dev);
1286 } else if (status & IM_ERCV_INT) {
1287 SMC_ACK_INT(lp, IM_ERCV_INT);
1288 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1290 } while (--timeout);
1292 /* restore register states */
1293 SMC_SET_PTR(lp, saved_pointer);
1294 SMC_SET_INT_MASK(lp, mask);
1295 spin_unlock(&lp->lock);
1297 #ifndef CONFIG_NET_POLL_CONTROLLER
1298 if (timeout == MAX_IRQ_LOOPS)
1299 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1300 dev->name, mask);
1301 #endif
1302 DBG(3, "%s: Interrupt done (%d loops)\n",
1303 dev->name, MAX_IRQ_LOOPS - timeout);
1306 * We return IRQ_HANDLED unconditionally here even if there was
1307 * nothing to do. There is a possibility that a packet might
1308 * get enqueued into the chip right after TX_EMPTY_INT is raised
1309 * but just before the CPU acknowledges the IRQ.
1310 * Better take an unneeded IRQ in some occasions than complexifying
1311 * the code for all cases.
1313 return IRQ_HANDLED;
1316 #ifdef CONFIG_NET_POLL_CONTROLLER
1318 * Polling receive - used by netconsole and other diagnostic tools
1319 * to allow network i/o with interrupts disabled.
1321 static void smc_poll_controller(struct net_device *dev)
1323 disable_irq(dev->irq);
1324 smc_interrupt(dev->irq, dev);
1325 enable_irq(dev->irq);
1327 #endif
1329 /* Our watchdog timed out. Called by the networking layer */
1330 static void smc_timeout(struct net_device *dev)
1332 struct smc_local *lp = netdev_priv(dev);
1333 void __iomem *ioaddr = lp->base;
1334 int status, mask, eph_st, meminfo, fifo;
1336 DBG(2, "%s: %s\n", dev->name, __func__);
1338 spin_lock_irq(&lp->lock);
1339 status = SMC_GET_INT(lp);
1340 mask = SMC_GET_INT_MASK(lp);
1341 fifo = SMC_GET_FIFO(lp);
1342 SMC_SELECT_BANK(lp, 0);
1343 eph_st = SMC_GET_EPH_STATUS(lp);
1344 meminfo = SMC_GET_MIR(lp);
1345 SMC_SELECT_BANK(lp, 2);
1346 spin_unlock_irq(&lp->lock);
1347 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1348 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1349 dev->name, status, mask, meminfo, fifo, eph_st );
1351 smc_reset(dev);
1352 smc_enable(dev);
1355 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1356 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1357 * which calls schedule(). Hence we use a work queue.
1359 if (lp->phy_type != 0)
1360 schedule_work(&lp->phy_configure);
1362 /* We can accept TX packets again */
1363 dev->trans_start = jiffies;
1364 netif_wake_queue(dev);
1368 * This routine will, depending on the values passed to it,
1369 * either make it accept multicast packets, go into
1370 * promiscuous mode (for TCPDUMP and cousins) or accept
1371 * a select set of multicast packets
1373 static void smc_set_multicast_list(struct net_device *dev)
1375 struct smc_local *lp = netdev_priv(dev);
1376 void __iomem *ioaddr = lp->base;
1377 unsigned char multicast_table[8];
1378 int update_multicast = 0;
1380 DBG(2, "%s: %s\n", dev->name, __func__);
1382 if (dev->flags & IFF_PROMISC) {
1383 DBG(2, "%s: RCR_PRMS\n", dev->name);
1384 lp->rcr_cur_mode |= RCR_PRMS;
1387 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1388 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1389 when promiscuous mode is turned on.
1393 * Here, I am setting this to accept all multicast packets.
1394 * I don't need to zero the multicast table, because the flag is
1395 * checked before the table is
1397 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1398 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1399 lp->rcr_cur_mode |= RCR_ALMUL;
1403 * This sets the internal hardware table to filter out unwanted
1404 * multicast packets before they take up memory.
1406 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1407 * address are the offset into the table. If that bit is 1, then the
1408 * multicast packet is accepted. Otherwise, it's dropped silently.
1410 * To use the 6 bits as an offset into the table, the high 3 bits are
1411 * the number of the 8 bit register, while the low 3 bits are the bit
1412 * within that register.
1414 else if (!netdev_mc_empty(dev)) {
1415 struct dev_mc_list *cur_addr;
1417 /* table for flipping the order of 3 bits */
1418 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1420 /* start with a table of all zeros: reject all */
1421 memset(multicast_table, 0, sizeof(multicast_table));
1423 netdev_for_each_mc_addr(cur_addr, dev) {
1424 int position;
1426 /* make sure this is a multicast address -
1427 shouldn't this be a given if we have it here ? */
1428 if (!(*cur_addr->dmi_addr & 1))
1429 continue;
1431 /* only use the low order bits */
1432 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1434 /* do some messy swapping to put the bit in the right spot */
1435 multicast_table[invert3[position&7]] |=
1436 (1<<invert3[(position>>3)&7]);
1439 /* be sure I get rid of flags I might have set */
1440 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1442 /* now, the table can be loaded into the chipset */
1443 update_multicast = 1;
1444 } else {
1445 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1446 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1449 * since I'm disabling all multicast entirely, I need to
1450 * clear the multicast list
1452 memset(multicast_table, 0, sizeof(multicast_table));
1453 update_multicast = 1;
1456 spin_lock_irq(&lp->lock);
1457 SMC_SELECT_BANK(lp, 0);
1458 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1459 if (update_multicast) {
1460 SMC_SELECT_BANK(lp, 3);
1461 SMC_SET_MCAST(lp, multicast_table);
1463 SMC_SELECT_BANK(lp, 2);
1464 spin_unlock_irq(&lp->lock);
1469 * Open and Initialize the board
1471 * Set up everything, reset the card, etc..
1473 static int
1474 smc_open(struct net_device *dev)
1476 struct smc_local *lp = netdev_priv(dev);
1478 DBG(2, "%s: %s\n", dev->name, __func__);
1481 * Check that the address is valid. If its not, refuse
1482 * to bring the device up. The user must specify an
1483 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1485 if (!is_valid_ether_addr(dev->dev_addr)) {
1486 PRINTK("%s: no valid ethernet hw addr\n", __func__);
1487 return -EINVAL;
1490 /* Setup the default Register Modes */
1491 lp->tcr_cur_mode = TCR_DEFAULT;
1492 lp->rcr_cur_mode = RCR_DEFAULT;
1493 lp->rpc_cur_mode = RPC_DEFAULT |
1494 lp->cfg.leda << RPC_LSXA_SHFT |
1495 lp->cfg.ledb << RPC_LSXB_SHFT;
1498 * If we are not using a MII interface, we need to
1499 * monitor our own carrier signal to detect faults.
1501 if (lp->phy_type == 0)
1502 lp->tcr_cur_mode |= TCR_MON_CSN;
1504 /* reset the hardware */
1505 smc_reset(dev);
1506 smc_enable(dev);
1508 /* Configure the PHY, initialize the link state */
1509 if (lp->phy_type != 0)
1510 smc_phy_configure(&lp->phy_configure);
1511 else {
1512 spin_lock_irq(&lp->lock);
1513 smc_10bt_check_media(dev, 1);
1514 spin_unlock_irq(&lp->lock);
1517 netif_start_queue(dev);
1518 return 0;
1522 * smc_close
1524 * this makes the board clean up everything that it can
1525 * and not talk to the outside world. Caused by
1526 * an 'ifconfig ethX down'
1528 static int smc_close(struct net_device *dev)
1530 struct smc_local *lp = netdev_priv(dev);
1532 DBG(2, "%s: %s\n", dev->name, __func__);
1534 netif_stop_queue(dev);
1535 netif_carrier_off(dev);
1537 /* clear everything */
1538 smc_shutdown(dev);
1539 tasklet_kill(&lp->tx_task);
1540 smc_phy_powerdown(dev);
1541 return 0;
1545 * Ethtool support
1547 static int
1548 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1550 struct smc_local *lp = netdev_priv(dev);
1551 int ret;
1553 cmd->maxtxpkt = 1;
1554 cmd->maxrxpkt = 1;
1556 if (lp->phy_type != 0) {
1557 spin_lock_irq(&lp->lock);
1558 ret = mii_ethtool_gset(&lp->mii, cmd);
1559 spin_unlock_irq(&lp->lock);
1560 } else {
1561 cmd->supported = SUPPORTED_10baseT_Half |
1562 SUPPORTED_10baseT_Full |
1563 SUPPORTED_TP | SUPPORTED_AUI;
1565 if (lp->ctl_rspeed == 10)
1566 cmd->speed = SPEED_10;
1567 else if (lp->ctl_rspeed == 100)
1568 cmd->speed = SPEED_100;
1570 cmd->autoneg = AUTONEG_DISABLE;
1571 cmd->transceiver = XCVR_INTERNAL;
1572 cmd->port = 0;
1573 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1575 ret = 0;
1578 return ret;
1581 static int
1582 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1584 struct smc_local *lp = netdev_priv(dev);
1585 int ret;
1587 if (lp->phy_type != 0) {
1588 spin_lock_irq(&lp->lock);
1589 ret = mii_ethtool_sset(&lp->mii, cmd);
1590 spin_unlock_irq(&lp->lock);
1591 } else {
1592 if (cmd->autoneg != AUTONEG_DISABLE ||
1593 cmd->speed != SPEED_10 ||
1594 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1595 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1596 return -EINVAL;
1598 // lp->port = cmd->port;
1599 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1601 // if (netif_running(dev))
1602 // smc_set_port(dev);
1604 ret = 0;
1607 return ret;
1610 static void
1611 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1613 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1614 strncpy(info->version, version, sizeof(info->version));
1615 strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1618 static int smc_ethtool_nwayreset(struct net_device *dev)
1620 struct smc_local *lp = netdev_priv(dev);
1621 int ret = -EINVAL;
1623 if (lp->phy_type != 0) {
1624 spin_lock_irq(&lp->lock);
1625 ret = mii_nway_restart(&lp->mii);
1626 spin_unlock_irq(&lp->lock);
1629 return ret;
1632 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1634 struct smc_local *lp = netdev_priv(dev);
1635 return lp->msg_enable;
1638 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1640 struct smc_local *lp = netdev_priv(dev);
1641 lp->msg_enable = level;
1644 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1646 u16 ctl;
1647 struct smc_local *lp = netdev_priv(dev);
1648 void __iomem *ioaddr = lp->base;
1650 spin_lock_irq(&lp->lock);
1651 /* load word into GP register */
1652 SMC_SELECT_BANK(lp, 1);
1653 SMC_SET_GP(lp, word);
1654 /* set the address to put the data in EEPROM */
1655 SMC_SELECT_BANK(lp, 2);
1656 SMC_SET_PTR(lp, addr);
1657 /* tell it to write */
1658 SMC_SELECT_BANK(lp, 1);
1659 ctl = SMC_GET_CTL(lp);
1660 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1661 /* wait for it to finish */
1662 do {
1663 udelay(1);
1664 } while (SMC_GET_CTL(lp) & CTL_STORE);
1665 /* clean up */
1666 SMC_SET_CTL(lp, ctl);
1667 SMC_SELECT_BANK(lp, 2);
1668 spin_unlock_irq(&lp->lock);
1669 return 0;
1672 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1674 u16 ctl;
1675 struct smc_local *lp = netdev_priv(dev);
1676 void __iomem *ioaddr = lp->base;
1678 spin_lock_irq(&lp->lock);
1679 /* set the EEPROM address to get the data from */
1680 SMC_SELECT_BANK(lp, 2);
1681 SMC_SET_PTR(lp, addr | PTR_READ);
1682 /* tell it to load */
1683 SMC_SELECT_BANK(lp, 1);
1684 SMC_SET_GP(lp, 0xffff); /* init to known */
1685 ctl = SMC_GET_CTL(lp);
1686 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1687 /* wait for it to finish */
1688 do {
1689 udelay(1);
1690 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1691 /* read word from GP register */
1692 *word = SMC_GET_GP(lp);
1693 /* clean up */
1694 SMC_SET_CTL(lp, ctl);
1695 SMC_SELECT_BANK(lp, 2);
1696 spin_unlock_irq(&lp->lock);
1697 return 0;
1700 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1702 return 0x23 * 2;
1705 static int smc_ethtool_geteeprom(struct net_device *dev,
1706 struct ethtool_eeprom *eeprom, u8 *data)
1708 int i;
1709 int imax;
1711 DBG(1, "Reading %d bytes at %d(0x%x)\n",
1712 eeprom->len, eeprom->offset, eeprom->offset);
1713 imax = smc_ethtool_geteeprom_len(dev);
1714 for (i = 0; i < eeprom->len; i += 2) {
1715 int ret;
1716 u16 wbuf;
1717 int offset = i + eeprom->offset;
1718 if (offset > imax)
1719 break;
1720 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1721 if (ret != 0)
1722 return ret;
1723 DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1724 data[i] = (wbuf >> 8) & 0xff;
1725 data[i+1] = wbuf & 0xff;
1727 return 0;
1730 static int smc_ethtool_seteeprom(struct net_device *dev,
1731 struct ethtool_eeprom *eeprom, u8 *data)
1733 int i;
1734 int imax;
1736 DBG(1, "Writing %d bytes to %d(0x%x)\n",
1737 eeprom->len, eeprom->offset, eeprom->offset);
1738 imax = smc_ethtool_geteeprom_len(dev);
1739 for (i = 0; i < eeprom->len; i += 2) {
1740 int ret;
1741 u16 wbuf;
1742 int offset = i + eeprom->offset;
1743 if (offset > imax)
1744 break;
1745 wbuf = (data[i] << 8) | data[i + 1];
1746 DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1747 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1748 if (ret != 0)
1749 return ret;
1751 return 0;
1755 static const struct ethtool_ops smc_ethtool_ops = {
1756 .get_settings = smc_ethtool_getsettings,
1757 .set_settings = smc_ethtool_setsettings,
1758 .get_drvinfo = smc_ethtool_getdrvinfo,
1760 .get_msglevel = smc_ethtool_getmsglevel,
1761 .set_msglevel = smc_ethtool_setmsglevel,
1762 .nway_reset = smc_ethtool_nwayreset,
1763 .get_link = ethtool_op_get_link,
1764 .get_eeprom_len = smc_ethtool_geteeprom_len,
1765 .get_eeprom = smc_ethtool_geteeprom,
1766 .set_eeprom = smc_ethtool_seteeprom,
1769 static const struct net_device_ops smc_netdev_ops = {
1770 .ndo_open = smc_open,
1771 .ndo_stop = smc_close,
1772 .ndo_start_xmit = smc_hard_start_xmit,
1773 .ndo_tx_timeout = smc_timeout,
1774 .ndo_set_multicast_list = smc_set_multicast_list,
1775 .ndo_change_mtu = eth_change_mtu,
1776 .ndo_validate_addr = eth_validate_addr,
1777 .ndo_set_mac_address = eth_mac_addr,
1778 #ifdef CONFIG_NET_POLL_CONTROLLER
1779 .ndo_poll_controller = smc_poll_controller,
1780 #endif
1784 * smc_findirq
1786 * This routine has a simple purpose -- make the SMC chip generate an
1787 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1790 * does this still work?
1792 * I just deleted auto_irq.c, since it was never built...
1793 * --jgarzik
1795 static int __devinit smc_findirq(struct smc_local *lp)
1797 void __iomem *ioaddr = lp->base;
1798 int timeout = 20;
1799 unsigned long cookie;
1801 DBG(2, "%s: %s\n", CARDNAME, __func__);
1803 cookie = probe_irq_on();
1806 * What I try to do here is trigger an ALLOC_INT. This is done
1807 * by allocating a small chunk of memory, which will give an interrupt
1808 * when done.
1810 /* enable ALLOCation interrupts ONLY */
1811 SMC_SELECT_BANK(lp, 2);
1812 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1815 * Allocate 512 bytes of memory. Note that the chip was just
1816 * reset so all the memory is available
1818 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1821 * Wait until positive that the interrupt has been generated
1823 do {
1824 int int_status;
1825 udelay(10);
1826 int_status = SMC_GET_INT(lp);
1827 if (int_status & IM_ALLOC_INT)
1828 break; /* got the interrupt */
1829 } while (--timeout);
1832 * there is really nothing that I can do here if timeout fails,
1833 * as autoirq_report will return a 0 anyway, which is what I
1834 * want in this case. Plus, the clean up is needed in both
1835 * cases.
1838 /* and disable all interrupts again */
1839 SMC_SET_INT_MASK(lp, 0);
1841 /* and return what I found */
1842 return probe_irq_off(cookie);
1846 * Function: smc_probe(unsigned long ioaddr)
1848 * Purpose:
1849 * Tests to see if a given ioaddr points to an SMC91x chip.
1850 * Returns a 0 on success
1852 * Algorithm:
1853 * (1) see if the high byte of BANK_SELECT is 0x33
1854 * (2) compare the ioaddr with the base register's address
1855 * (3) see if I recognize the chip ID in the appropriate register
1857 * Here I do typical initialization tasks.
1859 * o Initialize the structure if needed
1860 * o print out my vanity message if not done so already
1861 * o print out what type of hardware is detected
1862 * o print out the ethernet address
1863 * o find the IRQ
1864 * o set up my private data
1865 * o configure the dev structure with my subroutines
1866 * o actually GRAB the irq.
1867 * o GRAB the region
1869 static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
1870 unsigned long irq_flags)
1872 struct smc_local *lp = netdev_priv(dev);
1873 static int version_printed = 0;
1874 int retval;
1875 unsigned int val, revision_register;
1876 const char *version_string;
1878 DBG(2, "%s: %s\n", CARDNAME, __func__);
1880 /* First, see if the high byte is 0x33 */
1881 val = SMC_CURRENT_BANK(lp);
1882 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1883 if ((val & 0xFF00) != 0x3300) {
1884 if ((val & 0xFF) == 0x33) {
1885 printk(KERN_WARNING
1886 "%s: Detected possible byte-swapped interface"
1887 " at IOADDR %p\n", CARDNAME, ioaddr);
1889 retval = -ENODEV;
1890 goto err_out;
1894 * The above MIGHT indicate a device, but I need to write to
1895 * further test this.
1897 SMC_SELECT_BANK(lp, 0);
1898 val = SMC_CURRENT_BANK(lp);
1899 if ((val & 0xFF00) != 0x3300) {
1900 retval = -ENODEV;
1901 goto err_out;
1905 * well, we've already written once, so hopefully another
1906 * time won't hurt. This time, I need to switch the bank
1907 * register to bank 1, so I can access the base address
1908 * register
1910 SMC_SELECT_BANK(lp, 1);
1911 val = SMC_GET_BASE(lp);
1912 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1913 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1914 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1915 CARDNAME, ioaddr, val);
1919 * check if the revision register is something that I
1920 * recognize. These might need to be added to later,
1921 * as future revisions could be added.
1923 SMC_SELECT_BANK(lp, 3);
1924 revision_register = SMC_GET_REV(lp);
1925 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1926 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1927 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1928 /* I don't recognize this chip, so... */
1929 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1930 ", Contact author.\n", CARDNAME,
1931 ioaddr, revision_register);
1933 retval = -ENODEV;
1934 goto err_out;
1937 /* At this point I'll assume that the chip is an SMC91x. */
1938 if (version_printed++ == 0)
1939 printk("%s", version);
1941 /* fill in some of the fields */
1942 dev->base_addr = (unsigned long)ioaddr;
1943 lp->base = ioaddr;
1944 lp->version = revision_register & 0xff;
1945 spin_lock_init(&lp->lock);
1947 /* Get the MAC address */
1948 SMC_SELECT_BANK(lp, 1);
1949 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1951 /* now, reset the chip, and put it into a known state */
1952 smc_reset(dev);
1955 * If dev->irq is 0, then the device has to be banged on to see
1956 * what the IRQ is.
1958 * This banging doesn't always detect the IRQ, for unknown reasons.
1959 * a workaround is to reset the chip and try again.
1961 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1962 * be what is requested on the command line. I don't do that, mostly
1963 * because the card that I have uses a non-standard method of accessing
1964 * the IRQs, and because this _should_ work in most configurations.
1966 * Specifying an IRQ is done with the assumption that the user knows
1967 * what (s)he is doing. No checking is done!!!!
1969 if (dev->irq < 1) {
1970 int trials;
1972 trials = 3;
1973 while (trials--) {
1974 dev->irq = smc_findirq(lp);
1975 if (dev->irq)
1976 break;
1977 /* kick the card and try again */
1978 smc_reset(dev);
1981 if (dev->irq == 0) {
1982 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1983 dev->name);
1984 retval = -ENODEV;
1985 goto err_out;
1987 dev->irq = irq_canonicalize(dev->irq);
1989 /* Fill in the fields of the device structure with ethernet values. */
1990 ether_setup(dev);
1992 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1993 dev->netdev_ops = &smc_netdev_ops;
1994 dev->ethtool_ops = &smc_ethtool_ops;
1996 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1997 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1998 lp->dev = dev;
1999 lp->mii.phy_id_mask = 0x1f;
2000 lp->mii.reg_num_mask = 0x1f;
2001 lp->mii.force_media = 0;
2002 lp->mii.full_duplex = 0;
2003 lp->mii.dev = dev;
2004 lp->mii.mdio_read = smc_phy_read;
2005 lp->mii.mdio_write = smc_phy_write;
2008 * Locate the phy, if any.
2010 if (lp->version >= (CHIP_91100 << 4))
2011 smc_phy_detect(dev);
2013 /* then shut everything down to save power */
2014 smc_shutdown(dev);
2015 smc_phy_powerdown(dev);
2017 /* Set default parameters */
2018 lp->msg_enable = NETIF_MSG_LINK;
2019 lp->ctl_rfduplx = 0;
2020 lp->ctl_rspeed = 10;
2022 if (lp->version >= (CHIP_91100 << 4)) {
2023 lp->ctl_rfduplx = 1;
2024 lp->ctl_rspeed = 100;
2027 /* Grab the IRQ */
2028 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2029 if (retval)
2030 goto err_out;
2032 #ifdef CONFIG_ARCH_PXA
2033 # ifdef SMC_USE_PXA_DMA
2034 lp->cfg.flags |= SMC91X_USE_DMA;
2035 # endif
2036 if (lp->cfg.flags & SMC91X_USE_DMA) {
2037 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2038 smc_pxa_dma_irq, NULL);
2039 if (dma >= 0)
2040 dev->dma = dma;
2042 #endif
2044 retval = register_netdev(dev);
2045 if (retval == 0) {
2046 /* now, print out the card info, in a short format.. */
2047 printk("%s: %s (rev %d) at %p IRQ %d",
2048 dev->name, version_string, revision_register & 0x0f,
2049 lp->base, dev->irq);
2051 if (dev->dma != (unsigned char)-1)
2052 printk(" DMA %d", dev->dma);
2054 printk("%s%s\n",
2055 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2056 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2058 if (!is_valid_ether_addr(dev->dev_addr)) {
2059 printk("%s: Invalid ethernet MAC address. Please "
2060 "set using ifconfig\n", dev->name);
2061 } else {
2062 /* Print the Ethernet address */
2063 printk("%s: Ethernet addr: %pM\n",
2064 dev->name, dev->dev_addr);
2067 if (lp->phy_type == 0) {
2068 PRINTK("%s: No PHY found\n", dev->name);
2069 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2070 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2071 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2072 PRINTK("%s: PHY LAN83C180\n", dev->name);
2076 err_out:
2077 #ifdef CONFIG_ARCH_PXA
2078 if (retval && dev->dma != (unsigned char)-1)
2079 pxa_free_dma(dev->dma);
2080 #endif
2081 return retval;
2084 static int smc_enable_device(struct platform_device *pdev)
2086 struct net_device *ndev = platform_get_drvdata(pdev);
2087 struct smc_local *lp = netdev_priv(ndev);
2088 unsigned long flags;
2089 unsigned char ecor, ecsr;
2090 void __iomem *addr;
2091 struct resource * res;
2093 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2094 if (!res)
2095 return 0;
2098 * Map the attribute space. This is overkill, but clean.
2100 addr = ioremap(res->start, ATTRIB_SIZE);
2101 if (!addr)
2102 return -ENOMEM;
2105 * Reset the device. We must disable IRQs around this
2106 * since a reset causes the IRQ line become active.
2108 local_irq_save(flags);
2109 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2110 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2111 readb(addr + (ECOR << SMC_IO_SHIFT));
2114 * Wait 100us for the chip to reset.
2116 udelay(100);
2119 * The device will ignore all writes to the enable bit while
2120 * reset is asserted, even if the reset bit is cleared in the
2121 * same write. Must clear reset first, then enable the device.
2123 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2124 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2127 * Set the appropriate byte/word mode.
2129 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2130 if (!SMC_16BIT(lp))
2131 ecsr |= ECSR_IOIS8;
2132 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2133 local_irq_restore(flags);
2135 iounmap(addr);
2138 * Wait for the chip to wake up. We could poll the control
2139 * register in the main register space, but that isn't mapped
2140 * yet. We know this is going to take 750us.
2142 msleep(1);
2144 return 0;
2147 static int smc_request_attrib(struct platform_device *pdev,
2148 struct net_device *ndev)
2150 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2151 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2153 if (!res)
2154 return 0;
2156 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2157 return -EBUSY;
2159 return 0;
2162 static void smc_release_attrib(struct platform_device *pdev,
2163 struct net_device *ndev)
2165 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2166 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2168 if (res)
2169 release_mem_region(res->start, ATTRIB_SIZE);
2172 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2174 if (SMC_CAN_USE_DATACS) {
2175 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2176 struct smc_local *lp = netdev_priv(ndev);
2178 if (!res)
2179 return;
2181 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2182 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2183 return;
2186 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2190 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2192 if (SMC_CAN_USE_DATACS) {
2193 struct smc_local *lp = netdev_priv(ndev);
2194 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2196 if (lp->datacs)
2197 iounmap(lp->datacs);
2199 lp->datacs = NULL;
2201 if (res)
2202 release_mem_region(res->start, SMC_DATA_EXTENT);
2207 * smc_init(void)
2208 * Input parameters:
2209 * dev->base_addr == 0, try to find all possible locations
2210 * dev->base_addr > 0x1ff, this is the address to check
2211 * dev->base_addr == <anything else>, return failure code
2213 * Output:
2214 * 0 --> there is a device
2215 * anything else, error
2217 static int __devinit smc_drv_probe(struct platform_device *pdev)
2219 struct smc91x_platdata *pd = pdev->dev.platform_data;
2220 struct smc_local *lp;
2221 struct net_device *ndev;
2222 struct resource *res, *ires;
2223 unsigned int __iomem *addr;
2224 unsigned long irq_flags = SMC_IRQ_FLAGS;
2225 int ret;
2227 ndev = alloc_etherdev(sizeof(struct smc_local));
2228 if (!ndev) {
2229 printk("%s: could not allocate device.\n", CARDNAME);
2230 ret = -ENOMEM;
2231 goto out;
2233 SET_NETDEV_DEV(ndev, &pdev->dev);
2235 /* get configuration from platform data, only allow use of
2236 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2239 lp = netdev_priv(ndev);
2241 if (pd) {
2242 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2243 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2244 } else {
2245 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2246 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2247 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2248 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2251 if (!lp->cfg.leda && !lp->cfg.ledb) {
2252 lp->cfg.leda = RPC_LSA_DEFAULT;
2253 lp->cfg.ledb = RPC_LSB_DEFAULT;
2256 ndev->dma = (unsigned char)-1;
2258 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2259 if (!res)
2260 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2261 if (!res) {
2262 ret = -ENODEV;
2263 goto out_free_netdev;
2267 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2268 ret = -EBUSY;
2269 goto out_free_netdev;
2272 ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2273 if (!ires) {
2274 ret = -ENODEV;
2275 goto out_release_io;
2278 ndev->irq = ires->start;
2280 if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2281 irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2283 ret = smc_request_attrib(pdev, ndev);
2284 if (ret)
2285 goto out_release_io;
2286 #if defined(CONFIG_SA1100_ASSABET)
2287 NCR_0 |= NCR_ENET_OSC_EN;
2288 #endif
2289 platform_set_drvdata(pdev, ndev);
2290 ret = smc_enable_device(pdev);
2291 if (ret)
2292 goto out_release_attrib;
2294 addr = ioremap(res->start, SMC_IO_EXTENT);
2295 if (!addr) {
2296 ret = -ENOMEM;
2297 goto out_release_attrib;
2300 #ifdef CONFIG_ARCH_PXA
2302 struct smc_local *lp = netdev_priv(ndev);
2303 lp->device = &pdev->dev;
2304 lp->physaddr = res->start;
2306 #endif
2308 ret = smc_probe(ndev, addr, irq_flags);
2309 if (ret != 0)
2310 goto out_iounmap;
2312 smc_request_datacs(pdev, ndev);
2314 return 0;
2316 out_iounmap:
2317 platform_set_drvdata(pdev, NULL);
2318 iounmap(addr);
2319 out_release_attrib:
2320 smc_release_attrib(pdev, ndev);
2321 out_release_io:
2322 release_mem_region(res->start, SMC_IO_EXTENT);
2323 out_free_netdev:
2324 free_netdev(ndev);
2325 out:
2326 printk("%s: not found (%d).\n", CARDNAME, ret);
2328 return ret;
2331 static int __devexit smc_drv_remove(struct platform_device *pdev)
2333 struct net_device *ndev = platform_get_drvdata(pdev);
2334 struct smc_local *lp = netdev_priv(ndev);
2335 struct resource *res;
2337 platform_set_drvdata(pdev, NULL);
2339 unregister_netdev(ndev);
2341 free_irq(ndev->irq, ndev);
2343 #ifdef CONFIG_ARCH_PXA
2344 if (ndev->dma != (unsigned char)-1)
2345 pxa_free_dma(ndev->dma);
2346 #endif
2347 iounmap(lp->base);
2349 smc_release_datacs(pdev,ndev);
2350 smc_release_attrib(pdev,ndev);
2352 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2353 if (!res)
2354 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2355 release_mem_region(res->start, SMC_IO_EXTENT);
2357 free_netdev(ndev);
2359 return 0;
2362 static int smc_drv_suspend(struct device *dev)
2364 struct platform_device *pdev = to_platform_device(dev);
2365 struct net_device *ndev = platform_get_drvdata(pdev);
2367 if (ndev) {
2368 if (netif_running(ndev)) {
2369 netif_device_detach(ndev);
2370 smc_shutdown(ndev);
2371 smc_phy_powerdown(ndev);
2374 return 0;
2377 static int smc_drv_resume(struct device *dev)
2379 struct platform_device *pdev = to_platform_device(dev);
2380 struct net_device *ndev = platform_get_drvdata(pdev);
2382 if (ndev) {
2383 struct smc_local *lp = netdev_priv(ndev);
2384 smc_enable_device(pdev);
2385 if (netif_running(ndev)) {
2386 smc_reset(ndev);
2387 smc_enable(ndev);
2388 if (lp->phy_type != 0)
2389 smc_phy_configure(&lp->phy_configure);
2390 netif_device_attach(ndev);
2393 return 0;
2396 static struct dev_pm_ops smc_drv_pm_ops = {
2397 .suspend = smc_drv_suspend,
2398 .resume = smc_drv_resume,
2401 static struct platform_driver smc_driver = {
2402 .probe = smc_drv_probe,
2403 .remove = __devexit_p(smc_drv_remove),
2404 .driver = {
2405 .name = CARDNAME,
2406 .owner = THIS_MODULE,
2407 .pm = &smc_drv_pm_ops,
2411 static int __init smc_init(void)
2413 return platform_driver_register(&smc_driver);
2416 static void __exit smc_cleanup(void)
2418 platform_driver_unregister(&smc_driver);
2421 module_init(smc_init);
2422 module_exit(smc_cleanup);