Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / net / vxge / vxge-config.c
bloba21a25d218b695c737a2647d6407c4acc448605d
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
24 * __vxge_hw_channel_allocate - Allocate memory for channel
25 * This function allocates required memory for the channel and various arrays
26 * in the channel
28 struct __vxge_hw_channel*
29 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
30 enum __vxge_hw_channel_type type,
31 u32 length, u32 per_dtr_space, void *userdata)
33 struct __vxge_hw_channel *channel;
34 struct __vxge_hw_device *hldev;
35 int size = 0;
36 u32 vp_id;
38 hldev = vph->vpath->hldev;
39 vp_id = vph->vpath->vp_id;
41 switch (type) {
42 case VXGE_HW_CHANNEL_TYPE_FIFO:
43 size = sizeof(struct __vxge_hw_fifo);
44 break;
45 case VXGE_HW_CHANNEL_TYPE_RING:
46 size = sizeof(struct __vxge_hw_ring);
47 break;
48 default:
49 break;
52 channel = kzalloc(size, GFP_KERNEL);
53 if (channel == NULL)
54 goto exit0;
55 INIT_LIST_HEAD(&channel->item);
57 channel->common_reg = hldev->common_reg;
58 channel->first_vp_id = hldev->first_vp_id;
59 channel->type = type;
60 channel->devh = hldev;
61 channel->vph = vph;
62 channel->userdata = userdata;
63 channel->per_dtr_space = per_dtr_space;
64 channel->length = length;
65 channel->vp_id = vp_id;
67 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
68 if (channel->work_arr == NULL)
69 goto exit1;
71 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
72 if (channel->free_arr == NULL)
73 goto exit1;
74 channel->free_ptr = length;
76 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
77 if (channel->reserve_arr == NULL)
78 goto exit1;
79 channel->reserve_ptr = length;
80 channel->reserve_top = 0;
82 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
83 if (channel->orig_arr == NULL)
84 goto exit1;
86 return channel;
87 exit1:
88 __vxge_hw_channel_free(channel);
90 exit0:
91 return NULL;
95 * __vxge_hw_channel_free - Free memory allocated for channel
96 * This function deallocates memory from the channel and various arrays
97 * in the channel
99 void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
101 kfree(channel->work_arr);
102 kfree(channel->free_arr);
103 kfree(channel->reserve_arr);
104 kfree(channel->orig_arr);
105 kfree(channel);
109 * __vxge_hw_channel_initialize - Initialize a channel
110 * This function initializes a channel by properly setting the
111 * various references
113 enum vxge_hw_status
114 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
116 u32 i;
117 struct __vxge_hw_virtualpath *vpath;
119 vpath = channel->vph->vpath;
121 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
122 for (i = 0; i < channel->length; i++)
123 channel->orig_arr[i] = channel->reserve_arr[i];
126 switch (channel->type) {
127 case VXGE_HW_CHANNEL_TYPE_FIFO:
128 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
129 channel->stats = &((struct __vxge_hw_fifo *)
130 channel)->stats->common_stats;
131 break;
132 case VXGE_HW_CHANNEL_TYPE_RING:
133 vpath->ringh = (struct __vxge_hw_ring *)channel;
134 channel->stats = &((struct __vxge_hw_ring *)
135 channel)->stats->common_stats;
136 break;
137 default:
138 break;
141 return VXGE_HW_OK;
145 * __vxge_hw_channel_reset - Resets a channel
146 * This function resets a channel by properly setting the various references
148 enum vxge_hw_status
149 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
151 u32 i;
153 for (i = 0; i < channel->length; i++) {
154 if (channel->reserve_arr != NULL)
155 channel->reserve_arr[i] = channel->orig_arr[i];
156 if (channel->free_arr != NULL)
157 channel->free_arr[i] = NULL;
158 if (channel->work_arr != NULL)
159 channel->work_arr[i] = NULL;
161 channel->free_ptr = channel->length;
162 channel->reserve_ptr = channel->length;
163 channel->reserve_top = 0;
164 channel->post_index = 0;
165 channel->compl_index = 0;
167 return VXGE_HW_OK;
171 * __vxge_hw_device_pci_e_init
172 * Initialize certain PCI/PCI-X configuration registers
173 * with recommended values. Save config space for future hw resets.
175 void
176 __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
178 u16 cmd = 0;
180 /* Set the PErr Repconse bit and SERR in PCI command register. */
181 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
182 cmd |= 0x140;
183 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
185 pci_save_state(hldev->pdev);
187 return;
191 * __vxge_hw_device_register_poll
192 * Will poll certain register for specified amount of time.
193 * Will poll until masked bit is not cleared.
195 enum vxge_hw_status
196 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
198 u64 val64;
199 u32 i = 0;
200 enum vxge_hw_status ret = VXGE_HW_FAIL;
202 udelay(10);
204 do {
205 val64 = readq(reg);
206 if (!(val64 & mask))
207 return VXGE_HW_OK;
208 udelay(100);
209 } while (++i <= 9);
211 i = 0;
212 do {
213 val64 = readq(reg);
214 if (!(val64 & mask))
215 return VXGE_HW_OK;
216 mdelay(1);
217 } while (++i <= max_millis);
219 return ret;
222 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
223 * in progress
224 * This routine checks the vpath reset in progress register is turned zero
226 enum vxge_hw_status
227 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
229 enum vxge_hw_status status;
230 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
231 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
232 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
233 return status;
237 * __vxge_hw_device_toc_get
238 * This routine sets the swapper and reads the toc pointer and returns the
239 * memory mapped address of the toc
241 struct vxge_hw_toc_reg __iomem *
242 __vxge_hw_device_toc_get(void __iomem *bar0)
244 u64 val64;
245 struct vxge_hw_toc_reg __iomem *toc = NULL;
246 enum vxge_hw_status status;
248 struct vxge_hw_legacy_reg __iomem *legacy_reg =
249 (struct vxge_hw_legacy_reg __iomem *)bar0;
251 status = __vxge_hw_legacy_swapper_set(legacy_reg);
252 if (status != VXGE_HW_OK)
253 goto exit;
255 val64 = readq(&legacy_reg->toc_first_pointer);
256 toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
257 exit:
258 return toc;
262 * __vxge_hw_device_reg_addr_get
263 * This routine sets the swapper and reads the toc pointer and initializes the
264 * register location pointers in the device object. It waits until the ric is
265 * completed initializing registers.
267 enum vxge_hw_status
268 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
270 u64 val64;
271 u32 i;
272 enum vxge_hw_status status = VXGE_HW_OK;
274 hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
276 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
277 if (hldev->toc_reg == NULL) {
278 status = VXGE_HW_FAIL;
279 goto exit;
282 val64 = readq(&hldev->toc_reg->toc_common_pointer);
283 hldev->common_reg =
284 (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
286 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
287 hldev->mrpcim_reg =
288 (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
290 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
291 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
292 hldev->srpcim_reg[i] =
293 (struct vxge_hw_srpcim_reg __iomem *)
294 (hldev->bar0 + val64);
297 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
298 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
299 hldev->vpmgmt_reg[i] =
300 (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
303 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
304 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
305 hldev->vpath_reg[i] =
306 (struct vxge_hw_vpath_reg __iomem *)
307 (hldev->bar0 + val64);
310 val64 = readq(&hldev->toc_reg->toc_kdfc);
312 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
313 case 0:
314 hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
315 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
316 break;
317 default:
318 break;
321 status = __vxge_hw_device_vpath_reset_in_prog_check(
322 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
323 exit:
324 return status;
328 * __vxge_hw_device_id_get
329 * This routine returns sets the device id and revision numbers into the device
330 * structure
332 void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
334 u64 val64;
336 val64 = readq(&hldev->common_reg->titan_asic_id);
337 hldev->device_id =
338 (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
340 hldev->major_revision =
341 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
343 hldev->minor_revision =
344 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
346 return;
350 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
351 * This routine returns the Access Rights of the driver
353 static u32
354 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
356 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
358 switch (host_type) {
359 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
360 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
361 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
362 break;
363 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
364 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
365 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
366 break;
367 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
368 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
369 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
370 break;
371 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
372 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
373 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
374 break;
375 case VXGE_HW_SR_VH_FUNCTION0:
376 case VXGE_HW_VH_NORMAL_FUNCTION:
377 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
378 break;
381 return access_rights;
384 * __vxge_hw_device_is_privilaged
385 * This routine checks if the device function is privilaged or not
388 enum vxge_hw_status
389 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
391 if (__vxge_hw_device_access_rights_get(host_type,
392 func_id) &
393 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
394 return VXGE_HW_OK;
395 else
396 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
400 * __vxge_hw_device_host_info_get
401 * This routine returns the host type assignments
403 void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
405 u64 val64;
406 u32 i;
408 val64 = readq(&hldev->common_reg->host_type_assignments);
410 hldev->host_type =
411 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
413 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
415 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
417 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
418 continue;
420 hldev->func_id =
421 __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
423 hldev->access_rights = __vxge_hw_device_access_rights_get(
424 hldev->host_type, hldev->func_id);
426 hldev->first_vp_id = i;
427 break;
430 return;
434 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
435 * link width and signalling rate.
437 static enum vxge_hw_status
438 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
440 int exp_cap;
441 u16 lnk;
443 /* Get the negotiated link width and speed from PCI config space */
444 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
445 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
447 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
448 return VXGE_HW_ERR_INVALID_PCI_INFO;
450 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
451 case PCIE_LNK_WIDTH_RESRV:
452 case PCIE_LNK_X1:
453 case PCIE_LNK_X2:
454 case PCIE_LNK_X4:
455 case PCIE_LNK_X8:
456 break;
457 default:
458 return VXGE_HW_ERR_INVALID_PCI_INFO;
461 return VXGE_HW_OK;
465 * __vxge_hw_device_initialize
466 * Initialize Titan-V hardware.
468 enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
470 enum vxge_hw_status status = VXGE_HW_OK;
472 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
473 hldev->func_id)) {
474 /* Validate the pci-e link width and speed */
475 status = __vxge_hw_verify_pci_e_info(hldev);
476 if (status != VXGE_HW_OK)
477 goto exit;
480 exit:
481 return status;
485 * vxge_hw_device_hw_info_get - Get the hw information
486 * Returns the vpath mask that has the bits set for each vpath allocated
487 * for the driver, FW version information and the first mac addresse for
488 * each vpath
490 enum vxge_hw_status __devinit
491 vxge_hw_device_hw_info_get(void __iomem *bar0,
492 struct vxge_hw_device_hw_info *hw_info)
494 u32 i;
495 u64 val64;
496 struct vxge_hw_toc_reg __iomem *toc;
497 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
498 struct vxge_hw_common_reg __iomem *common_reg;
499 struct vxge_hw_vpath_reg __iomem *vpath_reg;
500 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
501 enum vxge_hw_status status;
503 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
505 toc = __vxge_hw_device_toc_get(bar0);
506 if (toc == NULL) {
507 status = VXGE_HW_ERR_CRITICAL;
508 goto exit;
511 val64 = readq(&toc->toc_common_pointer);
512 common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
514 status = __vxge_hw_device_vpath_reset_in_prog_check(
515 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
516 if (status != VXGE_HW_OK)
517 goto exit;
519 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
521 val64 = readq(&common_reg->host_type_assignments);
523 hw_info->host_type =
524 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
526 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
528 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
529 continue;
531 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
533 vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
534 (bar0 + val64);
536 hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
537 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
538 hw_info->func_id) &
539 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
541 val64 = readq(&toc->toc_mrpcim_pointer);
543 mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
544 (bar0 + val64);
546 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
547 wmb();
550 val64 = readq(&toc->toc_vpath_pointer[i]);
552 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
554 hw_info->function_mode =
555 __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
557 status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
558 if (status != VXGE_HW_OK)
559 goto exit;
561 status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
562 if (status != VXGE_HW_OK)
563 goto exit;
565 break;
568 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
570 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
571 continue;
573 val64 = readq(&toc->toc_vpath_pointer[i]);
574 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
576 status = __vxge_hw_vpath_addr_get(i, vpath_reg,
577 hw_info->mac_addrs[i],
578 hw_info->mac_addr_masks[i]);
579 if (status != VXGE_HW_OK)
580 goto exit;
582 exit:
583 return status;
587 * vxge_hw_device_initialize - Initialize Titan device.
588 * Initialize Titan device. Note that all the arguments of this public API
589 * are 'IN', including @hldev. Driver cooperates with
590 * OS to find new Titan device, locate its PCI and memory spaces.
592 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
593 * to enable the latter to perform Titan hardware initialization.
595 enum vxge_hw_status __devinit
596 vxge_hw_device_initialize(
597 struct __vxge_hw_device **devh,
598 struct vxge_hw_device_attr *attr,
599 struct vxge_hw_device_config *device_config)
601 u32 i;
602 u32 nblocks = 0;
603 struct __vxge_hw_device *hldev = NULL;
604 enum vxge_hw_status status = VXGE_HW_OK;
606 status = __vxge_hw_device_config_check(device_config);
607 if (status != VXGE_HW_OK)
608 goto exit;
610 hldev = (struct __vxge_hw_device *)
611 vmalloc(sizeof(struct __vxge_hw_device));
612 if (hldev == NULL) {
613 status = VXGE_HW_ERR_OUT_OF_MEMORY;
614 goto exit;
617 memset(hldev, 0, sizeof(struct __vxge_hw_device));
618 hldev->magic = VXGE_HW_DEVICE_MAGIC;
620 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
622 /* apply config */
623 memcpy(&hldev->config, device_config,
624 sizeof(struct vxge_hw_device_config));
626 hldev->bar0 = attr->bar0;
627 hldev->pdev = attr->pdev;
629 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
630 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
631 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
633 __vxge_hw_device_pci_e_init(hldev);
635 status = __vxge_hw_device_reg_addr_get(hldev);
636 if (status != VXGE_HW_OK)
637 goto exit;
638 __vxge_hw_device_id_get(hldev);
640 __vxge_hw_device_host_info_get(hldev);
642 /* Incrementing for stats blocks */
643 nblocks++;
645 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
647 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
648 continue;
650 if (device_config->vp_config[i].ring.enable ==
651 VXGE_HW_RING_ENABLE)
652 nblocks += device_config->vp_config[i].ring.ring_blocks;
654 if (device_config->vp_config[i].fifo.enable ==
655 VXGE_HW_FIFO_ENABLE)
656 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
657 nblocks++;
660 if (__vxge_hw_blockpool_create(hldev,
661 &hldev->block_pool,
662 device_config->dma_blockpool_initial + nblocks,
663 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
665 vxge_hw_device_terminate(hldev);
666 status = VXGE_HW_ERR_OUT_OF_MEMORY;
667 goto exit;
670 status = __vxge_hw_device_initialize(hldev);
672 if (status != VXGE_HW_OK) {
673 vxge_hw_device_terminate(hldev);
674 goto exit;
677 *devh = hldev;
678 exit:
679 return status;
683 * vxge_hw_device_terminate - Terminate Titan device.
684 * Terminate HW device.
686 void
687 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
689 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
691 hldev->magic = VXGE_HW_DEVICE_DEAD;
692 __vxge_hw_blockpool_destroy(&hldev->block_pool);
693 vfree(hldev);
697 * vxge_hw_device_stats_get - Get the device hw statistics.
698 * Returns the vpath h/w stats for the device.
700 enum vxge_hw_status
701 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
702 struct vxge_hw_device_stats_hw_info *hw_stats)
704 u32 i;
705 enum vxge_hw_status status = VXGE_HW_OK;
707 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
709 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
710 (hldev->virtual_paths[i].vp_open ==
711 VXGE_HW_VP_NOT_OPEN))
712 continue;
714 memcpy(hldev->virtual_paths[i].hw_stats_sav,
715 hldev->virtual_paths[i].hw_stats,
716 sizeof(struct vxge_hw_vpath_stats_hw_info));
718 status = __vxge_hw_vpath_stats_get(
719 &hldev->virtual_paths[i],
720 hldev->virtual_paths[i].hw_stats);
723 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
724 sizeof(struct vxge_hw_device_stats_hw_info));
726 return status;
730 * vxge_hw_driver_stats_get - Get the device sw statistics.
731 * Returns the vpath s/w stats for the device.
733 enum vxge_hw_status vxge_hw_driver_stats_get(
734 struct __vxge_hw_device *hldev,
735 struct vxge_hw_device_stats_sw_info *sw_stats)
737 enum vxge_hw_status status = VXGE_HW_OK;
739 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
740 sizeof(struct vxge_hw_device_stats_sw_info));
742 return status;
746 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
747 * and offset and perform an operation
748 * Get the statistics from the given location and offset.
750 enum vxge_hw_status
751 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
752 u32 operation, u32 location, u32 offset, u64 *stat)
754 u64 val64;
755 enum vxge_hw_status status = VXGE_HW_OK;
757 status = __vxge_hw_device_is_privilaged(hldev->host_type,
758 hldev->func_id);
759 if (status != VXGE_HW_OK)
760 goto exit;
762 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
763 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
764 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
765 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
767 status = __vxge_hw_pio_mem_write64(val64,
768 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
769 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
770 hldev->config.device_poll_millis);
772 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
773 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
774 else
775 *stat = 0;
776 exit:
777 return status;
781 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
782 * Get the Statistics on aggregate port
784 enum vxge_hw_status
785 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
786 struct vxge_hw_xmac_aggr_stats *aggr_stats)
788 u64 *val64;
789 int i;
790 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
791 enum vxge_hw_status status = VXGE_HW_OK;
793 val64 = (u64 *)aggr_stats;
795 status = __vxge_hw_device_is_privilaged(hldev->host_type,
796 hldev->func_id);
797 if (status != VXGE_HW_OK)
798 goto exit;
800 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
801 status = vxge_hw_mrpcim_stats_access(hldev,
802 VXGE_HW_STATS_OP_READ,
803 VXGE_HW_STATS_LOC_AGGR,
804 ((offset + (104 * port)) >> 3), val64);
805 if (status != VXGE_HW_OK)
806 goto exit;
808 offset += 8;
809 val64++;
811 exit:
812 return status;
816 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
817 * Get the Statistics on port
819 enum vxge_hw_status
820 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
821 struct vxge_hw_xmac_port_stats *port_stats)
823 u64 *val64;
824 enum vxge_hw_status status = VXGE_HW_OK;
825 int i;
826 u32 offset = 0x0;
827 val64 = (u64 *) port_stats;
829 status = __vxge_hw_device_is_privilaged(hldev->host_type,
830 hldev->func_id);
831 if (status != VXGE_HW_OK)
832 goto exit;
834 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
835 status = vxge_hw_mrpcim_stats_access(hldev,
836 VXGE_HW_STATS_OP_READ,
837 VXGE_HW_STATS_LOC_AGGR,
838 ((offset + (608 * port)) >> 3), val64);
839 if (status != VXGE_HW_OK)
840 goto exit;
842 offset += 8;
843 val64++;
846 exit:
847 return status;
851 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
852 * Get the XMAC Statistics
854 enum vxge_hw_status
855 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
856 struct vxge_hw_xmac_stats *xmac_stats)
858 enum vxge_hw_status status = VXGE_HW_OK;
859 u32 i;
861 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
862 0, &xmac_stats->aggr_stats[0]);
864 if (status != VXGE_HW_OK)
865 goto exit;
867 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
868 1, &xmac_stats->aggr_stats[1]);
869 if (status != VXGE_HW_OK)
870 goto exit;
872 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
874 status = vxge_hw_device_xmac_port_stats_get(hldev,
875 i, &xmac_stats->port_stats[i]);
876 if (status != VXGE_HW_OK)
877 goto exit;
880 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
882 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
883 continue;
885 status = __vxge_hw_vpath_xmac_tx_stats_get(
886 &hldev->virtual_paths[i],
887 &xmac_stats->vpath_tx_stats[i]);
888 if (status != VXGE_HW_OK)
889 goto exit;
891 status = __vxge_hw_vpath_xmac_rx_stats_get(
892 &hldev->virtual_paths[i],
893 &xmac_stats->vpath_rx_stats[i]);
894 if (status != VXGE_HW_OK)
895 goto exit;
897 exit:
898 return status;
902 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
903 * This routine is used to dynamically change the debug output
905 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
906 enum vxge_debug_level level, u32 mask)
908 if (hldev == NULL)
909 return;
911 #if defined(VXGE_DEBUG_TRACE_MASK) || \
912 defined(VXGE_DEBUG_ERR_MASK)
913 hldev->debug_module_mask = mask;
914 hldev->debug_level = level;
915 #endif
917 #if defined(VXGE_DEBUG_ERR_MASK)
918 hldev->level_err = level & VXGE_ERR;
919 #endif
921 #if defined(VXGE_DEBUG_TRACE_MASK)
922 hldev->level_trace = level & VXGE_TRACE;
923 #endif
927 * vxge_hw_device_error_level_get - Get the error level
928 * This routine returns the current error level set
930 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
932 #if defined(VXGE_DEBUG_ERR_MASK)
933 if (hldev == NULL)
934 return VXGE_ERR;
935 else
936 return hldev->level_err;
937 #else
938 return 0;
939 #endif
943 * vxge_hw_device_trace_level_get - Get the trace level
944 * This routine returns the current trace level set
946 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
948 #if defined(VXGE_DEBUG_TRACE_MASK)
949 if (hldev == NULL)
950 return VXGE_TRACE;
951 else
952 return hldev->level_trace;
953 #else
954 return 0;
955 #endif
958 * vxge_hw_device_debug_mask_get - Get the debug mask
959 * This routine returns the current debug mask set
961 u32 vxge_hw_device_debug_mask_get(struct __vxge_hw_device *hldev)
963 #if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK)
964 if (hldev == NULL)
965 return 0;
966 return hldev->debug_module_mask;
967 #else
968 return 0;
969 #endif
973 * vxge_hw_getpause_data -Pause frame frame generation and reception.
974 * Returns the Pause frame generation and reception capability of the NIC.
976 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
977 u32 port, u32 *tx, u32 *rx)
979 u64 val64;
980 enum vxge_hw_status status = VXGE_HW_OK;
982 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
983 status = VXGE_HW_ERR_INVALID_DEVICE;
984 goto exit;
987 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
988 status = VXGE_HW_ERR_INVALID_PORT;
989 goto exit;
992 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
993 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
994 goto exit;
997 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
998 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
999 *tx = 1;
1000 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1001 *rx = 1;
1002 exit:
1003 return status;
1007 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1008 * It can be used to set or reset Pause frame generation or reception
1009 * support of the NIC.
1012 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1013 u32 port, u32 tx, u32 rx)
1015 u64 val64;
1016 enum vxge_hw_status status = VXGE_HW_OK;
1018 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1019 status = VXGE_HW_ERR_INVALID_DEVICE;
1020 goto exit;
1023 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1024 status = VXGE_HW_ERR_INVALID_PORT;
1025 goto exit;
1028 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1029 hldev->func_id);
1030 if (status != VXGE_HW_OK)
1031 goto exit;
1033 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1034 if (tx)
1035 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1036 else
1037 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1038 if (rx)
1039 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1040 else
1041 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1043 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1044 exit:
1045 return status;
1048 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1050 int link_width, exp_cap;
1051 u16 lnk;
1053 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
1054 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
1055 link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1056 return link_width;
1060 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1061 * This function returns the index of memory block
1063 static inline u32
1064 __vxge_hw_ring_block_memblock_idx(u8 *block)
1066 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1070 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1071 * This function sets index to a memory block
1073 static inline void
1074 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1076 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
1080 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
1081 * in RxD block
1082 * Sets the next block pointer in RxD block
1084 static inline void
1085 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
1087 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
1091 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
1092 * first block
1093 * Returns the dma address of the first RxD block
1095 u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
1097 struct vxge_hw_mempool_dma *dma_object;
1099 dma_object = ring->mempool->memblocks_dma_arr;
1100 vxge_assert(dma_object != NULL);
1102 return dma_object->addr;
1106 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
1107 * This function returns the dma address of a given item
1109 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
1110 void *item)
1112 u32 memblock_idx;
1113 void *memblock;
1114 struct vxge_hw_mempool_dma *memblock_dma_object;
1115 ptrdiff_t dma_item_offset;
1117 /* get owner memblock index */
1118 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
1120 /* get owner memblock by memblock index */
1121 memblock = mempoolh->memblocks_arr[memblock_idx];
1123 /* get memblock DMA object by memblock index */
1124 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
1126 /* calculate offset in the memblock of this item */
1127 dma_item_offset = (u8 *)item - (u8 *)memblock;
1129 return memblock_dma_object->addr + dma_item_offset;
1133 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
1134 * This function returns the dma address of a given item
1136 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
1137 struct __vxge_hw_ring *ring, u32 from,
1138 u32 to)
1140 u8 *to_item , *from_item;
1141 dma_addr_t to_dma;
1143 /* get "from" RxD block */
1144 from_item = mempoolh->items_arr[from];
1145 vxge_assert(from_item);
1147 /* get "to" RxD block */
1148 to_item = mempoolh->items_arr[to];
1149 vxge_assert(to_item);
1151 /* return address of the beginning of previous RxD block */
1152 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
1154 /* set next pointer for this RxD block to point on
1155 * previous item's DMA start address */
1156 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
1160 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
1161 * block callback
1162 * This function is callback passed to __vxge_hw_mempool_create to create memory
1163 * pool for RxD block
1165 static void
1166 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
1167 u32 memblock_index,
1168 struct vxge_hw_mempool_dma *dma_object,
1169 u32 index, u32 is_last)
1171 u32 i;
1172 void *item = mempoolh->items_arr[index];
1173 struct __vxge_hw_ring *ring =
1174 (struct __vxge_hw_ring *)mempoolh->userdata;
1176 /* format rxds array */
1177 for (i = 0; i < ring->rxds_per_block; i++) {
1178 void *rxdblock_priv;
1179 void *uld_priv;
1180 struct vxge_hw_ring_rxd_1 *rxdp;
1182 u32 reserve_index = ring->channel.reserve_ptr -
1183 (index * ring->rxds_per_block + i + 1);
1184 u32 memblock_item_idx;
1186 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
1187 i * ring->rxd_size;
1189 /* Note: memblock_item_idx is index of the item within
1190 * the memblock. For instance, in case of three RxD-blocks
1191 * per memblock this value can be 0, 1 or 2. */
1192 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
1193 memblock_index, item,
1194 &memblock_item_idx);
1196 rxdp = (struct vxge_hw_ring_rxd_1 *)
1197 ring->channel.reserve_arr[reserve_index];
1199 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
1201 /* pre-format Host_Control */
1202 rxdp->host_control = (u64)(size_t)uld_priv;
1205 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
1207 if (is_last) {
1208 /* link last one with first one */
1209 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
1212 if (index > 0) {
1213 /* link this RxD block with previous one */
1214 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
1217 return;
1221 * __vxge_hw_ring_initial_replenish - Initial replenish of RxDs
1222 * This function replenishes the RxDs from reserve array to work array
1224 enum vxge_hw_status
1225 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring, u16 min_flag)
1227 void *rxd;
1228 int i = 0;
1229 struct __vxge_hw_channel *channel;
1230 enum vxge_hw_status status = VXGE_HW_OK;
1232 channel = &ring->channel;
1234 while (vxge_hw_channel_dtr_count(channel) > 0) {
1236 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
1238 vxge_assert(status == VXGE_HW_OK);
1240 if (ring->rxd_init) {
1241 status = ring->rxd_init(rxd, channel->userdata);
1242 if (status != VXGE_HW_OK) {
1243 vxge_hw_ring_rxd_free(ring, rxd);
1244 goto exit;
1248 vxge_hw_ring_rxd_post(ring, rxd);
1249 if (min_flag) {
1250 i++;
1251 if (i == VXGE_HW_RING_MIN_BUFF_ALLOCATION)
1252 break;
1255 status = VXGE_HW_OK;
1256 exit:
1257 return status;
1261 * __vxge_hw_ring_create - Create a Ring
1262 * This function creates Ring and initializes it.
1265 enum vxge_hw_status
1266 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
1267 struct vxge_hw_ring_attr *attr)
1269 enum vxge_hw_status status = VXGE_HW_OK;
1270 struct __vxge_hw_ring *ring;
1271 u32 ring_length;
1272 struct vxge_hw_ring_config *config;
1273 struct __vxge_hw_device *hldev;
1274 u32 vp_id;
1275 struct vxge_hw_mempool_cbs ring_mp_callback;
1277 if ((vp == NULL) || (attr == NULL)) {
1278 status = VXGE_HW_FAIL;
1279 goto exit;
1282 hldev = vp->vpath->hldev;
1283 vp_id = vp->vpath->vp_id;
1285 config = &hldev->config.vp_config[vp_id].ring;
1287 ring_length = config->ring_blocks *
1288 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1290 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
1291 VXGE_HW_CHANNEL_TYPE_RING,
1292 ring_length,
1293 attr->per_rxd_space,
1294 attr->userdata);
1296 if (ring == NULL) {
1297 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1298 goto exit;
1301 vp->vpath->ringh = ring;
1302 ring->vp_id = vp_id;
1303 ring->vp_reg = vp->vpath->vp_reg;
1304 ring->common_reg = hldev->common_reg;
1305 ring->stats = &vp->vpath->sw_stats->ring_stats;
1306 ring->config = config;
1307 ring->callback = attr->callback;
1308 ring->rxd_init = attr->rxd_init;
1309 ring->rxd_term = attr->rxd_term;
1310 ring->buffer_mode = config->buffer_mode;
1311 ring->rxds_limit = config->rxds_limit;
1313 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
1314 ring->rxd_priv_size =
1315 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
1316 ring->per_rxd_space = attr->per_rxd_space;
1318 ring->rxd_priv_size =
1319 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
1320 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
1322 /* how many RxDs can fit into one block. Depends on configured
1323 * buffer_mode. */
1324 ring->rxds_per_block =
1325 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1327 /* calculate actual RxD block private size */
1328 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
1329 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
1330 ring->mempool = __vxge_hw_mempool_create(hldev,
1331 VXGE_HW_BLOCK_SIZE,
1332 VXGE_HW_BLOCK_SIZE,
1333 ring->rxdblock_priv_size,
1334 ring->config->ring_blocks,
1335 ring->config->ring_blocks,
1336 &ring_mp_callback,
1337 ring);
1339 if (ring->mempool == NULL) {
1340 __vxge_hw_ring_delete(vp);
1341 return VXGE_HW_ERR_OUT_OF_MEMORY;
1344 status = __vxge_hw_channel_initialize(&ring->channel);
1345 if (status != VXGE_HW_OK) {
1346 __vxge_hw_ring_delete(vp);
1347 goto exit;
1350 /* Note:
1351 * Specifying rxd_init callback means two things:
1352 * 1) rxds need to be initialized by driver at channel-open time;
1353 * 2) rxds need to be posted at channel-open time
1354 * (that's what the initial_replenish() below does)
1355 * Currently we don't have a case when the 1) is done without the 2).
1357 if (ring->rxd_init) {
1358 status = vxge_hw_ring_replenish(ring, 1);
1359 if (status != VXGE_HW_OK) {
1360 __vxge_hw_ring_delete(vp);
1361 goto exit;
1365 /* initial replenish will increment the counter in its post() routine,
1366 * we have to reset it */
1367 ring->stats->common_stats.usage_cnt = 0;
1368 exit:
1369 return status;
1373 * __vxge_hw_ring_abort - Returns the RxD
1374 * This function terminates the RxDs of ring
1376 enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
1378 void *rxdh;
1379 struct __vxge_hw_channel *channel;
1381 channel = &ring->channel;
1383 for (;;) {
1384 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
1386 if (rxdh == NULL)
1387 break;
1389 vxge_hw_channel_dtr_complete(channel);
1391 if (ring->rxd_term)
1392 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
1393 channel->userdata);
1395 vxge_hw_channel_dtr_free(channel, rxdh);
1398 return VXGE_HW_OK;
1402 * __vxge_hw_ring_reset - Resets the ring
1403 * This function resets the ring during vpath reset operation
1405 enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
1407 enum vxge_hw_status status = VXGE_HW_OK;
1408 struct __vxge_hw_channel *channel;
1410 channel = &ring->channel;
1412 __vxge_hw_ring_abort(ring);
1414 status = __vxge_hw_channel_reset(channel);
1416 if (status != VXGE_HW_OK)
1417 goto exit;
1419 if (ring->rxd_init) {
1420 status = vxge_hw_ring_replenish(ring, 1);
1421 if (status != VXGE_HW_OK)
1422 goto exit;
1424 exit:
1425 return status;
1429 * __vxge_hw_ring_delete - Removes the ring
1430 * This function freeup the memory pool and removes the ring
1432 enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
1434 struct __vxge_hw_ring *ring = vp->vpath->ringh;
1436 __vxge_hw_ring_abort(ring);
1438 if (ring->mempool)
1439 __vxge_hw_mempool_destroy(ring->mempool);
1441 vp->vpath->ringh = NULL;
1442 __vxge_hw_channel_free(&ring->channel);
1444 return VXGE_HW_OK;
1448 * __vxge_hw_mempool_grow
1449 * Will resize mempool up to %num_allocate value.
1451 enum vxge_hw_status
1452 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
1453 u32 *num_allocated)
1455 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
1456 u32 n_items = mempool->items_per_memblock;
1457 u32 start_block_idx = mempool->memblocks_allocated;
1458 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
1459 enum vxge_hw_status status = VXGE_HW_OK;
1461 *num_allocated = 0;
1463 if (end_block_idx > mempool->memblocks_max) {
1464 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1465 goto exit;
1468 for (i = start_block_idx; i < end_block_idx; i++) {
1469 u32 j;
1470 u32 is_last = ((end_block_idx - 1) == i);
1471 struct vxge_hw_mempool_dma *dma_object =
1472 mempool->memblocks_dma_arr + i;
1473 void *the_memblock;
1475 /* allocate memblock's private part. Each DMA memblock
1476 * has a space allocated for item's private usage upon
1477 * mempool's user request. Each time mempool grows, it will
1478 * allocate new memblock and its private part at once.
1479 * This helps to minimize memory usage a lot. */
1480 mempool->memblocks_priv_arr[i] =
1481 vmalloc(mempool->items_priv_size * n_items);
1482 if (mempool->memblocks_priv_arr[i] == NULL) {
1483 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1484 goto exit;
1487 memset(mempool->memblocks_priv_arr[i], 0,
1488 mempool->items_priv_size * n_items);
1490 /* allocate DMA-capable memblock */
1491 mempool->memblocks_arr[i] =
1492 __vxge_hw_blockpool_malloc(mempool->devh,
1493 mempool->memblock_size, dma_object);
1494 if (mempool->memblocks_arr[i] == NULL) {
1495 vfree(mempool->memblocks_priv_arr[i]);
1496 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1497 goto exit;
1500 (*num_allocated)++;
1501 mempool->memblocks_allocated++;
1503 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
1505 the_memblock = mempool->memblocks_arr[i];
1507 /* fill the items hash array */
1508 for (j = 0; j < n_items; j++) {
1509 u32 index = i * n_items + j;
1511 if (first_time && index >= mempool->items_initial)
1512 break;
1514 mempool->items_arr[index] =
1515 ((char *)the_memblock + j*mempool->item_size);
1517 /* let caller to do more job on each item */
1518 if (mempool->item_func_alloc != NULL)
1519 mempool->item_func_alloc(mempool, i,
1520 dma_object, index, is_last);
1522 mempool->items_current = index + 1;
1525 if (first_time && mempool->items_current ==
1526 mempool->items_initial)
1527 break;
1529 exit:
1530 return status;
1534 * vxge_hw_mempool_create
1535 * This function will create memory pool object. Pool may grow but will
1536 * never shrink. Pool consists of number of dynamically allocated blocks
1537 * with size enough to hold %items_initial number of items. Memory is
1538 * DMA-able but client must map/unmap before interoperating with the device.
1540 struct vxge_hw_mempool*
1541 __vxge_hw_mempool_create(
1542 struct __vxge_hw_device *devh,
1543 u32 memblock_size,
1544 u32 item_size,
1545 u32 items_priv_size,
1546 u32 items_initial,
1547 u32 items_max,
1548 struct vxge_hw_mempool_cbs *mp_callback,
1549 void *userdata)
1551 enum vxge_hw_status status = VXGE_HW_OK;
1552 u32 memblocks_to_allocate;
1553 struct vxge_hw_mempool *mempool = NULL;
1554 u32 allocated;
1556 if (memblock_size < item_size) {
1557 status = VXGE_HW_FAIL;
1558 goto exit;
1561 mempool = (struct vxge_hw_mempool *)
1562 vmalloc(sizeof(struct vxge_hw_mempool));
1563 if (mempool == NULL) {
1564 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1565 goto exit;
1567 memset(mempool, 0, sizeof(struct vxge_hw_mempool));
1569 mempool->devh = devh;
1570 mempool->memblock_size = memblock_size;
1571 mempool->items_max = items_max;
1572 mempool->items_initial = items_initial;
1573 mempool->item_size = item_size;
1574 mempool->items_priv_size = items_priv_size;
1575 mempool->item_func_alloc = mp_callback->item_func_alloc;
1576 mempool->userdata = userdata;
1578 mempool->memblocks_allocated = 0;
1580 mempool->items_per_memblock = memblock_size / item_size;
1582 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
1583 mempool->items_per_memblock;
1585 /* allocate array of memblocks */
1586 mempool->memblocks_arr =
1587 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1588 if (mempool->memblocks_arr == NULL) {
1589 __vxge_hw_mempool_destroy(mempool);
1590 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1591 mempool = NULL;
1592 goto exit;
1594 memset(mempool->memblocks_arr, 0,
1595 sizeof(void *) * mempool->memblocks_max);
1597 /* allocate array of private parts of items per memblocks */
1598 mempool->memblocks_priv_arr =
1599 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1600 if (mempool->memblocks_priv_arr == NULL) {
1601 __vxge_hw_mempool_destroy(mempool);
1602 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1603 mempool = NULL;
1604 goto exit;
1606 memset(mempool->memblocks_priv_arr, 0,
1607 sizeof(void *) * mempool->memblocks_max);
1609 /* allocate array of memblocks DMA objects */
1610 mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
1611 vmalloc(sizeof(struct vxge_hw_mempool_dma) *
1612 mempool->memblocks_max);
1614 if (mempool->memblocks_dma_arr == NULL) {
1615 __vxge_hw_mempool_destroy(mempool);
1616 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1617 mempool = NULL;
1618 goto exit;
1620 memset(mempool->memblocks_dma_arr, 0,
1621 sizeof(struct vxge_hw_mempool_dma) *
1622 mempool->memblocks_max);
1624 /* allocate hash array of items */
1625 mempool->items_arr =
1626 (void **) vmalloc(sizeof(void *) * mempool->items_max);
1627 if (mempool->items_arr == NULL) {
1628 __vxge_hw_mempool_destroy(mempool);
1629 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1630 mempool = NULL;
1631 goto exit;
1633 memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
1635 /* calculate initial number of memblocks */
1636 memblocks_to_allocate = (mempool->items_initial +
1637 mempool->items_per_memblock - 1) /
1638 mempool->items_per_memblock;
1640 /* pre-allocate the mempool */
1641 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
1642 &allocated);
1643 if (status != VXGE_HW_OK) {
1644 __vxge_hw_mempool_destroy(mempool);
1645 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1646 mempool = NULL;
1647 goto exit;
1650 exit:
1651 return mempool;
1655 * vxge_hw_mempool_destroy
1657 void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
1659 u32 i, j;
1660 struct __vxge_hw_device *devh = mempool->devh;
1662 for (i = 0; i < mempool->memblocks_allocated; i++) {
1663 struct vxge_hw_mempool_dma *dma_object;
1665 vxge_assert(mempool->memblocks_arr[i]);
1666 vxge_assert(mempool->memblocks_dma_arr + i);
1668 dma_object = mempool->memblocks_dma_arr + i;
1670 for (j = 0; j < mempool->items_per_memblock; j++) {
1671 u32 index = i * mempool->items_per_memblock + j;
1673 /* to skip last partially filled(if any) memblock */
1674 if (index >= mempool->items_current)
1675 break;
1678 vfree(mempool->memblocks_priv_arr[i]);
1680 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
1681 mempool->memblock_size, dma_object);
1684 vfree(mempool->items_arr);
1686 vfree(mempool->memblocks_dma_arr);
1688 vfree(mempool->memblocks_priv_arr);
1690 vfree(mempool->memblocks_arr);
1692 vfree(mempool);
1696 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1697 * Check the fifo configuration
1699 enum vxge_hw_status
1700 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1702 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1703 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1704 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1706 return VXGE_HW_OK;
1710 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1711 * Check the vpath configuration
1713 enum vxge_hw_status
1714 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1716 enum vxge_hw_status status;
1718 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1719 (vp_config->min_bandwidth >
1720 VXGE_HW_VPATH_BANDWIDTH_MAX))
1721 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1723 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1724 if (status != VXGE_HW_OK)
1725 return status;
1727 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1728 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1729 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1730 return VXGE_HW_BADCFG_VPATH_MTU;
1732 if ((vp_config->rpa_strip_vlan_tag !=
1733 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1734 (vp_config->rpa_strip_vlan_tag !=
1735 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1736 (vp_config->rpa_strip_vlan_tag !=
1737 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1738 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1740 return VXGE_HW_OK;
1744 * __vxge_hw_device_config_check - Check device configuration.
1745 * Check the device configuration
1747 enum vxge_hw_status
1748 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1750 u32 i;
1751 enum vxge_hw_status status;
1753 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1754 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1755 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1756 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1757 return VXGE_HW_BADCFG_INTR_MODE;
1759 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1760 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1761 return VXGE_HW_BADCFG_RTS_MAC_EN;
1763 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1764 status = __vxge_hw_device_vpath_config_check(
1765 &new_config->vp_config[i]);
1766 if (status != VXGE_HW_OK)
1767 return status;
1770 return VXGE_HW_OK;
1774 * vxge_hw_device_config_default_get - Initialize device config with defaults.
1775 * Initialize Titan device config with default values.
1777 enum vxge_hw_status __devinit
1778 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
1780 u32 i;
1782 device_config->dma_blockpool_initial =
1783 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
1784 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
1785 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
1786 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
1787 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
1788 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
1789 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
1791 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1793 device_config->vp_config[i].vp_id = i;
1795 device_config->vp_config[i].min_bandwidth =
1796 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
1798 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
1800 device_config->vp_config[i].ring.ring_blocks =
1801 VXGE_HW_DEF_RING_BLOCKS;
1803 device_config->vp_config[i].ring.buffer_mode =
1804 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
1806 device_config->vp_config[i].ring.scatter_mode =
1807 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
1809 device_config->vp_config[i].ring.rxds_limit =
1810 VXGE_HW_DEF_RING_RXDS_LIMIT;
1812 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
1814 device_config->vp_config[i].fifo.fifo_blocks =
1815 VXGE_HW_MIN_FIFO_BLOCKS;
1817 device_config->vp_config[i].fifo.max_frags =
1818 VXGE_HW_MAX_FIFO_FRAGS;
1820 device_config->vp_config[i].fifo.memblock_size =
1821 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
1823 device_config->vp_config[i].fifo.alignment_size =
1824 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
1826 device_config->vp_config[i].fifo.intr =
1827 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
1829 device_config->vp_config[i].fifo.no_snoop_bits =
1830 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
1831 device_config->vp_config[i].tti.intr_enable =
1832 VXGE_HW_TIM_INTR_DEFAULT;
1834 device_config->vp_config[i].tti.btimer_val =
1835 VXGE_HW_USE_FLASH_DEFAULT;
1837 device_config->vp_config[i].tti.timer_ac_en =
1838 VXGE_HW_USE_FLASH_DEFAULT;
1840 device_config->vp_config[i].tti.timer_ci_en =
1841 VXGE_HW_USE_FLASH_DEFAULT;
1843 device_config->vp_config[i].tti.timer_ri_en =
1844 VXGE_HW_USE_FLASH_DEFAULT;
1846 device_config->vp_config[i].tti.rtimer_val =
1847 VXGE_HW_USE_FLASH_DEFAULT;
1849 device_config->vp_config[i].tti.util_sel =
1850 VXGE_HW_USE_FLASH_DEFAULT;
1852 device_config->vp_config[i].tti.ltimer_val =
1853 VXGE_HW_USE_FLASH_DEFAULT;
1855 device_config->vp_config[i].tti.urange_a =
1856 VXGE_HW_USE_FLASH_DEFAULT;
1858 device_config->vp_config[i].tti.uec_a =
1859 VXGE_HW_USE_FLASH_DEFAULT;
1861 device_config->vp_config[i].tti.urange_b =
1862 VXGE_HW_USE_FLASH_DEFAULT;
1864 device_config->vp_config[i].tti.uec_b =
1865 VXGE_HW_USE_FLASH_DEFAULT;
1867 device_config->vp_config[i].tti.urange_c =
1868 VXGE_HW_USE_FLASH_DEFAULT;
1870 device_config->vp_config[i].tti.uec_c =
1871 VXGE_HW_USE_FLASH_DEFAULT;
1873 device_config->vp_config[i].tti.uec_d =
1874 VXGE_HW_USE_FLASH_DEFAULT;
1876 device_config->vp_config[i].rti.intr_enable =
1877 VXGE_HW_TIM_INTR_DEFAULT;
1879 device_config->vp_config[i].rti.btimer_val =
1880 VXGE_HW_USE_FLASH_DEFAULT;
1882 device_config->vp_config[i].rti.timer_ac_en =
1883 VXGE_HW_USE_FLASH_DEFAULT;
1885 device_config->vp_config[i].rti.timer_ci_en =
1886 VXGE_HW_USE_FLASH_DEFAULT;
1888 device_config->vp_config[i].rti.timer_ri_en =
1889 VXGE_HW_USE_FLASH_DEFAULT;
1891 device_config->vp_config[i].rti.rtimer_val =
1892 VXGE_HW_USE_FLASH_DEFAULT;
1894 device_config->vp_config[i].rti.util_sel =
1895 VXGE_HW_USE_FLASH_DEFAULT;
1897 device_config->vp_config[i].rti.ltimer_val =
1898 VXGE_HW_USE_FLASH_DEFAULT;
1900 device_config->vp_config[i].rti.urange_a =
1901 VXGE_HW_USE_FLASH_DEFAULT;
1903 device_config->vp_config[i].rti.uec_a =
1904 VXGE_HW_USE_FLASH_DEFAULT;
1906 device_config->vp_config[i].rti.urange_b =
1907 VXGE_HW_USE_FLASH_DEFAULT;
1909 device_config->vp_config[i].rti.uec_b =
1910 VXGE_HW_USE_FLASH_DEFAULT;
1912 device_config->vp_config[i].rti.urange_c =
1913 VXGE_HW_USE_FLASH_DEFAULT;
1915 device_config->vp_config[i].rti.uec_c =
1916 VXGE_HW_USE_FLASH_DEFAULT;
1918 device_config->vp_config[i].rti.uec_d =
1919 VXGE_HW_USE_FLASH_DEFAULT;
1921 device_config->vp_config[i].mtu =
1922 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
1924 device_config->vp_config[i].rpa_strip_vlan_tag =
1925 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
1928 return VXGE_HW_OK;
1932 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
1933 * Set the swapper bits appropriately for the lagacy section.
1935 enum vxge_hw_status
1936 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
1938 u64 val64;
1939 enum vxge_hw_status status = VXGE_HW_OK;
1941 val64 = readq(&legacy_reg->toc_swapper_fb);
1943 wmb();
1945 switch (val64) {
1947 case VXGE_HW_SWAPPER_INITIAL_VALUE:
1948 return status;
1950 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
1951 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
1952 &legacy_reg->pifm_rd_swap_en);
1953 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
1954 &legacy_reg->pifm_rd_flip_en);
1955 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
1956 &legacy_reg->pifm_wr_swap_en);
1957 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
1958 &legacy_reg->pifm_wr_flip_en);
1959 break;
1961 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
1962 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
1963 &legacy_reg->pifm_rd_swap_en);
1964 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
1965 &legacy_reg->pifm_wr_swap_en);
1966 break;
1968 case VXGE_HW_SWAPPER_BIT_FLIPPED:
1969 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
1970 &legacy_reg->pifm_rd_flip_en);
1971 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
1972 &legacy_reg->pifm_wr_flip_en);
1973 break;
1976 wmb();
1978 val64 = readq(&legacy_reg->toc_swapper_fb);
1980 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
1981 status = VXGE_HW_ERR_SWAPPER_CTRL;
1983 return status;
1987 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
1988 * Set the swapper bits appropriately for the vpath.
1990 enum vxge_hw_status
1991 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
1993 #ifndef __BIG_ENDIAN
1994 u64 val64;
1996 val64 = readq(&vpath_reg->vpath_general_cfg1);
1997 wmb();
1998 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
1999 writeq(val64, &vpath_reg->vpath_general_cfg1);
2000 wmb();
2001 #endif
2002 return VXGE_HW_OK;
2006 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
2007 * Set the swapper bits appropriately for the vpath.
2009 enum vxge_hw_status
2010 __vxge_hw_kdfc_swapper_set(
2011 struct vxge_hw_legacy_reg __iomem *legacy_reg,
2012 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2014 u64 val64;
2016 val64 = readq(&legacy_reg->pifm_wr_swap_en);
2018 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
2019 val64 = readq(&vpath_reg->kdfcctl_cfg0);
2020 wmb();
2022 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
2023 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
2024 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
2026 writeq(val64, &vpath_reg->kdfcctl_cfg0);
2027 wmb();
2030 return VXGE_HW_OK;
2034 * vxge_hw_mgmt_device_config - Retrieve device configuration.
2035 * Get device configuration. Permits to retrieve at run-time configuration
2036 * values that were used to initialize and configure the device.
2038 enum vxge_hw_status
2039 vxge_hw_mgmt_device_config(struct __vxge_hw_device *hldev,
2040 struct vxge_hw_device_config *dev_config, int size)
2043 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC))
2044 return VXGE_HW_ERR_INVALID_DEVICE;
2046 if (size != sizeof(struct vxge_hw_device_config))
2047 return VXGE_HW_ERR_VERSION_CONFLICT;
2049 memcpy(dev_config, &hldev->config,
2050 sizeof(struct vxge_hw_device_config));
2052 return VXGE_HW_OK;
2056 * vxge_hw_mgmt_reg_read - Read Titan register.
2058 enum vxge_hw_status
2059 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
2060 enum vxge_hw_mgmt_reg_type type,
2061 u32 index, u32 offset, u64 *value)
2063 enum vxge_hw_status status = VXGE_HW_OK;
2065 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2066 status = VXGE_HW_ERR_INVALID_DEVICE;
2067 goto exit;
2070 switch (type) {
2071 case vxge_hw_mgmt_reg_type_legacy:
2072 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2073 status = VXGE_HW_ERR_INVALID_OFFSET;
2074 break;
2076 *value = readq((void __iomem *)hldev->legacy_reg + offset);
2077 break;
2078 case vxge_hw_mgmt_reg_type_toc:
2079 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2080 status = VXGE_HW_ERR_INVALID_OFFSET;
2081 break;
2083 *value = readq((void __iomem *)hldev->toc_reg + offset);
2084 break;
2085 case vxge_hw_mgmt_reg_type_common:
2086 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2087 status = VXGE_HW_ERR_INVALID_OFFSET;
2088 break;
2090 *value = readq((void __iomem *)hldev->common_reg + offset);
2091 break;
2092 case vxge_hw_mgmt_reg_type_mrpcim:
2093 if (!(hldev->access_rights &
2094 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2095 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2096 break;
2098 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2099 status = VXGE_HW_ERR_INVALID_OFFSET;
2100 break;
2102 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
2103 break;
2104 case vxge_hw_mgmt_reg_type_srpcim:
2105 if (!(hldev->access_rights &
2106 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2107 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2108 break;
2110 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2111 status = VXGE_HW_ERR_INVALID_INDEX;
2112 break;
2114 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2115 status = VXGE_HW_ERR_INVALID_OFFSET;
2116 break;
2118 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
2119 offset);
2120 break;
2121 case vxge_hw_mgmt_reg_type_vpmgmt:
2122 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2123 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2124 status = VXGE_HW_ERR_INVALID_INDEX;
2125 break;
2127 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2128 status = VXGE_HW_ERR_INVALID_OFFSET;
2129 break;
2131 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
2132 offset);
2133 break;
2134 case vxge_hw_mgmt_reg_type_vpath:
2135 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
2136 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2137 status = VXGE_HW_ERR_INVALID_INDEX;
2138 break;
2140 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
2141 status = VXGE_HW_ERR_INVALID_INDEX;
2142 break;
2144 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2145 status = VXGE_HW_ERR_INVALID_OFFSET;
2146 break;
2148 *value = readq((void __iomem *)hldev->vpath_reg[index] +
2149 offset);
2150 break;
2151 default:
2152 status = VXGE_HW_ERR_INVALID_TYPE;
2153 break;
2156 exit:
2157 return status;
2161 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
2163 enum vxge_hw_status
2164 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
2166 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
2167 enum vxge_hw_status status = VXGE_HW_OK;
2168 int i = 0, j = 0;
2170 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2171 if (!((vpath_mask) & vxge_mBIT(i)))
2172 continue;
2173 vpmgmt_reg = hldev->vpmgmt_reg[i];
2174 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
2175 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
2176 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
2177 return VXGE_HW_FAIL;
2180 return status;
2183 * vxge_hw_mgmt_reg_Write - Write Titan register.
2185 enum vxge_hw_status
2186 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
2187 enum vxge_hw_mgmt_reg_type type,
2188 u32 index, u32 offset, u64 value)
2190 enum vxge_hw_status status = VXGE_HW_OK;
2192 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2193 status = VXGE_HW_ERR_INVALID_DEVICE;
2194 goto exit;
2197 switch (type) {
2198 case vxge_hw_mgmt_reg_type_legacy:
2199 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2200 status = VXGE_HW_ERR_INVALID_OFFSET;
2201 break;
2203 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
2204 break;
2205 case vxge_hw_mgmt_reg_type_toc:
2206 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2207 status = VXGE_HW_ERR_INVALID_OFFSET;
2208 break;
2210 writeq(value, (void __iomem *)hldev->toc_reg + offset);
2211 break;
2212 case vxge_hw_mgmt_reg_type_common:
2213 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2214 status = VXGE_HW_ERR_INVALID_OFFSET;
2215 break;
2217 writeq(value, (void __iomem *)hldev->common_reg + offset);
2218 break;
2219 case vxge_hw_mgmt_reg_type_mrpcim:
2220 if (!(hldev->access_rights &
2221 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2222 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2223 break;
2225 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2226 status = VXGE_HW_ERR_INVALID_OFFSET;
2227 break;
2229 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
2230 break;
2231 case vxge_hw_mgmt_reg_type_srpcim:
2232 if (!(hldev->access_rights &
2233 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2234 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2235 break;
2237 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2238 status = VXGE_HW_ERR_INVALID_INDEX;
2239 break;
2241 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2242 status = VXGE_HW_ERR_INVALID_OFFSET;
2243 break;
2245 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
2246 offset);
2248 break;
2249 case vxge_hw_mgmt_reg_type_vpmgmt:
2250 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2251 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2252 status = VXGE_HW_ERR_INVALID_INDEX;
2253 break;
2255 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2256 status = VXGE_HW_ERR_INVALID_OFFSET;
2257 break;
2259 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
2260 offset);
2261 break;
2262 case vxge_hw_mgmt_reg_type_vpath:
2263 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
2264 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2265 status = VXGE_HW_ERR_INVALID_INDEX;
2266 break;
2268 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2269 status = VXGE_HW_ERR_INVALID_OFFSET;
2270 break;
2272 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
2273 offset);
2274 break;
2275 default:
2276 status = VXGE_HW_ERR_INVALID_TYPE;
2277 break;
2279 exit:
2280 return status;
2284 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
2285 * list callback
2286 * This function is callback passed to __vxge_hw_mempool_create to create memory
2287 * pool for TxD list
2289 static void
2290 __vxge_hw_fifo_mempool_item_alloc(
2291 struct vxge_hw_mempool *mempoolh,
2292 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
2293 u32 index, u32 is_last)
2295 u32 memblock_item_idx;
2296 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
2297 struct vxge_hw_fifo_txd *txdp =
2298 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
2299 struct __vxge_hw_fifo *fifo =
2300 (struct __vxge_hw_fifo *)mempoolh->userdata;
2301 void *memblock = mempoolh->memblocks_arr[memblock_index];
2303 vxge_assert(txdp);
2305 txdp->host_control = (u64) (size_t)
2306 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
2307 &memblock_item_idx);
2309 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
2311 vxge_assert(txdl_priv);
2313 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
2315 /* pre-format HW's TxDL's private */
2316 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
2317 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
2318 txdl_priv->dma_handle = dma_object->handle;
2319 txdl_priv->memblock = memblock;
2320 txdl_priv->first_txdp = txdp;
2321 txdl_priv->next_txdl_priv = NULL;
2322 txdl_priv->alloc_frags = 0;
2324 return;
2328 * __vxge_hw_fifo_create - Create a FIFO
2329 * This function creates FIFO and initializes it.
2331 enum vxge_hw_status
2332 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
2333 struct vxge_hw_fifo_attr *attr)
2335 enum vxge_hw_status status = VXGE_HW_OK;
2336 struct __vxge_hw_fifo *fifo;
2337 struct vxge_hw_fifo_config *config;
2338 u32 txdl_size, txdl_per_memblock;
2339 struct vxge_hw_mempool_cbs fifo_mp_callback;
2340 struct __vxge_hw_virtualpath *vpath;
2342 if ((vp == NULL) || (attr == NULL)) {
2343 status = VXGE_HW_ERR_INVALID_HANDLE;
2344 goto exit;
2346 vpath = vp->vpath;
2347 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
2349 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
2351 txdl_per_memblock = config->memblock_size / txdl_size;
2353 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
2354 VXGE_HW_CHANNEL_TYPE_FIFO,
2355 config->fifo_blocks * txdl_per_memblock,
2356 attr->per_txdl_space, attr->userdata);
2358 if (fifo == NULL) {
2359 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2360 goto exit;
2363 vpath->fifoh = fifo;
2364 fifo->nofl_db = vpath->nofl_db;
2366 fifo->vp_id = vpath->vp_id;
2367 fifo->vp_reg = vpath->vp_reg;
2368 fifo->stats = &vpath->sw_stats->fifo_stats;
2370 fifo->config = config;
2372 /* apply "interrupts per txdl" attribute */
2373 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
2375 if (fifo->config->intr)
2376 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
2378 fifo->no_snoop_bits = config->no_snoop_bits;
2381 * FIFO memory management strategy:
2383 * TxDL split into three independent parts:
2384 * - set of TxD's
2385 * - TxD HW private part
2386 * - driver private part
2388 * Adaptative memory allocation used. i.e. Memory allocated on
2389 * demand with the size which will fit into one memory block.
2390 * One memory block may contain more than one TxDL.
2392 * During "reserve" operations more memory can be allocated on demand
2393 * for example due to FIFO full condition.
2395 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
2396 * routine which will essentially stop the channel and free resources.
2399 /* TxDL common private size == TxDL private + driver private */
2400 fifo->priv_size =
2401 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
2402 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2403 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2405 fifo->per_txdl_space = attr->per_txdl_space;
2407 /* recompute txdl size to be cacheline aligned */
2408 fifo->txdl_size = txdl_size;
2409 fifo->txdl_per_memblock = txdl_per_memblock;
2411 fifo->txdl_term = attr->txdl_term;
2412 fifo->callback = attr->callback;
2414 if (fifo->txdl_per_memblock == 0) {
2415 __vxge_hw_fifo_delete(vp);
2416 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
2417 goto exit;
2420 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
2422 fifo->mempool =
2423 __vxge_hw_mempool_create(vpath->hldev,
2424 fifo->config->memblock_size,
2425 fifo->txdl_size,
2426 fifo->priv_size,
2427 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2428 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2429 &fifo_mp_callback,
2430 fifo);
2432 if (fifo->mempool == NULL) {
2433 __vxge_hw_fifo_delete(vp);
2434 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2435 goto exit;
2438 status = __vxge_hw_channel_initialize(&fifo->channel);
2439 if (status != VXGE_HW_OK) {
2440 __vxge_hw_fifo_delete(vp);
2441 goto exit;
2444 vxge_assert(fifo->channel.reserve_ptr);
2445 exit:
2446 return status;
2450 * __vxge_hw_fifo_abort - Returns the TxD
2451 * This function terminates the TxDs of fifo
2453 enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
2455 void *txdlh;
2457 for (;;) {
2458 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
2460 if (txdlh == NULL)
2461 break;
2463 vxge_hw_channel_dtr_complete(&fifo->channel);
2465 if (fifo->txdl_term) {
2466 fifo->txdl_term(txdlh,
2467 VXGE_HW_TXDL_STATE_POSTED,
2468 fifo->channel.userdata);
2471 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
2474 return VXGE_HW_OK;
2478 * __vxge_hw_fifo_reset - Resets the fifo
2479 * This function resets the fifo during vpath reset operation
2481 enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
2483 enum vxge_hw_status status = VXGE_HW_OK;
2485 __vxge_hw_fifo_abort(fifo);
2486 status = __vxge_hw_channel_reset(&fifo->channel);
2488 return status;
2492 * __vxge_hw_fifo_delete - Removes the FIFO
2493 * This function freeup the memory pool and removes the FIFO
2495 enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
2497 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
2499 __vxge_hw_fifo_abort(fifo);
2501 if (fifo->mempool)
2502 __vxge_hw_mempool_destroy(fifo->mempool);
2504 vp->vpath->fifoh = NULL;
2506 __vxge_hw_channel_free(&fifo->channel);
2508 return VXGE_HW_OK;
2512 * __vxge_hw_vpath_pci_read - Read the content of given address
2513 * in pci config space.
2514 * Read from the vpath pci config space.
2516 enum vxge_hw_status
2517 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
2518 u32 phy_func_0, u32 offset, u32 *val)
2520 u64 val64;
2521 enum vxge_hw_status status = VXGE_HW_OK;
2522 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2524 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
2526 if (phy_func_0)
2527 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
2529 writeq(val64, &vp_reg->pci_config_access_cfg1);
2530 wmb();
2531 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
2532 &vp_reg->pci_config_access_cfg2);
2533 wmb();
2535 status = __vxge_hw_device_register_poll(
2536 &vp_reg->pci_config_access_cfg2,
2537 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2539 if (status != VXGE_HW_OK)
2540 goto exit;
2542 val64 = readq(&vp_reg->pci_config_access_status);
2544 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
2545 status = VXGE_HW_FAIL;
2546 *val = 0;
2547 } else
2548 *val = (u32)vxge_bVALn(val64, 32, 32);
2549 exit:
2550 return status;
2554 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
2555 * Returns the function number of the vpath.
2558 __vxge_hw_vpath_func_id_get(u32 vp_id,
2559 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
2561 u64 val64;
2563 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
2565 return
2566 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
2570 * __vxge_hw_read_rts_ds - Program RTS steering critieria
2572 static inline void
2573 __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
2574 u64 dta_struct_sel)
2576 writeq(0, &vpath_reg->rts_access_steer_ctrl);
2577 wmb();
2578 writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
2579 writeq(0, &vpath_reg->rts_access_steer_data1);
2580 wmb();
2581 return;
2586 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
2587 * part number and product description.
2589 enum vxge_hw_status
2590 __vxge_hw_vpath_card_info_get(
2591 u32 vp_id,
2592 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2593 struct vxge_hw_device_hw_info *hw_info)
2595 u32 i, j;
2596 u64 val64;
2597 u64 data1 = 0ULL;
2598 u64 data2 = 0ULL;
2599 enum vxge_hw_status status = VXGE_HW_OK;
2600 u8 *serial_number = hw_info->serial_number;
2601 u8 *part_number = hw_info->part_number;
2602 u8 *product_desc = hw_info->product_desc;
2604 __vxge_hw_read_rts_ds(vpath_reg,
2605 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
2607 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2608 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2609 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2610 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2611 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2612 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2614 status = __vxge_hw_pio_mem_write64(val64,
2615 &vpath_reg->rts_access_steer_ctrl,
2616 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2617 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2619 if (status != VXGE_HW_OK)
2620 return status;
2622 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2624 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2625 data1 = readq(&vpath_reg->rts_access_steer_data0);
2626 ((u64 *)serial_number)[0] = be64_to_cpu(data1);
2628 data2 = readq(&vpath_reg->rts_access_steer_data1);
2629 ((u64 *)serial_number)[1] = be64_to_cpu(data2);
2630 status = VXGE_HW_OK;
2631 } else
2632 *serial_number = 0;
2634 __vxge_hw_read_rts_ds(vpath_reg,
2635 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
2637 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2638 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2639 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2640 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2641 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2642 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2644 status = __vxge_hw_pio_mem_write64(val64,
2645 &vpath_reg->rts_access_steer_ctrl,
2646 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2647 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2649 if (status != VXGE_HW_OK)
2650 return status;
2652 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2654 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2656 data1 = readq(&vpath_reg->rts_access_steer_data0);
2657 ((u64 *)part_number)[0] = be64_to_cpu(data1);
2659 data2 = readq(&vpath_reg->rts_access_steer_data1);
2660 ((u64 *)part_number)[1] = be64_to_cpu(data2);
2662 status = VXGE_HW_OK;
2664 } else
2665 *part_number = 0;
2667 j = 0;
2669 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
2670 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
2672 __vxge_hw_read_rts_ds(vpath_reg, i);
2674 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2675 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2676 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2677 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2678 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2679 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2681 status = __vxge_hw_pio_mem_write64(val64,
2682 &vpath_reg->rts_access_steer_ctrl,
2683 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2684 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2686 if (status != VXGE_HW_OK)
2687 return status;
2689 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2691 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2693 data1 = readq(&vpath_reg->rts_access_steer_data0);
2694 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
2696 data2 = readq(&vpath_reg->rts_access_steer_data1);
2697 ((u64 *)product_desc)[j++] = be64_to_cpu(data2);
2699 status = VXGE_HW_OK;
2700 } else
2701 *product_desc = 0;
2704 return status;
2708 * __vxge_hw_vpath_fw_ver_get - Get the fw version
2709 * Returns FW Version
2711 enum vxge_hw_status
2712 __vxge_hw_vpath_fw_ver_get(
2713 u32 vp_id,
2714 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2715 struct vxge_hw_device_hw_info *hw_info)
2717 u64 val64;
2718 u64 data1 = 0ULL;
2719 u64 data2 = 0ULL;
2720 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
2721 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
2722 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
2723 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
2724 enum vxge_hw_status status = VXGE_HW_OK;
2726 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2727 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
2728 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2729 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2730 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2731 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2733 status = __vxge_hw_pio_mem_write64(val64,
2734 &vpath_reg->rts_access_steer_ctrl,
2735 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2736 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2738 if (status != VXGE_HW_OK)
2739 goto exit;
2741 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2743 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2745 data1 = readq(&vpath_reg->rts_access_steer_data0);
2746 data2 = readq(&vpath_reg->rts_access_steer_data1);
2748 fw_date->day =
2749 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
2750 data1);
2751 fw_date->month =
2752 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
2753 data1);
2754 fw_date->year =
2755 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
2756 data1);
2758 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
2759 fw_date->month, fw_date->day, fw_date->year);
2761 fw_version->major =
2762 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
2763 fw_version->minor =
2764 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
2765 fw_version->build =
2766 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
2768 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2769 fw_version->major, fw_version->minor, fw_version->build);
2771 flash_date->day =
2772 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
2773 flash_date->month =
2774 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
2775 flash_date->year =
2776 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
2778 snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
2779 "%2.2d/%2.2d/%4.4d",
2780 flash_date->month, flash_date->day, flash_date->year);
2782 flash_version->major =
2783 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
2784 flash_version->minor =
2785 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
2786 flash_version->build =
2787 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
2789 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2790 flash_version->major, flash_version->minor,
2791 flash_version->build);
2793 status = VXGE_HW_OK;
2795 } else
2796 status = VXGE_HW_FAIL;
2797 exit:
2798 return status;
2802 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
2803 * Returns pci function mode
2806 __vxge_hw_vpath_pci_func_mode_get(
2807 u32 vp_id,
2808 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2810 u64 val64;
2811 u64 data1 = 0ULL;
2812 enum vxge_hw_status status = VXGE_HW_OK;
2814 __vxge_hw_read_rts_ds(vpath_reg,
2815 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
2817 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2818 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2819 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2820 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2821 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2822 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2824 status = __vxge_hw_pio_mem_write64(val64,
2825 &vpath_reg->rts_access_steer_ctrl,
2826 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2827 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2829 if (status != VXGE_HW_OK)
2830 goto exit;
2832 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2834 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2835 data1 = readq(&vpath_reg->rts_access_steer_data0);
2836 status = VXGE_HW_OK;
2837 } else {
2838 data1 = 0;
2839 status = VXGE_HW_FAIL;
2841 exit:
2842 return data1;
2846 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
2847 * @hldev: HW device.
2848 * @on_off: TRUE if flickering to be on, FALSE to be off
2850 * Flicker the link LED.
2852 enum vxge_hw_status
2853 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
2854 u64 on_off)
2856 u64 val64;
2857 enum vxge_hw_status status = VXGE_HW_OK;
2858 struct vxge_hw_vpath_reg __iomem *vp_reg;
2860 if (hldev == NULL) {
2861 status = VXGE_HW_ERR_INVALID_DEVICE;
2862 goto exit;
2865 vp_reg = hldev->vpath_reg[hldev->first_vp_id];
2867 writeq(0, &vp_reg->rts_access_steer_ctrl);
2868 wmb();
2869 writeq(on_off, &vp_reg->rts_access_steer_data0);
2870 writeq(0, &vp_reg->rts_access_steer_data1);
2871 wmb();
2873 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2874 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
2875 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2876 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2877 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2878 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2880 status = __vxge_hw_pio_mem_write64(val64,
2881 &vp_reg->rts_access_steer_ctrl,
2882 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2883 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2884 exit:
2885 return status;
2889 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
2891 enum vxge_hw_status
2892 __vxge_hw_vpath_rts_table_get(
2893 struct __vxge_hw_vpath_handle *vp,
2894 u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
2896 u64 val64;
2897 struct __vxge_hw_virtualpath *vpath;
2898 struct vxge_hw_vpath_reg __iomem *vp_reg;
2900 enum vxge_hw_status status = VXGE_HW_OK;
2902 if (vp == NULL) {
2903 status = VXGE_HW_ERR_INVALID_HANDLE;
2904 goto exit;
2907 vpath = vp->vpath;
2908 vp_reg = vpath->vp_reg;
2910 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
2911 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
2912 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2913 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
2915 if ((rts_table ==
2916 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
2917 (rts_table ==
2918 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
2919 (rts_table ==
2920 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
2921 (rts_table ==
2922 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
2923 val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
2926 status = __vxge_hw_pio_mem_write64(val64,
2927 &vp_reg->rts_access_steer_ctrl,
2928 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2929 vpath->hldev->config.device_poll_millis);
2931 if (status != VXGE_HW_OK)
2932 goto exit;
2934 val64 = readq(&vp_reg->rts_access_steer_ctrl);
2936 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2938 *data1 = readq(&vp_reg->rts_access_steer_data0);
2940 if ((rts_table ==
2941 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
2942 (rts_table ==
2943 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
2944 *data2 = readq(&vp_reg->rts_access_steer_data1);
2946 status = VXGE_HW_OK;
2947 } else
2948 status = VXGE_HW_FAIL;
2949 exit:
2950 return status;
2954 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
2956 enum vxge_hw_status
2957 __vxge_hw_vpath_rts_table_set(
2958 struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
2959 u32 offset, u64 data1, u64 data2)
2961 u64 val64;
2962 struct __vxge_hw_virtualpath *vpath;
2963 enum vxge_hw_status status = VXGE_HW_OK;
2964 struct vxge_hw_vpath_reg __iomem *vp_reg;
2966 if (vp == NULL) {
2967 status = VXGE_HW_ERR_INVALID_HANDLE;
2968 goto exit;
2971 vpath = vp->vpath;
2972 vp_reg = vpath->vp_reg;
2974 writeq(data1, &vp_reg->rts_access_steer_data0);
2975 wmb();
2977 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
2978 (rts_table ==
2979 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
2980 writeq(data2, &vp_reg->rts_access_steer_data1);
2981 wmb();
2984 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
2985 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
2986 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2987 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
2989 status = __vxge_hw_pio_mem_write64(val64,
2990 &vp_reg->rts_access_steer_ctrl,
2991 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2992 vpath->hldev->config.device_poll_millis);
2994 if (status != VXGE_HW_OK)
2995 goto exit;
2997 val64 = readq(&vp_reg->rts_access_steer_ctrl);
2999 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
3000 status = VXGE_HW_OK;
3001 else
3002 status = VXGE_HW_FAIL;
3003 exit:
3004 return status;
3008 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
3009 * from MAC address table.
3011 enum vxge_hw_status
3012 __vxge_hw_vpath_addr_get(
3013 u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
3014 u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
3016 u32 i;
3017 u64 val64;
3018 u64 data1 = 0ULL;
3019 u64 data2 = 0ULL;
3020 enum vxge_hw_status status = VXGE_HW_OK;
3022 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3023 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
3024 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3025 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
3026 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3027 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3029 status = __vxge_hw_pio_mem_write64(val64,
3030 &vpath_reg->rts_access_steer_ctrl,
3031 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3032 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3034 if (status != VXGE_HW_OK)
3035 goto exit;
3037 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3039 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3041 data1 = readq(&vpath_reg->rts_access_steer_data0);
3042 data2 = readq(&vpath_reg->rts_access_steer_data1);
3044 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
3045 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
3046 data2);
3048 for (i = ETH_ALEN; i > 0; i--) {
3049 macaddr[i-1] = (u8)(data1 & 0xFF);
3050 data1 >>= 8;
3052 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
3053 data2 >>= 8;
3055 status = VXGE_HW_OK;
3056 } else
3057 status = VXGE_HW_FAIL;
3058 exit:
3059 return status;
3063 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3065 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3066 struct __vxge_hw_vpath_handle *vp,
3067 enum vxge_hw_rth_algoritms algorithm,
3068 struct vxge_hw_rth_hash_types *hash_type,
3069 u16 bucket_size)
3071 u64 data0, data1;
3072 enum vxge_hw_status status = VXGE_HW_OK;
3074 if (vp == NULL) {
3075 status = VXGE_HW_ERR_INVALID_HANDLE;
3076 goto exit;
3079 status = __vxge_hw_vpath_rts_table_get(vp,
3080 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3081 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3082 0, &data0, &data1);
3084 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3085 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3087 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3088 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3089 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3091 if (hash_type->hash_type_tcpipv4_en)
3092 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3094 if (hash_type->hash_type_ipv4_en)
3095 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3097 if (hash_type->hash_type_tcpipv6_en)
3098 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3100 if (hash_type->hash_type_ipv6_en)
3101 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3103 if (hash_type->hash_type_tcpipv6ex_en)
3104 data0 |=
3105 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3107 if (hash_type->hash_type_ipv6ex_en)
3108 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3110 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3111 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3112 else
3113 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3115 status = __vxge_hw_vpath_rts_table_set(vp,
3116 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3117 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3118 0, data0, 0);
3119 exit:
3120 return status;
3123 static void
3124 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3125 u16 flag, u8 *itable)
3127 switch (flag) {
3128 case 1:
3129 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3130 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3131 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3132 itable[j]);
3133 case 2:
3134 *data0 |=
3135 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3136 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3137 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3138 itable[j]);
3139 case 3:
3140 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3141 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3142 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3143 itable[j]);
3144 case 4:
3145 *data1 |=
3146 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3147 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3148 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3149 itable[j]);
3150 default:
3151 return;
3155 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3157 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3158 struct __vxge_hw_vpath_handle **vpath_handles,
3159 u32 vpath_count,
3160 u8 *mtable,
3161 u8 *itable,
3162 u32 itable_size)
3164 u32 i, j, action, rts_table;
3165 u64 data0;
3166 u64 data1;
3167 u32 max_entries;
3168 enum vxge_hw_status status = VXGE_HW_OK;
3169 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3171 if (vp == NULL) {
3172 status = VXGE_HW_ERR_INVALID_HANDLE;
3173 goto exit;
3176 max_entries = (((u32)1) << itable_size);
3178 if (vp->vpath->hldev->config.rth_it_type
3179 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3180 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3181 rts_table =
3182 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3184 for (j = 0; j < max_entries; j++) {
3186 data1 = 0;
3188 data0 =
3189 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3190 itable[j]);
3192 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3193 action, rts_table, j, data0, data1);
3195 if (status != VXGE_HW_OK)
3196 goto exit;
3199 for (j = 0; j < max_entries; j++) {
3201 data1 = 0;
3203 data0 =
3204 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3205 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3206 itable[j]);
3208 status = __vxge_hw_vpath_rts_table_set(
3209 vpath_handles[mtable[itable[j]]], action,
3210 rts_table, j, data0, data1);
3212 if (status != VXGE_HW_OK)
3213 goto exit;
3215 } else {
3216 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3217 rts_table =
3218 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3219 for (i = 0; i < vpath_count; i++) {
3221 for (j = 0; j < max_entries;) {
3223 data0 = 0;
3224 data1 = 0;
3226 while (j < max_entries) {
3227 if (mtable[itable[j]] != i) {
3228 j++;
3229 continue;
3231 vxge_hw_rts_rth_data0_data1_get(j,
3232 &data0, &data1, 1, itable);
3233 j++;
3234 break;
3237 while (j < max_entries) {
3238 if (mtable[itable[j]] != i) {
3239 j++;
3240 continue;
3242 vxge_hw_rts_rth_data0_data1_get(j,
3243 &data0, &data1, 2, itable);
3244 j++;
3245 break;
3248 while (j < max_entries) {
3249 if (mtable[itable[j]] != i) {
3250 j++;
3251 continue;
3253 vxge_hw_rts_rth_data0_data1_get(j,
3254 &data0, &data1, 3, itable);
3255 j++;
3256 break;
3259 while (j < max_entries) {
3260 if (mtable[itable[j]] != i) {
3261 j++;
3262 continue;
3264 vxge_hw_rts_rth_data0_data1_get(j,
3265 &data0, &data1, 4, itable);
3266 j++;
3267 break;
3270 if (data0 != 0) {
3271 status = __vxge_hw_vpath_rts_table_set(
3272 vpath_handles[i],
3273 action, rts_table,
3274 0, data0, data1);
3276 if (status != VXGE_HW_OK)
3277 goto exit;
3282 exit:
3283 return status;
3287 * vxge_hw_vpath_check_leak - Check for memory leak
3288 * @ringh: Handle to the ring object used for receive
3290 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3291 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3292 * Returns: VXGE_HW_FAIL, if leak has occurred.
3295 enum vxge_hw_status
3296 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3298 enum vxge_hw_status status = VXGE_HW_OK;
3299 u64 rxd_new_count, rxd_spat;
3301 if (ring == NULL)
3302 return status;
3304 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3305 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3306 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3308 if (rxd_new_count >= rxd_spat)
3309 status = VXGE_HW_FAIL;
3311 return status;
3315 * __vxge_hw_vpath_mgmt_read
3316 * This routine reads the vpath_mgmt registers
3318 static enum vxge_hw_status
3319 __vxge_hw_vpath_mgmt_read(
3320 struct __vxge_hw_device *hldev,
3321 struct __vxge_hw_virtualpath *vpath)
3323 u32 i, mtu = 0, max_pyld = 0;
3324 u64 val64;
3325 enum vxge_hw_status status = VXGE_HW_OK;
3327 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3329 val64 = readq(&vpath->vpmgmt_reg->
3330 rxmac_cfg0_port_vpmgmt_clone[i]);
3331 max_pyld =
3332 (u32)
3333 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3334 (val64);
3335 if (mtu < max_pyld)
3336 mtu = max_pyld;
3339 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3341 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3343 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3344 if (val64 & vxge_mBIT(i))
3345 vpath->vsport_number = i;
3348 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3350 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3351 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3352 else
3353 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3355 return status;
3359 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3360 * This routine checks the vpath_rst_in_prog register to see if
3361 * adapter completed the reset process for the vpath
3363 enum vxge_hw_status
3364 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
3366 enum vxge_hw_status status;
3368 status = __vxge_hw_device_register_poll(
3369 &vpath->hldev->common_reg->vpath_rst_in_prog,
3370 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
3371 1 << (16 - vpath->vp_id)),
3372 vpath->hldev->config.device_poll_millis);
3374 return status;
3378 * __vxge_hw_vpath_reset
3379 * This routine resets the vpath on the device
3381 enum vxge_hw_status
3382 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3384 u64 val64;
3385 enum vxge_hw_status status = VXGE_HW_OK;
3387 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
3389 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
3390 &hldev->common_reg->cmn_rsthdlr_cfg0);
3392 return status;
3396 * __vxge_hw_vpath_sw_reset
3397 * This routine resets the vpath structures
3399 enum vxge_hw_status
3400 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3402 enum vxge_hw_status status = VXGE_HW_OK;
3403 struct __vxge_hw_virtualpath *vpath;
3405 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
3407 if (vpath->ringh) {
3408 status = __vxge_hw_ring_reset(vpath->ringh);
3409 if (status != VXGE_HW_OK)
3410 goto exit;
3413 if (vpath->fifoh)
3414 status = __vxge_hw_fifo_reset(vpath->fifoh);
3415 exit:
3416 return status;
3420 * __vxge_hw_vpath_prc_configure
3421 * This routine configures the prc registers of virtual path using the config
3422 * passed
3424 void
3425 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3427 u64 val64;
3428 struct __vxge_hw_virtualpath *vpath;
3429 struct vxge_hw_vp_config *vp_config;
3430 struct vxge_hw_vpath_reg __iomem *vp_reg;
3432 vpath = &hldev->virtual_paths[vp_id];
3433 vp_reg = vpath->vp_reg;
3434 vp_config = vpath->vp_config;
3436 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
3437 return;
3439 val64 = readq(&vp_reg->prc_cfg1);
3440 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
3441 writeq(val64, &vp_reg->prc_cfg1);
3443 val64 = readq(&vpath->vp_reg->prc_cfg6);
3444 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
3445 writeq(val64, &vpath->vp_reg->prc_cfg6);
3447 val64 = readq(&vp_reg->prc_cfg7);
3449 if (vpath->vp_config->ring.scatter_mode !=
3450 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
3452 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
3454 switch (vpath->vp_config->ring.scatter_mode) {
3455 case VXGE_HW_RING_SCATTER_MODE_A:
3456 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3457 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
3458 break;
3459 case VXGE_HW_RING_SCATTER_MODE_B:
3460 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3461 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
3462 break;
3463 case VXGE_HW_RING_SCATTER_MODE_C:
3464 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3465 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
3466 break;
3470 writeq(val64, &vp_reg->prc_cfg7);
3472 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
3473 __vxge_hw_ring_first_block_address_get(
3474 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
3476 val64 = readq(&vp_reg->prc_cfg4);
3477 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
3478 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
3480 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
3481 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
3483 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
3484 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
3485 else
3486 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
3488 writeq(val64, &vp_reg->prc_cfg4);
3489 return;
3493 * __vxge_hw_vpath_kdfc_configure
3494 * This routine configures the kdfc registers of virtual path using the
3495 * config passed
3497 enum vxge_hw_status
3498 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3500 u64 val64;
3501 u64 vpath_stride;
3502 enum vxge_hw_status status = VXGE_HW_OK;
3503 struct __vxge_hw_virtualpath *vpath;
3504 struct vxge_hw_vpath_reg __iomem *vp_reg;
3506 vpath = &hldev->virtual_paths[vp_id];
3507 vp_reg = vpath->vp_reg;
3508 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
3510 if (status != VXGE_HW_OK)
3511 goto exit;
3513 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
3515 vpath->max_kdfc_db =
3516 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
3517 val64+1)/2;
3519 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3521 vpath->max_nofl_db = vpath->max_kdfc_db;
3523 if (vpath->max_nofl_db <
3524 ((vpath->vp_config->fifo.memblock_size /
3525 (vpath->vp_config->fifo.max_frags *
3526 sizeof(struct vxge_hw_fifo_txd))) *
3527 vpath->vp_config->fifo.fifo_blocks)) {
3529 return VXGE_HW_BADCFG_FIFO_BLOCKS;
3531 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
3532 (vpath->max_nofl_db*2)-1);
3535 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
3537 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
3538 &vp_reg->kdfc_fifo_trpl_ctrl);
3540 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
3542 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
3543 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
3545 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
3546 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
3547 #ifndef __BIG_ENDIAN
3548 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
3549 #endif
3550 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
3552 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
3553 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
3554 wmb();
3555 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
3557 vpath->nofl_db =
3558 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
3559 (hldev->kdfc + (vp_id *
3560 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
3561 vpath_stride)));
3562 exit:
3563 return status;
3567 * __vxge_hw_vpath_mac_configure
3568 * This routine configures the mac of virtual path using the config passed
3570 enum vxge_hw_status
3571 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3573 u64 val64;
3574 enum vxge_hw_status status = VXGE_HW_OK;
3575 struct __vxge_hw_virtualpath *vpath;
3576 struct vxge_hw_vp_config *vp_config;
3577 struct vxge_hw_vpath_reg __iomem *vp_reg;
3579 vpath = &hldev->virtual_paths[vp_id];
3580 vp_reg = vpath->vp_reg;
3581 vp_config = vpath->vp_config;
3583 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
3584 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
3586 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
3588 val64 = readq(&vp_reg->xmac_rpa_vcfg);
3590 if (vp_config->rpa_strip_vlan_tag !=
3591 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
3592 if (vp_config->rpa_strip_vlan_tag)
3593 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3594 else
3595 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3598 writeq(val64, &vp_reg->xmac_rpa_vcfg);
3599 val64 = readq(&vp_reg->rxmac_vcfg0);
3601 if (vp_config->mtu !=
3602 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
3603 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
3604 if ((vp_config->mtu +
3605 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
3606 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3607 vp_config->mtu +
3608 VXGE_HW_MAC_HEADER_MAX_SIZE);
3609 else
3610 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3611 vpath->max_mtu);
3614 writeq(val64, &vp_reg->rxmac_vcfg0);
3616 val64 = readq(&vp_reg->rxmac_vcfg1);
3618 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
3619 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
3621 if (hldev->config.rth_it_type ==
3622 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
3623 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
3624 0x2) |
3625 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
3628 writeq(val64, &vp_reg->rxmac_vcfg1);
3630 return status;
3634 * __vxge_hw_vpath_tim_configure
3635 * This routine configures the tim registers of virtual path using the config
3636 * passed
3638 enum vxge_hw_status
3639 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3641 u64 val64;
3642 enum vxge_hw_status status = VXGE_HW_OK;
3643 struct __vxge_hw_virtualpath *vpath;
3644 struct vxge_hw_vpath_reg __iomem *vp_reg;
3645 struct vxge_hw_vp_config *config;
3647 vpath = &hldev->virtual_paths[vp_id];
3648 vp_reg = vpath->vp_reg;
3649 config = vpath->vp_config;
3651 writeq((u64)0, &vp_reg->tim_dest_addr);
3652 writeq((u64)0, &vp_reg->tim_vpath_map);
3653 writeq((u64)0, &vp_reg->tim_bitmap);
3654 writeq((u64)0, &vp_reg->tim_remap);
3656 if (config->ring.enable == VXGE_HW_RING_ENABLE)
3657 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
3658 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
3659 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
3661 val64 = readq(&vp_reg->tim_pci_cfg);
3662 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
3663 writeq(val64, &vp_reg->tim_pci_cfg);
3665 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3667 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3669 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3670 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3671 0x3ffffff);
3672 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3673 config->tti.btimer_val);
3676 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3678 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3679 if (config->tti.timer_ac_en)
3680 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3681 else
3682 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3685 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3686 if (config->tti.timer_ci_en)
3687 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3688 else
3689 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3692 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3693 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3694 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3695 config->tti.urange_a);
3698 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3699 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3700 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3701 config->tti.urange_b);
3704 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3705 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3706 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3707 config->tti.urange_c);
3710 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3711 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3713 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3714 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3715 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3716 config->tti.uec_a);
3719 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3720 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3721 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3722 config->tti.uec_b);
3725 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3726 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3727 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3728 config->tti.uec_c);
3731 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3732 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3733 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3734 config->tti.uec_d);
3737 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3738 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3740 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3741 if (config->tti.timer_ri_en)
3742 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3743 else
3744 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3747 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3748 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3749 0x3ffffff);
3750 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3751 config->tti.rtimer_val);
3754 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3755 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3756 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3757 config->tti.util_sel);
3760 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3761 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3762 0x3ffffff);
3763 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3764 config->tti.ltimer_val);
3767 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3770 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
3772 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3774 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3775 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3776 0x3ffffff);
3777 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3778 config->rti.btimer_val);
3781 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3783 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3784 if (config->rti.timer_ac_en)
3785 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3786 else
3787 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3790 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3791 if (config->rti.timer_ci_en)
3792 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3793 else
3794 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3797 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3798 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3799 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3800 config->rti.urange_a);
3803 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3804 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3805 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3806 config->rti.urange_b);
3809 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3810 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3811 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3812 config->rti.urange_c);
3815 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3816 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
3818 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3819 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3820 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3821 config->rti.uec_a);
3824 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3825 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3826 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3827 config->rti.uec_b);
3830 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3831 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3832 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3833 config->rti.uec_c);
3836 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3837 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3838 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3839 config->rti.uec_d);
3842 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
3843 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
3845 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3846 if (config->rti.timer_ri_en)
3847 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3848 else
3849 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3852 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3853 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3854 0x3ffffff);
3855 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3856 config->rti.rtimer_val);
3859 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3860 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3861 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3862 config->rti.util_sel);
3865 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3866 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3867 0x3ffffff);
3868 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3869 config->rti.ltimer_val);
3872 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
3875 val64 = 0;
3876 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
3877 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
3878 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
3879 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
3880 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
3881 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
3883 return status;
3886 void
3887 vxge_hw_vpath_tti_ci_set(struct __vxge_hw_device *hldev, u32 vp_id)
3889 struct __vxge_hw_virtualpath *vpath;
3890 struct vxge_hw_vpath_reg __iomem *vp_reg;
3891 struct vxge_hw_vp_config *config;
3892 u64 val64;
3894 vpath = &hldev->virtual_paths[vp_id];
3895 vp_reg = vpath->vp_reg;
3896 config = vpath->vp_config;
3898 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3899 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3901 if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
3902 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
3903 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3904 writeq(val64,
3905 &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3908 return;
3911 * __vxge_hw_vpath_initialize
3912 * This routine is the final phase of init which initializes the
3913 * registers of the vpath using the configuration passed.
3915 enum vxge_hw_status
3916 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
3918 u64 val64;
3919 u32 val32;
3920 enum vxge_hw_status status = VXGE_HW_OK;
3921 struct __vxge_hw_virtualpath *vpath;
3922 struct vxge_hw_vpath_reg __iomem *vp_reg;
3924 vpath = &hldev->virtual_paths[vp_id];
3926 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
3927 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
3928 goto exit;
3930 vp_reg = vpath->vp_reg;
3932 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
3934 if (status != VXGE_HW_OK)
3935 goto exit;
3937 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
3939 if (status != VXGE_HW_OK)
3940 goto exit;
3942 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
3944 if (status != VXGE_HW_OK)
3945 goto exit;
3947 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
3949 if (status != VXGE_HW_OK)
3950 goto exit;
3952 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
3954 /* Get MRRS value from device control */
3955 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
3957 if (status == VXGE_HW_OK) {
3958 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
3959 val64 &=
3960 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
3961 val64 |=
3962 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
3964 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
3967 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
3968 val64 |=
3969 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
3970 VXGE_HW_MAX_PAYLOAD_SIZE_512);
3972 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
3973 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
3975 exit:
3976 return status;
3980 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
3981 * This routine is the initial phase of init which resets the vpath and
3982 * initializes the software support structures.
3984 enum vxge_hw_status
3985 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
3986 struct vxge_hw_vp_config *config)
3988 struct __vxge_hw_virtualpath *vpath;
3989 enum vxge_hw_status status = VXGE_HW_OK;
3991 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
3992 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
3993 goto exit;
3996 vpath = &hldev->virtual_paths[vp_id];
3998 vpath->vp_id = vp_id;
3999 vpath->vp_open = VXGE_HW_VP_OPEN;
4000 vpath->hldev = hldev;
4001 vpath->vp_config = config;
4002 vpath->vp_reg = hldev->vpath_reg[vp_id];
4003 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4005 __vxge_hw_vpath_reset(hldev, vp_id);
4007 status = __vxge_hw_vpath_reset_check(vpath);
4009 if (status != VXGE_HW_OK) {
4010 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4011 goto exit;
4014 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4016 if (status != VXGE_HW_OK) {
4017 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4018 goto exit;
4021 INIT_LIST_HEAD(&vpath->vpath_handles);
4023 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4025 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4026 hldev->tim_int_mask1, vp_id);
4028 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4030 if (status != VXGE_HW_OK)
4031 __vxge_hw_vp_terminate(hldev, vp_id);
4032 exit:
4033 return status;
4037 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4038 * This routine closes all channels it opened and freeup memory
4040 void
4041 __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4043 struct __vxge_hw_virtualpath *vpath;
4045 vpath = &hldev->virtual_paths[vp_id];
4047 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4048 goto exit;
4050 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4051 vpath->hldev->tim_int_mask1, vpath->vp_id);
4052 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4054 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4055 exit:
4056 return;
4060 * vxge_hw_vpath_mtu_set - Set MTU.
4061 * Set new MTU value. Example, to use jumbo frames:
4062 * vxge_hw_vpath_mtu_set(my_device, 9600);
4064 enum vxge_hw_status
4065 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4067 u64 val64;
4068 enum vxge_hw_status status = VXGE_HW_OK;
4069 struct __vxge_hw_virtualpath *vpath;
4071 if (vp == NULL) {
4072 status = VXGE_HW_ERR_INVALID_HANDLE;
4073 goto exit;
4075 vpath = vp->vpath;
4077 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4079 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4080 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4082 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4084 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4085 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4087 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4089 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4091 exit:
4092 return status;
4096 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4097 * This function is used to open access to virtual path of an
4098 * adapter for offload, GRO operations. This function returns
4099 * synchronously.
4101 enum vxge_hw_status
4102 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4103 struct vxge_hw_vpath_attr *attr,
4104 struct __vxge_hw_vpath_handle **vpath_handle)
4106 struct __vxge_hw_virtualpath *vpath;
4107 struct __vxge_hw_vpath_handle *vp;
4108 enum vxge_hw_status status;
4110 vpath = &hldev->virtual_paths[attr->vp_id];
4112 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4113 status = VXGE_HW_ERR_INVALID_STATE;
4114 goto vpath_open_exit1;
4117 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4118 &hldev->config.vp_config[attr->vp_id]);
4120 if (status != VXGE_HW_OK)
4121 goto vpath_open_exit1;
4123 vp = (struct __vxge_hw_vpath_handle *)
4124 vmalloc(sizeof(struct __vxge_hw_vpath_handle));
4125 if (vp == NULL) {
4126 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4127 goto vpath_open_exit2;
4130 memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
4132 vp->vpath = vpath;
4134 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4135 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4136 if (status != VXGE_HW_OK)
4137 goto vpath_open_exit6;
4140 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4141 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4142 if (status != VXGE_HW_OK)
4143 goto vpath_open_exit7;
4145 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4148 vpath->fifoh->tx_intr_num =
4149 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4150 VXGE_HW_VPATH_INTR_TX;
4152 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4153 VXGE_HW_BLOCK_SIZE);
4155 if (vpath->stats_block == NULL) {
4156 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4157 goto vpath_open_exit8;
4160 vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
4161 stats_block->memblock;
4162 memset(vpath->hw_stats, 0,
4163 sizeof(struct vxge_hw_vpath_stats_hw_info));
4165 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4166 vpath->hw_stats;
4168 vpath->hw_stats_sav =
4169 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4170 memset(vpath->hw_stats_sav, 0,
4171 sizeof(struct vxge_hw_vpath_stats_hw_info));
4173 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4175 status = vxge_hw_vpath_stats_enable(vp);
4176 if (status != VXGE_HW_OK)
4177 goto vpath_open_exit8;
4179 list_add(&vp->item, &vpath->vpath_handles);
4181 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4183 *vpath_handle = vp;
4185 attr->fifo_attr.userdata = vpath->fifoh;
4186 attr->ring_attr.userdata = vpath->ringh;
4188 return VXGE_HW_OK;
4190 vpath_open_exit8:
4191 if (vpath->ringh != NULL)
4192 __vxge_hw_ring_delete(vp);
4193 vpath_open_exit7:
4194 if (vpath->fifoh != NULL)
4195 __vxge_hw_fifo_delete(vp);
4196 vpath_open_exit6:
4197 vfree(vp);
4198 vpath_open_exit2:
4199 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4200 vpath_open_exit1:
4202 return status;
4206 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4207 * (vpath) open
4208 * @vp: Handle got from previous vpath open
4210 * This function is used to close access to virtual path opened
4211 * earlier.
4213 void
4214 vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4216 struct __vxge_hw_virtualpath *vpath = NULL;
4217 u64 new_count, val64, val164;
4218 struct __vxge_hw_ring *ring;
4220 vpath = vp->vpath;
4221 ring = vpath->ringh;
4223 new_count = readq(&vpath->vp_reg->rxdmem_size);
4224 new_count &= 0x1fff;
4225 val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
4227 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4228 &vpath->vp_reg->prc_rxd_doorbell);
4229 readl(&vpath->vp_reg->prc_rxd_doorbell);
4231 val164 /= 2;
4232 val64 = readq(&vpath->vp_reg->prc_cfg6);
4233 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4234 val64 &= 0x1ff;
4237 * Each RxD is of 4 qwords
4239 new_count -= (val64 + 1);
4240 val64 = min(val164, new_count) / 4;
4242 ring->rxds_limit = min(ring->rxds_limit, val64);
4243 if (ring->rxds_limit < 4)
4244 ring->rxds_limit = 4;
4248 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4249 * This function is used to close access to virtual path opened
4250 * earlier.
4252 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4254 struct __vxge_hw_virtualpath *vpath = NULL;
4255 struct __vxge_hw_device *devh = NULL;
4256 u32 vp_id = vp->vpath->vp_id;
4257 u32 is_empty = TRUE;
4258 enum vxge_hw_status status = VXGE_HW_OK;
4260 vpath = vp->vpath;
4261 devh = vpath->hldev;
4263 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4264 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4265 goto vpath_close_exit;
4268 list_del(&vp->item);
4270 if (!list_empty(&vpath->vpath_handles)) {
4271 list_add(&vp->item, &vpath->vpath_handles);
4272 is_empty = FALSE;
4275 if (!is_empty) {
4276 status = VXGE_HW_FAIL;
4277 goto vpath_close_exit;
4280 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4282 if (vpath->ringh != NULL)
4283 __vxge_hw_ring_delete(vp);
4285 if (vpath->fifoh != NULL)
4286 __vxge_hw_fifo_delete(vp);
4288 if (vpath->stats_block != NULL)
4289 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4291 vfree(vp);
4293 __vxge_hw_vp_terminate(devh, vp_id);
4295 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4297 vpath_close_exit:
4298 return status;
4302 * vxge_hw_vpath_reset - Resets vpath
4303 * This function is used to request a reset of vpath
4305 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
4307 enum vxge_hw_status status;
4308 u32 vp_id;
4309 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4311 vp_id = vpath->vp_id;
4313 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4314 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4315 goto exit;
4318 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
4319 if (status == VXGE_HW_OK)
4320 vpath->sw_stats->soft_reset_cnt++;
4321 exit:
4322 return status;
4326 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
4327 * This function poll's for the vpath reset completion and re initializes
4328 * the vpath.
4330 enum vxge_hw_status
4331 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
4333 struct __vxge_hw_virtualpath *vpath = NULL;
4334 enum vxge_hw_status status;
4335 struct __vxge_hw_device *hldev;
4336 u32 vp_id;
4338 vp_id = vp->vpath->vp_id;
4339 vpath = vp->vpath;
4340 hldev = vpath->hldev;
4342 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4343 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4344 goto exit;
4347 status = __vxge_hw_vpath_reset_check(vpath);
4348 if (status != VXGE_HW_OK)
4349 goto exit;
4351 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
4352 if (status != VXGE_HW_OK)
4353 goto exit;
4355 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4356 if (status != VXGE_HW_OK)
4357 goto exit;
4359 if (vpath->ringh != NULL)
4360 __vxge_hw_vpath_prc_configure(hldev, vp_id);
4362 memset(vpath->hw_stats, 0,
4363 sizeof(struct vxge_hw_vpath_stats_hw_info));
4365 memset(vpath->hw_stats_sav, 0,
4366 sizeof(struct vxge_hw_vpath_stats_hw_info));
4368 writeq(vpath->stats_block->dma_addr,
4369 &vpath->vp_reg->stats_cfg);
4371 status = vxge_hw_vpath_stats_enable(vp);
4373 exit:
4374 return status;
4378 * vxge_hw_vpath_enable - Enable vpath.
4379 * This routine clears the vpath reset thereby enabling a vpath
4380 * to start forwarding frames and generating interrupts.
4382 void
4383 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
4385 struct __vxge_hw_device *hldev;
4386 u64 val64;
4388 hldev = vp->vpath->hldev;
4390 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
4391 1 << (16 - vp->vpath->vp_id));
4393 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4394 &hldev->common_reg->cmn_rsthdlr_cfg1);
4398 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4399 * Enable the DMA vpath statistics. The function is to be called to re-enable
4400 * the adapter to update stats into the host memory
4402 enum vxge_hw_status
4403 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4405 enum vxge_hw_status status = VXGE_HW_OK;
4406 struct __vxge_hw_virtualpath *vpath;
4408 vpath = vp->vpath;
4410 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4411 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4412 goto exit;
4415 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4416 sizeof(struct vxge_hw_vpath_stats_hw_info));
4418 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4419 exit:
4420 return status;
4424 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
4425 * and offset and perform an operation
4427 enum vxge_hw_status
4428 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
4429 u32 operation, u32 offset, u64 *stat)
4431 u64 val64;
4432 enum vxge_hw_status status = VXGE_HW_OK;
4433 struct vxge_hw_vpath_reg __iomem *vp_reg;
4435 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4436 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4437 goto vpath_stats_access_exit;
4440 vp_reg = vpath->vp_reg;
4442 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
4443 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
4444 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
4446 status = __vxge_hw_pio_mem_write64(val64,
4447 &vp_reg->xmac_stats_access_cmd,
4448 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
4449 vpath->hldev->config.device_poll_millis);
4451 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
4452 *stat = readq(&vp_reg->xmac_stats_access_data);
4453 else
4454 *stat = 0;
4456 vpath_stats_access_exit:
4457 return status;
4461 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
4463 enum vxge_hw_status
4464 __vxge_hw_vpath_xmac_tx_stats_get(
4465 struct __vxge_hw_virtualpath *vpath,
4466 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
4468 u64 *val64;
4469 int i;
4470 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
4471 enum vxge_hw_status status = VXGE_HW_OK;
4473 val64 = (u64 *) vpath_tx_stats;
4475 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4476 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4477 goto exit;
4480 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
4481 status = __vxge_hw_vpath_stats_access(vpath,
4482 VXGE_HW_STATS_OP_READ,
4483 offset, val64);
4484 if (status != VXGE_HW_OK)
4485 goto exit;
4486 offset++;
4487 val64++;
4489 exit:
4490 return status;
4494 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
4496 enum vxge_hw_status
4497 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
4498 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
4500 u64 *val64;
4501 enum vxge_hw_status status = VXGE_HW_OK;
4502 int i;
4503 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
4504 val64 = (u64 *) vpath_rx_stats;
4506 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4507 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4508 goto exit;
4510 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
4511 status = __vxge_hw_vpath_stats_access(vpath,
4512 VXGE_HW_STATS_OP_READ,
4513 offset >> 3, val64);
4514 if (status != VXGE_HW_OK)
4515 goto exit;
4517 offset += 8;
4518 val64++;
4520 exit:
4521 return status;
4525 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
4527 enum vxge_hw_status __vxge_hw_vpath_stats_get(
4528 struct __vxge_hw_virtualpath *vpath,
4529 struct vxge_hw_vpath_stats_hw_info *hw_stats)
4531 u64 val64;
4532 enum vxge_hw_status status = VXGE_HW_OK;
4533 struct vxge_hw_vpath_reg __iomem *vp_reg;
4535 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4536 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4537 goto exit;
4539 vp_reg = vpath->vp_reg;
4541 val64 = readq(&vp_reg->vpath_debug_stats0);
4542 hw_stats->ini_num_mwr_sent =
4543 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
4545 val64 = readq(&vp_reg->vpath_debug_stats1);
4546 hw_stats->ini_num_mrd_sent =
4547 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
4549 val64 = readq(&vp_reg->vpath_debug_stats2);
4550 hw_stats->ini_num_cpl_rcvd =
4551 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
4553 val64 = readq(&vp_reg->vpath_debug_stats3);
4554 hw_stats->ini_num_mwr_byte_sent =
4555 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
4557 val64 = readq(&vp_reg->vpath_debug_stats4);
4558 hw_stats->ini_num_cpl_byte_rcvd =
4559 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
4561 val64 = readq(&vp_reg->vpath_debug_stats5);
4562 hw_stats->wrcrdtarb_xoff =
4563 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
4565 val64 = readq(&vp_reg->vpath_debug_stats6);
4566 hw_stats->rdcrdtarb_xoff =
4567 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
4569 val64 = readq(&vp_reg->vpath_genstats_count01);
4570 hw_stats->vpath_genstats_count0 =
4571 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
4572 val64);
4574 val64 = readq(&vp_reg->vpath_genstats_count01);
4575 hw_stats->vpath_genstats_count1 =
4576 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
4577 val64);
4579 val64 = readq(&vp_reg->vpath_genstats_count23);
4580 hw_stats->vpath_genstats_count2 =
4581 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
4582 val64);
4584 val64 = readq(&vp_reg->vpath_genstats_count01);
4585 hw_stats->vpath_genstats_count3 =
4586 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
4587 val64);
4589 val64 = readq(&vp_reg->vpath_genstats_count4);
4590 hw_stats->vpath_genstats_count4 =
4591 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
4592 val64);
4594 val64 = readq(&vp_reg->vpath_genstats_count5);
4595 hw_stats->vpath_genstats_count5 =
4596 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
4597 val64);
4599 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
4600 if (status != VXGE_HW_OK)
4601 goto exit;
4603 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
4604 if (status != VXGE_HW_OK)
4605 goto exit;
4607 VXGE_HW_VPATH_STATS_PIO_READ(
4608 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
4610 hw_stats->prog_event_vnum0 =
4611 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
4613 hw_stats->prog_event_vnum1 =
4614 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
4616 VXGE_HW_VPATH_STATS_PIO_READ(
4617 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
4619 hw_stats->prog_event_vnum2 =
4620 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
4622 hw_stats->prog_event_vnum3 =
4623 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
4625 val64 = readq(&vp_reg->rx_multi_cast_stats);
4626 hw_stats->rx_multi_cast_frame_discard =
4627 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
4629 val64 = readq(&vp_reg->rx_frm_transferred);
4630 hw_stats->rx_frm_transferred =
4631 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
4633 val64 = readq(&vp_reg->rxd_returned);
4634 hw_stats->rxd_returned =
4635 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
4637 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
4638 hw_stats->rx_mpa_len_fail_frms =
4639 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
4640 hw_stats->rx_mpa_mrk_fail_frms =
4641 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
4642 hw_stats->rx_mpa_crc_fail_frms =
4643 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
4645 val64 = readq(&vp_reg->dbg_stats_rx_fau);
4646 hw_stats->rx_permitted_frms =
4647 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
4648 hw_stats->rx_vp_reset_discarded_frms =
4649 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
4650 hw_stats->rx_wol_frms =
4651 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
4653 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
4654 hw_stats->tx_vp_reset_discarded_frms =
4655 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
4656 val64);
4657 exit:
4658 return status;
4662 * __vxge_hw_blockpool_create - Create block pool
4665 enum vxge_hw_status
4666 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
4667 struct __vxge_hw_blockpool *blockpool,
4668 u32 pool_size,
4669 u32 pool_max)
4671 u32 i;
4672 struct __vxge_hw_blockpool_entry *entry = NULL;
4673 void *memblock;
4674 dma_addr_t dma_addr;
4675 struct pci_dev *dma_handle;
4676 struct pci_dev *acc_handle;
4677 enum vxge_hw_status status = VXGE_HW_OK;
4679 if (blockpool == NULL) {
4680 status = VXGE_HW_FAIL;
4681 goto blockpool_create_exit;
4684 blockpool->hldev = hldev;
4685 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
4686 blockpool->pool_size = 0;
4687 blockpool->pool_max = pool_max;
4688 blockpool->req_out = 0;
4690 INIT_LIST_HEAD(&blockpool->free_block_list);
4691 INIT_LIST_HEAD(&blockpool->free_entry_list);
4693 for (i = 0; i < pool_size + pool_max; i++) {
4694 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4695 GFP_KERNEL);
4696 if (entry == NULL) {
4697 __vxge_hw_blockpool_destroy(blockpool);
4698 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4699 goto blockpool_create_exit;
4701 list_add(&entry->item, &blockpool->free_entry_list);
4704 for (i = 0; i < pool_size; i++) {
4706 memblock = vxge_os_dma_malloc(
4707 hldev->pdev,
4708 VXGE_HW_BLOCK_SIZE,
4709 &dma_handle,
4710 &acc_handle);
4712 if (memblock == NULL) {
4713 __vxge_hw_blockpool_destroy(blockpool);
4714 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4715 goto blockpool_create_exit;
4718 dma_addr = pci_map_single(hldev->pdev, memblock,
4719 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
4721 if (unlikely(pci_dma_mapping_error(hldev->pdev,
4722 dma_addr))) {
4724 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
4725 __vxge_hw_blockpool_destroy(blockpool);
4726 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4727 goto blockpool_create_exit;
4730 if (!list_empty(&blockpool->free_entry_list))
4731 entry = (struct __vxge_hw_blockpool_entry *)
4732 list_first_entry(&blockpool->free_entry_list,
4733 struct __vxge_hw_blockpool_entry,
4734 item);
4736 if (entry == NULL)
4737 entry =
4738 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4739 GFP_KERNEL);
4740 if (entry != NULL) {
4741 list_del(&entry->item);
4742 entry->length = VXGE_HW_BLOCK_SIZE;
4743 entry->memblock = memblock;
4744 entry->dma_addr = dma_addr;
4745 entry->acc_handle = acc_handle;
4746 entry->dma_handle = dma_handle;
4747 list_add(&entry->item,
4748 &blockpool->free_block_list);
4749 blockpool->pool_size++;
4750 } else {
4751 __vxge_hw_blockpool_destroy(blockpool);
4752 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4753 goto blockpool_create_exit;
4757 blockpool_create_exit:
4758 return status;
4762 * __vxge_hw_blockpool_destroy - Deallocates the block pool
4765 void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
4768 struct __vxge_hw_device *hldev;
4769 struct list_head *p, *n;
4770 u16 ret;
4772 if (blockpool == NULL) {
4773 ret = 1;
4774 goto exit;
4777 hldev = blockpool->hldev;
4779 list_for_each_safe(p, n, &blockpool->free_block_list) {
4781 pci_unmap_single(hldev->pdev,
4782 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4783 ((struct __vxge_hw_blockpool_entry *)p)->length,
4784 PCI_DMA_BIDIRECTIONAL);
4786 vxge_os_dma_free(hldev->pdev,
4787 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4788 &((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
4790 list_del(
4791 &((struct __vxge_hw_blockpool_entry *)p)->item);
4792 kfree(p);
4793 blockpool->pool_size--;
4796 list_for_each_safe(p, n, &blockpool->free_entry_list) {
4797 list_del(
4798 &((struct __vxge_hw_blockpool_entry *)p)->item);
4799 kfree((void *)p);
4801 ret = 0;
4802 exit:
4803 return;
4807 * __vxge_hw_blockpool_blocks_add - Request additional blocks
4809 static
4810 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
4812 u32 nreq = 0, i;
4814 if ((blockpool->pool_size + blockpool->req_out) <
4815 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
4816 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
4817 blockpool->req_out += nreq;
4820 for (i = 0; i < nreq; i++)
4821 vxge_os_dma_malloc_async(
4822 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4823 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
4827 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
4829 static
4830 void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
4832 struct list_head *p, *n;
4834 list_for_each_safe(p, n, &blockpool->free_block_list) {
4836 if (blockpool->pool_size < blockpool->pool_max)
4837 break;
4839 pci_unmap_single(
4840 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4841 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4842 ((struct __vxge_hw_blockpool_entry *)p)->length,
4843 PCI_DMA_BIDIRECTIONAL);
4845 vxge_os_dma_free(
4846 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4847 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4848 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
4850 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
4852 list_add(p, &blockpool->free_entry_list);
4854 blockpool->pool_size--;
4860 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
4861 * Adds a block to block pool
4863 void vxge_hw_blockpool_block_add(
4864 struct __vxge_hw_device *devh,
4865 void *block_addr,
4866 u32 length,
4867 struct pci_dev *dma_h,
4868 struct pci_dev *acc_handle)
4870 struct __vxge_hw_blockpool *blockpool;
4871 struct __vxge_hw_blockpool_entry *entry = NULL;
4872 dma_addr_t dma_addr;
4873 enum vxge_hw_status status = VXGE_HW_OK;
4874 u32 req_out;
4876 blockpool = &devh->block_pool;
4878 if (block_addr == NULL) {
4879 blockpool->req_out--;
4880 status = VXGE_HW_FAIL;
4881 goto exit;
4884 dma_addr = pci_map_single(devh->pdev, block_addr, length,
4885 PCI_DMA_BIDIRECTIONAL);
4887 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
4889 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
4890 blockpool->req_out--;
4891 status = VXGE_HW_FAIL;
4892 goto exit;
4896 if (!list_empty(&blockpool->free_entry_list))
4897 entry = (struct __vxge_hw_blockpool_entry *)
4898 list_first_entry(&blockpool->free_entry_list,
4899 struct __vxge_hw_blockpool_entry,
4900 item);
4902 if (entry == NULL)
4903 entry = (struct __vxge_hw_blockpool_entry *)
4904 vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
4905 else
4906 list_del(&entry->item);
4908 if (entry != NULL) {
4909 entry->length = length;
4910 entry->memblock = block_addr;
4911 entry->dma_addr = dma_addr;
4912 entry->acc_handle = acc_handle;
4913 entry->dma_handle = dma_h;
4914 list_add(&entry->item, &blockpool->free_block_list);
4915 blockpool->pool_size++;
4916 status = VXGE_HW_OK;
4917 } else
4918 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4920 blockpool->req_out--;
4922 req_out = blockpool->req_out;
4923 exit:
4924 return;
4928 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
4929 * Allocates a block of memory of given size, either from block pool
4930 * or by calling vxge_os_dma_malloc()
4932 void *
4933 __vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
4934 struct vxge_hw_mempool_dma *dma_object)
4936 struct __vxge_hw_blockpool_entry *entry = NULL;
4937 struct __vxge_hw_blockpool *blockpool;
4938 void *memblock = NULL;
4939 enum vxge_hw_status status = VXGE_HW_OK;
4941 blockpool = &devh->block_pool;
4943 if (size != blockpool->block_size) {
4945 memblock = vxge_os_dma_malloc(devh->pdev, size,
4946 &dma_object->handle,
4947 &dma_object->acc_handle);
4949 if (memblock == NULL) {
4950 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4951 goto exit;
4954 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
4955 PCI_DMA_BIDIRECTIONAL);
4957 if (unlikely(pci_dma_mapping_error(devh->pdev,
4958 dma_object->addr))) {
4959 vxge_os_dma_free(devh->pdev, memblock,
4960 &dma_object->acc_handle);
4961 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4962 goto exit;
4965 } else {
4967 if (!list_empty(&blockpool->free_block_list))
4968 entry = (struct __vxge_hw_blockpool_entry *)
4969 list_first_entry(&blockpool->free_block_list,
4970 struct __vxge_hw_blockpool_entry,
4971 item);
4973 if (entry != NULL) {
4974 list_del(&entry->item);
4975 dma_object->addr = entry->dma_addr;
4976 dma_object->handle = entry->dma_handle;
4977 dma_object->acc_handle = entry->acc_handle;
4978 memblock = entry->memblock;
4980 list_add(&entry->item,
4981 &blockpool->free_entry_list);
4982 blockpool->pool_size--;
4985 if (memblock != NULL)
4986 __vxge_hw_blockpool_blocks_add(blockpool);
4988 exit:
4989 return memblock;
4993 * __vxge_hw_blockpool_free - Frees the memory allcoated with
4994 __vxge_hw_blockpool_malloc
4996 void
4997 __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
4998 void *memblock, u32 size,
4999 struct vxge_hw_mempool_dma *dma_object)
5001 struct __vxge_hw_blockpool_entry *entry = NULL;
5002 struct __vxge_hw_blockpool *blockpool;
5003 enum vxge_hw_status status = VXGE_HW_OK;
5005 blockpool = &devh->block_pool;
5007 if (size != blockpool->block_size) {
5008 pci_unmap_single(devh->pdev, dma_object->addr, size,
5009 PCI_DMA_BIDIRECTIONAL);
5010 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
5011 } else {
5013 if (!list_empty(&blockpool->free_entry_list))
5014 entry = (struct __vxge_hw_blockpool_entry *)
5015 list_first_entry(&blockpool->free_entry_list,
5016 struct __vxge_hw_blockpool_entry,
5017 item);
5019 if (entry == NULL)
5020 entry = (struct __vxge_hw_blockpool_entry *)
5021 vmalloc(sizeof(
5022 struct __vxge_hw_blockpool_entry));
5023 else
5024 list_del(&entry->item);
5026 if (entry != NULL) {
5027 entry->length = size;
5028 entry->memblock = memblock;
5029 entry->dma_addr = dma_object->addr;
5030 entry->acc_handle = dma_object->acc_handle;
5031 entry->dma_handle = dma_object->handle;
5032 list_add(&entry->item,
5033 &blockpool->free_block_list);
5034 blockpool->pool_size++;
5035 status = VXGE_HW_OK;
5036 } else
5037 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5039 if (status == VXGE_HW_OK)
5040 __vxge_hw_blockpool_blocks_remove(blockpool);
5043 return;
5047 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
5048 * This function allocates a block from block pool or from the system
5050 struct __vxge_hw_blockpool_entry *
5051 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
5053 struct __vxge_hw_blockpool_entry *entry = NULL;
5054 struct __vxge_hw_blockpool *blockpool;
5056 blockpool = &devh->block_pool;
5058 if (size == blockpool->block_size) {
5060 if (!list_empty(&blockpool->free_block_list))
5061 entry = (struct __vxge_hw_blockpool_entry *)
5062 list_first_entry(&blockpool->free_block_list,
5063 struct __vxge_hw_blockpool_entry,
5064 item);
5066 if (entry != NULL) {
5067 list_del(&entry->item);
5068 blockpool->pool_size--;
5072 if (entry != NULL)
5073 __vxge_hw_blockpool_blocks_add(blockpool);
5075 return entry;
5079 * __vxge_hw_blockpool_block_free - Frees a block from block pool
5080 * @devh: Hal device
5081 * @entry: Entry of block to be freed
5083 * This function frees a block from block pool
5085 void
5086 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
5087 struct __vxge_hw_blockpool_entry *entry)
5089 struct __vxge_hw_blockpool *blockpool;
5091 blockpool = &devh->block_pool;
5093 if (entry->length == blockpool->block_size) {
5094 list_add(&entry->item, &blockpool->free_block_list);
5095 blockpool->pool_size++;
5098 __vxge_hw_blockpool_blocks_remove(blockpool);
5100 return;